source: src/SymTab/Validate.cc@ 158b026

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 158b026 was 4615ac8, checked in by Andrew Beach <ajbeach@…>, 6 years ago

Added asserts and clears to make sure lvalue is only used where we expect.

  • Property mode set to 100644
File size: 71.2 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Validate.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 21:50:04 2015
11// Last Modified By : Andrew Beach
12// Last Modified On : Wed Aug 7 6:42:00 2019
13// Update Count : 360
14//
15
16// The "validate" phase of translation is used to take a syntax tree and convert it into a standard form that aims to be
17// as regular in structure as possible. Some assumptions can be made regarding the state of the tree after this pass is
18// complete, including:
19//
20// - No nested structure or union definitions; any in the input are "hoisted" to the level of the containing struct or
21// union.
22//
23// - All enumeration constants have type EnumInstType.
24//
25// - The type "void" never occurs in lists of function parameter or return types. A function
26// taking no arguments has no argument types.
27//
28// - No context instances exist; they are all replaced by the set of declarations signified by the context, instantiated
29// by the particular set of type arguments.
30//
31// - Every declaration is assigned a unique id.
32//
33// - No typedef declarations or instances exist; the actual type is substituted for each instance.
34//
35// - Each type, struct, and union definition is followed by an appropriate assignment operator.
36//
37// - Each use of a struct or union is connected to a complete definition of that struct or union, even if that
38// definition occurs later in the input.
39
40#include "Validate.h"
41
42#include <cassert> // for assertf, assert
43#include <cstddef> // for size_t
44#include <list> // for list
45#include <string> // for string
46#include <unordered_map> // for unordered_map
47#include <utility> // for pair
48
49#include "AST/Chain.hpp"
50#include "AST/Decl.hpp"
51#include "AST/Node.hpp"
52#include "AST/Pass.hpp"
53#include "AST/SymbolTable.hpp"
54#include "AST/Type.hpp"
55#include "AST/TypeSubstitution.hpp"
56#include "CodeGen/CodeGenerator.h" // for genName
57#include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign
58#include "ControlStruct/Mutate.h" // for ForExprMutator
59#include "Common/CodeLocation.h" // for CodeLocation
60#include "Common/Stats.h" // for Stats::Heap
61#include "Common/PassVisitor.h" // for PassVisitor, WithDeclsToAdd
62#include "Common/ScopedMap.h" // for ScopedMap
63#include "Common/SemanticError.h" // for SemanticError
64#include "Common/UniqueName.h" // for UniqueName
65#include "Common/utility.h" // for operator+, cloneAll, deleteAll
66#include "Concurrency/Keywords.h" // for applyKeywords
67#include "FixFunction.h" // for FixFunction
68#include "Indexer.h" // for Indexer
69#include "InitTweak/GenInit.h" // for fixReturnStatements
70#include "InitTweak/InitTweak.h" // for isCtorDtorAssign
71#include "Parser/LinkageSpec.h" // for C
72#include "ResolvExpr/typeops.h" // for typesCompatible
73#include "ResolvExpr/Resolver.h" // for findSingleExpression
74#include "ResolvExpr/ResolveTypeof.h" // for resolveTypeof
75#include "SymTab/Autogen.h" // for SizeType
76#include "SynTree/Attribute.h" // for noAttributes, Attribute
77#include "SynTree/Constant.h" // for Constant
78#include "SynTree/Declaration.h" // for ObjectDecl, DeclarationWithType
79#include "SynTree/Expression.h" // for CompoundLiteralExpr, Expressio...
80#include "SynTree/Initializer.h" // for ListInit, Initializer
81#include "SynTree/Label.h" // for operator==, Label
82#include "SynTree/Mutator.h" // for Mutator
83#include "SynTree/TopLvalue.h" // for assertTopLvalue, clearInnerLvalue
84#include "SynTree/Type.h" // for Type, TypeInstType, EnumInstType
85#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
86#include "SynTree/Visitor.h" // for Visitor
87#include "Validate/HandleAttributes.h" // for handleAttributes
88#include "Validate/FindSpecialDecls.h" // for FindSpecialDecls
89
90class CompoundStmt;
91class ReturnStmt;
92class SwitchStmt;
93
94#define debugPrint( x ) if ( doDebug ) x
95
96namespace SymTab {
97 /// hoists declarations that are difficult to hoist while parsing
98 struct HoistTypeDecls final : public WithDeclsToAdd {
99 void previsit( SizeofExpr * );
100 void previsit( AlignofExpr * );
101 void previsit( UntypedOffsetofExpr * );
102 void previsit( CompoundLiteralExpr * );
103 void handleType( Type * );
104 };
105
106 struct FixQualifiedTypes final : public WithIndexer {
107 Type * postmutate( QualifiedType * );
108 };
109
110 struct HoistStruct final : public WithDeclsToAdd, public WithGuards {
111 /// Flattens nested struct types
112 static void hoistStruct( std::list< Declaration * > &translationUnit );
113
114 void previsit( StructDecl * aggregateDecl );
115 void previsit( UnionDecl * aggregateDecl );
116 void previsit( StaticAssertDecl * assertDecl );
117 void previsit( StructInstType * type );
118 void previsit( UnionInstType * type );
119 void previsit( EnumInstType * type );
120
121 private:
122 template< typename AggDecl > void handleAggregate( AggDecl * aggregateDecl );
123
124 AggregateDecl * parentAggr = nullptr;
125 };
126
127 /// Fix return types so that every function returns exactly one value
128 struct ReturnTypeFixer {
129 static void fix( std::list< Declaration * > &translationUnit );
130
131 void postvisit( FunctionDecl * functionDecl );
132 void postvisit( FunctionType * ftype );
133 };
134
135 /// Replaces enum types by int, and function or array types in function parameter and return lists by appropriate pointers.
136 struct EnumAndPointerDecay_old {
137 void previsit( EnumDecl * aggregateDecl );
138 void previsit( FunctionType * func );
139 };
140
141 /// Associates forward declarations of aggregates with their definitions
142 struct LinkReferenceToTypes_old final : public WithIndexer, public WithGuards, public WithVisitorRef<LinkReferenceToTypes_old>, public WithShortCircuiting {
143 LinkReferenceToTypes_old( const Indexer * indexer );
144 void postvisit( TypeInstType * typeInst );
145
146 void postvisit( EnumInstType * enumInst );
147 void postvisit( StructInstType * structInst );
148 void postvisit( UnionInstType * unionInst );
149 void postvisit( TraitInstType * traitInst );
150 void previsit( QualifiedType * qualType );
151 void postvisit( QualifiedType * qualType );
152
153 void postvisit( EnumDecl * enumDecl );
154 void postvisit( StructDecl * structDecl );
155 void postvisit( UnionDecl * unionDecl );
156 void postvisit( TraitDecl * traitDecl );
157
158 void previsit( StructDecl * structDecl );
159 void previsit( UnionDecl * unionDecl );
160
161 void renameGenericParams( std::list< TypeDecl * > & params );
162
163 private:
164 const Indexer * local_indexer;
165
166 typedef std::map< std::string, std::list< EnumInstType * > > ForwardEnumsType;
167 typedef std::map< std::string, std::list< StructInstType * > > ForwardStructsType;
168 typedef std::map< std::string, std::list< UnionInstType * > > ForwardUnionsType;
169 ForwardEnumsType forwardEnums;
170 ForwardStructsType forwardStructs;
171 ForwardUnionsType forwardUnions;
172 /// true if currently in a generic type body, so that type parameter instances can be renamed appropriately
173 bool inGeneric = false;
174 };
175
176 /// Replaces array and function types in forall lists by appropriate pointer type and assigns each Object and Function declaration a unique ID.
177 struct ForallPointerDecay_old final {
178 void previsit( ObjectDecl * object );
179 void previsit( FunctionDecl * func );
180 void previsit( FunctionType * ftype );
181 void previsit( StructDecl * aggrDecl );
182 void previsit( UnionDecl * aggrDecl );
183 };
184
185 struct ReturnChecker : public WithGuards {
186 /// Checks that return statements return nothing if their return type is void
187 /// and return something if the return type is non-void.
188 static void checkFunctionReturns( std::list< Declaration * > & translationUnit );
189
190 void previsit( FunctionDecl * functionDecl );
191 void previsit( ReturnStmt * returnStmt );
192
193 typedef std::list< DeclarationWithType * > ReturnVals;
194 ReturnVals returnVals;
195 };
196
197 struct ReplaceTypedef final : public WithVisitorRef<ReplaceTypedef>, public WithGuards, public WithShortCircuiting, public WithDeclsToAdd {
198 ReplaceTypedef() : scopeLevel( 0 ) {}
199 /// Replaces typedefs by forward declarations
200 static void replaceTypedef( std::list< Declaration * > &translationUnit );
201
202 void premutate( QualifiedType * );
203 Type * postmutate( QualifiedType * qualType );
204 Type * postmutate( TypeInstType * aggregateUseType );
205 Declaration * postmutate( TypedefDecl * typeDecl );
206 void premutate( TypeDecl * typeDecl );
207 void premutate( FunctionDecl * funcDecl );
208 void premutate( ObjectDecl * objDecl );
209 DeclarationWithType * postmutate( ObjectDecl * objDecl );
210
211 void premutate( CastExpr * castExpr );
212
213 void premutate( CompoundStmt * compoundStmt );
214
215 void premutate( StructDecl * structDecl );
216 void premutate( UnionDecl * unionDecl );
217 void premutate( EnumDecl * enumDecl );
218 void premutate( TraitDecl * );
219
220 void premutate( FunctionType * ftype );
221
222 private:
223 template<typename AggDecl>
224 void addImplicitTypedef( AggDecl * aggDecl );
225 template< typename AggDecl >
226 void handleAggregate( AggDecl * aggr );
227
228 typedef std::unique_ptr<TypedefDecl> TypedefDeclPtr;
229 typedef ScopedMap< std::string, std::pair< TypedefDeclPtr, int > > TypedefMap;
230 typedef ScopedMap< std::string, TypeDecl * > TypeDeclMap;
231 TypedefMap typedefNames;
232 TypeDeclMap typedeclNames;
233 int scopeLevel;
234 bool inFunctionType = false;
235 };
236
237 struct EliminateTypedef {
238 /// removes TypedefDecls from the AST
239 static void eliminateTypedef( std::list< Declaration * > &translationUnit );
240
241 template<typename AggDecl>
242 void handleAggregate( AggDecl * aggregateDecl );
243
244 void previsit( StructDecl * aggregateDecl );
245 void previsit( UnionDecl * aggregateDecl );
246 void previsit( CompoundStmt * compoundStmt );
247 };
248
249 struct VerifyCtorDtorAssign {
250 /// ensure that constructors, destructors, and assignment have at least one
251 /// parameter, the first of which must be a pointer, and that ctor/dtors have no
252 /// return values.
253 static void verify( std::list< Declaration * > &translationUnit );
254
255 void previsit( FunctionDecl * funcDecl );
256 };
257
258 /// ensure that generic types have the correct number of type arguments
259 struct ValidateGenericParameters {
260 void previsit( StructInstType * inst );
261 void previsit( UnionInstType * inst );
262 };
263
264 struct FixObjectType : public WithIndexer {
265 /// resolves typeof type in object, function, and type declarations
266 static void fix( std::list< Declaration * > & translationUnit );
267
268 void previsit( ObjectDecl * );
269 void previsit( FunctionDecl * );
270 void previsit( TypeDecl * );
271 };
272
273 struct ArrayLength : public WithIndexer {
274 /// for array types without an explicit length, compute the length and store it so that it
275 /// is known to the rest of the phases. For example,
276 /// int x[] = { 1, 2, 3 };
277 /// int y[][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
278 /// here x and y are known at compile-time to have length 3, so change this into
279 /// int x[3] = { 1, 2, 3 };
280 /// int y[3][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
281 static void computeLength( std::list< Declaration * > & translationUnit );
282
283 void previsit( ObjectDecl * objDecl );
284 void previsit( ArrayType * arrayType );
285 };
286
287 struct CompoundLiteral final : public WithDeclsToAdd, public WithVisitorRef<CompoundLiteral> {
288 Type::StorageClasses storageClasses;
289
290 void premutate( ObjectDecl * objectDecl );
291 Expression * postmutate( CompoundLiteralExpr * compLitExpr );
292 };
293
294 struct LabelAddressFixer final : public WithGuards {
295 std::set< Label > labels;
296
297 void premutate( FunctionDecl * funcDecl );
298 Expression * postmutate( AddressExpr * addrExpr );
299 };
300
301 void validate( std::list< Declaration * > &translationUnit, __attribute__((unused)) bool doDebug ) {
302 PassVisitor<EnumAndPointerDecay_old> epc;
303 PassVisitor<LinkReferenceToTypes_old> lrt( nullptr );
304 PassVisitor<ForallPointerDecay_old> fpd;
305 PassVisitor<CompoundLiteral> compoundliteral;
306 PassVisitor<ValidateGenericParameters> genericParams;
307 PassVisitor<LabelAddressFixer> labelAddrFixer;
308 PassVisitor<HoistTypeDecls> hoistDecls;
309 PassVisitor<FixQualifiedTypes> fixQual;
310
311 assertTopLvalue( translationUnit );
312 {
313 Stats::Heap::newPass("validate-A");
314 Stats::Time::BlockGuard guard("validate-A");
315 acceptAll( translationUnit, hoistDecls );
316 ReplaceTypedef::replaceTypedef( translationUnit );
317 ReturnTypeFixer::fix( translationUnit ); // must happen before autogen
318 acceptAll( translationUnit, epc ); // must happen before VerifyCtorDtorAssign, because void return objects should not exist; before LinkReferenceToTypes_old because it is an indexer and needs correct types for mangling
319 }
320 assertTopLvalue( translationUnit );
321 {
322 Stats::Heap::newPass("validate-B");
323 Stats::Time::BlockGuard guard("validate-B");
324 assertTopLvalue( translationUnit );
325 Stats::Time::TimeBlock("Link Reference To Types", [&]() {
326 acceptAll( translationUnit, lrt ); // must happen before autogen, because sized flag needs to propagate to generated functions
327 });
328 clearInnerLvalue( translationUnit );
329 assertTopLvalue( translationUnit );
330 Stats::Time::TimeBlock("Fix Qualified Types", [&]() {
331 mutateAll( translationUnit, fixQual ); // must happen after LinkReferenceToTypes_old, because aggregate members are accessed
332 });
333 assertTopLvalue( translationUnit );
334 Stats::Time::TimeBlock("Hoist Structs", [&]() {
335 HoistStruct::hoistStruct( translationUnit ); // must happen after EliminateTypedef, so that aggregate typedefs occur in the correct order
336 });
337 assertTopLvalue( translationUnit );
338 Stats::Time::TimeBlock("Eliminate Typedefs", [&]() {
339 EliminateTypedef::eliminateTypedef( translationUnit ); //
340 });
341 }
342 assertTopLvalue( translationUnit );
343 {
344 Stats::Heap::newPass("validate-C");
345 Stats::Time::BlockGuard guard("validate-C");
346 acceptAll( translationUnit, genericParams ); // check as early as possible - can't happen before LinkReferenceToTypes_old
347 VerifyCtorDtorAssign::verify( translationUnit ); // must happen before autogen, because autogen examines existing ctor/dtors
348 ReturnChecker::checkFunctionReturns( translationUnit );
349 InitTweak::fixReturnStatements( translationUnit ); // must happen before autogen
350 }
351 assertTopLvalue( translationUnit );
352 {
353 Stats::Heap::newPass("validate-D");
354 Stats::Time::BlockGuard guard("validate-D");
355 assertTopLvalue( translationUnit );
356 Stats::Time::TimeBlock("Apply Concurrent Keywords", [&]() {
357 Concurrency::applyKeywords( translationUnit );
358 });
359 clearInnerLvalue( translationUnit );
360 assertTopLvalue( translationUnit );
361 Stats::Time::TimeBlock("Forall Pointer Decay", [&]() {
362 acceptAll( translationUnit, fpd ); // must happen before autogenerateRoutines, after Concurrency::applyKeywords because uniqueIds must be set on declaration before resolution
363 });
364 assertTopLvalue( translationUnit );
365 Stats::Time::TimeBlock("Hoist Control Declarations", [&]() {
366 ControlStruct::hoistControlDecls( translationUnit ); // hoist initialization out of for statements; must happen before autogenerateRoutines
367 });
368 assertTopLvalue( translationUnit );
369 Stats::Time::TimeBlock("Generate Autogen routines", [&]() {
370 autogenerateRoutines( translationUnit ); // moved up, used to be below compoundLiteral - currently needs EnumAndPointerDecay_old
371 });
372 clearInnerLvalue( translationUnit );
373 }
374 assertTopLvalue( translationUnit );
375 {
376 Stats::Heap::newPass("validate-E");
377 Stats::Time::BlockGuard guard("validate-E");
378 assertTopLvalue( translationUnit );
379 Stats::Time::TimeBlock("Implement Mutex Func", [&]() {
380 Concurrency::implementMutexFuncs( translationUnit );
381 });
382 clearInnerLvalue( translationUnit );
383 assertTopLvalue( translationUnit );
384 Stats::Time::TimeBlock("Implement Thread Start", [&]() {
385 Concurrency::implementThreadStarter( translationUnit );
386 });
387 assertTopLvalue( translationUnit );
388 Stats::Time::TimeBlock("Compound Literal", [&]() {
389 mutateAll( translationUnit, compoundliteral );
390 });
391 assertTopLvalue( translationUnit );
392 Stats::Time::TimeBlock("Resolve With Expressions", [&]() {
393 ResolvExpr::resolveWithExprs( translationUnit ); // must happen before FixObjectType because user-code is resolved and may contain with variables
394 });
395 clearInnerLvalue( translationUnit );
396 }
397 assertTopLvalue( translationUnit );
398 {
399 Stats::Heap::newPass("validate-F");
400 Stats::Time::BlockGuard guard("validate-F");
401 assertTopLvalue( translationUnit );
402 Stats::Time::TimeBlock("Fix Object Type", [&]() {
403 FixObjectType::fix( translationUnit );
404 });
405 assertTopLvalue( translationUnit );
406 Stats::Time::TimeBlock("Array Length", [&]() {
407 ArrayLength::computeLength( translationUnit );
408 });
409 clearInnerLvalue( translationUnit );
410 assertTopLvalue( translationUnit );
411 Stats::Time::TimeBlock("Find Special Declarations", [&]() {
412 Validate::findSpecialDecls( translationUnit );
413 });
414 assertTopLvalue( translationUnit );
415 Stats::Time::TimeBlock("Fix Label Address", [&]() {
416 mutateAll( translationUnit, labelAddrFixer );
417 });
418 assertTopLvalue( translationUnit );
419 Stats::Time::TimeBlock("Handle Attributes", [&]() {
420 Validate::handleAttributes( translationUnit );
421 });
422 }
423 assertTopLvalue( translationUnit );
424 }
425
426 void validateType( Type * type, const Indexer * indexer ) {
427 PassVisitor<EnumAndPointerDecay_old> epc;
428 PassVisitor<LinkReferenceToTypes_old> lrt( indexer );
429 PassVisitor<ForallPointerDecay_old> fpd;
430 type->accept( epc );
431 type->accept( lrt );
432 type->accept( fpd );
433 }
434
435
436 void HoistTypeDecls::handleType( Type * type ) {
437 // some type declarations are buried in expressions and not easy to hoist during parsing; hoist them here
438 AggregateDecl * aggr = nullptr;
439 if ( StructInstType * inst = dynamic_cast< StructInstType * >( type ) ) {
440 aggr = inst->baseStruct;
441 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( type ) ) {
442 aggr = inst->baseUnion;
443 } else if ( EnumInstType * inst = dynamic_cast< EnumInstType * >( type ) ) {
444 aggr = inst->baseEnum;
445 }
446 if ( aggr && aggr->body ) {
447 declsToAddBefore.push_front( aggr );
448 }
449 }
450
451 void HoistTypeDecls::previsit( SizeofExpr * expr ) {
452 handleType( expr->type );
453 }
454
455 void HoistTypeDecls::previsit( AlignofExpr * expr ) {
456 handleType( expr->type );
457 }
458
459 void HoistTypeDecls::previsit( UntypedOffsetofExpr * expr ) {
460 handleType( expr->type );
461 }
462
463 void HoistTypeDecls::previsit( CompoundLiteralExpr * expr ) {
464 handleType( expr->result );
465 }
466
467
468 Type * FixQualifiedTypes::postmutate( QualifiedType * qualType ) {
469 Type * parent = qualType->parent;
470 Type * child = qualType->child;
471 if ( dynamic_cast< GlobalScopeType * >( qualType->parent ) ) {
472 // .T => lookup T at global scope
473 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
474 auto td = indexer.globalLookupType( inst->name );
475 if ( ! td ) {
476 SemanticError( qualType->location, toString("Use of undefined global type ", inst->name) );
477 }
478 auto base = td->base;
479 assert( base );
480 Type * ret = base->clone();
481 ret->get_qualifiers() = qualType->get_qualifiers();
482 return ret;
483 } else {
484 // .T => T is not a type name
485 assertf( false, "unhandled global qualified child type: %s", toCString(child) );
486 }
487 } else {
488 // S.T => S must be an aggregate type, find the declaration for T in S.
489 AggregateDecl * aggr = nullptr;
490 if ( StructInstType * inst = dynamic_cast< StructInstType * >( parent ) ) {
491 aggr = inst->baseStruct;
492 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * > ( parent ) ) {
493 aggr = inst->baseUnion;
494 } else {
495 SemanticError( qualType->location, toString("Qualified type requires an aggregate on the left, but has: ", parent) );
496 }
497 assert( aggr ); // TODO: need to handle forward declarations
498 for ( Declaration * member : aggr->members ) {
499 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
500 // name on the right is a typedef
501 if ( NamedTypeDecl * aggr = dynamic_cast< NamedTypeDecl * > ( member ) ) {
502 if ( aggr->name == inst->name ) {
503 assert( aggr->base );
504 Type * ret = aggr->base->clone();
505 ret->get_qualifiers() = qualType->get_qualifiers();
506 TypeSubstitution sub = parent->genericSubstitution();
507 sub.apply(ret);
508 return ret;
509 }
510 }
511 } else {
512 // S.T - S is not an aggregate => error
513 assertf( false, "unhandled qualified child type: %s", toCString(qualType) );
514 }
515 }
516 // failed to find a satisfying definition of type
517 SemanticError( qualType->location, toString("Undefined type in qualified type: ", qualType) );
518 }
519
520 // ... may want to link canonical SUE definition to each forward decl so that it becomes easier to lookup?
521 }
522
523
524 void HoistStruct::hoistStruct( std::list< Declaration * > &translationUnit ) {
525 PassVisitor<HoistStruct> hoister;
526 acceptAll( translationUnit, hoister );
527 }
528
529 bool shouldHoist( Declaration * decl ) {
530 return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl ) || dynamic_cast< StaticAssertDecl * >( decl );
531 }
532
533 namespace {
534 void qualifiedName( AggregateDecl * aggr, std::ostringstream & ss ) {
535 if ( aggr->parent ) qualifiedName( aggr->parent, ss );
536 ss << "__" << aggr->name;
537 }
538
539 // mangle nested type names using entire parent chain
540 std::string qualifiedName( AggregateDecl * aggr ) {
541 std::ostringstream ss;
542 qualifiedName( aggr, ss );
543 return ss.str();
544 }
545 }
546
547 template< typename AggDecl >
548 void HoistStruct::handleAggregate( AggDecl * aggregateDecl ) {
549 if ( parentAggr ) {
550 aggregateDecl->parent = parentAggr;
551 aggregateDecl->name = qualifiedName( aggregateDecl );
552 // Add elements in stack order corresponding to nesting structure.
553 declsToAddBefore.push_front( aggregateDecl );
554 } else {
555 GuardValue( parentAggr );
556 parentAggr = aggregateDecl;
557 } // if
558 // Always remove the hoisted aggregate from the inner structure.
559 GuardAction( [aggregateDecl]() { filter( aggregateDecl->members, shouldHoist, false ); } );
560 }
561
562 void HoistStruct::previsit( StaticAssertDecl * assertDecl ) {
563 if ( parentAggr ) {
564 declsToAddBefore.push_back( assertDecl );
565 }
566 }
567
568 void HoistStruct::previsit( StructDecl * aggregateDecl ) {
569 handleAggregate( aggregateDecl );
570 }
571
572 void HoistStruct::previsit( UnionDecl * aggregateDecl ) {
573 handleAggregate( aggregateDecl );
574 }
575
576 void HoistStruct::previsit( StructInstType * type ) {
577 // need to reset type name after expanding to qualified name
578 assert( type->baseStruct );
579 type->name = type->baseStruct->name;
580 }
581
582 void HoistStruct::previsit( UnionInstType * type ) {
583 assert( type->baseUnion );
584 type->name = type->baseUnion->name;
585 }
586
587 void HoistStruct::previsit( EnumInstType * type ) {
588 assert( type->baseEnum );
589 type->name = type->baseEnum->name;
590 }
591
592
593 bool isTypedef( Declaration * decl ) {
594 return dynamic_cast< TypedefDecl * >( decl );
595 }
596
597 void EliminateTypedef::eliminateTypedef( std::list< Declaration * > &translationUnit ) {
598 PassVisitor<EliminateTypedef> eliminator;
599 acceptAll( translationUnit, eliminator );
600 filter( translationUnit, isTypedef, true );
601 }
602
603 template< typename AggDecl >
604 void EliminateTypedef::handleAggregate( AggDecl * aggregateDecl ) {
605 filter( aggregateDecl->members, isTypedef, true );
606 }
607
608 void EliminateTypedef::previsit( StructDecl * aggregateDecl ) {
609 handleAggregate( aggregateDecl );
610 }
611
612 void EliminateTypedef::previsit( UnionDecl * aggregateDecl ) {
613 handleAggregate( aggregateDecl );
614 }
615
616 void EliminateTypedef::previsit( CompoundStmt * compoundStmt ) {
617 // remove and delete decl stmts
618 filter( compoundStmt->kids, [](Statement * stmt) {
619 if ( DeclStmt * declStmt = dynamic_cast< DeclStmt * >( stmt ) ) {
620 if ( dynamic_cast< TypedefDecl * >( declStmt->decl ) ) {
621 return true;
622 } // if
623 } // if
624 return false;
625 }, true);
626 }
627
628 void EnumAndPointerDecay_old::previsit( EnumDecl * enumDecl ) {
629 // Set the type of each member of the enumeration to be EnumConstant
630 for ( std::list< Declaration * >::iterator i = enumDecl->members.begin(); i != enumDecl->members.end(); ++i ) {
631 ObjectDecl * obj = dynamic_cast< ObjectDecl * >( * i );
632 assert( obj );
633 obj->set_type( new EnumInstType( Type::Qualifiers( Type::Const ), enumDecl->name ) );
634 } // for
635 }
636
637 namespace {
638 template< typename DWTList >
639 void fixFunctionList( DWTList & dwts, bool isVarArgs, FunctionType * func ) {
640 auto nvals = dwts.size();
641 bool containsVoid = false;
642 for ( auto & dwt : dwts ) {
643 // fix each DWT and record whether a void was found
644 containsVoid |= fixFunction( dwt );
645 }
646
647 // the only case in which "void" is valid is where it is the only one in the list
648 if ( containsVoid && ( nvals > 1 || isVarArgs ) ) {
649 SemanticError( func, "invalid type void in function type " );
650 }
651
652 // one void is the only thing in the list; remove it.
653 if ( containsVoid ) {
654 delete dwts.front();
655 dwts.clear();
656 }
657 }
658 }
659
660 void EnumAndPointerDecay_old::previsit( FunctionType * func ) {
661 // Fix up parameters and return types
662 fixFunctionList( func->parameters, func->isVarArgs, func );
663 fixFunctionList( func->returnVals, false, func );
664 }
665
666 LinkReferenceToTypes_old::LinkReferenceToTypes_old( const Indexer * other_indexer ) {
667 if ( other_indexer ) {
668 local_indexer = other_indexer;
669 } else {
670 local_indexer = &indexer;
671 } // if
672 }
673
674 void LinkReferenceToTypes_old::postvisit( EnumInstType * enumInst ) {
675 const EnumDecl * st = local_indexer->lookupEnum( enumInst->name );
676 // it's not a semantic error if the enum is not found, just an implicit forward declaration
677 if ( st ) {
678 enumInst->baseEnum = const_cast<EnumDecl *>(st); // Just linking in the node
679 } // if
680 if ( ! st || ! st->body ) {
681 // use of forward declaration
682 forwardEnums[ enumInst->name ].push_back( enumInst );
683 } // if
684 }
685
686 void checkGenericParameters( ReferenceToType * inst ) {
687 for ( Expression * param : inst->parameters ) {
688 if ( ! dynamic_cast< TypeExpr * >( param ) ) {
689 SemanticError( inst, "Expression parameters for generic types are currently unsupported: " );
690 }
691 }
692 }
693
694 void LinkReferenceToTypes_old::postvisit( StructInstType * structInst ) {
695 const StructDecl * st = local_indexer->lookupStruct( structInst->name );
696 // it's not a semantic error if the struct is not found, just an implicit forward declaration
697 if ( st ) {
698 structInst->baseStruct = const_cast<StructDecl *>(st); // Just linking in the node
699 } // if
700 if ( ! st || ! st->body ) {
701 // use of forward declaration
702 forwardStructs[ structInst->name ].push_back( structInst );
703 } // if
704 checkGenericParameters( structInst );
705 }
706
707 void LinkReferenceToTypes_old::postvisit( UnionInstType * unionInst ) {
708 const UnionDecl * un = local_indexer->lookupUnion( unionInst->name );
709 // it's not a semantic error if the union is not found, just an implicit forward declaration
710 if ( un ) {
711 unionInst->baseUnion = const_cast<UnionDecl *>(un); // Just linking in the node
712 } // if
713 if ( ! un || ! un->body ) {
714 // use of forward declaration
715 forwardUnions[ unionInst->name ].push_back( unionInst );
716 } // if
717 checkGenericParameters( unionInst );
718 }
719
720 void LinkReferenceToTypes_old::previsit( QualifiedType * ) {
721 visit_children = false;
722 }
723
724 void LinkReferenceToTypes_old::postvisit( QualifiedType * qualType ) {
725 // linking only makes sense for the 'oldest ancestor' of the qualified type
726 qualType->parent->accept( * visitor );
727 }
728
729 template< typename Decl >
730 void normalizeAssertions( std::list< Decl * > & assertions ) {
731 // ensure no duplicate trait members after the clone
732 auto pred = [](Decl * d1, Decl * d2) {
733 // only care if they're equal
734 DeclarationWithType * dwt1 = dynamic_cast<DeclarationWithType *>( d1 );
735 DeclarationWithType * dwt2 = dynamic_cast<DeclarationWithType *>( d2 );
736 if ( dwt1 && dwt2 ) {
737 if ( dwt1->name == dwt2->name && ResolvExpr::typesCompatible( dwt1->get_type(), dwt2->get_type(), SymTab::Indexer() ) ) {
738 // std::cerr << "=========== equal:" << std::endl;
739 // std::cerr << "d1: " << d1 << std::endl;
740 // std::cerr << "d2: " << d2 << std::endl;
741 return false;
742 }
743 }
744 return d1 < d2;
745 };
746 std::set<Decl *, decltype(pred)> unique_members( assertions.begin(), assertions.end(), pred );
747 // if ( unique_members.size() != assertions.size() ) {
748 // std::cerr << "============different" << std::endl;
749 // std::cerr << unique_members.size() << " " << assertions.size() << std::endl;
750 // }
751
752 std::list< Decl * > order;
753 order.splice( order.end(), assertions );
754 std::copy_if( order.begin(), order.end(), back_inserter( assertions ), [&]( Decl * decl ) {
755 return unique_members.count( decl );
756 });
757 }
758
759 // expand assertions from trait instance, performing the appropriate type variable substitutions
760 template< typename Iterator >
761 void expandAssertions( TraitInstType * inst, Iterator out ) {
762 assertf( inst->baseTrait, "Trait instance not linked to base trait: %s", toCString( inst ) );
763 std::list< DeclarationWithType * > asserts;
764 for ( Declaration * decl : inst->baseTrait->members ) {
765 asserts.push_back( strict_dynamic_cast<DeclarationWithType *>( decl->clone() ) );
766 }
767 // substitute trait decl parameters for instance parameters
768 applySubstitution( inst->baseTrait->parameters.begin(), inst->baseTrait->parameters.end(), inst->parameters.begin(), asserts.begin(), asserts.end(), out );
769 }
770
771 void LinkReferenceToTypes_old::postvisit( TraitDecl * traitDecl ) {
772 if ( traitDecl->name == "sized" ) {
773 // "sized" is a special trait - flick the sized status on for the type variable
774 assertf( traitDecl->parameters.size() == 1, "Built-in trait 'sized' has incorrect number of parameters: %zd", traitDecl->parameters.size() );
775 TypeDecl * td = traitDecl->parameters.front();
776 td->set_sized( true );
777 }
778
779 // move assertions from type parameters into the body of the trait
780 for ( TypeDecl * td : traitDecl->parameters ) {
781 for ( DeclarationWithType * assert : td->assertions ) {
782 if ( TraitInstType * inst = dynamic_cast< TraitInstType * >( assert->get_type() ) ) {
783 expandAssertions( inst, back_inserter( traitDecl->members ) );
784 } else {
785 traitDecl->members.push_back( assert->clone() );
786 }
787 }
788 deleteAll( td->assertions );
789 td->assertions.clear();
790 } // for
791 }
792
793 void LinkReferenceToTypes_old::postvisit( TraitInstType * traitInst ) {
794 // handle other traits
795 const TraitDecl * traitDecl = local_indexer->lookupTrait( traitInst->name );
796 if ( ! traitDecl ) {
797 SemanticError( traitInst->location, "use of undeclared trait " + traitInst->name );
798 } // if
799 if ( traitDecl->parameters.size() != traitInst->parameters.size() ) {
800 SemanticError( traitInst, "incorrect number of trait parameters: " );
801 } // if
802 traitInst->baseTrait = const_cast<TraitDecl *>(traitDecl); // Just linking in the node
803
804 // need to carry over the 'sized' status of each decl in the instance
805 for ( auto p : group_iterate( traitDecl->parameters, traitInst->parameters ) ) {
806 TypeExpr * expr = dynamic_cast< TypeExpr * >( std::get<1>(p) );
807 if ( ! expr ) {
808 SemanticError( std::get<1>(p), "Expression parameters for trait instances are currently unsupported: " );
809 }
810 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( expr->get_type() ) ) {
811 TypeDecl * formalDecl = std::get<0>(p);
812 TypeDecl * instDecl = inst->baseType;
813 if ( formalDecl->get_sized() ) instDecl->set_sized( true );
814 }
815 }
816 // normalizeAssertions( traitInst->members );
817 }
818
819 void LinkReferenceToTypes_old::postvisit( EnumDecl * enumDecl ) {
820 // visit enum members first so that the types of self-referencing members are updated properly
821 if ( enumDecl->body ) {
822 ForwardEnumsType::iterator fwds = forwardEnums.find( enumDecl->name );
823 if ( fwds != forwardEnums.end() ) {
824 for ( std::list< EnumInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
825 (* inst)->baseEnum = enumDecl;
826 } // for
827 forwardEnums.erase( fwds );
828 } // if
829
830 for ( Declaration * member : enumDecl->members ) {
831 ObjectDecl * field = strict_dynamic_cast<ObjectDecl *>( member );
832 if ( field->init ) {
833 // need to resolve enumerator initializers early so that other passes that determine if an expression is constexpr have the appropriate information.
834 SingleInit * init = strict_dynamic_cast<SingleInit *>( field->init );
835 ResolvExpr::findSingleExpression( init->value, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), indexer );
836 }
837 }
838 } // if
839 }
840
841 void LinkReferenceToTypes_old::renameGenericParams( std::list< TypeDecl * > & params ) {
842 // rename generic type parameters uniquely so that they do not conflict with user-defined function forall parameters, e.g.
843 // forall(otype T)
844 // struct Box {
845 // T x;
846 // };
847 // forall(otype T)
848 // void f(Box(T) b) {
849 // ...
850 // }
851 // The T in Box and the T in f are different, so internally the naming must reflect that.
852 GuardValue( inGeneric );
853 inGeneric = ! params.empty();
854 for ( TypeDecl * td : params ) {
855 td->name = "__" + td->name + "_generic_";
856 }
857 }
858
859 void LinkReferenceToTypes_old::previsit( StructDecl * structDecl ) {
860 renameGenericParams( structDecl->parameters );
861 }
862
863 void LinkReferenceToTypes_old::previsit( UnionDecl * unionDecl ) {
864 renameGenericParams( unionDecl->parameters );
865 }
866
867 void LinkReferenceToTypes_old::postvisit( StructDecl * structDecl ) {
868 // visit struct members first so that the types of self-referencing members are updated properly
869 // xxx - need to ensure that type parameters match up between forward declarations and definition (most importantly, number of type parameters and their defaults)
870 if ( structDecl->body ) {
871 ForwardStructsType::iterator fwds = forwardStructs.find( structDecl->name );
872 if ( fwds != forwardStructs.end() ) {
873 for ( std::list< StructInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
874 (* inst)->baseStruct = structDecl;
875 } // for
876 forwardStructs.erase( fwds );
877 } // if
878 } // if
879 }
880
881 void LinkReferenceToTypes_old::postvisit( UnionDecl * unionDecl ) {
882 if ( unionDecl->body ) {
883 ForwardUnionsType::iterator fwds = forwardUnions.find( unionDecl->name );
884 if ( fwds != forwardUnions.end() ) {
885 for ( std::list< UnionInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
886 (* inst)->baseUnion = unionDecl;
887 } // for
888 forwardUnions.erase( fwds );
889 } // if
890 } // if
891 }
892
893 void LinkReferenceToTypes_old::postvisit( TypeInstType * typeInst ) {
894 // ensure generic parameter instances are renamed like the base type
895 if ( inGeneric && typeInst->baseType ) typeInst->name = typeInst->baseType->name;
896 if ( const NamedTypeDecl * namedTypeDecl = local_indexer->lookupType( typeInst->name ) ) {
897 if ( const TypeDecl * typeDecl = dynamic_cast< const TypeDecl * >( namedTypeDecl ) ) {
898 typeInst->set_isFtype( typeDecl->kind == TypeDecl::Ftype );
899 } // if
900 } // if
901 }
902
903 /// Fix up assertions - flattens assertion lists, removing all trait instances
904 void forallFixer( std::list< TypeDecl * > & forall, BaseSyntaxNode * node ) {
905 for ( TypeDecl * type : forall ) {
906 std::list< DeclarationWithType * > asserts;
907 asserts.splice( asserts.end(), type->assertions );
908 // expand trait instances into their members
909 for ( DeclarationWithType * assertion : asserts ) {
910 if ( TraitInstType * traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) {
911 // expand trait instance into all of its members
912 expandAssertions( traitInst, back_inserter( type->assertions ) );
913 delete traitInst;
914 } else {
915 // pass other assertions through
916 type->assertions.push_back( assertion );
917 } // if
918 } // for
919 // apply FixFunction to every assertion to check for invalid void type
920 for ( DeclarationWithType *& assertion : type->assertions ) {
921 bool isVoid = fixFunction( assertion );
922 if ( isVoid ) {
923 SemanticError( node, "invalid type void in assertion of function " );
924 } // if
925 } // for
926 // normalizeAssertions( type->assertions );
927 } // for
928 }
929
930 void ForallPointerDecay_old::previsit( ObjectDecl * object ) {
931 // ensure that operator names only apply to functions or function pointers
932 if ( CodeGen::isOperator( object->name ) && ! dynamic_cast< FunctionType * >( object->type->stripDeclarator() ) ) {
933 SemanticError( object->location, toCString( "operator ", object->name.c_str(), " is not a function or function pointer." ) );
934 }
935 object->fixUniqueId();
936 }
937
938 void ForallPointerDecay_old::previsit( FunctionDecl * func ) {
939 func->fixUniqueId();
940 }
941
942 void ForallPointerDecay_old::previsit( FunctionType * ftype ) {
943 forallFixer( ftype->forall, ftype );
944 }
945
946 void ForallPointerDecay_old::previsit( StructDecl * aggrDecl ) {
947 forallFixer( aggrDecl->parameters, aggrDecl );
948 }
949
950 void ForallPointerDecay_old::previsit( UnionDecl * aggrDecl ) {
951 forallFixer( aggrDecl->parameters, aggrDecl );
952 }
953
954 void ReturnChecker::checkFunctionReturns( std::list< Declaration * > & translationUnit ) {
955 PassVisitor<ReturnChecker> checker;
956 acceptAll( translationUnit, checker );
957 }
958
959 void ReturnChecker::previsit( FunctionDecl * functionDecl ) {
960 GuardValue( returnVals );
961 returnVals = functionDecl->get_functionType()->get_returnVals();
962 }
963
964 void ReturnChecker::previsit( ReturnStmt * returnStmt ) {
965 // Previously this also checked for the existence of an expr paired with no return values on
966 // the function return type. This is incorrect, since you can have an expression attached to
967 // a return statement in a void-returning function in C. The expression is treated as if it
968 // were cast to void.
969 if ( ! returnStmt->get_expr() && returnVals.size() != 0 ) {
970 SemanticError( returnStmt, "Non-void function returns no values: " );
971 }
972 }
973
974
975 void ReplaceTypedef::replaceTypedef( std::list< Declaration * > &translationUnit ) {
976 PassVisitor<ReplaceTypedef> eliminator;
977 mutateAll( translationUnit, eliminator );
978 if ( eliminator.pass.typedefNames.count( "size_t" ) ) {
979 // grab and remember declaration of size_t
980 Validate::SizeType = eliminator.pass.typedefNames["size_t"].first->base->clone();
981 } else {
982 // xxx - missing global typedef for size_t - default to long unsigned int, even though that may be wrong
983 // eventually should have a warning for this case.
984 Validate::SizeType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
985 }
986 }
987
988 void ReplaceTypedef::premutate( QualifiedType * ) {
989 visit_children = false;
990 }
991
992 Type * ReplaceTypedef::postmutate( QualifiedType * qualType ) {
993 // replacing typedefs only makes sense for the 'oldest ancestor' of the qualified type
994 qualType->parent = qualType->parent->acceptMutator( * visitor );
995 return qualType;
996 }
997
998 Type * ReplaceTypedef::postmutate( TypeInstType * typeInst ) {
999 // instances of typedef types will come here. If it is an instance
1000 // of a typdef type, link the instance to its actual type.
1001 TypedefMap::const_iterator def = typedefNames.find( typeInst->name );
1002 if ( def != typedefNames.end() ) {
1003 Type * ret = def->second.first->base->clone();
1004 ret->location = typeInst->location;
1005 ret->get_qualifiers() |= typeInst->get_qualifiers();
1006 // attributes are not carried over from typedef to function parameters/return values
1007 if ( ! inFunctionType ) {
1008 ret->attributes.splice( ret->attributes.end(), typeInst->attributes );
1009 } else {
1010 deleteAll( ret->attributes );
1011 ret->attributes.clear();
1012 }
1013 // place instance parameters on the typedef'd type
1014 if ( ! typeInst->parameters.empty() ) {
1015 ReferenceToType * rtt = dynamic_cast<ReferenceToType *>(ret);
1016 if ( ! rtt ) {
1017 SemanticError( typeInst->location, "Cannot apply type parameters to base type of " + typeInst->name );
1018 }
1019 rtt->parameters.clear();
1020 cloneAll( typeInst->parameters, rtt->parameters );
1021 mutateAll( rtt->parameters, * visitor ); // recursively fix typedefs on parameters
1022 } // if
1023 delete typeInst;
1024 return ret;
1025 } else {
1026 TypeDeclMap::const_iterator base = typedeclNames.find( typeInst->name );
1027 if ( base == typedeclNames.end() ) {
1028 SemanticError( typeInst->location, toString("Use of undefined type ", typeInst->name) );
1029 }
1030 typeInst->set_baseType( base->second );
1031 return typeInst;
1032 } // if
1033 assert( false );
1034 }
1035
1036 struct VarLenChecker : WithShortCircuiting {
1037 void previsit( FunctionType * ) { visit_children = false; }
1038 void previsit( ArrayType * at ) {
1039 isVarLen |= at->isVarLen;
1040 }
1041 bool isVarLen = false;
1042 };
1043
1044 bool isVariableLength( Type * t ) {
1045 PassVisitor<VarLenChecker> varLenChecker;
1046 maybeAccept( t, varLenChecker );
1047 return varLenChecker.pass.isVarLen;
1048 }
1049
1050 Declaration * ReplaceTypedef::postmutate( TypedefDecl * tyDecl ) {
1051 if ( typedefNames.count( tyDecl->name ) == 1 && typedefNames[ tyDecl->name ].second == scopeLevel ) {
1052 // typedef to the same name from the same scope
1053 // must be from the same type
1054
1055 Type * t1 = tyDecl->base;
1056 Type * t2 = typedefNames[ tyDecl->name ].first->base;
1057 if ( ! ResolvExpr::typesCompatible( t1, t2, Indexer() ) ) {
1058 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
1059 }
1060 // Cannot redefine VLA typedefs. Note: this is slightly incorrect, because our notion of VLAs
1061 // at this point in the translator is imprecise. In particular, this will disallow redefining typedefs
1062 // with arrays whose dimension is an enumerator or a cast of a constant/enumerator. The effort required
1063 // to fix this corner case likely outweighs the utility of allowing it.
1064 if ( isVariableLength( t1 ) || isVariableLength( t2 ) ) {
1065 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
1066 }
1067 } else {
1068 typedefNames[ tyDecl->name ] = std::make_pair( TypedefDeclPtr( tyDecl ), scopeLevel );
1069 } // if
1070
1071 // When a typedef is a forward declaration:
1072 // typedef struct screen SCREEN;
1073 // the declaration portion must be retained:
1074 // struct screen;
1075 // because the expansion of the typedef is:
1076 // void rtn( SCREEN * p ) => void rtn( struct screen * p )
1077 // hence the type-name "screen" must be defined.
1078 // Note, qualifiers on the typedef are superfluous for the forward declaration.
1079
1080 Type * designatorType = tyDecl->base->stripDeclarator();
1081 if ( StructInstType * aggDecl = dynamic_cast< StructInstType * >( designatorType ) ) {
1082 declsToAddBefore.push_back( new StructDecl( aggDecl->name, DeclarationNode::Struct, noAttributes, tyDecl->linkage ) );
1083 } else if ( UnionInstType * aggDecl = dynamic_cast< UnionInstType * >( designatorType ) ) {
1084 declsToAddBefore.push_back( new UnionDecl( aggDecl->name, noAttributes, tyDecl->linkage ) );
1085 } else if ( EnumInstType * enumDecl = dynamic_cast< EnumInstType * >( designatorType ) ) {
1086 declsToAddBefore.push_back( new EnumDecl( enumDecl->name, noAttributes, tyDecl->linkage ) );
1087 } // if
1088 return tyDecl->clone();
1089 }
1090
1091 void ReplaceTypedef::premutate( TypeDecl * typeDecl ) {
1092 TypedefMap::iterator i = typedefNames.find( typeDecl->name );
1093 if ( i != typedefNames.end() ) {
1094 typedefNames.erase( i ) ;
1095 } // if
1096
1097 typedeclNames.insert( typeDecl->name, typeDecl );
1098 }
1099
1100 void ReplaceTypedef::premutate( FunctionDecl * ) {
1101 GuardScope( typedefNames );
1102 GuardScope( typedeclNames );
1103 }
1104
1105 void ReplaceTypedef::premutate( ObjectDecl * ) {
1106 GuardScope( typedefNames );
1107 GuardScope( typedeclNames );
1108 }
1109
1110 DeclarationWithType * ReplaceTypedef::postmutate( ObjectDecl * objDecl ) {
1111 if ( FunctionType * funtype = dynamic_cast<FunctionType *>( objDecl->type ) ) { // function type?
1112 // replace the current object declaration with a function declaration
1113 FunctionDecl * newDecl = new FunctionDecl( objDecl->name, objDecl->get_storageClasses(), objDecl->linkage, funtype, 0, objDecl->attributes, objDecl->get_funcSpec() );
1114 objDecl->attributes.clear();
1115 objDecl->set_type( nullptr );
1116 delete objDecl;
1117 return newDecl;
1118 } // if
1119 return objDecl;
1120 }
1121
1122 void ReplaceTypedef::premutate( CastExpr * ) {
1123 GuardScope( typedefNames );
1124 GuardScope( typedeclNames );
1125 }
1126
1127 void ReplaceTypedef::premutate( CompoundStmt * ) {
1128 GuardScope( typedefNames );
1129 GuardScope( typedeclNames );
1130 scopeLevel += 1;
1131 GuardAction( [this](){ scopeLevel -= 1; } );
1132 }
1133
1134 template<typename AggDecl>
1135 void ReplaceTypedef::addImplicitTypedef( AggDecl * aggDecl ) {
1136 if ( typedefNames.count( aggDecl->get_name() ) == 0 ) {
1137 Type * type = nullptr;
1138 if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( aggDecl ) ) {
1139 type = new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() );
1140 } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( aggDecl ) ) {
1141 type = new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() );
1142 } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( aggDecl ) ) {
1143 type = new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() );
1144 } // if
1145 TypedefDeclPtr tyDecl( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type, aggDecl->get_linkage() ) );
1146 typedefNames[ aggDecl->get_name() ] = std::make_pair( std::move( tyDecl ), scopeLevel );
1147 // add the implicit typedef to the AST
1148 declsToAddBefore.push_back( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type->clone(), aggDecl->get_linkage() ) );
1149 } // if
1150 }
1151
1152 template< typename AggDecl >
1153 void ReplaceTypedef::handleAggregate( AggDecl * aggr ) {
1154 SemanticErrorException errors;
1155
1156 ValueGuard< std::list<Declaration * > > oldBeforeDecls( declsToAddBefore );
1157 ValueGuard< std::list<Declaration * > > oldAfterDecls ( declsToAddAfter );
1158 declsToAddBefore.clear();
1159 declsToAddAfter.clear();
1160
1161 GuardScope( typedefNames );
1162 GuardScope( typedeclNames );
1163 mutateAll( aggr->parameters, * visitor );
1164
1165 // unroll mutateAll for aggr->members so that implicit typedefs for nested types are added to the aggregate body.
1166 for ( std::list< Declaration * >::iterator i = aggr->members.begin(); i != aggr->members.end(); ++i ) {
1167 if ( !declsToAddAfter.empty() ) { aggr->members.splice( i, declsToAddAfter ); }
1168
1169 try {
1170 * i = maybeMutate( * i, * visitor );
1171 } catch ( SemanticErrorException &e ) {
1172 errors.append( e );
1173 }
1174
1175 if ( !declsToAddBefore.empty() ) { aggr->members.splice( i, declsToAddBefore ); }
1176 }
1177
1178 if ( !declsToAddAfter.empty() ) { aggr->members.splice( aggr->members.end(), declsToAddAfter ); }
1179 if ( !errors.isEmpty() ) { throw errors; }
1180 }
1181
1182 void ReplaceTypedef::premutate( StructDecl * structDecl ) {
1183 visit_children = false;
1184 addImplicitTypedef( structDecl );
1185 handleAggregate( structDecl );
1186 }
1187
1188 void ReplaceTypedef::premutate( UnionDecl * unionDecl ) {
1189 visit_children = false;
1190 addImplicitTypedef( unionDecl );
1191 handleAggregate( unionDecl );
1192 }
1193
1194 void ReplaceTypedef::premutate( EnumDecl * enumDecl ) {
1195 addImplicitTypedef( enumDecl );
1196 }
1197
1198 void ReplaceTypedef::premutate( FunctionType * ) {
1199 GuardValue( inFunctionType );
1200 inFunctionType = true;
1201 }
1202
1203 void ReplaceTypedef::premutate( TraitDecl * ) {
1204 GuardScope( typedefNames );
1205 GuardScope( typedeclNames);
1206 }
1207
1208 void VerifyCtorDtorAssign::verify( std::list< Declaration * > & translationUnit ) {
1209 PassVisitor<VerifyCtorDtorAssign> verifier;
1210 acceptAll( translationUnit, verifier );
1211 }
1212
1213 void VerifyCtorDtorAssign::previsit( FunctionDecl * funcDecl ) {
1214 FunctionType * funcType = funcDecl->get_functionType();
1215 std::list< DeclarationWithType * > &returnVals = funcType->get_returnVals();
1216 std::list< DeclarationWithType * > &params = funcType->get_parameters();
1217
1218 if ( CodeGen::isCtorDtorAssign( funcDecl->get_name() ) ) { // TODO: also check /=, etc.
1219 if ( params.size() == 0 ) {
1220 SemanticError( funcDecl, "Constructors, destructors, and assignment functions require at least one parameter " );
1221 }
1222 ReferenceType * refType = dynamic_cast< ReferenceType * >( params.front()->get_type() );
1223 if ( ! refType ) {
1224 SemanticError( funcDecl, "First parameter of a constructor, destructor, or assignment function must be a reference " );
1225 }
1226 if ( CodeGen::isCtorDtor( funcDecl->get_name() ) && returnVals.size() != 0 ) {
1227 SemanticError( funcDecl, "Constructors and destructors cannot have explicit return values " );
1228 }
1229 }
1230 }
1231
1232 template< typename Aggr >
1233 void validateGeneric( Aggr * inst ) {
1234 std::list< TypeDecl * > * params = inst->get_baseParameters();
1235 if ( params ) {
1236 std::list< Expression * > & args = inst->get_parameters();
1237
1238 // insert defaults arguments when a type argument is missing (currently only supports missing arguments at the end of the list).
1239 // A substitution is used to ensure that defaults are replaced correctly, e.g.,
1240 // forall(otype T, otype alloc = heap_allocator(T)) struct vector;
1241 // vector(int) v;
1242 // after insertion of default values becomes
1243 // vector(int, heap_allocator(T))
1244 // and the substitution is built with T=int so that after substitution, the result is
1245 // vector(int, heap_allocator(int))
1246 TypeSubstitution sub;
1247 auto paramIter = params->begin();
1248 for ( size_t i = 0; paramIter != params->end(); ++paramIter, ++i ) {
1249 if ( i < args.size() ) {
1250 TypeExpr * expr = strict_dynamic_cast< TypeExpr * >( * std::next( args.begin(), i ) );
1251 sub.add( (* paramIter)->get_name(), expr->get_type()->clone() );
1252 } else if ( i == args.size() ) {
1253 Type * defaultType = (* paramIter)->get_init();
1254 if ( defaultType ) {
1255 args.push_back( new TypeExpr( defaultType->clone() ) );
1256 sub.add( (* paramIter)->get_name(), defaultType->clone() );
1257 }
1258 }
1259 }
1260
1261 sub.apply( inst );
1262 if ( args.size() < params->size() ) SemanticError( inst, "Too few type arguments in generic type " );
1263 if ( args.size() > params->size() ) SemanticError( inst, "Too many type arguments in generic type " );
1264 }
1265 }
1266
1267 void ValidateGenericParameters::previsit( StructInstType * inst ) {
1268 validateGeneric( inst );
1269 }
1270
1271 void ValidateGenericParameters::previsit( UnionInstType * inst ) {
1272 validateGeneric( inst );
1273 }
1274
1275 void CompoundLiteral::premutate( ObjectDecl * objectDecl ) {
1276 storageClasses = objectDecl->get_storageClasses();
1277 }
1278
1279 Expression * CompoundLiteral::postmutate( CompoundLiteralExpr * compLitExpr ) {
1280 // transform [storage_class] ... (struct S){ 3, ... };
1281 // into [storage_class] struct S temp = { 3, ... };
1282 static UniqueName indexName( "_compLit" );
1283
1284 ObjectDecl * tempvar = new ObjectDecl( indexName.newName(), storageClasses, LinkageSpec::C, nullptr, compLitExpr->get_result(), compLitExpr->get_initializer() );
1285 compLitExpr->set_result( nullptr );
1286 compLitExpr->set_initializer( nullptr );
1287 delete compLitExpr;
1288 declsToAddBefore.push_back( tempvar ); // add modified temporary to current block
1289 return new VariableExpr( tempvar );
1290 }
1291
1292 void ReturnTypeFixer::fix( std::list< Declaration * > &translationUnit ) {
1293 PassVisitor<ReturnTypeFixer> fixer;
1294 acceptAll( translationUnit, fixer );
1295 }
1296
1297 void ReturnTypeFixer::postvisit( FunctionDecl * functionDecl ) {
1298 FunctionType * ftype = functionDecl->get_functionType();
1299 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
1300 assertf( retVals.size() == 0 || retVals.size() == 1, "Function %s has too many return values: %zu", functionDecl->get_name().c_str(), retVals.size() );
1301 if ( retVals.size() == 1 ) {
1302 // ensure all function return values have a name - use the name of the function to disambiguate (this also provides a nice bit of help for debugging).
1303 // ensure other return values have a name.
1304 DeclarationWithType * ret = retVals.front();
1305 if ( ret->get_name() == "" ) {
1306 ret->set_name( toString( "_retval_", CodeGen::genName( functionDecl ) ) );
1307 }
1308 ret->get_attributes().push_back( new Attribute( "unused" ) );
1309 }
1310 }
1311
1312 void ReturnTypeFixer::postvisit( FunctionType * ftype ) {
1313 // xxx - need to handle named return values - this information needs to be saved somehow
1314 // so that resolution has access to the names.
1315 // Note that this pass needs to happen early so that other passes which look for tuple types
1316 // find them in all of the right places, including function return types.
1317 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
1318 if ( retVals.size() > 1 ) {
1319 // generate a single return parameter which is the tuple of all of the return values
1320 TupleType * tupleType = strict_dynamic_cast< TupleType * >( ResolvExpr::extractResultType( ftype ) );
1321 // ensure return value is not destructed by explicitly creating an empty ListInit node wherein maybeConstruct is false.
1322 ObjectDecl * newRet = new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, tupleType, new ListInit( std::list<Initializer *>(), noDesignators, false ) );
1323 deleteAll( retVals );
1324 retVals.clear();
1325 retVals.push_back( newRet );
1326 }
1327 }
1328
1329 void FixObjectType::fix( std::list< Declaration * > & translationUnit ) {
1330 PassVisitor<FixObjectType> fixer;
1331 acceptAll( translationUnit, fixer );
1332 }
1333
1334 void FixObjectType::previsit( ObjectDecl * objDecl ) {
1335 Type * new_type = ResolvExpr::resolveTypeof( objDecl->get_type(), indexer );
1336 new_type->get_qualifiers() -= Type::Lvalue; // even if typeof is lvalue, variable can never have lvalue-qualified type
1337 objDecl->set_type( new_type );
1338 }
1339
1340 void FixObjectType::previsit( FunctionDecl * funcDecl ) {
1341 Type * new_type = ResolvExpr::resolveTypeof( funcDecl->type, indexer );
1342 new_type->get_qualifiers() -= Type::Lvalue; // even if typeof is lvalue, variable can never have lvalue-qualified type
1343 funcDecl->set_type( new_type );
1344 }
1345
1346 void FixObjectType::previsit( TypeDecl * typeDecl ) {
1347 if ( typeDecl->get_base() ) {
1348 Type * new_type = ResolvExpr::resolveTypeof( typeDecl->get_base(), indexer );
1349 new_type->get_qualifiers() -= Type::Lvalue; // even if typeof is lvalue, variable can never have lvalue-qualified type
1350 typeDecl->set_base( new_type );
1351 } // if
1352 }
1353
1354 void ArrayLength::computeLength( std::list< Declaration * > & translationUnit ) {
1355 PassVisitor<ArrayLength> len;
1356 acceptAll( translationUnit, len );
1357 }
1358
1359 void ArrayLength::previsit( ObjectDecl * objDecl ) {
1360 if ( ArrayType * at = dynamic_cast< ArrayType * >( objDecl->type ) ) {
1361 if ( at->dimension ) return;
1362 if ( ListInit * init = dynamic_cast< ListInit * >( objDecl->init ) ) {
1363 at->dimension = new ConstantExpr( Constant::from_ulong( init->initializers.size() ) );
1364 }
1365 }
1366 }
1367
1368 void ArrayLength::previsit( ArrayType * type ) {
1369 if ( type->dimension ) {
1370 // need to resolve array dimensions early so that constructor code can correctly determine
1371 // if a type is a VLA (and hence whether its elements need to be constructed)
1372 ResolvExpr::findSingleExpression( type->dimension, Validate::SizeType->clone(), indexer );
1373
1374 // must re-evaluate whether a type is a VLA, now that more information is available
1375 // (e.g. the dimension may have been an enumerator, which was unknown prior to this step)
1376 type->isVarLen = ! InitTweak::isConstExpr( type->dimension );
1377 }
1378 }
1379
1380 struct LabelFinder {
1381 std::set< Label > & labels;
1382 LabelFinder( std::set< Label > & labels ) : labels( labels ) {}
1383 void previsit( Statement * stmt ) {
1384 for ( Label & l : stmt->labels ) {
1385 labels.insert( l );
1386 }
1387 }
1388 };
1389
1390 void LabelAddressFixer::premutate( FunctionDecl * funcDecl ) {
1391 GuardValue( labels );
1392 PassVisitor<LabelFinder> finder( labels );
1393 funcDecl->accept( finder );
1394 }
1395
1396 Expression * LabelAddressFixer::postmutate( AddressExpr * addrExpr ) {
1397 // convert &&label into label address
1398 if ( AddressExpr * inner = dynamic_cast< AddressExpr * >( addrExpr->arg ) ) {
1399 if ( NameExpr * nameExpr = dynamic_cast< NameExpr * >( inner->arg ) ) {
1400 if ( labels.count( nameExpr->name ) ) {
1401 Label name = nameExpr->name;
1402 delete addrExpr;
1403 return new LabelAddressExpr( name );
1404 }
1405 }
1406 }
1407 return addrExpr;
1408 }
1409
1410namespace {
1411 /// Replaces enum types by int, and function/array types in function parameter and return
1412 /// lists by appropriate pointers
1413 struct EnumAndPointerDecay_new {
1414 const ast::EnumDecl * previsit( const ast::EnumDecl * enumDecl ) {
1415 // set the type of each member of the enumeration to be EnumConstant
1416 for ( unsigned i = 0; i < enumDecl->members.size(); ++i ) {
1417 // build new version of object with EnumConstant
1418 ast::ptr< ast::ObjectDecl > obj =
1419 enumDecl->members[i].strict_as< ast::ObjectDecl >();
1420 obj.get_and_mutate()->type =
1421 new ast::EnumInstType{ enumDecl->name, ast::CV::Const };
1422
1423 // set into decl
1424 ast::EnumDecl * mut = mutate( enumDecl );
1425 mut->members[i] = obj.get();
1426 enumDecl = mut;
1427 }
1428 return enumDecl;
1429 }
1430
1431 static const ast::FunctionType * fixFunctionList(
1432 const ast::FunctionType * func,
1433 std::vector< ast::ptr< ast::DeclWithType > > ast::FunctionType::* field,
1434 ast::ArgumentFlag isVarArgs = ast::FixedArgs
1435 ) {
1436 const auto & dwts = func->* field;
1437 unsigned nvals = dwts.size();
1438 bool hasVoid = false;
1439 for ( unsigned i = 0; i < nvals; ++i ) {
1440 func = ast::mutate_field_index( func, field, i, fixFunction( dwts[i], hasVoid ) );
1441 }
1442
1443 // the only case in which "void" is valid is where it is the only one in the list
1444 if ( hasVoid && ( nvals > 1 || isVarArgs ) ) {
1445 SemanticError(
1446 dwts.front()->location, func, "invalid type void in function type" );
1447 }
1448
1449 // one void is the only thing in the list, remove it
1450 if ( hasVoid ) {
1451 func = ast::mutate_field(
1452 func, field, std::vector< ast::ptr< ast::DeclWithType > >{} );
1453 }
1454
1455 return func;
1456 }
1457
1458 const ast::FunctionType * previsit( const ast::FunctionType * func ) {
1459 func = fixFunctionList( func, &ast::FunctionType::params, func->isVarArgs );
1460 return fixFunctionList( func, &ast::FunctionType::returns );
1461 }
1462 };
1463
1464 /// expand assertions from a trait instance, performing appropriate type variable substitutions
1465 void expandAssertions(
1466 const ast::TraitInstType * inst, std::vector< ast::ptr< ast::DeclWithType > > & out
1467 ) {
1468 assertf( inst->base, "Trait instance not linked to base trait: %s", toCString( inst ) );
1469
1470 // build list of trait members, substituting trait decl parameters for instance parameters
1471 ast::TypeSubstitution sub{
1472 inst->base->params.begin(), inst->base->params.end(), inst->params.begin() };
1473 // deliberately take ast::ptr by-value to ensure this does not mutate inst->base
1474 for ( ast::ptr< ast::Decl > decl : inst->base->members ) {
1475 auto member = decl.strict_as< ast::DeclWithType >();
1476 sub.apply( member );
1477 out.emplace_back( member );
1478 }
1479 }
1480
1481 /// Associates forward declarations of aggregates with their definitions
1482 class LinkReferenceToTypes_new final
1483 : public ast::WithSymbolTable, public ast::WithGuards, public
1484 ast::WithVisitorRef<LinkReferenceToTypes_new>, public ast::WithShortCircuiting {
1485
1486 // these maps of uses of forward declarations of types need to have the actual type
1487 // declaration switched in * after * they have been traversed. To enable this in the
1488 // ast::Pass framework, any node that needs to be so mutated has mutate() called on it
1489 // before it is placed in the map, properly updating its parents in the usual traversal,
1490 // then can have the actual mutation applied later
1491 using ForwardEnumsType = std::unordered_multimap< std::string, ast::EnumInstType * >;
1492 using ForwardStructsType = std::unordered_multimap< std::string, ast::StructInstType * >;
1493 using ForwardUnionsType = std::unordered_multimap< std::string, ast::UnionInstType * >;
1494
1495 const CodeLocation & location;
1496 const ast::SymbolTable * localSymtab;
1497
1498 ForwardEnumsType forwardEnums;
1499 ForwardStructsType forwardStructs;
1500 ForwardUnionsType forwardUnions;
1501
1502 /// true if currently in a generic type body, so that type parameter instances can be
1503 /// renamed appropriately
1504 bool inGeneric = false;
1505
1506 public:
1507 /// contstruct using running symbol table
1508 LinkReferenceToTypes_new( const CodeLocation & loc )
1509 : location( loc ), localSymtab( &symtab ) {}
1510
1511 /// construct using provided symbol table
1512 LinkReferenceToTypes_new( const CodeLocation & loc, const ast::SymbolTable & syms )
1513 : location( loc ), localSymtab( &syms ) {}
1514
1515 const ast::Type * postvisit( const ast::TypeInstType * typeInst ) {
1516 // ensure generic parameter instances are renamed like the base type
1517 if ( inGeneric && typeInst->base ) {
1518 typeInst = ast::mutate_field(
1519 typeInst, &ast::TypeInstType::name, typeInst->base->name );
1520 }
1521
1522 if (
1523 auto typeDecl = dynamic_cast< const ast::TypeDecl * >(
1524 localSymtab->lookupType( typeInst->name ) )
1525 ) {
1526 typeInst = ast::mutate_field( typeInst, &ast::TypeInstType::kind, typeDecl->kind );
1527 }
1528
1529 return typeInst;
1530 }
1531
1532 const ast::Type * postvisit( const ast::EnumInstType * inst ) {
1533 const ast::EnumDecl * decl = localSymtab->lookupEnum( inst->name );
1534 // not a semantic error if the enum is not found, just an implicit forward declaration
1535 if ( decl ) {
1536 inst = ast::mutate_field( inst, &ast::EnumInstType::base, decl );
1537 }
1538 if ( ! decl || ! decl->body ) {
1539 // forward declaration
1540 auto mut = mutate( inst );
1541 forwardEnums.emplace( inst->name, mut );
1542 inst = mut;
1543 }
1544 return inst;
1545 }
1546
1547 void checkGenericParameters( const ast::ReferenceToType * inst ) {
1548 for ( const ast::Expr * param : inst->params ) {
1549 if ( ! dynamic_cast< const ast::TypeExpr * >( param ) ) {
1550 SemanticError(
1551 location, inst, "Expression parameters for generic types are currently "
1552 "unsupported: " );
1553 }
1554 }
1555 }
1556
1557 const ast::StructInstType * postvisit( const ast::StructInstType * inst ) {
1558 const ast::StructDecl * decl = localSymtab->lookupStruct( inst->name );
1559 // not a semantic error if the struct is not found, just an implicit forward declaration
1560 if ( decl ) {
1561 inst = ast::mutate_field( inst, &ast::StructInstType::base, decl );
1562 }
1563 if ( ! decl || ! decl->body ) {
1564 // forward declaration
1565 auto mut = mutate( inst );
1566 forwardStructs.emplace( inst->name, mut );
1567 inst = mut;
1568 }
1569 checkGenericParameters( inst );
1570 return inst;
1571 }
1572
1573 const ast::UnionInstType * postvisit( const ast::UnionInstType * inst ) {
1574 const ast::UnionDecl * decl = localSymtab->lookupUnion( inst->name );
1575 // not a semantic error if the struct is not found, just an implicit forward declaration
1576 if ( decl ) {
1577 inst = ast::mutate_field( inst, &ast::UnionInstType::base, decl );
1578 }
1579 if ( ! decl || ! decl->body ) {
1580 // forward declaration
1581 auto mut = mutate( inst );
1582 forwardUnions.emplace( inst->name, mut );
1583 inst = mut;
1584 }
1585 checkGenericParameters( inst );
1586 return inst;
1587 }
1588
1589 const ast::Type * postvisit( const ast::TraitInstType * traitInst ) {
1590 // handle other traits
1591 const ast::TraitDecl * traitDecl = localSymtab->lookupTrait( traitInst->name );
1592 if ( ! traitDecl ) {
1593 SemanticError( location, "use of undeclared trait " + traitInst->name );
1594 }
1595 if ( traitDecl->params.size() != traitInst->params.size() ) {
1596 SemanticError( location, traitInst, "incorrect number of trait parameters: " );
1597 }
1598 traitInst = ast::mutate_field( traitInst, &ast::TraitInstType::base, traitDecl );
1599
1600 // need to carry over the "sized" status of each decl in the instance
1601 for ( unsigned i = 0; i < traitDecl->params.size(); ++i ) {
1602 auto expr = traitInst->params[i].as< ast::TypeExpr >();
1603 if ( ! expr ) {
1604 SemanticError(
1605 traitInst->params[i].get(), "Expression parameters for trait instances "
1606 "are currently unsupported: " );
1607 }
1608
1609 if ( auto inst = expr->type.as< ast::TypeInstType >() ) {
1610 if ( traitDecl->params[i]->sized && ! inst->base->sized ) {
1611 // traitInst = ast::mutate_field_index(
1612 // traitInst, &ast::TraitInstType::params, i,
1613 // ...
1614 // );
1615 ast::TraitInstType * mut = ast::mutate( traitInst );
1616 ast::chain_mutate( mut->params[i] )
1617 ( &ast::TypeExpr::type )
1618 ( &ast::TypeInstType::base )->sized = true;
1619 traitInst = mut;
1620 }
1621 }
1622 }
1623
1624 return traitInst;
1625 }
1626
1627 void previsit( const ast::QualifiedType * ) { visit_children = false; }
1628
1629 const ast::Type * postvisit( const ast::QualifiedType * qualType ) {
1630 // linking only makes sense for the "oldest ancestor" of the qualified type
1631 return ast::mutate_field(
1632 qualType, &ast::QualifiedType::parent, qualType->parent->accept( * visitor ) );
1633 }
1634
1635 const ast::Decl * postvisit( const ast::EnumDecl * enumDecl ) {
1636 // visit enum members first so that the types of self-referencing members are updated
1637 // properly
1638 if ( ! enumDecl->body ) return enumDecl;
1639
1640 // update forward declarations to point here
1641 auto fwds = forwardEnums.equal_range( enumDecl->name );
1642 if ( fwds.first != fwds.second ) {
1643 auto inst = fwds.first;
1644 do {
1645 // forward decl is stored * mutably * in map, can thus be updated
1646 inst->second->base = enumDecl;
1647 } while ( ++inst != fwds.second );
1648 forwardEnums.erase( fwds.first, fwds.second );
1649 }
1650
1651 // ensure that enumerator initializers are properly set
1652 for ( unsigned i = 0; i < enumDecl->members.size(); ++i ) {
1653 auto field = enumDecl->members[i].strict_as< ast::ObjectDecl >();
1654 if ( field->init ) {
1655 // need to resolve enumerator initializers early so that other passes that
1656 // determine if an expression is constexpr have appropriate information
1657 auto init = field->init.strict_as< ast::SingleInit >();
1658
1659 enumDecl = ast::mutate_field_index(
1660 enumDecl, &ast::EnumDecl::members, i,
1661 ast::mutate_field( field, &ast::ObjectDecl::init,
1662 ast::mutate_field( init, &ast::SingleInit::value,
1663 ResolvExpr::findSingleExpression(
1664 init->value, new ast::BasicType{ ast::BasicType::SignedInt },
1665 symtab ) ) ) );
1666 }
1667 }
1668
1669 return enumDecl;
1670 }
1671
1672 /// rename generic type parameters uniquely so that they do not conflict with user defined
1673 /// function forall parameters, e.g. the T in Box and the T in f, below
1674 /// forall(otype T)
1675 /// struct Box {
1676 /// T x;
1677 /// };
1678 /// forall(otype T)
1679 /// void f(Box(T) b) {
1680 /// ...
1681 /// }
1682 template< typename AggrDecl >
1683 const AggrDecl * renameGenericParams( const AggrDecl * aggr ) {
1684 GuardValue( inGeneric );
1685 inGeneric = ! aggr->params.empty();
1686
1687 for ( unsigned i = 0; i < aggr->params.size(); ++i ) {
1688 const ast::TypeDecl * td = aggr->params[i];
1689
1690 aggr = ast::mutate_field_index(
1691 aggr, &AggrDecl::params, i,
1692 ast::mutate_field( td, &ast::TypeDecl::name, "__" + td->name + "_generic_" ) );
1693 }
1694 return aggr;
1695 }
1696
1697 const ast::StructDecl * previsit( const ast::StructDecl * structDecl ) {
1698 return renameGenericParams( structDecl );
1699 }
1700
1701 void postvisit( const ast::StructDecl * structDecl ) {
1702 // visit struct members first so that the types of self-referencing members are
1703 // updated properly
1704 if ( ! structDecl->body ) return;
1705
1706 // update forward declarations to point here
1707 auto fwds = forwardStructs.equal_range( structDecl->name );
1708 if ( fwds.first != fwds.second ) {
1709 auto inst = fwds.first;
1710 do {
1711 // forward decl is stored * mutably * in map, can thus be updated
1712 inst->second->base = structDecl;
1713 } while ( ++inst != fwds.second );
1714 forwardStructs.erase( fwds.first, fwds.second );
1715 }
1716 }
1717
1718 const ast::UnionDecl * previsit( const ast::UnionDecl * unionDecl ) {
1719 return renameGenericParams( unionDecl );
1720 }
1721
1722 void postvisit( const ast::UnionDecl * unionDecl ) {
1723 // visit union members first so that the types of self-referencing members are updated
1724 // properly
1725 if ( ! unionDecl->body ) return;
1726
1727 // update forward declarations to point here
1728 auto fwds = forwardUnions.equal_range( unionDecl->name );
1729 if ( fwds.first != fwds.second ) {
1730 auto inst = fwds.first;
1731 do {
1732 // forward decl is stored * mutably * in map, can thus be updated
1733 inst->second->base = unionDecl;
1734 } while ( ++inst != fwds.second );
1735 forwardUnions.erase( fwds.first, fwds.second );
1736 }
1737 }
1738
1739 const ast::Decl * postvisit( const ast::TraitDecl * traitDecl ) {
1740 // set the "sized" status for the special "sized" trait
1741 if ( traitDecl->name == "sized" ) {
1742 assertf( traitDecl->params.size() == 1, "Built-in trait 'sized' has incorrect "
1743 "number of parameters: %zd", traitDecl->params.size() );
1744
1745 traitDecl = ast::mutate_field_index(
1746 traitDecl, &ast::TraitDecl::params, 0,
1747 ast::mutate_field(
1748 traitDecl->params.front().get(), &ast::TypeDecl::sized, true ) );
1749 }
1750
1751 // move assertions from type parameters into the body of the trait
1752 std::vector< ast::ptr< ast::DeclWithType > > added;
1753 for ( const ast::TypeDecl * td : traitDecl->params ) {
1754 for ( const ast::DeclWithType * assn : td->assertions ) {
1755 auto inst = dynamic_cast< const ast::TraitInstType * >( assn->get_type() );
1756 if ( inst ) {
1757 expandAssertions( inst, added );
1758 } else {
1759 added.emplace_back( assn );
1760 }
1761 }
1762 }
1763 if ( ! added.empty() ) {
1764 auto mut = mutate( traitDecl );
1765 for ( const ast::DeclWithType * decl : added ) {
1766 mut->members.emplace_back( decl );
1767 }
1768 traitDecl = mut;
1769 }
1770
1771 return traitDecl;
1772 }
1773 };
1774
1775 /// Replaces array and function types in forall lists by appropriate pointer type and assigns
1776 /// each object and function declaration a unique ID
1777 class ForallPointerDecay_new {
1778 const CodeLocation & location;
1779 public:
1780 ForallPointerDecay_new( const CodeLocation & loc ) : location( loc ) {}
1781
1782 const ast::ObjectDecl * previsit( const ast::ObjectDecl * obj ) {
1783 // ensure that operator names only apply to functions or function pointers
1784 if (
1785 CodeGen::isOperator( obj->name )
1786 && ! dynamic_cast< const ast::FunctionType * >( obj->type->stripDeclarator() )
1787 ) {
1788 SemanticError( obj->location, toCString( "operator ", obj->name.c_str(), " is not "
1789 "a function or function pointer." ) );
1790 }
1791
1792 // ensure object has unique ID
1793 if ( obj->uniqueId ) return obj;
1794 auto mut = mutate( obj );
1795 mut->fixUniqueId();
1796 return mut;
1797 }
1798
1799 const ast::FunctionDecl * previsit( const ast::FunctionDecl * func ) {
1800 // ensure function has unique ID
1801 if ( func->uniqueId ) return func;
1802 auto mut = mutate( func );
1803 mut->fixUniqueId();
1804 return mut;
1805 }
1806
1807 /// Fix up assertions -- flattens assertion lists, removing all trait instances
1808 template< typename node_t, typename parent_t >
1809 static const node_t * forallFixer(
1810 const CodeLocation & loc, const node_t * node,
1811 ast::ParameterizedType::ForallList parent_t::* forallField
1812 ) {
1813 for ( unsigned i = 0; i < (node->* forallField).size(); ++i ) {
1814 const ast::TypeDecl * type = (node->* forallField)[i];
1815 if ( type->assertions.empty() ) continue;
1816
1817 std::vector< ast::ptr< ast::DeclWithType > > asserts;
1818 asserts.reserve( type->assertions.size() );
1819
1820 // expand trait instances into their members
1821 for ( const ast::DeclWithType * assn : type->assertions ) {
1822 auto traitInst =
1823 dynamic_cast< const ast::TraitInstType * >( assn->get_type() );
1824 if ( traitInst ) {
1825 // expand trait instance to all its members
1826 expandAssertions( traitInst, asserts );
1827 } else {
1828 // pass other assertions through
1829 asserts.emplace_back( assn );
1830 }
1831 }
1832
1833 // apply FixFunction to every assertion to check for invalid void type
1834 for ( ast::ptr< ast::DeclWithType > & assn : asserts ) {
1835 bool isVoid = false;
1836 assn = fixFunction( assn, isVoid );
1837 if ( isVoid ) {
1838 SemanticError( loc, node, "invalid type void in assertion of function " );
1839 }
1840 }
1841
1842 // place mutated assertion list in node
1843 auto mut = mutate( type );
1844 mut->assertions = move( asserts );
1845 node = ast::mutate_field_index( node, forallField, i, mut );
1846 }
1847 return node;
1848 }
1849
1850 const ast::FunctionType * previsit( const ast::FunctionType * ftype ) {
1851 return forallFixer( location, ftype, &ast::FunctionType::forall );
1852 }
1853
1854 const ast::StructDecl * previsit( const ast::StructDecl * aggrDecl ) {
1855 return forallFixer( aggrDecl->location, aggrDecl, &ast::StructDecl::params );
1856 }
1857
1858 const ast::UnionDecl * previsit( const ast::UnionDecl * aggrDecl ) {
1859 return forallFixer( aggrDecl->location, aggrDecl, &ast::UnionDecl::params );
1860 }
1861 };
1862} // anonymous namespace
1863
1864const ast::Type * validateType(
1865 const CodeLocation & loc, const ast::Type * type, const ast::SymbolTable & symtab ) {
1866 ast::Pass< EnumAndPointerDecay_new > epc;
1867 ast::Pass< LinkReferenceToTypes_new > lrt{ loc, symtab };
1868 ast::Pass< ForallPointerDecay_new > fpd{ loc };
1869
1870 return type->accept( epc )->accept( lrt )->accept( fpd );
1871}
1872
1873} // namespace SymTab
1874
1875// Local Variables: //
1876// tab-width: 4 //
1877// mode: c++ //
1878// compile-command: "make install" //
1879// End: //
Note: See TracBrowser for help on using the repository browser.