source: src/SymTab/Validate.cc@ fb63c70

ADT ast-experimental pthread-emulation qualifiedEnum
Last change on this file since fb63c70 was 24ceace, checked in by JiadaL <j82liang@…>, 3 years ago

Merge branch 'master' of plg.uwaterloo.ca:software/cfa/cfa-cc

  • Property mode set to 100644
File size: 83.4 KB
RevLine 
[0dd3a2f]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
[9cb8e88d]7// Validate.cc --
[0dd3a2f]8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 21:50:04 2015
[5dcb881]11// Last Modified By : Andrew Beach
[298fe57]12// Last Modified On : Fri Apr 29 9:45:00 2022
13// Update Count : 365
[0dd3a2f]14//
15
16// The "validate" phase of translation is used to take a syntax tree and convert it into a standard form that aims to be
17// as regular in structure as possible. Some assumptions can be made regarding the state of the tree after this pass is
18// complete, including:
19//
20// - No nested structure or union definitions; any in the input are "hoisted" to the level of the containing struct or
21// union.
22//
23// - All enumeration constants have type EnumInstType.
24//
[3c13c03]25// - The type "void" never occurs in lists of function parameter or return types. A function
26// taking no arguments has no argument types.
[0dd3a2f]27//
28// - No context instances exist; they are all replaced by the set of declarations signified by the context, instantiated
29// by the particular set of type arguments.
30//
31// - Every declaration is assigned a unique id.
32//
33// - No typedef declarations or instances exist; the actual type is substituted for each instance.
34//
35// - Each type, struct, and union definition is followed by an appropriate assignment operator.
36//
37// - Each use of a struct or union is connected to a complete definition of that struct or union, even if that
38// definition occurs later in the input.
[51b73452]39
[0db6fc0]40#include "Validate.h"
41
[d180746]42#include <cassert> // for assertf, assert
[30f9072]43#include <cstddef> // for size_t
[d180746]44#include <list> // for list
45#include <string> // for string
[18e683b]46#include <unordered_map> // for unordered_map
[d180746]47#include <utility> // for pair
[30f9072]48
[18e683b]49#include "AST/Chain.hpp"
[c1ed2ee]50#include "AST/Decl.hpp"
51#include "AST/Node.hpp"
52#include "AST/Pass.hpp"
53#include "AST/SymbolTable.hpp"
54#include "AST/Type.hpp"
[c1398e4]55#include "AST/TypeSubstitution.hpp"
[30f9072]56#include "CodeGen/CodeGenerator.h" // for genName
[9236060]57#include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign
[25fcb84]58#include "ControlStruct/Mutate.h" // for ForExprMutator
[18e683b]59#include "Common/CodeLocation.h" // for CodeLocation
[7abee38]60#include "Common/Stats.h" // for Stats::Heap
[30f9072]61#include "Common/PassVisitor.h" // for PassVisitor, WithDeclsToAdd
[d180746]62#include "Common/ScopedMap.h" // for ScopedMap
[30f9072]63#include "Common/SemanticError.h" // for SemanticError
64#include "Common/UniqueName.h" // for UniqueName
65#include "Common/utility.h" // for operator+, cloneAll, deleteAll
[16ba4a6f]66#include "CompilationState.h" // skip some passes in new-ast build
[be9288a]67#include "Concurrency/Keywords.h" // for applyKeywords
[30f9072]68#include "FixFunction.h" // for FixFunction
69#include "Indexer.h" // for Indexer
[8b11840]70#include "InitTweak/GenInit.h" // for fixReturnStatements
[d180746]71#include "InitTweak/InitTweak.h" // for isCtorDtorAssign
72#include "ResolvExpr/typeops.h" // for typesCompatible
[4934ea3]73#include "ResolvExpr/Resolver.h" // for findSingleExpression
[2b79a70]74#include "ResolvExpr/ResolveTypeof.h" // for resolveTypeof
[be9288a]75#include "SymTab/Autogen.h" // for SizeType
[07de76b]76#include "SynTree/LinkageSpec.h" // for C
[be9288a]77#include "SynTree/Attribute.h" // for noAttributes, Attribute
[30f9072]78#include "SynTree/Constant.h" // for Constant
[d180746]79#include "SynTree/Declaration.h" // for ObjectDecl, DeclarationWithType
80#include "SynTree/Expression.h" // for CompoundLiteralExpr, Expressio...
81#include "SynTree/Initializer.h" // for ListInit, Initializer
82#include "SynTree/Label.h" // for operator==, Label
83#include "SynTree/Mutator.h" // for Mutator
84#include "SynTree/Type.h" // for Type, TypeInstType, EnumInstType
85#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
86#include "SynTree/Visitor.h" // for Visitor
[fd2debf]87#include "Validate/HandleAttributes.h" // for handleAttributes
[2bfc6b2]88#include "Validate/FindSpecialDecls.h" // for FindSpecialDecls
[d180746]89
90class CompoundStmt;
91class ReturnStmt;
92class SwitchStmt;
[51b73452]93
[b16923d]94#define debugPrint( x ) if ( doDebug ) x
[51b73452]95
96namespace SymTab {
[15f5c5e]97 /// hoists declarations that are difficult to hoist while parsing
98 struct HoistTypeDecls final : public WithDeclsToAdd {
[29f9e20]99 void previsit( SizeofExpr * );
100 void previsit( AlignofExpr * );
101 void previsit( UntypedOffsetofExpr * );
[95d09bdb]102 void previsit( CompoundLiteralExpr * );
[29f9e20]103 void handleType( Type * );
104 };
105
[a12c81f3]106 struct FixQualifiedTypes final : public WithIndexer {
[6e50a6b]107 FixQualifiedTypes() : WithIndexer(false) {}
[a12c81f3]108 Type * postmutate( QualifiedType * );
109 };
110
[a09e45b]111 struct HoistStruct final : public WithDeclsToAdd, public WithGuards {
[82dd287]112 /// Flattens nested struct types
[0dd3a2f]113 static void hoistStruct( std::list< Declaration * > &translationUnit );
[9cb8e88d]114
[a09e45b]115 void previsit( StructDecl * aggregateDecl );
116 void previsit( UnionDecl * aggregateDecl );
[0f40912]117 void previsit( StaticAssertDecl * assertDecl );
[d419d8e]118 void previsit( StructInstType * type );
119 void previsit( UnionInstType * type );
120 void previsit( EnumInstType * type );
[9cb8e88d]121
[a08ba92]122 private:
[ef5b828]123 template< typename AggDecl > void handleAggregate( AggDecl * aggregateDecl );
[c8ffe20b]124
[bdad6eb7]125 AggregateDecl * parentAggr = nullptr;
[a08ba92]126 };
[c8ffe20b]127
[cce9429]128 /// Fix return types so that every function returns exactly one value
[d24d4e1]129 struct ReturnTypeFixer {
[cce9429]130 static void fix( std::list< Declaration * > &translationUnit );
131
[0db6fc0]132 void postvisit( FunctionDecl * functionDecl );
133 void postvisit( FunctionType * ftype );
[cce9429]134 };
135
[de91427b]136 /// Replaces enum types by int, and function or array types in function parameter and return lists by appropriate pointers.
[c1ed2ee]137 struct EnumAndPointerDecay_old {
[ef5b828]138 void previsit( EnumDecl * aggregateDecl );
139 void previsit( FunctionType * func );
[a08ba92]140 };
[82dd287]141
142 /// Associates forward declarations of aggregates with their definitions
[c1ed2ee]143 struct LinkReferenceToTypes_old final : public WithIndexer, public WithGuards, public WithVisitorRef<LinkReferenceToTypes_old>, public WithShortCircuiting {
[ef5b828]144 LinkReferenceToTypes_old( const Indexer * indexer );
[298fe57]145
[ef5b828]146 void postvisit( TypeInstType * typeInst );
[be9036d]147
[ef5b828]148 void postvisit( EnumInstType * enumInst );
149 void postvisit( StructInstType * structInst );
150 void postvisit( UnionInstType * unionInst );
151 void postvisit( TraitInstType * traitInst );
[afcb0a3]152 void previsit( QualifiedType * qualType );
153 void postvisit( QualifiedType * qualType );
[be9036d]154
[ef5b828]155 void postvisit( EnumDecl * enumDecl );
156 void postvisit( StructDecl * structDecl );
157 void postvisit( UnionDecl * unionDecl );
[522363e]158 void postvisit( TraitDecl * traitDecl );
[be9036d]159
[ef5b828]160 void previsit( StructDecl * structDecl );
161 void previsit( UnionDecl * unionDecl );
[b95fe40]162
163 void renameGenericParams( std::list< TypeDecl * > & params );
164
[06edda0]165 private:
[ef5b828]166 const Indexer * local_indexer;
[9cb8e88d]167
[c0aa336]168 typedef std::map< std::string, std::list< EnumInstType * > > ForwardEnumsType;
[0dd3a2f]169 typedef std::map< std::string, std::list< StructInstType * > > ForwardStructsType;
170 typedef std::map< std::string, std::list< UnionInstType * > > ForwardUnionsType;
[c0aa336]171 ForwardEnumsType forwardEnums;
[0dd3a2f]172 ForwardStructsType forwardStructs;
173 ForwardUnionsType forwardUnions;
[b95fe40]174 /// true if currently in a generic type body, so that type parameter instances can be renamed appropriately
175 bool inGeneric = false;
[a08ba92]176 };
[c8ffe20b]177
[6e50a6b]178 /// Does early resolution on the expressions that give enumeration constants their values
179 struct ResolveEnumInitializers final : public WithIndexer, public WithGuards, public WithVisitorRef<ResolveEnumInitializers>, public WithShortCircuiting {
180 ResolveEnumInitializers( const Indexer * indexer );
181 void postvisit( EnumDecl * enumDecl );
182
183 private:
184 const Indexer * local_indexer;
185
186 };
187
[06edda0]188 /// Replaces array and function types in forall lists by appropriate pointer type and assigns each Object and Function declaration a unique ID.
[c1ed2ee]189 struct ForallPointerDecay_old final {
[8b11840]190 void previsit( ObjectDecl * object );
191 void previsit( FunctionDecl * func );
[bbf3fda]192 void previsit( FunctionType * ftype );
[bd7e609]193 void previsit( StructDecl * aggrDecl );
194 void previsit( UnionDecl * aggrDecl );
[a08ba92]195 };
[c8ffe20b]196
[9490621]197 // These structs are the sub-sub-passes of ForallPointerDecay_old.
198
199 struct TraitExpander_old final {
200 void previsit( FunctionType * );
201 void previsit( StructDecl * );
202 void previsit( UnionDecl * );
203 };
204
205 struct AssertionFixer_old final {
206 void previsit( FunctionType * );
207 void previsit( StructDecl * );
208 void previsit( UnionDecl * );
209 };
210
211 struct CheckOperatorTypes_old final {
212 void previsit( ObjectDecl * );
213 };
214
215 struct FixUniqueIds_old final {
216 void previsit( DeclarationWithType * );
217 };
218
[d24d4e1]219 struct ReturnChecker : public WithGuards {
[de91427b]220 /// Checks that return statements return nothing if their return type is void
221 /// and return something if the return type is non-void.
222 static void checkFunctionReturns( std::list< Declaration * > & translationUnit );
223
[0db6fc0]224 void previsit( FunctionDecl * functionDecl );
225 void previsit( ReturnStmt * returnStmt );
[de91427b]226
[0db6fc0]227 typedef std::list< DeclarationWithType * > ReturnVals;
228 ReturnVals returnVals;
[de91427b]229 };
230
[48ed81c]231 struct ReplaceTypedef final : public WithVisitorRef<ReplaceTypedef>, public WithGuards, public WithShortCircuiting, public WithDeclsToAdd {
232 ReplaceTypedef() : scopeLevel( 0 ) {}
[de91427b]233 /// Replaces typedefs by forward declarations
[48ed81c]234 static void replaceTypedef( std::list< Declaration * > &translationUnit );
[85c4ef0]235
[48ed81c]236 void premutate( QualifiedType * );
237 Type * postmutate( QualifiedType * qualType );
[a506df4]238 Type * postmutate( TypeInstType * aggregateUseType );
239 Declaration * postmutate( TypedefDecl * typeDecl );
240 void premutate( TypeDecl * typeDecl );
241 void premutate( FunctionDecl * funcDecl );
242 void premutate( ObjectDecl * objDecl );
243 DeclarationWithType * postmutate( ObjectDecl * objDecl );
244
245 void premutate( CastExpr * castExpr );
246
247 void premutate( CompoundStmt * compoundStmt );
248
249 void premutate( StructDecl * structDecl );
250 void premutate( UnionDecl * unionDecl );
251 void premutate( EnumDecl * enumDecl );
[0bcc2b7]252 void premutate( TraitDecl * );
[a506df4]253
[1f370451]254 void premutate( FunctionType * ftype );
255
[a506df4]256 private:
[45161b4d]257 template<typename AggDecl>
258 void addImplicitTypedef( AggDecl * aggDecl );
[48ed81c]259 template< typename AggDecl >
260 void handleAggregate( AggDecl * aggr );
[70a06f6]261
[46f6134]262 typedef std::unique_ptr<TypedefDecl> TypedefDeclPtr;
[e491159]263 typedef ScopedMap< std::string, std::pair< TypedefDeclPtr, int > > TypedefMap;
[0bcc2b7]264 typedef ScopedMap< std::string, TypeDecl * > TypeDeclMap;
[cc79d97]265 TypedefMap typedefNames;
[679864e1]266 TypeDeclMap typedeclNames;
[cc79d97]267 int scopeLevel;
[1f370451]268 bool inFunctionType = false;
[a08ba92]269 };
[c8ffe20b]270
[69918cea]271 struct EliminateTypedef {
272 /// removes TypedefDecls from the AST
273 static void eliminateTypedef( std::list< Declaration * > &translationUnit );
274
275 template<typename AggDecl>
[ef5b828]276 void handleAggregate( AggDecl * aggregateDecl );
[69918cea]277
278 void previsit( StructDecl * aggregateDecl );
279 void previsit( UnionDecl * aggregateDecl );
280 void previsit( CompoundStmt * compoundStmt );
281 };
282
[d24d4e1]283 struct VerifyCtorDtorAssign {
[d1969a6]284 /// ensure that constructors, destructors, and assignment have at least one
285 /// parameter, the first of which must be a pointer, and that ctor/dtors have no
[9cb8e88d]286 /// return values.
287 static void verify( std::list< Declaration * > &translationUnit );
288
[ef5b828]289 void previsit( FunctionDecl * funcDecl );
[5f98ce5]290 };
[70a06f6]291
[11ab8ea8]292 /// ensure that generic types have the correct number of type arguments
[d24d4e1]293 struct ValidateGenericParameters {
[0db6fc0]294 void previsit( StructInstType * inst );
295 void previsit( UnionInstType * inst );
[5f98ce5]296 };
[70a06f6]297
[6e50a6b]298 /// desugar declarations and uses of dimension paramaters like [N],
299 /// from type-system managed values, to tunnneling via ordinary types,
300 /// as char[-] in and sizeof(-) out
301 struct TranslateDimensionGenericParameters : public WithIndexer, public WithGuards {
302 static void translateDimensions( std::list< Declaration * > &translationUnit );
303 TranslateDimensionGenericParameters();
304
305 bool nextVisitedNodeIsChildOfSUIT = false; // SUIT = Struct or Union -Inst Type
306 bool visitingChildOfSUIT = false;
307 void changeState_ChildOfSUIT( bool newVal );
308 void premutate( StructInstType * sit );
309 void premutate( UnionInstType * uit );
310 void premutate( BaseSyntaxNode * node );
311
312 TypeDecl * postmutate( TypeDecl * td );
313 Expression * postmutate( DimensionExpr * de );
314 Expression * postmutate( Expression * e );
315 };
316
[2b79a70]317 struct FixObjectType : public WithIndexer {
318 /// resolves typeof type in object, function, and type declarations
319 static void fix( std::list< Declaration * > & translationUnit );
320
321 void previsit( ObjectDecl * );
322 void previsit( FunctionDecl * );
323 void previsit( TypeDecl * );
324 };
325
[09867ec]326 struct InitializerLength {
[fbd7ad6]327 /// for array types without an explicit length, compute the length and store it so that it
328 /// is known to the rest of the phases. For example,
329 /// int x[] = { 1, 2, 3 };
330 /// int y[][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
331 /// here x and y are known at compile-time to have length 3, so change this into
332 /// int x[3] = { 1, 2, 3 };
333 /// int y[3][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
334 static void computeLength( std::list< Declaration * > & translationUnit );
335
[0db6fc0]336 void previsit( ObjectDecl * objDecl );
[09867ec]337 };
338
339 struct ArrayLength : public WithIndexer {
340 static void computeLength( std::list< Declaration * > & translationUnit );
341
[3ff4c1e]342 void previsit( ArrayType * arrayType );
[fbd7ad6]343 };
344
[d24d4e1]345 struct CompoundLiteral final : public WithDeclsToAdd, public WithVisitorRef<CompoundLiteral> {
[68fe077a]346 Type::StorageClasses storageClasses;
[630a82a]347
[ef5b828]348 void premutate( ObjectDecl * objectDecl );
349 Expression * postmutate( CompoundLiteralExpr * compLitExpr );
[9cb8e88d]350 };
351
[5809461]352 struct LabelAddressFixer final : public WithGuards {
353 std::set< Label > labels;
354
355 void premutate( FunctionDecl * funcDecl );
356 Expression * postmutate( AddressExpr * addrExpr );
357 };
[4fbdfae0]358
[5dcb881]359 void validate_A( std::list< Declaration * > & translationUnit ) {
[c1ed2ee]360 PassVisitor<EnumAndPointerDecay_old> epc;
[15f5c5e]361 PassVisitor<HoistTypeDecls> hoistDecls;
[3c0d4cd]362 {
363 Stats::Heap::newPass("validate-A");
364 Stats::Time::BlockGuard guard("validate-A");
[98538288]365 VerifyCtorDtorAssign::verify( translationUnit ); // must happen before autogen, because autogen examines existing ctor/dtors
[3c0d4cd]366 acceptAll( translationUnit, hoistDecls );
367 ReplaceTypedef::replaceTypedef( translationUnit );
368 ReturnTypeFixer::fix( translationUnit ); // must happen before autogen
[c1ed2ee]369 acceptAll( translationUnit, epc ); // must happen before VerifyCtorDtorAssign, because void return objects should not exist; before LinkReferenceToTypes_old because it is an indexer and needs correct types for mangling
[3c0d4cd]370 }
[5dcb881]371 }
372
[298fe57]373 void linkReferenceToTypes( std::list< Declaration * > & translationUnit ) {
[5dcb881]374 PassVisitor<LinkReferenceToTypes_old> lrt( nullptr );
[298fe57]375 acceptAll( translationUnit, lrt ); // must happen before autogen, because sized flag needs to propagate to generated functions
376 }
377
378 void validate_B( std::list< Declaration * > & translationUnit ) {
[5dcb881]379 PassVisitor<FixQualifiedTypes> fixQual;
[3c0d4cd]380 {
381 Stats::Heap::newPass("validate-B");
382 Stats::Time::BlockGuard guard("validate-B");
[298fe57]383 //linkReferenceToTypes( translationUnit );
[6e50a6b]384 mutateAll( translationUnit, fixQual ); // must happen after LinkReferenceToTypes_old, because aggregate members are accessed
385 HoistStruct::hoistStruct( translationUnit );
386 EliminateTypedef::eliminateTypedef( translationUnit );
[3c0d4cd]387 }
[5dcb881]388 }
389
390 void validate_C( std::list< Declaration * > & translationUnit ) {
391 PassVisitor<ValidateGenericParameters> genericParams;
392 PassVisitor<ResolveEnumInitializers> rei( nullptr );
[3c0d4cd]393 {
394 Stats::Heap::newPass("validate-C");
395 Stats::Time::BlockGuard guard("validate-C");
[6e50a6b]396 Stats::Time::TimeBlock("Validate Generic Parameters", [&]() {
397 acceptAll( translationUnit, genericParams ); // check as early as possible - can't happen before LinkReferenceToTypes_old; observed failing when attempted before eliminateTypedef
398 });
399 Stats::Time::TimeBlock("Translate Dimensions", [&]() {
400 TranslateDimensionGenericParameters::translateDimensions( translationUnit );
401 });
[7c919559]402 if (!useNewAST) {
[6e50a6b]403 Stats::Time::TimeBlock("Resolve Enum Initializers", [&]() {
404 acceptAll( translationUnit, rei ); // must happen after translateDimensions because rei needs identifier lookup, which needs name mangling
405 });
[7c919559]406 }
[6e50a6b]407 Stats::Time::TimeBlock("Check Function Returns", [&]() {
408 ReturnChecker::checkFunctionReturns( translationUnit );
409 });
410 Stats::Time::TimeBlock("Fix Return Statements", [&]() {
411 InitTweak::fixReturnStatements( translationUnit ); // must happen before autogen
412 });
[3c0d4cd]413 }
[5dcb881]414 }
415
[a76202d]416 static void decayForallPointers( std::list< Declaration * > & translationUnit ) {
417 PassVisitor<TraitExpander_old> te;
418 acceptAll( translationUnit, te );
419 PassVisitor<AssertionFixer_old> af;
420 acceptAll( translationUnit, af );
421 PassVisitor<CheckOperatorTypes_old> cot;
422 acceptAll( translationUnit, cot );
423 PassVisitor<FixUniqueIds_old> fui;
424 acceptAll( translationUnit, fui );
425 }
426
[5dcb881]427 void validate_D( std::list< Declaration * > & translationUnit ) {
[3c0d4cd]428 {
429 Stats::Heap::newPass("validate-D");
430 Stats::Time::BlockGuard guard("validate-D");
[c884f2d]431 Stats::Time::TimeBlock("Apply Concurrent Keywords", [&]() {
432 Concurrency::applyKeywords( translationUnit );
433 });
434 Stats::Time::TimeBlock("Forall Pointer Decay", [&]() {
[9490621]435 decayForallPointers( translationUnit ); // must happen before autogenerateRoutines, after Concurrency::applyKeywords because uniqueIds must be set on declaration before resolution
[c884f2d]436 });
437 Stats::Time::TimeBlock("Hoist Control Declarations", [&]() {
438 ControlStruct::hoistControlDecls( translationUnit ); // hoist initialization out of for statements; must happen before autogenerateRoutines
439 });
440 Stats::Time::TimeBlock("Generate Autogen routines", [&]() {
[c1ed2ee]441 autogenerateRoutines( translationUnit ); // moved up, used to be below compoundLiteral - currently needs EnumAndPointerDecay_old
[c884f2d]442 });
[3c0d4cd]443 }
[5dcb881]444 }
445
446 void validate_E( std::list< Declaration * > & translationUnit ) {
447 PassVisitor<CompoundLiteral> compoundliteral;
[3c0d4cd]448 {
449 Stats::Heap::newPass("validate-E");
450 Stats::Time::BlockGuard guard("validate-E");
[c884f2d]451 Stats::Time::TimeBlock("Implement Mutex Func", [&]() {
452 Concurrency::implementMutexFuncs( translationUnit );
453 });
454 Stats::Time::TimeBlock("Implement Thread Start", [&]() {
455 Concurrency::implementThreadStarter( translationUnit );
456 });
457 Stats::Time::TimeBlock("Compound Literal", [&]() {
458 mutateAll( translationUnit, compoundliteral );
459 });
[16ba4a6f]460 if (!useNewAST) {
461 Stats::Time::TimeBlock("Resolve With Expressions", [&]() {
462 ResolvExpr::resolveWithExprs( translationUnit ); // must happen before FixObjectType because user-code is resolved and may contain with variables
463 });
464 }
[3c0d4cd]465 }
[5dcb881]466 }
467
468 void validate_F( std::list< Declaration * > & translationUnit ) {
469 PassVisitor<LabelAddressFixer> labelAddrFixer;
[3c0d4cd]470 {
471 Stats::Heap::newPass("validate-F");
472 Stats::Time::BlockGuard guard("validate-F");
[16ba4a6f]473 if (!useNewAST) {
474 Stats::Time::TimeCall("Fix Object Type",
475 FixObjectType::fix, translationUnit);
476 }
[09867ec]477 Stats::Time::TimeCall("Initializer Length",
478 InitializerLength::computeLength, translationUnit);
479 if (!useNewAST) {
480 Stats::Time::TimeCall("Array Length",
481 ArrayLength::computeLength, translationUnit);
482 }
[095b99a]483 Stats::Time::TimeCall("Find Special Declarations",
484 Validate::findSpecialDecls, translationUnit);
485 Stats::Time::TimeCall("Fix Label Address",
486 mutateAll<LabelAddressFixer>, translationUnit, labelAddrFixer);
[16ba4a6f]487 if (!useNewAST) {
488 Stats::Time::TimeCall("Handle Attributes",
489 Validate::handleAttributes, translationUnit);
490 }
[3c0d4cd]491 }
[a08ba92]492 }
[9cb8e88d]493
[5dcb881]494 void validate( std::list< Declaration * > &translationUnit, __attribute__((unused)) bool doDebug ) {
495 validate_A( translationUnit );
496 validate_B( translationUnit );
497 validate_C( translationUnit );
498 validate_D( translationUnit );
499 validate_E( translationUnit );
500 validate_F( translationUnit );
501 }
502
[ef5b828]503 void validateType( Type * type, const Indexer * indexer ) {
[c1ed2ee]504 PassVisitor<EnumAndPointerDecay_old> epc;
505 PassVisitor<LinkReferenceToTypes_old> lrt( indexer );
[9490621]506 PassVisitor<TraitExpander_old> te;
507 PassVisitor<AssertionFixer_old> af;
508 PassVisitor<CheckOperatorTypes_old> cot;
509 PassVisitor<FixUniqueIds_old> fui;
[bda58ad]510 type->accept( epc );
[cce9429]511 type->accept( lrt );
[9490621]512 type->accept( te );
513 type->accept( af );
514 type->accept( cot );
515 type->accept( fui );
[a08ba92]516 }
[c8ffe20b]517
[15f5c5e]518 void HoistTypeDecls::handleType( Type * type ) {
[29f9e20]519 // some type declarations are buried in expressions and not easy to hoist during parsing; hoist them here
520 AggregateDecl * aggr = nullptr;
521 if ( StructInstType * inst = dynamic_cast< StructInstType * >( type ) ) {
522 aggr = inst->baseStruct;
523 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( type ) ) {
524 aggr = inst->baseUnion;
525 } else if ( EnumInstType * inst = dynamic_cast< EnumInstType * >( type ) ) {
526 aggr = inst->baseEnum;
527 }
528 if ( aggr && aggr->body ) {
529 declsToAddBefore.push_front( aggr );
530 }
531 }
532
[15f5c5e]533 void HoistTypeDecls::previsit( SizeofExpr * expr ) {
[29f9e20]534 handleType( expr->type );
535 }
536
[15f5c5e]537 void HoistTypeDecls::previsit( AlignofExpr * expr ) {
[29f9e20]538 handleType( expr->type );
539 }
540
[15f5c5e]541 void HoistTypeDecls::previsit( UntypedOffsetofExpr * expr ) {
[29f9e20]542 handleType( expr->type );
543 }
544
[95d09bdb]545 void HoistTypeDecls::previsit( CompoundLiteralExpr * expr ) {
546 handleType( expr->result );
547 }
548
[29f9e20]549
[a12c81f3]550 Type * FixQualifiedTypes::postmutate( QualifiedType * qualType ) {
551 Type * parent = qualType->parent;
552 Type * child = qualType->child;
553 if ( dynamic_cast< GlobalScopeType * >( qualType->parent ) ) {
554 // .T => lookup T at global scope
[062e8df]555 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
[a12c81f3]556 auto td = indexer.globalLookupType( inst->name );
[062e8df]557 if ( ! td ) {
558 SemanticError( qualType->location, toString("Use of undefined global type ", inst->name) );
559 }
[a12c81f3]560 auto base = td->base;
[062e8df]561 assert( base );
[8a3ecb9]562 Type * ret = base->clone();
563 ret->get_qualifiers() = qualType->get_qualifiers();
564 return ret;
[a12c81f3]565 } else {
[062e8df]566 // .T => T is not a type name
567 assertf( false, "unhandled global qualified child type: %s", toCString(child) );
[a12c81f3]568 }
569 } else {
570 // S.T => S must be an aggregate type, find the declaration for T in S.
571 AggregateDecl * aggr = nullptr;
572 if ( StructInstType * inst = dynamic_cast< StructInstType * >( parent ) ) {
573 aggr = inst->baseStruct;
574 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * > ( parent ) ) {
575 aggr = inst->baseUnion;
576 } else {
[062e8df]577 SemanticError( qualType->location, toString("Qualified type requires an aggregate on the left, but has: ", parent) );
[a12c81f3]578 }
579 assert( aggr ); // TODO: need to handle forward declarations
580 for ( Declaration * member : aggr->members ) {
[7e08acf]581 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
[8a3ecb9]582 // name on the right is a typedef
[a12c81f3]583 if ( NamedTypeDecl * aggr = dynamic_cast< NamedTypeDecl * > ( member ) ) {
584 if ( aggr->name == inst->name ) {
[062e8df]585 assert( aggr->base );
[8a3ecb9]586 Type * ret = aggr->base->clone();
587 ret->get_qualifiers() = qualType->get_qualifiers();
[7e08acf]588 TypeSubstitution sub = parent->genericSubstitution();
589 sub.apply(ret);
[8a3ecb9]590 return ret;
[a12c81f3]591 }
592 }
593 } else {
594 // S.T - S is not an aggregate => error
595 assertf( false, "unhandled qualified child type: %s", toCString(qualType) );
596 }
597 }
598 // failed to find a satisfying definition of type
[062e8df]599 SemanticError( qualType->location, toString("Undefined type in qualified type: ", qualType) );
[a12c81f3]600 }
601
602 // ... may want to link canonical SUE definition to each forward decl so that it becomes easier to lookup?
603 }
604
605
[a08ba92]606 void HoistStruct::hoistStruct( std::list< Declaration * > &translationUnit ) {
[a09e45b]607 PassVisitor<HoistStruct> hoister;
608 acceptAll( translationUnit, hoister );
[a08ba92]609 }
[c8ffe20b]610
[ef5b828]611 bool shouldHoist( Declaration * decl ) {
[0f40912]612 return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl ) || dynamic_cast< StaticAssertDecl * >( decl );
[a08ba92]613 }
[c0aa336]614
[d419d8e]615 namespace {
616 void qualifiedName( AggregateDecl * aggr, std::ostringstream & ss ) {
617 if ( aggr->parent ) qualifiedName( aggr->parent, ss );
618 ss << "__" << aggr->name;
619 }
620
621 // mangle nested type names using entire parent chain
622 std::string qualifiedName( AggregateDecl * aggr ) {
623 std::ostringstream ss;
624 qualifiedName( aggr, ss );
625 return ss.str();
626 }
627 }
628
[a08ba92]629 template< typename AggDecl >
[ef5b828]630 void HoistStruct::handleAggregate( AggDecl * aggregateDecl ) {
[bdad6eb7]631 if ( parentAggr ) {
[d419d8e]632 aggregateDecl->parent = parentAggr;
633 aggregateDecl->name = qualifiedName( aggregateDecl );
[0dd3a2f]634 // Add elements in stack order corresponding to nesting structure.
[a09e45b]635 declsToAddBefore.push_front( aggregateDecl );
[0dd3a2f]636 } else {
[bdad6eb7]637 GuardValue( parentAggr );
638 parentAggr = aggregateDecl;
[0dd3a2f]639 } // if
640 // Always remove the hoisted aggregate from the inner structure.
[0f40912]641 GuardAction( [aggregateDecl]() { filter( aggregateDecl->members, shouldHoist, false ); } );
[a08ba92]642 }
[c8ffe20b]643
[0f40912]644 void HoistStruct::previsit( StaticAssertDecl * assertDecl ) {
645 if ( parentAggr ) {
646 declsToAddBefore.push_back( assertDecl );
647 }
648 }
649
[a09e45b]650 void HoistStruct::previsit( StructDecl * aggregateDecl ) {
[0dd3a2f]651 handleAggregate( aggregateDecl );
[a08ba92]652 }
[c8ffe20b]653
[a09e45b]654 void HoistStruct::previsit( UnionDecl * aggregateDecl ) {
[0dd3a2f]655 handleAggregate( aggregateDecl );
[a08ba92]656 }
[c8ffe20b]657
[d419d8e]658 void HoistStruct::previsit( StructInstType * type ) {
659 // need to reset type name after expanding to qualified name
660 assert( type->baseStruct );
661 type->name = type->baseStruct->name;
662 }
663
664 void HoistStruct::previsit( UnionInstType * type ) {
665 assert( type->baseUnion );
666 type->name = type->baseUnion->name;
667 }
668
669 void HoistStruct::previsit( EnumInstType * type ) {
670 assert( type->baseEnum );
671 type->name = type->baseEnum->name;
672 }
673
674
[ef5b828]675 bool isTypedef( Declaration * decl ) {
[69918cea]676 return dynamic_cast< TypedefDecl * >( decl );
677 }
678
679 void EliminateTypedef::eliminateTypedef( std::list< Declaration * > &translationUnit ) {
680 PassVisitor<EliminateTypedef> eliminator;
681 acceptAll( translationUnit, eliminator );
682 filter( translationUnit, isTypedef, true );
683 }
684
685 template< typename AggDecl >
[ef5b828]686 void EliminateTypedef::handleAggregate( AggDecl * aggregateDecl ) {
[69918cea]687 filter( aggregateDecl->members, isTypedef, true );
688 }
689
690 void EliminateTypedef::previsit( StructDecl * aggregateDecl ) {
691 handleAggregate( aggregateDecl );
692 }
693
694 void EliminateTypedef::previsit( UnionDecl * aggregateDecl ) {
695 handleAggregate( aggregateDecl );
696 }
697
698 void EliminateTypedef::previsit( CompoundStmt * compoundStmt ) {
699 // remove and delete decl stmts
700 filter( compoundStmt->kids, [](Statement * stmt) {
[ef5b828]701 if ( DeclStmt * declStmt = dynamic_cast< DeclStmt * >( stmt ) ) {
[69918cea]702 if ( dynamic_cast< TypedefDecl * >( declStmt->decl ) ) {
703 return true;
704 } // if
705 } // if
706 return false;
707 }, true);
708 }
709
[ef5b828]710 void EnumAndPointerDecay_old::previsit( EnumDecl * enumDecl ) {
[0dd3a2f]711 // Set the type of each member of the enumeration to be EnumConstant
[0b3b2ae]712 for ( std::list< Declaration * >::iterator i = enumDecl->members.begin(); i != enumDecl->members.end(); ++i ) {
[ef5b828]713 ObjectDecl * obj = dynamic_cast< ObjectDecl * >( * i );
[0dd3a2f]714 assert( obj );
[0b3b2ae]715 obj->set_type( new EnumInstType( Type::Qualifiers( Type::Const ), enumDecl->name ) );
[0dd3a2f]716 } // for
[a08ba92]717 }
[51b73452]718
[a08ba92]719 namespace {
[83de11e]720 template< typename DWTList >
[4bda2cf]721 void fixFunctionList( DWTList & dwts, bool isVarArgs, FunctionType * func ) {
722 auto nvals = dwts.size();
723 bool containsVoid = false;
724 for ( auto & dwt : dwts ) {
725 // fix each DWT and record whether a void was found
726 containsVoid |= fixFunction( dwt );
727 }
728
729 // the only case in which "void" is valid is where it is the only one in the list
730 if ( containsVoid && ( nvals > 1 || isVarArgs ) ) {
[a16764a6]731 SemanticError( func, "invalid type void in function type " );
[4bda2cf]732 }
733
734 // one void is the only thing in the list; remove it.
735 if ( containsVoid ) {
736 delete dwts.front();
737 dwts.clear();
738 }
[0dd3a2f]739 }
[a08ba92]740 }
[c8ffe20b]741
[ef5b828]742 void EnumAndPointerDecay_old::previsit( FunctionType * func ) {
[0dd3a2f]743 // Fix up parameters and return types
[4bda2cf]744 fixFunctionList( func->parameters, func->isVarArgs, func );
745 fixFunctionList( func->returnVals, false, func );
[a08ba92]746 }
[c8ffe20b]747
[6e50a6b]748 LinkReferenceToTypes_old::LinkReferenceToTypes_old( const Indexer * other_indexer ) : WithIndexer( false ) {
[0dd3a2f]749 if ( other_indexer ) {
[522363e]750 local_indexer = other_indexer;
[0dd3a2f]751 } else {
[522363e]752 local_indexer = &indexer;
[0dd3a2f]753 } // if
[a08ba92]754 }
[c8ffe20b]755
[ef5b828]756 void LinkReferenceToTypes_old::postvisit( EnumInstType * enumInst ) {
[8fd52e90]757 const EnumDecl * st = local_indexer->lookupEnum( enumInst->name );
[c0aa336]758 // it's not a semantic error if the enum is not found, just an implicit forward declaration
759 if ( st ) {
[8fd52e90]760 enumInst->baseEnum = const_cast<EnumDecl *>(st); // Just linking in the node
[c0aa336]761 } // if
[29f9e20]762 if ( ! st || ! st->body ) {
[c0aa336]763 // use of forward declaration
[eaa6430]764 forwardEnums[ enumInst->name ].push_back( enumInst );
[c0aa336]765 } // if
766 }
[ef5b828]767 void LinkReferenceToTypes_old::postvisit( StructInstType * structInst ) {
[8fd52e90]768 const StructDecl * st = local_indexer->lookupStruct( structInst->name );
[0dd3a2f]769 // it's not a semantic error if the struct is not found, just an implicit forward declaration
770 if ( st ) {
[8fd52e90]771 structInst->baseStruct = const_cast<StructDecl *>(st); // Just linking in the node
[0dd3a2f]772 } // if
[29f9e20]773 if ( ! st || ! st->body ) {
[0dd3a2f]774 // use of forward declaration
[eaa6430]775 forwardStructs[ structInst->name ].push_back( structInst );
[0dd3a2f]776 } // if
[a08ba92]777 }
[c8ffe20b]778
[ef5b828]779 void LinkReferenceToTypes_old::postvisit( UnionInstType * unionInst ) {
[8fd52e90]780 const UnionDecl * un = local_indexer->lookupUnion( unionInst->name );
[0dd3a2f]781 // it's not a semantic error if the union is not found, just an implicit forward declaration
782 if ( un ) {
[8fd52e90]783 unionInst->baseUnion = const_cast<UnionDecl *>(un); // Just linking in the node
[0dd3a2f]784 } // if
[29f9e20]785 if ( ! un || ! un->body ) {
[0dd3a2f]786 // use of forward declaration
[eaa6430]787 forwardUnions[ unionInst->name ].push_back( unionInst );
[0dd3a2f]788 } // if
[a08ba92]789 }
[c8ffe20b]790
[c1ed2ee]791 void LinkReferenceToTypes_old::previsit( QualifiedType * ) {
[afcb0a3]792 visit_children = false;
793 }
794
[c1ed2ee]795 void LinkReferenceToTypes_old::postvisit( QualifiedType * qualType ) {
[afcb0a3]796 // linking only makes sense for the 'oldest ancestor' of the qualified type
[ef5b828]797 qualType->parent->accept( * visitor );
[afcb0a3]798 }
799
[be9036d]800 template< typename Decl >
801 void normalizeAssertions( std::list< Decl * > & assertions ) {
802 // ensure no duplicate trait members after the clone
803 auto pred = [](Decl * d1, Decl * d2) {
804 // only care if they're equal
805 DeclarationWithType * dwt1 = dynamic_cast<DeclarationWithType *>( d1 );
806 DeclarationWithType * dwt2 = dynamic_cast<DeclarationWithType *>( d2 );
807 if ( dwt1 && dwt2 ) {
[eaa6430]808 if ( dwt1->name == dwt2->name && ResolvExpr::typesCompatible( dwt1->get_type(), dwt2->get_type(), SymTab::Indexer() ) ) {
[be9036d]809 // std::cerr << "=========== equal:" << std::endl;
810 // std::cerr << "d1: " << d1 << std::endl;
811 // std::cerr << "d2: " << d2 << std::endl;
812 return false;
813 }
[2c57025]814 }
[be9036d]815 return d1 < d2;
816 };
817 std::set<Decl *, decltype(pred)> unique_members( assertions.begin(), assertions.end(), pred );
818 // if ( unique_members.size() != assertions.size() ) {
819 // std::cerr << "============different" << std::endl;
820 // std::cerr << unique_members.size() << " " << assertions.size() << std::endl;
821 // }
822
823 std::list< Decl * > order;
824 order.splice( order.end(), assertions );
825 std::copy_if( order.begin(), order.end(), back_inserter( assertions ), [&]( Decl * decl ) {
826 return unique_members.count( decl );
827 });
828 }
829
830 // expand assertions from trait instance, performing the appropriate type variable substitutions
831 template< typename Iterator >
832 void expandAssertions( TraitInstType * inst, Iterator out ) {
[eaa6430]833 assertf( inst->baseTrait, "Trait instance not linked to base trait: %s", toCString( inst ) );
[be9036d]834 std::list< DeclarationWithType * > asserts;
835 for ( Declaration * decl : inst->baseTrait->members ) {
[e3e16bc]836 asserts.push_back( strict_dynamic_cast<DeclarationWithType *>( decl->clone() ) );
[2c57025]837 }
[be9036d]838 // substitute trait decl parameters for instance parameters
839 applySubstitution( inst->baseTrait->parameters.begin(), inst->baseTrait->parameters.end(), inst->parameters.begin(), asserts.begin(), asserts.end(), out );
840 }
841
[c1ed2ee]842 void LinkReferenceToTypes_old::postvisit( TraitDecl * traitDecl ) {
[be9036d]843 if ( traitDecl->name == "sized" ) {
844 // "sized" is a special trait - flick the sized status on for the type variable
845 assertf( traitDecl->parameters.size() == 1, "Built-in trait 'sized' has incorrect number of parameters: %zd", traitDecl->parameters.size() );
846 TypeDecl * td = traitDecl->parameters.front();
847 td->set_sized( true );
848 }
849
850 // move assertions from type parameters into the body of the trait
851 for ( TypeDecl * td : traitDecl->parameters ) {
852 for ( DeclarationWithType * assert : td->assertions ) {
853 if ( TraitInstType * inst = dynamic_cast< TraitInstType * >( assert->get_type() ) ) {
854 expandAssertions( inst, back_inserter( traitDecl->members ) );
855 } else {
856 traitDecl->members.push_back( assert->clone() );
857 }
858 }
859 deleteAll( td->assertions );
860 td->assertions.clear();
861 } // for
862 }
[2ae171d8]863
[c1ed2ee]864 void LinkReferenceToTypes_old::postvisit( TraitInstType * traitInst ) {
[2ae171d8]865 // handle other traits
[8fd52e90]866 const TraitDecl * traitDecl = local_indexer->lookupTrait( traitInst->name );
[4a9ccc3]867 if ( ! traitDecl ) {
[a16764a6]868 SemanticError( traitInst->location, "use of undeclared trait " + traitInst->name );
[17cd4eb]869 } // if
[0b3b2ae]870 if ( traitDecl->parameters.size() != traitInst->parameters.size() ) {
[a16764a6]871 SemanticError( traitInst, "incorrect number of trait parameters: " );
[4a9ccc3]872 } // if
[8fd52e90]873 traitInst->baseTrait = const_cast<TraitDecl *>(traitDecl); // Just linking in the node
[79970ed]874
[4a9ccc3]875 // need to carry over the 'sized' status of each decl in the instance
[eaa6430]876 for ( auto p : group_iterate( traitDecl->parameters, traitInst->parameters ) ) {
[5c4d27f]877 TypeExpr * expr = dynamic_cast< TypeExpr * >( std::get<1>(p) );
878 if ( ! expr ) {
[a16764a6]879 SemanticError( std::get<1>(p), "Expression parameters for trait instances are currently unsupported: " );
[5c4d27f]880 }
[4a9ccc3]881 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( expr->get_type() ) ) {
882 TypeDecl * formalDecl = std::get<0>(p);
[eaa6430]883 TypeDecl * instDecl = inst->baseType;
[4a9ccc3]884 if ( formalDecl->get_sized() ) instDecl->set_sized( true );
885 }
886 }
[be9036d]887 // normalizeAssertions( traitInst->members );
[a08ba92]888 }
[c8ffe20b]889
[ef5b828]890 void LinkReferenceToTypes_old::postvisit( EnumDecl * enumDecl ) {
[c0aa336]891 // visit enum members first so that the types of self-referencing members are updated properly
[9e7236f4]892 // Replace the enum base; right now it works only for StructEnum
893 if ( enumDecl->base && dynamic_cast<TypeInstType*>(enumDecl->base) ) {
894 std::string baseName = static_cast<TypeInstType*>(enumDecl->base)->name;
895 const StructDecl * st = local_indexer->lookupStruct( baseName );
896 if ( st ) {
897 enumDecl->base = new StructInstType(Type::Qualifiers(),const_cast<StructDecl *>(st)); // Just linking in the node
898 }
899 }
[b16923d]900 if ( enumDecl->body ) {
[eaa6430]901 ForwardEnumsType::iterator fwds = forwardEnums.find( enumDecl->name );
[c0aa336]902 if ( fwds != forwardEnums.end() ) {
903 for ( std::list< EnumInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
[ef5b828]904 (* inst)->baseEnum = enumDecl;
[c0aa336]905 } // for
906 forwardEnums.erase( fwds );
907 } // if
908 } // if
909 }
910
[c1ed2ee]911 void LinkReferenceToTypes_old::renameGenericParams( std::list< TypeDecl * > & params ) {
[b95fe40]912 // rename generic type parameters uniquely so that they do not conflict with user-defined function forall parameters, e.g.
913 // forall(otype T)
914 // struct Box {
915 // T x;
916 // };
917 // forall(otype T)
918 // void f(Box(T) b) {
919 // ...
920 // }
921 // The T in Box and the T in f are different, so internally the naming must reflect that.
922 GuardValue( inGeneric );
923 inGeneric = ! params.empty();
924 for ( TypeDecl * td : params ) {
925 td->name = "__" + td->name + "_generic_";
926 }
927 }
928
[c1ed2ee]929 void LinkReferenceToTypes_old::previsit( StructDecl * structDecl ) {
[b95fe40]930 renameGenericParams( structDecl->parameters );
931 }
932
[c1ed2ee]933 void LinkReferenceToTypes_old::previsit( UnionDecl * unionDecl ) {
[b95fe40]934 renameGenericParams( unionDecl->parameters );
935 }
936
[ef5b828]937 void LinkReferenceToTypes_old::postvisit( StructDecl * structDecl ) {
[677c1be]938 // visit struct members first so that the types of self-referencing members are updated properly
[522363e]939 // xxx - need to ensure that type parameters match up between forward declarations and definition (most importantly, number of type parameters and their defaults)
[b16923d]940 if ( structDecl->body ) {
[eaa6430]941 ForwardStructsType::iterator fwds = forwardStructs.find( structDecl->name );
[0dd3a2f]942 if ( fwds != forwardStructs.end() ) {
943 for ( std::list< StructInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
[ef5b828]944 (* inst)->baseStruct = structDecl;
[0dd3a2f]945 } // for
946 forwardStructs.erase( fwds );
947 } // if
948 } // if
[a08ba92]949 }
[c8ffe20b]950
[ef5b828]951 void LinkReferenceToTypes_old::postvisit( UnionDecl * unionDecl ) {
[b16923d]952 if ( unionDecl->body ) {
[eaa6430]953 ForwardUnionsType::iterator fwds = forwardUnions.find( unionDecl->name );
[0dd3a2f]954 if ( fwds != forwardUnions.end() ) {
955 for ( std::list< UnionInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
[ef5b828]956 (* inst)->baseUnion = unionDecl;
[0dd3a2f]957 } // for
958 forwardUnions.erase( fwds );
959 } // if
960 } // if
[a08ba92]961 }
[c8ffe20b]962
[ef5b828]963 void LinkReferenceToTypes_old::postvisit( TypeInstType * typeInst ) {
[b95fe40]964 // ensure generic parameter instances are renamed like the base type
965 if ( inGeneric && typeInst->baseType ) typeInst->name = typeInst->baseType->name;
[ef5b828]966 if ( const NamedTypeDecl * namedTypeDecl = local_indexer->lookupType( typeInst->name ) ) {
967 if ( const TypeDecl * typeDecl = dynamic_cast< const TypeDecl * >( namedTypeDecl ) ) {
968 typeInst->set_isFtype( typeDecl->kind == TypeDecl::Ftype );
[0dd3a2f]969 } // if
970 } // if
[a08ba92]971 }
[c8ffe20b]972
[6e50a6b]973 ResolveEnumInitializers::ResolveEnumInitializers( const Indexer * other_indexer ) : WithIndexer( true ) {
974 if ( other_indexer ) {
975 local_indexer = other_indexer;
976 } else {
977 local_indexer = &indexer;
978 } // if
979 }
980
981 void ResolveEnumInitializers::postvisit( EnumDecl * enumDecl ) {
982 if ( enumDecl->body ) {
983 for ( Declaration * member : enumDecl->members ) {
984 ObjectDecl * field = strict_dynamic_cast<ObjectDecl *>( member );
985 if ( field->init ) {
986 // need to resolve enumerator initializers early so that other passes that determine if an expression is constexpr have the appropriate information.
987 SingleInit * init = strict_dynamic_cast<SingleInit *>( field->init );
[4559b34]988 if ( !enumDecl->base || dynamic_cast<BasicType *>(enumDecl->base))
989 ResolvExpr::findSingleExpression( init->value, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), indexer );
990 else {
991 if (dynamic_cast<PointerType *>(enumDecl->base)) {
992 auto typePtr = dynamic_cast<PointerType *>(enumDecl->base);
993 ResolvExpr::findSingleExpression( init->value,
994 new PointerType( Type::Qualifiers(), typePtr->base ), indexer );
995 } else {
996 ResolvExpr::findSingleExpression( init->value, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), indexer );
997 }
998 }
999
[6e50a6b]1000 }
1001 }
[4559b34]1002
[6e50a6b]1003 } // if
1004 }
1005
[4a9ccc3]1006 /// Fix up assertions - flattens assertion lists, removing all trait instances
[8b11840]1007 void forallFixer( std::list< TypeDecl * > & forall, BaseSyntaxNode * node ) {
1008 for ( TypeDecl * type : forall ) {
[be9036d]1009 std::list< DeclarationWithType * > asserts;
1010 asserts.splice( asserts.end(), type->assertions );
1011 // expand trait instances into their members
1012 for ( DeclarationWithType * assertion : asserts ) {
[ef5b828]1013 if ( TraitInstType * traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) {
[be9036d]1014 // expand trait instance into all of its members
1015 expandAssertions( traitInst, back_inserter( type->assertions ) );
1016 delete traitInst;
1017 } else {
1018 // pass other assertions through
1019 type->assertions.push_back( assertion );
1020 } // if
1021 } // for
1022 // apply FixFunction to every assertion to check for invalid void type
1023 for ( DeclarationWithType *& assertion : type->assertions ) {
[4bda2cf]1024 bool isVoid = fixFunction( assertion );
1025 if ( isVoid ) {
[a16764a6]1026 SemanticError( node, "invalid type void in assertion of function " );
[be9036d]1027 } // if
1028 } // for
1029 // normalizeAssertions( type->assertions );
[0dd3a2f]1030 } // for
[a08ba92]1031 }
[c8ffe20b]1032
[9490621]1033 /// Replace all traits in assertion lists with their assertions.
1034 void expandTraits( std::list< TypeDecl * > & forall ) {
1035 for ( TypeDecl * type : forall ) {
1036 std::list< DeclarationWithType * > asserts;
1037 asserts.splice( asserts.end(), type->assertions );
1038 // expand trait instances into their members
1039 for ( DeclarationWithType * assertion : asserts ) {
1040 if ( TraitInstType * traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) {
1041 // expand trait instance into all of its members
1042 expandAssertions( traitInst, back_inserter( type->assertions ) );
1043 delete traitInst;
1044 } else {
1045 // pass other assertions through
1046 type->assertions.push_back( assertion );
1047 } // if
1048 } // for
1049 }
1050 }
1051
1052 /// Fix each function in the assertion list and check for invalid void type.
1053 void fixAssertions(
1054 std::list< TypeDecl * > & forall, BaseSyntaxNode * node ) {
1055 for ( TypeDecl * type : forall ) {
1056 for ( DeclarationWithType *& assertion : type->assertions ) {
1057 bool isVoid = fixFunction( assertion );
1058 if ( isVoid ) {
1059 SemanticError( node, "invalid type void in assertion of function " );
1060 } // if
1061 } // for
1062 }
1063 }
1064
[ef5b828]1065 void ForallPointerDecay_old::previsit( ObjectDecl * object ) {
[3d2b7bc]1066 // ensure that operator names only apply to functions or function pointers
1067 if ( CodeGen::isOperator( object->name ) && ! dynamic_cast< FunctionType * >( object->type->stripDeclarator() ) ) {
1068 SemanticError( object->location, toCString( "operator ", object->name.c_str(), " is not a function or function pointer." ) );
1069 }
[0dd3a2f]1070 object->fixUniqueId();
[a08ba92]1071 }
[c8ffe20b]1072
[ef5b828]1073 void ForallPointerDecay_old::previsit( FunctionDecl * func ) {
[0dd3a2f]1074 func->fixUniqueId();
[a08ba92]1075 }
[c8ffe20b]1076
[c1ed2ee]1077 void ForallPointerDecay_old::previsit( FunctionType * ftype ) {
[bbf3fda]1078 forallFixer( ftype->forall, ftype );
1079 }
1080
[c1ed2ee]1081 void ForallPointerDecay_old::previsit( StructDecl * aggrDecl ) {
[bd7e609]1082 forallFixer( aggrDecl->parameters, aggrDecl );
1083 }
1084
[c1ed2ee]1085 void ForallPointerDecay_old::previsit( UnionDecl * aggrDecl ) {
[bd7e609]1086 forallFixer( aggrDecl->parameters, aggrDecl );
1087 }
1088
[9490621]1089 void TraitExpander_old::previsit( FunctionType * ftype ) {
1090 expandTraits( ftype->forall );
1091 }
1092
1093 void TraitExpander_old::previsit( StructDecl * aggrDecl ) {
1094 expandTraits( aggrDecl->parameters );
1095 }
1096
1097 void TraitExpander_old::previsit( UnionDecl * aggrDecl ) {
1098 expandTraits( aggrDecl->parameters );
1099 }
1100
1101 void AssertionFixer_old::previsit( FunctionType * ftype ) {
1102 fixAssertions( ftype->forall, ftype );
1103 }
1104
1105 void AssertionFixer_old::previsit( StructDecl * aggrDecl ) {
1106 fixAssertions( aggrDecl->parameters, aggrDecl );
1107 }
1108
1109 void AssertionFixer_old::previsit( UnionDecl * aggrDecl ) {
1110 fixAssertions( aggrDecl->parameters, aggrDecl );
1111 }
1112
1113 void CheckOperatorTypes_old::previsit( ObjectDecl * object ) {
1114 // ensure that operator names only apply to functions or function pointers
1115 if ( CodeGen::isOperator( object->name ) && ! dynamic_cast< FunctionType * >( object->type->stripDeclarator() ) ) {
1116 SemanticError( object->location, toCString( "operator ", object->name.c_str(), " is not a function or function pointer." ) );
1117 }
1118 }
1119
1120 void FixUniqueIds_old::previsit( DeclarationWithType * decl ) {
1121 decl->fixUniqueId();
1122 }
1123
[de91427b]1124 void ReturnChecker::checkFunctionReturns( std::list< Declaration * > & translationUnit ) {
[0db6fc0]1125 PassVisitor<ReturnChecker> checker;
[de91427b]1126 acceptAll( translationUnit, checker );
1127 }
1128
[0db6fc0]1129 void ReturnChecker::previsit( FunctionDecl * functionDecl ) {
[0508ab3]1130 GuardValue( returnVals );
[de91427b]1131 returnVals = functionDecl->get_functionType()->get_returnVals();
1132 }
1133
[0db6fc0]1134 void ReturnChecker::previsit( ReturnStmt * returnStmt ) {
[74d1804]1135 // Previously this also checked for the existence of an expr paired with no return values on
1136 // the function return type. This is incorrect, since you can have an expression attached to
1137 // a return statement in a void-returning function in C. The expression is treated as if it
1138 // were cast to void.
[30f9072]1139 if ( ! returnStmt->get_expr() && returnVals.size() != 0 ) {
[a16764a6]1140 SemanticError( returnStmt, "Non-void function returns no values: " );
[de91427b]1141 }
1142 }
1143
1144
[48ed81c]1145 void ReplaceTypedef::replaceTypedef( std::list< Declaration * > &translationUnit ) {
1146 PassVisitor<ReplaceTypedef> eliminator;
[0dd3a2f]1147 mutateAll( translationUnit, eliminator );
[a506df4]1148 if ( eliminator.pass.typedefNames.count( "size_t" ) ) {
[5f98ce5]1149 // grab and remember declaration of size_t
[2bfc6b2]1150 Validate::SizeType = eliminator.pass.typedefNames["size_t"].first->base->clone();
[5f98ce5]1151 } else {
[40e636a]1152 // xxx - missing global typedef for size_t - default to long unsigned int, even though that may be wrong
1153 // eventually should have a warning for this case.
[2bfc6b2]1154 Validate::SizeType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
[5f98ce5]1155 }
[a08ba92]1156 }
[c8ffe20b]1157
[48ed81c]1158 void ReplaceTypedef::premutate( QualifiedType * ) {
1159 visit_children = false;
1160 }
1161
1162 Type * ReplaceTypedef::postmutate( QualifiedType * qualType ) {
1163 // replacing typedefs only makes sense for the 'oldest ancestor' of the qualified type
[ef5b828]1164 qualType->parent = qualType->parent->acceptMutator( * visitor );
[48ed81c]1165 return qualType;
1166 }
1167
[a7c31e0]1168 static bool isNonParameterAttribute( Attribute * attr ) {
1169 static const std::vector<std::string> bad_names = {
1170 "aligned", "__aligned__",
1171 };
1172 for ( auto name : bad_names ) {
1173 if ( name == attr->name ) {
1174 return true;
1175 }
1176 }
1177 return false;
1178 }
1179
[48ed81c]1180 Type * ReplaceTypedef::postmutate( TypeInstType * typeInst ) {
[9cb8e88d]1181 // instances of typedef types will come here. If it is an instance
[cc79d97]1182 // of a typdef type, link the instance to its actual type.
[0b3b2ae]1183 TypedefMap::const_iterator def = typedefNames.find( typeInst->name );
[0dd3a2f]1184 if ( def != typedefNames.end() ) {
[ef5b828]1185 Type * ret = def->second.first->base->clone();
[e82ef13]1186 ret->location = typeInst->location;
[6f95000]1187 ret->get_qualifiers() |= typeInst->get_qualifiers();
[a7c31e0]1188 // GCC ignores certain attributes if they arrive by typedef, this mimics that.
1189 if ( inFunctionType ) {
1190 ret->attributes.remove_if( isNonParameterAttribute );
[1f370451]1191 }
[a7c31e0]1192 ret->attributes.splice( ret->attributes.end(), typeInst->attributes );
[0215a76f]1193 // place instance parameters on the typedef'd type
[f53836b]1194 if ( ! typeInst->parameters.empty() ) {
[ef5b828]1195 ReferenceToType * rtt = dynamic_cast<ReferenceToType *>(ret);
[0215a76f]1196 if ( ! rtt ) {
[a16764a6]1197 SemanticError( typeInst->location, "Cannot apply type parameters to base type of " + typeInst->name );
[0215a76f]1198 }
[0b3b2ae]1199 rtt->parameters.clear();
[f53836b]1200 cloneAll( typeInst->parameters, rtt->parameters );
[ef5b828]1201 mutateAll( rtt->parameters, * visitor ); // recursively fix typedefs on parameters
[1db21619]1202 } // if
[0dd3a2f]1203 delete typeInst;
1204 return ret;
[679864e1]1205 } else {
[0b3b2ae]1206 TypeDeclMap::const_iterator base = typedeclNames.find( typeInst->name );
[062e8df]1207 if ( base == typedeclNames.end() ) {
1208 SemanticError( typeInst->location, toString("Use of undefined type ", typeInst->name) );
1209 }
[1e8b02f5]1210 typeInst->set_baseType( base->second );
[062e8df]1211 return typeInst;
[0dd3a2f]1212 } // if
[062e8df]1213 assert( false );
[a08ba92]1214 }
[c8ffe20b]1215
[f53836b]1216 struct VarLenChecker : WithShortCircuiting {
1217 void previsit( FunctionType * ) { visit_children = false; }
1218 void previsit( ArrayType * at ) {
1219 isVarLen |= at->isVarLen;
1220 }
1221 bool isVarLen = false;
1222 };
1223
1224 bool isVariableLength( Type * t ) {
1225 PassVisitor<VarLenChecker> varLenChecker;
1226 maybeAccept( t, varLenChecker );
1227 return varLenChecker.pass.isVarLen;
1228 }
1229
[48ed81c]1230 Declaration * ReplaceTypedef::postmutate( TypedefDecl * tyDecl ) {
[0b3b2ae]1231 if ( typedefNames.count( tyDecl->name ) == 1 && typedefNames[ tyDecl->name ].second == scopeLevel ) {
[9cb8e88d]1232 // typedef to the same name from the same scope
[cc79d97]1233 // must be from the same type
1234
[0b3b2ae]1235 Type * t1 = tyDecl->base;
1236 Type * t2 = typedefNames[ tyDecl->name ].first->base;
[1cbca6e]1237 if ( ! ResolvExpr::typesCompatible( t1, t2, Indexer() ) ) {
[a16764a6]1238 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
[f53836b]1239 }
[4b97770]1240 // Cannot redefine VLA typedefs. Note: this is slightly incorrect, because our notion of VLAs
1241 // at this point in the translator is imprecise. In particular, this will disallow redefining typedefs
1242 // with arrays whose dimension is an enumerator or a cast of a constant/enumerator. The effort required
1243 // to fix this corner case likely outweighs the utility of allowing it.
[f53836b]1244 if ( isVariableLength( t1 ) || isVariableLength( t2 ) ) {
[a16764a6]1245 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
[85c4ef0]1246 }
[cc79d97]1247 } else {
[0b3b2ae]1248 typedefNames[ tyDecl->name ] = std::make_pair( TypedefDeclPtr( tyDecl ), scopeLevel );
[cc79d97]1249 } // if
1250
[0dd3a2f]1251 // When a typedef is a forward declaration:
1252 // typedef struct screen SCREEN;
1253 // the declaration portion must be retained:
1254 // struct screen;
1255 // because the expansion of the typedef is:
[ef5b828]1256 // void rtn( SCREEN * p ) => void rtn( struct screen * p )
[0dd3a2f]1257 // hence the type-name "screen" must be defined.
1258 // Note, qualifiers on the typedef are superfluous for the forward declaration.
[6f95000]1259
[ef5b828]1260 Type * designatorType = tyDecl->base->stripDeclarator();
1261 if ( StructInstType * aggDecl = dynamic_cast< StructInstType * >( designatorType ) ) {
[312029a]1262 declsToAddBefore.push_back( new StructDecl( aggDecl->name, AggregateDecl::Struct, noAttributes, tyDecl->linkage ) );
[ef5b828]1263 } else if ( UnionInstType * aggDecl = dynamic_cast< UnionInstType * >( designatorType ) ) {
[48ed81c]1264 declsToAddBefore.push_back( new UnionDecl( aggDecl->name, noAttributes, tyDecl->linkage ) );
[ef5b828]1265 } else if ( EnumInstType * enumDecl = dynamic_cast< EnumInstType * >( designatorType ) ) {
[3e54399]1266 // declsToAddBefore.push_back( new EnumDecl( enumDecl->name, noAttributes, tyDecl->linkage, enumDecl->baseEnum->base ) );
1267 if (enumDecl->baseEnum) {
1268 declsToAddBefore.push_back( new EnumDecl( enumDecl->name, noAttributes, tyDecl->linkage, enumDecl->baseEnum->base ) );
1269 } else {
1270 declsToAddBefore.push_back( new EnumDecl( enumDecl->name, noAttributes, tyDecl->linkage ) );
1271 }
[0dd3a2f]1272 } // if
[48ed81c]1273 return tyDecl->clone();
[a08ba92]1274 }
[c8ffe20b]1275
[48ed81c]1276 void ReplaceTypedef::premutate( TypeDecl * typeDecl ) {
[0b3b2ae]1277 TypedefMap::iterator i = typedefNames.find( typeDecl->name );
[0dd3a2f]1278 if ( i != typedefNames.end() ) {
1279 typedefNames.erase( i ) ;
1280 } // if
[679864e1]1281
[0bcc2b7]1282 typedeclNames.insert( typeDecl->name, typeDecl );
[a08ba92]1283 }
[c8ffe20b]1284
[48ed81c]1285 void ReplaceTypedef::premutate( FunctionDecl * ) {
[a506df4]1286 GuardScope( typedefNames );
[0bcc2b7]1287 GuardScope( typedeclNames );
[a08ba92]1288 }
[c8ffe20b]1289
[48ed81c]1290 void ReplaceTypedef::premutate( ObjectDecl * ) {
[a506df4]1291 GuardScope( typedefNames );
[0bcc2b7]1292 GuardScope( typedeclNames );
[a506df4]1293 }
[dd020c0]1294
[48ed81c]1295 DeclarationWithType * ReplaceTypedef::postmutate( ObjectDecl * objDecl ) {
[ef5b828]1296 if ( FunctionType * funtype = dynamic_cast<FunctionType *>( objDecl->type ) ) { // function type?
[02e5ab6]1297 // replace the current object declaration with a function declaration
[0b3b2ae]1298 FunctionDecl * newDecl = new FunctionDecl( objDecl->name, objDecl->get_storageClasses(), objDecl->linkage, funtype, 0, objDecl->attributes, objDecl->get_funcSpec() );
1299 objDecl->attributes.clear();
[dbe8f244]1300 objDecl->set_type( nullptr );
[0a86a30]1301 delete objDecl;
1302 return newDecl;
[1db21619]1303 } // if
[a506df4]1304 return objDecl;
[a08ba92]1305 }
[c8ffe20b]1306
[48ed81c]1307 void ReplaceTypedef::premutate( CastExpr * ) {
[a506df4]1308 GuardScope( typedefNames );
[0bcc2b7]1309 GuardScope( typedeclNames );
[a08ba92]1310 }
[c8ffe20b]1311
[48ed81c]1312 void ReplaceTypedef::premutate( CompoundStmt * ) {
[a506df4]1313 GuardScope( typedefNames );
[0bcc2b7]1314 GuardScope( typedeclNames );
[cc79d97]1315 scopeLevel += 1;
[a506df4]1316 GuardAction( [this](){ scopeLevel -= 1; } );
1317 }
1318
[45161b4d]1319 template<typename AggDecl>
[48ed81c]1320 void ReplaceTypedef::addImplicitTypedef( AggDecl * aggDecl ) {
[45161b4d]1321 if ( typedefNames.count( aggDecl->get_name() ) == 0 ) {
[ef5b828]1322 Type * type = nullptr;
[45161b4d]1323 if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( aggDecl ) ) {
1324 type = new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() );
1325 } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( aggDecl ) ) {
1326 type = new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() );
1327 } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( aggDecl ) ) {
1328 type = new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() );
1329 } // if
[0b0f1dd]1330 TypedefDeclPtr tyDecl( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type, aggDecl->get_linkage() ) );
[46f6134]1331 typedefNames[ aggDecl->get_name() ] = std::make_pair( std::move( tyDecl ), scopeLevel );
[48ed81c]1332 // add the implicit typedef to the AST
1333 declsToAddBefore.push_back( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type->clone(), aggDecl->get_linkage() ) );
[45161b4d]1334 } // if
1335 }
[4e06c1e]1336
[48ed81c]1337 template< typename AggDecl >
1338 void ReplaceTypedef::handleAggregate( AggDecl * aggr ) {
1339 SemanticErrorException errors;
[a506df4]1340
[48ed81c]1341 ValueGuard< std::list<Declaration * > > oldBeforeDecls( declsToAddBefore );
1342 ValueGuard< std::list<Declaration * > > oldAfterDecls ( declsToAddAfter );
1343 declsToAddBefore.clear();
1344 declsToAddAfter.clear();
[a506df4]1345
[48ed81c]1346 GuardScope( typedefNames );
[0bcc2b7]1347 GuardScope( typedeclNames );
[ef5b828]1348 mutateAll( aggr->parameters, * visitor );
[798a8b3]1349 mutateAll( aggr->attributes, * visitor );
[85c4ef0]1350
[48ed81c]1351 // unroll mutateAll for aggr->members so that implicit typedefs for nested types are added to the aggregate body.
1352 for ( std::list< Declaration * >::iterator i = aggr->members.begin(); i != aggr->members.end(); ++i ) {
1353 if ( !declsToAddAfter.empty() ) { aggr->members.splice( i, declsToAddAfter ); }
[a506df4]1354
[48ed81c]1355 try {
[ef5b828]1356 * i = maybeMutate( * i, * visitor );
[48ed81c]1357 } catch ( SemanticErrorException &e ) {
1358 errors.append( e );
1359 }
1360
1361 if ( !declsToAddBefore.empty() ) { aggr->members.splice( i, declsToAddBefore ); }
1362 }
1363
1364 if ( !declsToAddAfter.empty() ) { aggr->members.splice( aggr->members.end(), declsToAddAfter ); }
1365 if ( !errors.isEmpty() ) { throw errors; }
[85c4ef0]1366 }
1367
[48ed81c]1368 void ReplaceTypedef::premutate( StructDecl * structDecl ) {
1369 visit_children = false;
1370 addImplicitTypedef( structDecl );
1371 handleAggregate( structDecl );
[a506df4]1372 }
1373
[48ed81c]1374 void ReplaceTypedef::premutate( UnionDecl * unionDecl ) {
1375 visit_children = false;
1376 addImplicitTypedef( unionDecl );
1377 handleAggregate( unionDecl );
[85c4ef0]1378 }
1379
[48ed81c]1380 void ReplaceTypedef::premutate( EnumDecl * enumDecl ) {
1381 addImplicitTypedef( enumDecl );
[85c4ef0]1382 }
1383
[48ed81c]1384 void ReplaceTypedef::premutate( FunctionType * ) {
[1f370451]1385 GuardValue( inFunctionType );
1386 inFunctionType = true;
1387 }
1388
[0bcc2b7]1389 void ReplaceTypedef::premutate( TraitDecl * ) {
1390 GuardScope( typedefNames );
1391 GuardScope( typedeclNames);
1392 }
1393
[d1969a6]1394 void VerifyCtorDtorAssign::verify( std::list< Declaration * > & translationUnit ) {
[0db6fc0]1395 PassVisitor<VerifyCtorDtorAssign> verifier;
[9cb8e88d]1396 acceptAll( translationUnit, verifier );
1397 }
1398
[0db6fc0]1399 void VerifyCtorDtorAssign::previsit( FunctionDecl * funcDecl ) {
[9cb8e88d]1400 FunctionType * funcType = funcDecl->get_functionType();
1401 std::list< DeclarationWithType * > &returnVals = funcType->get_returnVals();
1402 std::list< DeclarationWithType * > &params = funcType->get_parameters();
1403
[bff227f]1404 if ( CodeGen::isCtorDtorAssign( funcDecl->get_name() ) ) { // TODO: also check /=, etc.
[9cb8e88d]1405 if ( params.size() == 0 ) {
[98538288]1406 SemanticError( funcDecl->location, "Constructors, destructors, and assignment functions require at least one parameter." );
[9cb8e88d]1407 }
[ce8c12f]1408 ReferenceType * refType = dynamic_cast< ReferenceType * >( params.front()->get_type() );
[084fecc]1409 if ( ! refType ) {
[98538288]1410 SemanticError( funcDecl->location, "First parameter of a constructor, destructor, or assignment function must be a reference." );
[9cb8e88d]1411 }
[bff227f]1412 if ( CodeGen::isCtorDtor( funcDecl->get_name() ) && returnVals.size() != 0 ) {
[98538288]1413 if(!returnVals.front()->get_type()->isVoid()) {
1414 SemanticError( funcDecl->location, "Constructors and destructors cannot have explicit return values." );
1415 }
[9cb8e88d]1416 }
1417 }
1418 }
[70a06f6]1419
[6e50a6b]1420 // Test for special name on a generic parameter. Special treatment for the
1421 // special name is a bootstrapping hack. In most cases, the worlds of T's
1422 // and of N's don't overlap (normal treamtemt). The foundations in
1423 // array.hfa use tagging for both types and dimensions. Tagging treats
1424 // its subject parameter even more opaquely than T&, which assumes it is
1425 // possible to have a pointer/reference to such an object. Tagging only
1426 // seeks to identify the type-system resident at compile time. Both N's
1427 // and T's can make tags. The tag definition uses the special name, which
1428 // is treated as "an N or a T." This feature is not inteded to be used
1429 // outside of the definition and immediate uses of a tag.
1430 static inline bool isReservedTysysIdOnlyName( const std::string & name ) {
1431 // name's prefix was __CFA_tysys_id_only, before it got wrapped in __..._generic
1432 int foundAt = name.find("__CFA_tysys_id_only");
1433 if (foundAt == 0) return true;
1434 if (foundAt == 2 && name[0] == '_' && name[1] == '_') return true;
1435 return false;
1436 }
1437
[11ab8ea8]1438 template< typename Aggr >
1439 void validateGeneric( Aggr * inst ) {
1440 std::list< TypeDecl * > * params = inst->get_baseParameters();
[30f9072]1441 if ( params ) {
[11ab8ea8]1442 std::list< Expression * > & args = inst->get_parameters();
[67cf18c]1443
1444 // insert defaults arguments when a type argument is missing (currently only supports missing arguments at the end of the list).
1445 // A substitution is used to ensure that defaults are replaced correctly, e.g.,
1446 // forall(otype T, otype alloc = heap_allocator(T)) struct vector;
1447 // vector(int) v;
1448 // after insertion of default values becomes
1449 // vector(int, heap_allocator(T))
1450 // and the substitution is built with T=int so that after substitution, the result is
1451 // vector(int, heap_allocator(int))
1452 TypeSubstitution sub;
1453 auto paramIter = params->begin();
[6e50a6b]1454 auto argIter = args.begin();
1455 for ( ; paramIter != params->end(); ++paramIter, ++argIter ) {
1456 if ( argIter != args.end() ) {
1457 TypeExpr * expr = dynamic_cast< TypeExpr * >( * argIter );
1458 if ( expr ) {
1459 sub.add( (* paramIter)->get_name(), expr->get_type()->clone() );
1460 }
1461 } else {
[ef5b828]1462 Type * defaultType = (* paramIter)->get_init();
[67cf18c]1463 if ( defaultType ) {
1464 args.push_back( new TypeExpr( defaultType->clone() ) );
[ef5b828]1465 sub.add( (* paramIter)->get_name(), defaultType->clone() );
[6e50a6b]1466 argIter = std::prev(args.end());
1467 } else {
1468 SemanticError( inst, "Too few type arguments in generic type " );
[67cf18c]1469 }
1470 }
[6e50a6b]1471 assert( argIter != args.end() );
1472 bool typeParamDeclared = (*paramIter)->kind != TypeDecl::Kind::Dimension;
1473 bool typeArgGiven;
1474 if ( isReservedTysysIdOnlyName( (*paramIter)->name ) ) {
1475 // coerce a match when declaration is reserved name, which means "either"
1476 typeArgGiven = typeParamDeclared;
1477 } else {
1478 typeArgGiven = dynamic_cast< TypeExpr * >( * argIter );
1479 }
1480 if ( ! typeParamDeclared && typeArgGiven ) SemanticError( inst, "Type argument given for value parameter: " );
1481 if ( typeParamDeclared && ! typeArgGiven ) SemanticError( inst, "Expression argument given for type parameter: " );
[67cf18c]1482 }
1483
1484 sub.apply( inst );
[a16764a6]1485 if ( args.size() > params->size() ) SemanticError( inst, "Too many type arguments in generic type " );
[11ab8ea8]1486 }
1487 }
1488
[0db6fc0]1489 void ValidateGenericParameters::previsit( StructInstType * inst ) {
[11ab8ea8]1490 validateGeneric( inst );
1491 }
[9cb8e88d]1492
[0db6fc0]1493 void ValidateGenericParameters::previsit( UnionInstType * inst ) {
[11ab8ea8]1494 validateGeneric( inst );
[9cb8e88d]1495 }
[70a06f6]1496
[6e50a6b]1497 void TranslateDimensionGenericParameters::translateDimensions( std::list< Declaration * > &translationUnit ) {
1498 PassVisitor<TranslateDimensionGenericParameters> translator;
1499 mutateAll( translationUnit, translator );
1500 }
1501
1502 TranslateDimensionGenericParameters::TranslateDimensionGenericParameters() : WithIndexer( false ) {}
1503
1504 // Declaration of type variable: forall( [N] ) -> forall( N & | sized( N ) )
1505 TypeDecl * TranslateDimensionGenericParameters::postmutate( TypeDecl * td ) {
1506 if ( td->kind == TypeDecl::Dimension ) {
1507 td->kind = TypeDecl::Dtype;
1508 if ( ! isReservedTysysIdOnlyName( td->name ) ) {
1509 td->sized = true;
1510 }
1511 }
1512 return td;
1513 }
1514
1515 // Situational awareness:
1516 // array( float, [[currentExpr]] ) has visitingChildOfSUIT == true
1517 // array( float, [[currentExpr]] - 1 ) has visitingChildOfSUIT == false
1518 // size_t x = [[currentExpr]] has visitingChildOfSUIT == false
1519 void TranslateDimensionGenericParameters::changeState_ChildOfSUIT( bool newVal ) {
1520 GuardValue( nextVisitedNodeIsChildOfSUIT );
1521 GuardValue( visitingChildOfSUIT );
1522 visitingChildOfSUIT = nextVisitedNodeIsChildOfSUIT;
1523 nextVisitedNodeIsChildOfSUIT = newVal;
1524 }
1525 void TranslateDimensionGenericParameters::premutate( StructInstType * sit ) {
1526 (void) sit;
1527 changeState_ChildOfSUIT(true);
1528 }
1529 void TranslateDimensionGenericParameters::premutate( UnionInstType * uit ) {
1530 (void) uit;
1531 changeState_ChildOfSUIT(true);
1532 }
1533 void TranslateDimensionGenericParameters::premutate( BaseSyntaxNode * node ) {
1534 (void) node;
1535 changeState_ChildOfSUIT(false);
1536 }
1537
1538 // Passing values as dimension arguments: array( float, 7 ) -> array( float, char[ 7 ] )
1539 // Consuming dimension parameters: size_t x = N - 1 ; -> size_t x = sizeof(N) - 1 ;
1540 // Intertwined reality: array( float, N ) -> array( float, N )
1541 // array( float, N - 1 ) -> array( float, char[ sizeof(N) - 1 ] )
1542 // Intertwined case 1 is not just an optimization.
1543 // Avoiding char[sizeof(-)] is necessary to enable the call of f to bind the value of N, in:
1544 // forall([N]) void f( array(float, N) & );
1545 // array(float, 7) a;
1546 // f(a);
1547
1548 Expression * TranslateDimensionGenericParameters::postmutate( DimensionExpr * de ) {
1549 // Expression de is an occurrence of N in LHS of above examples.
1550 // Look up the name that de references.
1551 // If we are in a struct body, then this reference can be to an entry of the stuct's forall list.
1552 // Whether or not we are in a struct body, this reference can be to an entry of a containing function's forall list.
1553 // If we are in a struct body, then the stuct's forall declarations are innermost (functions don't occur in structs).
1554 // Thus, a potential struct's declaration is highest priority.
1555 // A struct's forall declarations are already renamed with _generic_ suffix. Try that name variant first.
1556
1557 std::string useName = "__" + de->name + "_generic_";
1558 TypeDecl * namedParamDecl = const_cast<TypeDecl *>( strict_dynamic_cast<const TypeDecl *, nullptr >( indexer.lookupType( useName ) ) );
1559
1560 if ( ! namedParamDecl ) {
1561 useName = de->name;
1562 namedParamDecl = const_cast<TypeDecl *>( strict_dynamic_cast<const TypeDecl *, nullptr >( indexer.lookupType( useName ) ) );
1563 }
1564
1565 // Expect to find it always. A misspelled name would have been parsed as an identifier.
1566 assert( namedParamDecl && "Type-system-managed value name not found in symbol table" );
1567
1568 delete de;
1569
1570 TypeInstType * refToDecl = new TypeInstType( 0, useName, namedParamDecl );
1571
1572 if ( visitingChildOfSUIT ) {
1573 // As in postmutate( Expression * ), topmost expression needs a TypeExpr wrapper
1574 // But avoid ArrayType-Sizeof
1575 return new TypeExpr( refToDecl );
1576 } else {
1577 // the N occurrence is being used directly as a runtime value,
1578 // if we are in a type instantiation, then the N is within a bigger value computation
1579 return new SizeofExpr( refToDecl );
1580 }
1581 }
1582
1583 Expression * TranslateDimensionGenericParameters::postmutate( Expression * e ) {
1584 if ( visitingChildOfSUIT ) {
1585 // e is an expression used as an argument to instantiate a type
1586 if (! dynamic_cast< TypeExpr * >( e ) ) {
1587 // e is a value expression
1588 // but not a DimensionExpr, which has a distinct postmutate
1589 Type * typeExprContent = new ArrayType( 0, new BasicType( 0, BasicType::Char ), e, true, false );
1590 TypeExpr * result = new TypeExpr( typeExprContent );
1591 return result;
1592 }
1593 }
1594 return e;
1595 }
1596
[ef5b828]1597 void CompoundLiteral::premutate( ObjectDecl * objectDecl ) {
[a7c90d4]1598 storageClasses = objectDecl->get_storageClasses();
[630a82a]1599 }
1600
[ef5b828]1601 Expression * CompoundLiteral::postmutate( CompoundLiteralExpr * compLitExpr ) {
[630a82a]1602 // transform [storage_class] ... (struct S){ 3, ... };
1603 // into [storage_class] struct S temp = { 3, ... };
1604 static UniqueName indexName( "_compLit" );
1605
[ef5b828]1606 ObjectDecl * tempvar = new ObjectDecl( indexName.newName(), storageClasses, LinkageSpec::C, nullptr, compLitExpr->get_result(), compLitExpr->get_initializer() );
[d24d4e1]1607 compLitExpr->set_result( nullptr );
1608 compLitExpr->set_initializer( nullptr );
[630a82a]1609 delete compLitExpr;
[d24d4e1]1610 declsToAddBefore.push_back( tempvar ); // add modified temporary to current block
1611 return new VariableExpr( tempvar );
[630a82a]1612 }
[cce9429]1613
1614 void ReturnTypeFixer::fix( std::list< Declaration * > &translationUnit ) {
[0db6fc0]1615 PassVisitor<ReturnTypeFixer> fixer;
[cce9429]1616 acceptAll( translationUnit, fixer );
1617 }
1618
[0db6fc0]1619 void ReturnTypeFixer::postvisit( FunctionDecl * functionDecl ) {
[9facf3b]1620 FunctionType * ftype = functionDecl->get_functionType();
1621 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
[56e49b0]1622 assertf( retVals.size() == 0 || retVals.size() == 1, "Function %s has too many return values: %zu", functionDecl->get_name().c_str(), retVals.size() );
[9facf3b]1623 if ( retVals.size() == 1 ) {
[861799c7]1624 // ensure all function return values have a name - use the name of the function to disambiguate (this also provides a nice bit of help for debugging).
1625 // ensure other return values have a name.
[9facf3b]1626 DeclarationWithType * ret = retVals.front();
1627 if ( ret->get_name() == "" ) {
1628 ret->set_name( toString( "_retval_", CodeGen::genName( functionDecl ) ) );
1629 }
[c6d2e93]1630 ret->get_attributes().push_back( new Attribute( "unused" ) );
[9facf3b]1631 }
1632 }
[cce9429]1633
[0db6fc0]1634 void ReturnTypeFixer::postvisit( FunctionType * ftype ) {
[cce9429]1635 // xxx - need to handle named return values - this information needs to be saved somehow
1636 // so that resolution has access to the names.
1637 // Note that this pass needs to happen early so that other passes which look for tuple types
1638 // find them in all of the right places, including function return types.
1639 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
1640 if ( retVals.size() > 1 ) {
1641 // generate a single return parameter which is the tuple of all of the return values
[e3e16bc]1642 TupleType * tupleType = strict_dynamic_cast< TupleType * >( ResolvExpr::extractResultType( ftype ) );
[cce9429]1643 // ensure return value is not destructed by explicitly creating an empty ListInit node wherein maybeConstruct is false.
[ef5b828]1644 ObjectDecl * newRet = new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, tupleType, new ListInit( std::list<Initializer *>(), noDesignators, false ) );
[cce9429]1645 deleteAll( retVals );
1646 retVals.clear();
1647 retVals.push_back( newRet );
1648 }
1649 }
[fbd7ad6]1650
[2b79a70]1651 void FixObjectType::fix( std::list< Declaration * > & translationUnit ) {
1652 PassVisitor<FixObjectType> fixer;
1653 acceptAll( translationUnit, fixer );
1654 }
1655
1656 void FixObjectType::previsit( ObjectDecl * objDecl ) {
[ef5b828]1657 Type * new_type = ResolvExpr::resolveTypeof( objDecl->get_type(), indexer );
[2b79a70]1658 objDecl->set_type( new_type );
1659 }
1660
1661 void FixObjectType::previsit( FunctionDecl * funcDecl ) {
[ef5b828]1662 Type * new_type = ResolvExpr::resolveTypeof( funcDecl->type, indexer );
[2b79a70]1663 funcDecl->set_type( new_type );
1664 }
1665
[ef5b828]1666 void FixObjectType::previsit( TypeDecl * typeDecl ) {
[2b79a70]1667 if ( typeDecl->get_base() ) {
[ef5b828]1668 Type * new_type = ResolvExpr::resolveTypeof( typeDecl->get_base(), indexer );
[2b79a70]1669 typeDecl->set_base( new_type );
1670 } // if
1671 }
1672
[09867ec]1673 void InitializerLength::computeLength( std::list< Declaration * > & translationUnit ) {
1674 PassVisitor<InitializerLength> len;
1675 acceptAll( translationUnit, len );
1676 }
1677
[fbd7ad6]1678 void ArrayLength::computeLength( std::list< Declaration * > & translationUnit ) {
[0db6fc0]1679 PassVisitor<ArrayLength> len;
[fbd7ad6]1680 acceptAll( translationUnit, len );
1681 }
1682
[09867ec]1683 void InitializerLength::previsit( ObjectDecl * objDecl ) {
[0b3b2ae]1684 if ( ArrayType * at = dynamic_cast< ArrayType * >( objDecl->type ) ) {
[f072892]1685 if ( at->dimension ) return;
[0b3b2ae]1686 if ( ListInit * init = dynamic_cast< ListInit * >( objDecl->init ) ) {
[f072892]1687 at->dimension = new ConstantExpr( Constant::from_ulong( init->initializers.size() ) );
[fbd7ad6]1688 }
1689 }
1690 }
[4fbdfae0]1691
[4934ea3]1692 void ArrayLength::previsit( ArrayType * type ) {
[09867ec]1693 if ( type->dimension ) {
1694 // need to resolve array dimensions early so that constructor code can correctly determine
1695 // if a type is a VLA (and hence whether its elements need to be constructed)
1696 ResolvExpr::findSingleExpression( type->dimension, Validate::SizeType->clone(), indexer );
1697
1698 // must re-evaluate whether a type is a VLA, now that more information is available
1699 // (e.g. the dimension may have been an enumerator, which was unknown prior to this step)
1700 type->isVarLen = ! InitTweak::isConstExpr( type->dimension );
[4934ea3]1701 }
1702 }
1703
[5809461]1704 struct LabelFinder {
1705 std::set< Label > & labels;
1706 LabelFinder( std::set< Label > & labels ) : labels( labels ) {}
1707 void previsit( Statement * stmt ) {
1708 for ( Label & l : stmt->labels ) {
1709 labels.insert( l );
1710 }
1711 }
1712 };
1713
1714 void LabelAddressFixer::premutate( FunctionDecl * funcDecl ) {
1715 GuardValue( labels );
1716 PassVisitor<LabelFinder> finder( labels );
1717 funcDecl->accept( finder );
1718 }
1719
1720 Expression * LabelAddressFixer::postmutate( AddressExpr * addrExpr ) {
1721 // convert &&label into label address
1722 if ( AddressExpr * inner = dynamic_cast< AddressExpr * >( addrExpr->arg ) ) {
1723 if ( NameExpr * nameExpr = dynamic_cast< NameExpr * >( inner->arg ) ) {
1724 if ( labels.count( nameExpr->name ) ) {
1725 Label name = nameExpr->name;
1726 delete addrExpr;
1727 return new LabelAddressExpr( name );
1728 }
1729 }
1730 }
1731 return addrExpr;
1732 }
[c8e4d2f8]1733
[c1ed2ee]1734namespace {
[ef5b828]1735 /// Replaces enum types by int, and function/array types in function parameter and return
[c1ed2ee]1736 /// lists by appropriate pointers
[954c954]1737 /*
[c1ed2ee]1738 struct EnumAndPointerDecay_new {
1739 const ast::EnumDecl * previsit( const ast::EnumDecl * enumDecl ) {
1740 // set the type of each member of the enumeration to be EnumConstant
1741 for ( unsigned i = 0; i < enumDecl->members.size(); ++i ) {
1742 // build new version of object with EnumConstant
[ef5b828]1743 ast::ptr< ast::ObjectDecl > obj =
[c1ed2ee]1744 enumDecl->members[i].strict_as< ast::ObjectDecl >();
[ef5b828]1745 obj.get_and_mutate()->type =
[c1ed2ee]1746 new ast::EnumInstType{ enumDecl->name, ast::CV::Const };
[ef5b828]1747
[c1ed2ee]1748 // set into decl
1749 ast::EnumDecl * mut = mutate( enumDecl );
1750 mut->members[i] = obj.get();
1751 enumDecl = mut;
1752 }
1753 return enumDecl;
1754 }
1755
1756 static const ast::FunctionType * fixFunctionList(
[ef5b828]1757 const ast::FunctionType * func,
[c1ed2ee]1758 std::vector< ast::ptr< ast::DeclWithType > > ast::FunctionType::* field,
1759 ast::ArgumentFlag isVarArgs = ast::FixedArgs
1760 ) {
[ef5b828]1761 const auto & dwts = func->* field;
[c1ed2ee]1762 unsigned nvals = dwts.size();
1763 bool hasVoid = false;
1764 for ( unsigned i = 0; i < nvals; ++i ) {
1765 func = ast::mutate_field_index( func, field, i, fixFunction( dwts[i], hasVoid ) );
1766 }
[ef5b828]1767
[c1ed2ee]1768 // the only case in which "void" is valid is where it is the only one in the list
1769 if ( hasVoid && ( nvals > 1 || isVarArgs ) ) {
[ef5b828]1770 SemanticError(
[c1ed2ee]1771 dwts.front()->location, func, "invalid type void in function type" );
1772 }
1773
1774 // one void is the only thing in the list, remove it
1775 if ( hasVoid ) {
[ef5b828]1776 func = ast::mutate_field(
[c1ed2ee]1777 func, field, std::vector< ast::ptr< ast::DeclWithType > >{} );
1778 }
1779
1780 return func;
1781 }
1782
1783 const ast::FunctionType * previsit( const ast::FunctionType * func ) {
1784 func = fixFunctionList( func, &ast::FunctionType::params, func->isVarArgs );
1785 return fixFunctionList( func, &ast::FunctionType::returns );
1786 }
1787 };
1788
[c1398e4]1789 /// expand assertions from a trait instance, performing appropriate type variable substitutions
[ef5b828]1790 void expandAssertions(
1791 const ast::TraitInstType * inst, std::vector< ast::ptr< ast::DeclWithType > > & out
[c1398e4]1792 ) {
1793 assertf( inst->base, "Trait instance not linked to base trait: %s", toCString( inst ) );
1794
1795 // build list of trait members, substituting trait decl parameters for instance parameters
[ef5b828]1796 ast::TypeSubstitution sub{
[c1398e4]1797 inst->base->params.begin(), inst->base->params.end(), inst->params.begin() };
1798 // deliberately take ast::ptr by-value to ensure this does not mutate inst->base
1799 for ( ast::ptr< ast::Decl > decl : inst->base->members ) {
1800 auto member = decl.strict_as< ast::DeclWithType >();
1801 sub.apply( member );
1802 out.emplace_back( member );
1803 }
1804 }
1805
[c1ed2ee]1806 /// Associates forward declarations of aggregates with their definitions
[ef5b828]1807 class LinkReferenceToTypes_new final
1808 : public ast::WithSymbolTable, public ast::WithGuards, public
[c1ed2ee]1809 ast::WithVisitorRef<LinkReferenceToTypes_new>, public ast::WithShortCircuiting {
[ef5b828]1810
1811 // these maps of uses of forward declarations of types need to have the actual type
1812 // declaration switched in * after * they have been traversed. To enable this in the
1813 // ast::Pass framework, any node that needs to be so mutated has mutate() called on it
1814 // before it is placed in the map, properly updating its parents in the usual traversal,
[18e683b]1815 // then can have the actual mutation applied later
1816 using ForwardEnumsType = std::unordered_multimap< std::string, ast::EnumInstType * >;
1817 using ForwardStructsType = std::unordered_multimap< std::string, ast::StructInstType * >;
1818 using ForwardUnionsType = std::unordered_multimap< std::string, ast::UnionInstType * >;
[ef5b828]1819
[18e683b]1820 const CodeLocation & location;
1821 const ast::SymbolTable * localSymtab;
[ef5b828]1822
[18e683b]1823 ForwardEnumsType forwardEnums;
1824 ForwardStructsType forwardStructs;
1825 ForwardUnionsType forwardUnions;
[c1ed2ee]1826
[ef5b828]1827 /// true if currently in a generic type body, so that type parameter instances can be
[18e683b]1828 /// renamed appropriately
1829 bool inGeneric = false;
[c1ed2ee]1830
[18e683b]1831 public:
1832 /// contstruct using running symbol table
[ef5b828]1833 LinkReferenceToTypes_new( const CodeLocation & loc )
[18e683b]1834 : location( loc ), localSymtab( &symtab ) {}
[ef5b828]1835
[18e683b]1836 /// construct using provided symbol table
[ef5b828]1837 LinkReferenceToTypes_new( const CodeLocation & loc, const ast::SymbolTable & syms )
[18e683b]1838 : location( loc ), localSymtab( &syms ) {}
1839
1840 const ast::Type * postvisit( const ast::TypeInstType * typeInst ) {
1841 // ensure generic parameter instances are renamed like the base type
1842 if ( inGeneric && typeInst->base ) {
[ef5b828]1843 typeInst = ast::mutate_field(
[18e683b]1844 typeInst, &ast::TypeInstType::name, typeInst->base->name );
1845 }
1846
[ef5b828]1847 if (
1848 auto typeDecl = dynamic_cast< const ast::TypeDecl * >(
1849 localSymtab->lookupType( typeInst->name ) )
[18e683b]1850 ) {
1851 typeInst = ast::mutate_field( typeInst, &ast::TypeInstType::kind, typeDecl->kind );
1852 }
1853
1854 return typeInst;
1855 }
1856
1857 const ast::Type * postvisit( const ast::EnumInstType * inst ) {
1858 const ast::EnumDecl * decl = localSymtab->lookupEnum( inst->name );
1859 // not a semantic error if the enum is not found, just an implicit forward declaration
1860 if ( decl ) {
1861 inst = ast::mutate_field( inst, &ast::EnumInstType::base, decl );
1862 }
1863 if ( ! decl || ! decl->body ) {
1864 // forward declaration
1865 auto mut = mutate( inst );
1866 forwardEnums.emplace( inst->name, mut );
1867 inst = mut;
1868 }
1869 return inst;
1870 }
1871
[98e8b3b]1872 void checkGenericParameters( const ast::BaseInstType * inst ) {
[18e683b]1873 for ( const ast::Expr * param : inst->params ) {
1874 if ( ! dynamic_cast< const ast::TypeExpr * >( param ) ) {
[ef5b828]1875 SemanticError(
[18e683b]1876 location, inst, "Expression parameters for generic types are currently "
1877 "unsupported: " );
1878 }
1879 }
1880 }
1881
1882 const ast::StructInstType * postvisit( const ast::StructInstType * inst ) {
1883 const ast::StructDecl * decl = localSymtab->lookupStruct( inst->name );
1884 // not a semantic error if the struct is not found, just an implicit forward declaration
1885 if ( decl ) {
1886 inst = ast::mutate_field( inst, &ast::StructInstType::base, decl );
1887 }
1888 if ( ! decl || ! decl->body ) {
1889 // forward declaration
1890 auto mut = mutate( inst );
1891 forwardStructs.emplace( inst->name, mut );
1892 inst = mut;
1893 }
1894 checkGenericParameters( inst );
1895 return inst;
1896 }
1897
1898 const ast::UnionInstType * postvisit( const ast::UnionInstType * inst ) {
1899 const ast::UnionDecl * decl = localSymtab->lookupUnion( inst->name );
1900 // not a semantic error if the struct is not found, just an implicit forward declaration
1901 if ( decl ) {
1902 inst = ast::mutate_field( inst, &ast::UnionInstType::base, decl );
1903 }
1904 if ( ! decl || ! decl->body ) {
1905 // forward declaration
1906 auto mut = mutate( inst );
1907 forwardUnions.emplace( inst->name, mut );
1908 inst = mut;
1909 }
1910 checkGenericParameters( inst );
1911 return inst;
1912 }
1913
1914 const ast::Type * postvisit( const ast::TraitInstType * traitInst ) {
1915 // handle other traits
1916 const ast::TraitDecl * traitDecl = localSymtab->lookupTrait( traitInst->name );
1917 if ( ! traitDecl ) {
1918 SemanticError( location, "use of undeclared trait " + traitInst->name );
1919 }
1920 if ( traitDecl->params.size() != traitInst->params.size() ) {
1921 SemanticError( location, traitInst, "incorrect number of trait parameters: " );
1922 }
1923 traitInst = ast::mutate_field( traitInst, &ast::TraitInstType::base, traitDecl );
1924
1925 // need to carry over the "sized" status of each decl in the instance
1926 for ( unsigned i = 0; i < traitDecl->params.size(); ++i ) {
1927 auto expr = traitInst->params[i].as< ast::TypeExpr >();
1928 if ( ! expr ) {
[ef5b828]1929 SemanticError(
[18e683b]1930 traitInst->params[i].get(), "Expression parameters for trait instances "
1931 "are currently unsupported: " );
1932 }
1933
1934 if ( auto inst = expr->type.as< ast::TypeInstType >() ) {
1935 if ( traitDecl->params[i]->sized && ! inst->base->sized ) {
1936 // traitInst = ast::mutate_field_index(
1937 // traitInst, &ast::TraitInstType::params, i,
1938 // ...
1939 // );
1940 ast::TraitInstType * mut = ast::mutate( traitInst );
1941 ast::chain_mutate( mut->params[i] )
1942 ( &ast::TypeExpr::type )
1943 ( &ast::TypeInstType::base )->sized = true;
1944 traitInst = mut;
1945 }
1946 }
1947 }
1948
1949 return traitInst;
1950 }
[ef5b828]1951
[18e683b]1952 void previsit( const ast::QualifiedType * ) { visit_children = false; }
[ef5b828]1953
[18e683b]1954 const ast::Type * postvisit( const ast::QualifiedType * qualType ) {
1955 // linking only makes sense for the "oldest ancestor" of the qualified type
[ef5b828]1956 return ast::mutate_field(
1957 qualType, &ast::QualifiedType::parent, qualType->parent->accept( * visitor ) );
[18e683b]1958 }
1959
1960 const ast::Decl * postvisit( const ast::EnumDecl * enumDecl ) {
[ef5b828]1961 // visit enum members first so that the types of self-referencing members are updated
[18e683b]1962 // properly
1963 if ( ! enumDecl->body ) return enumDecl;
1964
1965 // update forward declarations to point here
1966 auto fwds = forwardEnums.equal_range( enumDecl->name );
1967 if ( fwds.first != fwds.second ) {
1968 auto inst = fwds.first;
1969 do {
[ef5b828]1970 // forward decl is stored * mutably * in map, can thus be updated
[18e683b]1971 inst->second->base = enumDecl;
1972 } while ( ++inst != fwds.second );
1973 forwardEnums.erase( fwds.first, fwds.second );
1974 }
[ef5b828]1975
[18e683b]1976 // ensure that enumerator initializers are properly set
1977 for ( unsigned i = 0; i < enumDecl->members.size(); ++i ) {
1978 auto field = enumDecl->members[i].strict_as< ast::ObjectDecl >();
1979 if ( field->init ) {
[ef5b828]1980 // need to resolve enumerator initializers early so that other passes that
[18e683b]1981 // determine if an expression is constexpr have appropriate information
1982 auto init = field->init.strict_as< ast::SingleInit >();
[ef5b828]1983
1984 enumDecl = ast::mutate_field_index(
1985 enumDecl, &ast::EnumDecl::members, i,
1986 ast::mutate_field( field, &ast::ObjectDecl::init,
[18e683b]1987 ast::mutate_field( init, &ast::SingleInit::value,
[ef5b828]1988 ResolvExpr::findSingleExpression(
[18e683b]1989 init->value, new ast::BasicType{ ast::BasicType::SignedInt },
1990 symtab ) ) ) );
1991 }
1992 }
1993
1994 return enumDecl;
1995 }
1996
[ef5b828]1997 /// rename generic type parameters uniquely so that they do not conflict with user defined
[18e683b]1998 /// function forall parameters, e.g. the T in Box and the T in f, below
1999 /// forall(otype T)
2000 /// struct Box {
2001 /// T x;
2002 /// };
2003 /// forall(otype T)
2004 /// void f(Box(T) b) {
2005 /// ...
2006 /// }
2007 template< typename AggrDecl >
2008 const AggrDecl * renameGenericParams( const AggrDecl * aggr ) {
2009 GuardValue( inGeneric );
2010 inGeneric = ! aggr->params.empty();
2011
2012 for ( unsigned i = 0; i < aggr->params.size(); ++i ) {
2013 const ast::TypeDecl * td = aggr->params[i];
2014
[ef5b828]2015 aggr = ast::mutate_field_index(
2016 aggr, &AggrDecl::params, i,
[18e683b]2017 ast::mutate_field( td, &ast::TypeDecl::name, "__" + td->name + "_generic_" ) );
2018 }
2019 return aggr;
2020 }
2021
2022 const ast::StructDecl * previsit( const ast::StructDecl * structDecl ) {
2023 return renameGenericParams( structDecl );
2024 }
2025
2026 void postvisit( const ast::StructDecl * structDecl ) {
[ef5b828]2027 // visit struct members first so that the types of self-referencing members are
[18e683b]2028 // updated properly
2029 if ( ! structDecl->body ) return;
2030
2031 // update forward declarations to point here
2032 auto fwds = forwardStructs.equal_range( structDecl->name );
2033 if ( fwds.first != fwds.second ) {
2034 auto inst = fwds.first;
2035 do {
[ef5b828]2036 // forward decl is stored * mutably * in map, can thus be updated
[18e683b]2037 inst->second->base = structDecl;
2038 } while ( ++inst != fwds.second );
2039 forwardStructs.erase( fwds.first, fwds.second );
2040 }
2041 }
2042
2043 const ast::UnionDecl * previsit( const ast::UnionDecl * unionDecl ) {
2044 return renameGenericParams( unionDecl );
2045 }
2046
2047 void postvisit( const ast::UnionDecl * unionDecl ) {
[ef5b828]2048 // visit union members first so that the types of self-referencing members are updated
[18e683b]2049 // properly
2050 if ( ! unionDecl->body ) return;
2051
2052 // update forward declarations to point here
2053 auto fwds = forwardUnions.equal_range( unionDecl->name );
2054 if ( fwds.first != fwds.second ) {
2055 auto inst = fwds.first;
2056 do {
[ef5b828]2057 // forward decl is stored * mutably * in map, can thus be updated
[18e683b]2058 inst->second->base = unionDecl;
2059 } while ( ++inst != fwds.second );
2060 forwardUnions.erase( fwds.first, fwds.second );
2061 }
2062 }
2063
2064 const ast::Decl * postvisit( const ast::TraitDecl * traitDecl ) {
2065 // set the "sized" status for the special "sized" trait
[c1398e4]2066 if ( traitDecl->name == "sized" ) {
2067 assertf( traitDecl->params.size() == 1, "Built-in trait 'sized' has incorrect "
2068 "number of parameters: %zd", traitDecl->params.size() );
2069
[ef5b828]2070 traitDecl = ast::mutate_field_index(
2071 traitDecl, &ast::TraitDecl::params, 0,
2072 ast::mutate_field(
[c1398e4]2073 traitDecl->params.front().get(), &ast::TypeDecl::sized, true ) );
2074 }
[18e683b]2075
[c1398e4]2076 // move assertions from type parameters into the body of the trait
2077 std::vector< ast::ptr< ast::DeclWithType > > added;
2078 for ( const ast::TypeDecl * td : traitDecl->params ) {
2079 for ( const ast::DeclWithType * assn : td->assertions ) {
2080 auto inst = dynamic_cast< const ast::TraitInstType * >( assn->get_type() );
2081 if ( inst ) {
2082 expandAssertions( inst, added );
2083 } else {
2084 added.emplace_back( assn );
2085 }
2086 }
2087 }
2088 if ( ! added.empty() ) {
2089 auto mut = mutate( traitDecl );
2090 for ( const ast::DeclWithType * decl : added ) {
2091 mut->members.emplace_back( decl );
2092 }
2093 traitDecl = mut;
2094 }
[ef5b828]2095
[c1398e4]2096 return traitDecl;
[18e683b]2097 }
[c1ed2ee]2098 };
2099
[ef5b828]2100 /// Replaces array and function types in forall lists by appropriate pointer type and assigns
[c1ed2ee]2101 /// each object and function declaration a unique ID
[c1398e4]2102 class ForallPointerDecay_new {
2103 const CodeLocation & location;
2104 public:
2105 ForallPointerDecay_new( const CodeLocation & loc ) : location( loc ) {}
2106
2107 const ast::ObjectDecl * previsit( const ast::ObjectDecl * obj ) {
2108 // ensure that operator names only apply to functions or function pointers
[ef5b828]2109 if (
2110 CodeGen::isOperator( obj->name )
[c1398e4]2111 && ! dynamic_cast< const ast::FunctionType * >( obj->type->stripDeclarator() )
2112 ) {
2113 SemanticError( obj->location, toCString( "operator ", obj->name.c_str(), " is not "
2114 "a function or function pointer." ) );
2115 }
2116
2117 // ensure object has unique ID
2118 if ( obj->uniqueId ) return obj;
2119 auto mut = mutate( obj );
2120 mut->fixUniqueId();
2121 return mut;
2122 }
2123
2124 const ast::FunctionDecl * previsit( const ast::FunctionDecl * func ) {
2125 // ensure function has unique ID
2126 if ( func->uniqueId ) return func;
2127 auto mut = mutate( func );
2128 mut->fixUniqueId();
2129 return mut;
2130 }
2131
2132 /// Fix up assertions -- flattens assertion lists, removing all trait instances
2133 template< typename node_t, typename parent_t >
[ef5b828]2134 static const node_t * forallFixer(
2135 const CodeLocation & loc, const node_t * node,
[361bf01]2136 ast::FunctionType::ForallList parent_t::* forallField
[c1398e4]2137 ) {
[ef5b828]2138 for ( unsigned i = 0; i < (node->* forallField).size(); ++i ) {
2139 const ast::TypeDecl * type = (node->* forallField)[i];
[c1398e4]2140 if ( type->assertions.empty() ) continue;
2141
2142 std::vector< ast::ptr< ast::DeclWithType > > asserts;
2143 asserts.reserve( type->assertions.size() );
2144
2145 // expand trait instances into their members
2146 for ( const ast::DeclWithType * assn : type->assertions ) {
[ef5b828]2147 auto traitInst =
2148 dynamic_cast< const ast::TraitInstType * >( assn->get_type() );
[c1398e4]2149 if ( traitInst ) {
2150 // expand trait instance to all its members
2151 expandAssertions( traitInst, asserts );
2152 } else {
2153 // pass other assertions through
2154 asserts.emplace_back( assn );
2155 }
2156 }
2157
2158 // apply FixFunction to every assertion to check for invalid void type
2159 for ( ast::ptr< ast::DeclWithType > & assn : asserts ) {
2160 bool isVoid = false;
2161 assn = fixFunction( assn, isVoid );
2162 if ( isVoid ) {
2163 SemanticError( loc, node, "invalid type void in assertion of function " );
2164 }
2165 }
2166
2167 // place mutated assertion list in node
2168 auto mut = mutate( type );
2169 mut->assertions = move( asserts );
2170 node = ast::mutate_field_index( node, forallField, i, mut );
2171 }
2172 return node;
2173 }
2174
2175 const ast::FunctionType * previsit( const ast::FunctionType * ftype ) {
2176 return forallFixer( location, ftype, &ast::FunctionType::forall );
2177 }
2178
2179 const ast::StructDecl * previsit( const ast::StructDecl * aggrDecl ) {
2180 return forallFixer( aggrDecl->location, aggrDecl, &ast::StructDecl::params );
2181 }
2182
2183 const ast::UnionDecl * previsit( const ast::UnionDecl * aggrDecl ) {
2184 return forallFixer( aggrDecl->location, aggrDecl, &ast::UnionDecl::params );
2185 }
[c1ed2ee]2186 };
[3e5dd913]2187 */
[c1ed2ee]2188} // anonymous namespace
2189
[3e5dd913]2190/*
[ef5b828]2191const ast::Type * validateType(
[18e683b]2192 const CodeLocation & loc, const ast::Type * type, const ast::SymbolTable & symtab ) {
[954c954]2193 // ast::Pass< EnumAndPointerDecay_new > epc;
[18e683b]2194 ast::Pass< LinkReferenceToTypes_new > lrt{ loc, symtab };
[c1398e4]2195 ast::Pass< ForallPointerDecay_new > fpd{ loc };
[c1ed2ee]2196
[954c954]2197 return type->accept( lrt )->accept( fpd );
[c1ed2ee]2198}
[3e5dd913]2199*/
[c1ed2ee]2200
[51b73452]2201} // namespace SymTab
[0dd3a2f]2202
2203// Local Variables: //
2204// tab-width: 4 //
2205// mode: c++ //
2206// compile-command: "make install" //
2207// End: //
Note: See TracBrowser for help on using the repository browser.