source: src/SymTab/Validate.cc@ db6cdc0

ADT ast-experimental
Last change on this file since db6cdc0 was 44547b0, checked in by Andrew Beach <ajbeach@…>, 3 years ago

Removed the ObjectDecl fields now represented on InlineValueDecl. Removed unused new AST content from Validate (should recompile less often.

  • Property mode set to 100644
File size: 52.2 KB
RevLine 
[0dd3a2f]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
[9cb8e88d]7// Validate.cc --
[0dd3a2f]8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 21:50:04 2015
[5dcb881]11// Last Modified By : Andrew Beach
[b9f8274]12// Last Modified On : Tue Jul 12 15:00:00 2022
13// Update Count : 367
[0dd3a2f]14//
15
16// The "validate" phase of translation is used to take a syntax tree and convert it into a standard form that aims to be
17// as regular in structure as possible. Some assumptions can be made regarding the state of the tree after this pass is
18// complete, including:
19//
20// - No nested structure or union definitions; any in the input are "hoisted" to the level of the containing struct or
21// union.
22//
23// - All enumeration constants have type EnumInstType.
24//
[3c13c03]25// - The type "void" never occurs in lists of function parameter or return types. A function
26// taking no arguments has no argument types.
[0dd3a2f]27//
28// - No context instances exist; they are all replaced by the set of declarations signified by the context, instantiated
29// by the particular set of type arguments.
30//
31// - Every declaration is assigned a unique id.
32//
33// - No typedef declarations or instances exist; the actual type is substituted for each instance.
34//
35// - Each type, struct, and union definition is followed by an appropriate assignment operator.
36//
37// - Each use of a struct or union is connected to a complete definition of that struct or union, even if that
38// definition occurs later in the input.
[51b73452]39
[0db6fc0]40#include "Validate.h"
41
[d180746]42#include <cassert> // for assertf, assert
[30f9072]43#include <cstddef> // for size_t
[d180746]44#include <list> // for list
45#include <string> // for string
[18e683b]46#include <unordered_map> // for unordered_map
[d180746]47#include <utility> // for pair
[30f9072]48
49#include "CodeGen/CodeGenerator.h" // for genName
[9236060]50#include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign
[25fcb84]51#include "ControlStruct/Mutate.h" // for ForExprMutator
[18e683b]52#include "Common/CodeLocation.h" // for CodeLocation
[7abee38]53#include "Common/Stats.h" // for Stats::Heap
[30f9072]54#include "Common/PassVisitor.h" // for PassVisitor, WithDeclsToAdd
[d180746]55#include "Common/ScopedMap.h" // for ScopedMap
[30f9072]56#include "Common/SemanticError.h" // for SemanticError
57#include "Common/UniqueName.h" // for UniqueName
58#include "Common/utility.h" // for operator+, cloneAll, deleteAll
[16ba4a6f]59#include "CompilationState.h" // skip some passes in new-ast build
[be9288a]60#include "Concurrency/Keywords.h" // for applyKeywords
[30f9072]61#include "FixFunction.h" // for FixFunction
62#include "Indexer.h" // for Indexer
[8b11840]63#include "InitTweak/GenInit.h" // for fixReturnStatements
[d180746]64#include "InitTweak/InitTweak.h" // for isCtorDtorAssign
65#include "ResolvExpr/typeops.h" // for typesCompatible
[4934ea3]66#include "ResolvExpr/Resolver.h" // for findSingleExpression
[2b79a70]67#include "ResolvExpr/ResolveTypeof.h" // for resolveTypeof
[be9288a]68#include "SymTab/Autogen.h" // for SizeType
[9939dc3]69#include "SymTab/ValidateType.h" // for decayEnumsAndPointers, decayFo...
[07de76b]70#include "SynTree/LinkageSpec.h" // for C
[be9288a]71#include "SynTree/Attribute.h" // for noAttributes, Attribute
[30f9072]72#include "SynTree/Constant.h" // for Constant
[d180746]73#include "SynTree/Declaration.h" // for ObjectDecl, DeclarationWithType
74#include "SynTree/Expression.h" // for CompoundLiteralExpr, Expressio...
75#include "SynTree/Initializer.h" // for ListInit, Initializer
76#include "SynTree/Label.h" // for operator==, Label
77#include "SynTree/Mutator.h" // for Mutator
78#include "SynTree/Type.h" // for Type, TypeInstType, EnumInstType
79#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
80#include "SynTree/Visitor.h" // for Visitor
[fd2debf]81#include "Validate/HandleAttributes.h" // for handleAttributes
[2bfc6b2]82#include "Validate/FindSpecialDecls.h" // for FindSpecialDecls
[d180746]83
84class CompoundStmt;
85class ReturnStmt;
86class SwitchStmt;
[51b73452]87
[b16923d]88#define debugPrint( x ) if ( doDebug ) x
[51b73452]89
90namespace SymTab {
[15f5c5e]91 /// hoists declarations that are difficult to hoist while parsing
92 struct HoistTypeDecls final : public WithDeclsToAdd {
[29f9e20]93 void previsit( SizeofExpr * );
94 void previsit( AlignofExpr * );
95 void previsit( UntypedOffsetofExpr * );
[95d09bdb]96 void previsit( CompoundLiteralExpr * );
[29f9e20]97 void handleType( Type * );
98 };
99
[a12c81f3]100 struct FixQualifiedTypes final : public WithIndexer {
[6e50a6b]101 FixQualifiedTypes() : WithIndexer(false) {}
[a12c81f3]102 Type * postmutate( QualifiedType * );
103 };
104
[a09e45b]105 struct HoistStruct final : public WithDeclsToAdd, public WithGuards {
[82dd287]106 /// Flattens nested struct types
[0dd3a2f]107 static void hoistStruct( std::list< Declaration * > &translationUnit );
[9cb8e88d]108
[a09e45b]109 void previsit( StructDecl * aggregateDecl );
110 void previsit( UnionDecl * aggregateDecl );
[0f40912]111 void previsit( StaticAssertDecl * assertDecl );
[d419d8e]112 void previsit( StructInstType * type );
113 void previsit( UnionInstType * type );
114 void previsit( EnumInstType * type );
[9cb8e88d]115
[a08ba92]116 private:
[ef5b828]117 template< typename AggDecl > void handleAggregate( AggDecl * aggregateDecl );
[c8ffe20b]118
[bdad6eb7]119 AggregateDecl * parentAggr = nullptr;
[a08ba92]120 };
[c8ffe20b]121
[cce9429]122 /// Fix return types so that every function returns exactly one value
[d24d4e1]123 struct ReturnTypeFixer {
[cce9429]124 static void fix( std::list< Declaration * > &translationUnit );
125
[0db6fc0]126 void postvisit( FunctionDecl * functionDecl );
127 void postvisit( FunctionType * ftype );
[cce9429]128 };
129
[6e50a6b]130 /// Does early resolution on the expressions that give enumeration constants their values
131 struct ResolveEnumInitializers final : public WithIndexer, public WithGuards, public WithVisitorRef<ResolveEnumInitializers>, public WithShortCircuiting {
132 ResolveEnumInitializers( const Indexer * indexer );
133 void postvisit( EnumDecl * enumDecl );
134
135 private:
136 const Indexer * local_indexer;
137
138 };
139
[06edda0]140 /// Replaces array and function types in forall lists by appropriate pointer type and assigns each Object and Function declaration a unique ID.
[c1ed2ee]141 struct ForallPointerDecay_old final {
[8b11840]142 void previsit( ObjectDecl * object );
143 void previsit( FunctionDecl * func );
[bbf3fda]144 void previsit( FunctionType * ftype );
[bd7e609]145 void previsit( StructDecl * aggrDecl );
146 void previsit( UnionDecl * aggrDecl );
[a08ba92]147 };
[c8ffe20b]148
[d24d4e1]149 struct ReturnChecker : public WithGuards {
[de91427b]150 /// Checks that return statements return nothing if their return type is void
151 /// and return something if the return type is non-void.
152 static void checkFunctionReturns( std::list< Declaration * > & translationUnit );
153
[0db6fc0]154 void previsit( FunctionDecl * functionDecl );
155 void previsit( ReturnStmt * returnStmt );
[de91427b]156
[0db6fc0]157 typedef std::list< DeclarationWithType * > ReturnVals;
158 ReturnVals returnVals;
[de91427b]159 };
160
[48ed81c]161 struct ReplaceTypedef final : public WithVisitorRef<ReplaceTypedef>, public WithGuards, public WithShortCircuiting, public WithDeclsToAdd {
162 ReplaceTypedef() : scopeLevel( 0 ) {}
[de91427b]163 /// Replaces typedefs by forward declarations
[48ed81c]164 static void replaceTypedef( std::list< Declaration * > &translationUnit );
[85c4ef0]165
[48ed81c]166 void premutate( QualifiedType * );
167 Type * postmutate( QualifiedType * qualType );
[a506df4]168 Type * postmutate( TypeInstType * aggregateUseType );
169 Declaration * postmutate( TypedefDecl * typeDecl );
170 void premutate( TypeDecl * typeDecl );
171 void premutate( FunctionDecl * funcDecl );
172 void premutate( ObjectDecl * objDecl );
173 DeclarationWithType * postmutate( ObjectDecl * objDecl );
174
175 void premutate( CastExpr * castExpr );
176
177 void premutate( CompoundStmt * compoundStmt );
178
179 void premutate( StructDecl * structDecl );
180 void premutate( UnionDecl * unionDecl );
181 void premutate( EnumDecl * enumDecl );
[0bcc2b7]182 void premutate( TraitDecl * );
[a506df4]183
[1f370451]184 void premutate( FunctionType * ftype );
185
[a506df4]186 private:
[45161b4d]187 template<typename AggDecl>
188 void addImplicitTypedef( AggDecl * aggDecl );
[48ed81c]189 template< typename AggDecl >
190 void handleAggregate( AggDecl * aggr );
[70a06f6]191
[46f6134]192 typedef std::unique_ptr<TypedefDecl> TypedefDeclPtr;
[e491159]193 typedef ScopedMap< std::string, std::pair< TypedefDeclPtr, int > > TypedefMap;
[0bcc2b7]194 typedef ScopedMap< std::string, TypeDecl * > TypeDeclMap;
[cc79d97]195 TypedefMap typedefNames;
[679864e1]196 TypeDeclMap typedeclNames;
[cc79d97]197 int scopeLevel;
[1f370451]198 bool inFunctionType = false;
[a08ba92]199 };
[c8ffe20b]200
[69918cea]201 struct EliminateTypedef {
202 /// removes TypedefDecls from the AST
203 static void eliminateTypedef( std::list< Declaration * > &translationUnit );
204
205 template<typename AggDecl>
[ef5b828]206 void handleAggregate( AggDecl * aggregateDecl );
[69918cea]207
208 void previsit( StructDecl * aggregateDecl );
209 void previsit( UnionDecl * aggregateDecl );
210 void previsit( CompoundStmt * compoundStmt );
211 };
212
[d24d4e1]213 struct VerifyCtorDtorAssign {
[d1969a6]214 /// ensure that constructors, destructors, and assignment have at least one
215 /// parameter, the first of which must be a pointer, and that ctor/dtors have no
[9cb8e88d]216 /// return values.
217 static void verify( std::list< Declaration * > &translationUnit );
218
[ef5b828]219 void previsit( FunctionDecl * funcDecl );
[5f98ce5]220 };
[70a06f6]221
[11ab8ea8]222 /// ensure that generic types have the correct number of type arguments
[d24d4e1]223 struct ValidateGenericParameters {
[0db6fc0]224 void previsit( StructInstType * inst );
225 void previsit( UnionInstType * inst );
[5f98ce5]226 };
[70a06f6]227
[6e50a6b]228 /// desugar declarations and uses of dimension paramaters like [N],
229 /// from type-system managed values, to tunnneling via ordinary types,
230 /// as char[-] in and sizeof(-) out
231 struct TranslateDimensionGenericParameters : public WithIndexer, public WithGuards {
232 static void translateDimensions( std::list< Declaration * > &translationUnit );
233 TranslateDimensionGenericParameters();
234
235 bool nextVisitedNodeIsChildOfSUIT = false; // SUIT = Struct or Union -Inst Type
236 bool visitingChildOfSUIT = false;
237 void changeState_ChildOfSUIT( bool newVal );
238 void premutate( StructInstType * sit );
239 void premutate( UnionInstType * uit );
240 void premutate( BaseSyntaxNode * node );
241
242 TypeDecl * postmutate( TypeDecl * td );
243 Expression * postmutate( DimensionExpr * de );
244 Expression * postmutate( Expression * e );
245 };
246
[2b79a70]247 struct FixObjectType : public WithIndexer {
248 /// resolves typeof type in object, function, and type declarations
249 static void fix( std::list< Declaration * > & translationUnit );
250
251 void previsit( ObjectDecl * );
252 void previsit( FunctionDecl * );
253 void previsit( TypeDecl * );
254 };
255
[09867ec]256 struct InitializerLength {
[fbd7ad6]257 /// for array types without an explicit length, compute the length and store it so that it
258 /// is known to the rest of the phases. For example,
259 /// int x[] = { 1, 2, 3 };
260 /// int y[][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
261 /// here x and y are known at compile-time to have length 3, so change this into
262 /// int x[3] = { 1, 2, 3 };
263 /// int y[3][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
264 static void computeLength( std::list< Declaration * > & translationUnit );
265
[0db6fc0]266 void previsit( ObjectDecl * objDecl );
[09867ec]267 };
268
269 struct ArrayLength : public WithIndexer {
270 static void computeLength( std::list< Declaration * > & translationUnit );
271
[3ff4c1e]272 void previsit( ArrayType * arrayType );
[fbd7ad6]273 };
274
[d24d4e1]275 struct CompoundLiteral final : public WithDeclsToAdd, public WithVisitorRef<CompoundLiteral> {
[68fe077a]276 Type::StorageClasses storageClasses;
[630a82a]277
[ef5b828]278 void premutate( ObjectDecl * objectDecl );
279 Expression * postmutate( CompoundLiteralExpr * compLitExpr );
[9cb8e88d]280 };
281
[5809461]282 struct LabelAddressFixer final : public WithGuards {
283 std::set< Label > labels;
284
285 void premutate( FunctionDecl * funcDecl );
286 Expression * postmutate( AddressExpr * addrExpr );
287 };
[4fbdfae0]288
[b9f8274]289 void validate( std::list< Declaration * > &translationUnit, __attribute__((unused)) bool doDebug ) {
[15f5c5e]290 PassVisitor<HoistTypeDecls> hoistDecls;
[3c0d4cd]291 {
292 Stats::Heap::newPass("validate-A");
293 Stats::Time::BlockGuard guard("validate-A");
[98538288]294 VerifyCtorDtorAssign::verify( translationUnit ); // must happen before autogen, because autogen examines existing ctor/dtors
[3c0d4cd]295 acceptAll( translationUnit, hoistDecls );
296 ReplaceTypedef::replaceTypedef( translationUnit );
297 ReturnTypeFixer::fix( translationUnit ); // must happen before autogen
[9939dc3]298 decayEnumsAndPointers( translationUnit ); // must happen before VerifyCtorDtorAssign, because void return objects should not exist; before LinkReferenceToTypes_old because it is an indexer and needs correct types for mangling
[3c0d4cd]299 }
[5dcb881]300 PassVisitor<FixQualifiedTypes> fixQual;
[3c0d4cd]301 {
302 Stats::Heap::newPass("validate-B");
303 Stats::Time::BlockGuard guard("validate-B");
[72e76fd]304 linkReferenceToTypes( translationUnit ); // Must happen before auto-gen, because it uses the sized flag.
[6e50a6b]305 mutateAll( translationUnit, fixQual ); // must happen after LinkReferenceToTypes_old, because aggregate members are accessed
306 HoistStruct::hoistStruct( translationUnit );
307 EliminateTypedef::eliminateTypedef( translationUnit );
[3c0d4cd]308 }
[5dcb881]309 PassVisitor<ValidateGenericParameters> genericParams;
310 PassVisitor<ResolveEnumInitializers> rei( nullptr );
[3c0d4cd]311 {
312 Stats::Heap::newPass("validate-C");
313 Stats::Time::BlockGuard guard("validate-C");
[6e50a6b]314 Stats::Time::TimeBlock("Validate Generic Parameters", [&]() {
315 acceptAll( translationUnit, genericParams ); // check as early as possible - can't happen before LinkReferenceToTypes_old; observed failing when attempted before eliminateTypedef
316 });
317 Stats::Time::TimeBlock("Translate Dimensions", [&]() {
318 TranslateDimensionGenericParameters::translateDimensions( translationUnit );
319 });
[7c919559]320 if (!useNewAST) {
[6e50a6b]321 Stats::Time::TimeBlock("Resolve Enum Initializers", [&]() {
322 acceptAll( translationUnit, rei ); // must happen after translateDimensions because rei needs identifier lookup, which needs name mangling
323 });
[7c919559]324 }
[6e50a6b]325 Stats::Time::TimeBlock("Check Function Returns", [&]() {
326 ReturnChecker::checkFunctionReturns( translationUnit );
327 });
328 Stats::Time::TimeBlock("Fix Return Statements", [&]() {
329 InitTweak::fixReturnStatements( translationUnit ); // must happen before autogen
330 });
[3c0d4cd]331 }
332 {
333 Stats::Heap::newPass("validate-D");
334 Stats::Time::BlockGuard guard("validate-D");
[c884f2d]335 Stats::Time::TimeBlock("Apply Concurrent Keywords", [&]() {
336 Concurrency::applyKeywords( translationUnit );
337 });
338 Stats::Time::TimeBlock("Forall Pointer Decay", [&]() {
[9490621]339 decayForallPointers( translationUnit ); // must happen before autogenerateRoutines, after Concurrency::applyKeywords because uniqueIds must be set on declaration before resolution
[c884f2d]340 });
341 Stats::Time::TimeBlock("Hoist Control Declarations", [&]() {
342 ControlStruct::hoistControlDecls( translationUnit ); // hoist initialization out of for statements; must happen before autogenerateRoutines
343 });
344 Stats::Time::TimeBlock("Generate Autogen routines", [&]() {
[c1ed2ee]345 autogenerateRoutines( translationUnit ); // moved up, used to be below compoundLiteral - currently needs EnumAndPointerDecay_old
[c884f2d]346 });
[3c0d4cd]347 }
[5dcb881]348 PassVisitor<CompoundLiteral> compoundliteral;
[3c0d4cd]349 {
350 Stats::Heap::newPass("validate-E");
351 Stats::Time::BlockGuard guard("validate-E");
[c884f2d]352 Stats::Time::TimeBlock("Implement Mutex Func", [&]() {
353 Concurrency::implementMutexFuncs( translationUnit );
354 });
355 Stats::Time::TimeBlock("Implement Thread Start", [&]() {
356 Concurrency::implementThreadStarter( translationUnit );
357 });
358 Stats::Time::TimeBlock("Compound Literal", [&]() {
359 mutateAll( translationUnit, compoundliteral );
360 });
[16ba4a6f]361 if (!useNewAST) {
362 Stats::Time::TimeBlock("Resolve With Expressions", [&]() {
363 ResolvExpr::resolveWithExprs( translationUnit ); // must happen before FixObjectType because user-code is resolved and may contain with variables
364 });
365 }
[3c0d4cd]366 }
[5dcb881]367 PassVisitor<LabelAddressFixer> labelAddrFixer;
[3c0d4cd]368 {
369 Stats::Heap::newPass("validate-F");
370 Stats::Time::BlockGuard guard("validate-F");
[16ba4a6f]371 if (!useNewAST) {
372 Stats::Time::TimeCall("Fix Object Type",
373 FixObjectType::fix, translationUnit);
374 }
[09867ec]375 Stats::Time::TimeCall("Initializer Length",
376 InitializerLength::computeLength, translationUnit);
377 if (!useNewAST) {
378 Stats::Time::TimeCall("Array Length",
379 ArrayLength::computeLength, translationUnit);
380 }
[095b99a]381 Stats::Time::TimeCall("Find Special Declarations",
382 Validate::findSpecialDecls, translationUnit);
383 Stats::Time::TimeCall("Fix Label Address",
384 mutateAll<LabelAddressFixer>, translationUnit, labelAddrFixer);
[16ba4a6f]385 if (!useNewAST) {
386 Stats::Time::TimeCall("Handle Attributes",
387 Validate::handleAttributes, translationUnit);
388 }
[3c0d4cd]389 }
[a08ba92]390 }
[9cb8e88d]391
[15f5c5e]392 void HoistTypeDecls::handleType( Type * type ) {
[29f9e20]393 // some type declarations are buried in expressions and not easy to hoist during parsing; hoist them here
394 AggregateDecl * aggr = nullptr;
395 if ( StructInstType * inst = dynamic_cast< StructInstType * >( type ) ) {
396 aggr = inst->baseStruct;
397 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( type ) ) {
398 aggr = inst->baseUnion;
399 } else if ( EnumInstType * inst = dynamic_cast< EnumInstType * >( type ) ) {
400 aggr = inst->baseEnum;
401 }
402 if ( aggr && aggr->body ) {
403 declsToAddBefore.push_front( aggr );
404 }
405 }
406
[15f5c5e]407 void HoistTypeDecls::previsit( SizeofExpr * expr ) {
[29f9e20]408 handleType( expr->type );
409 }
410
[15f5c5e]411 void HoistTypeDecls::previsit( AlignofExpr * expr ) {
[29f9e20]412 handleType( expr->type );
413 }
414
[15f5c5e]415 void HoistTypeDecls::previsit( UntypedOffsetofExpr * expr ) {
[29f9e20]416 handleType( expr->type );
417 }
418
[95d09bdb]419 void HoistTypeDecls::previsit( CompoundLiteralExpr * expr ) {
420 handleType( expr->result );
421 }
422
[29f9e20]423
[a12c81f3]424 Type * FixQualifiedTypes::postmutate( QualifiedType * qualType ) {
425 Type * parent = qualType->parent;
426 Type * child = qualType->child;
427 if ( dynamic_cast< GlobalScopeType * >( qualType->parent ) ) {
428 // .T => lookup T at global scope
[062e8df]429 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
[a12c81f3]430 auto td = indexer.globalLookupType( inst->name );
[062e8df]431 if ( ! td ) {
432 SemanticError( qualType->location, toString("Use of undefined global type ", inst->name) );
433 }
[a12c81f3]434 auto base = td->base;
[062e8df]435 assert( base );
[8a3ecb9]436 Type * ret = base->clone();
437 ret->get_qualifiers() = qualType->get_qualifiers();
438 return ret;
[a12c81f3]439 } else {
[062e8df]440 // .T => T is not a type name
441 assertf( false, "unhandled global qualified child type: %s", toCString(child) );
[a12c81f3]442 }
443 } else {
444 // S.T => S must be an aggregate type, find the declaration for T in S.
445 AggregateDecl * aggr = nullptr;
446 if ( StructInstType * inst = dynamic_cast< StructInstType * >( parent ) ) {
447 aggr = inst->baseStruct;
448 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * > ( parent ) ) {
449 aggr = inst->baseUnion;
450 } else {
[062e8df]451 SemanticError( qualType->location, toString("Qualified type requires an aggregate on the left, but has: ", parent) );
[a12c81f3]452 }
453 assert( aggr ); // TODO: need to handle forward declarations
454 for ( Declaration * member : aggr->members ) {
[7e08acf]455 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
[8a3ecb9]456 // name on the right is a typedef
[a12c81f3]457 if ( NamedTypeDecl * aggr = dynamic_cast< NamedTypeDecl * > ( member ) ) {
458 if ( aggr->name == inst->name ) {
[062e8df]459 assert( aggr->base );
[8a3ecb9]460 Type * ret = aggr->base->clone();
461 ret->get_qualifiers() = qualType->get_qualifiers();
[7e08acf]462 TypeSubstitution sub = parent->genericSubstitution();
463 sub.apply(ret);
[8a3ecb9]464 return ret;
[a12c81f3]465 }
466 }
467 } else {
468 // S.T - S is not an aggregate => error
469 assertf( false, "unhandled qualified child type: %s", toCString(qualType) );
470 }
471 }
472 // failed to find a satisfying definition of type
[062e8df]473 SemanticError( qualType->location, toString("Undefined type in qualified type: ", qualType) );
[a12c81f3]474 }
475
476 // ... may want to link canonical SUE definition to each forward decl so that it becomes easier to lookup?
477 }
478
479
[a08ba92]480 void HoistStruct::hoistStruct( std::list< Declaration * > &translationUnit ) {
[a09e45b]481 PassVisitor<HoistStruct> hoister;
482 acceptAll( translationUnit, hoister );
[a08ba92]483 }
[c8ffe20b]484
[ef5b828]485 bool shouldHoist( Declaration * decl ) {
[0f40912]486 return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl ) || dynamic_cast< StaticAssertDecl * >( decl );
[a08ba92]487 }
[c0aa336]488
[d419d8e]489 namespace {
490 void qualifiedName( AggregateDecl * aggr, std::ostringstream & ss ) {
491 if ( aggr->parent ) qualifiedName( aggr->parent, ss );
492 ss << "__" << aggr->name;
493 }
494
495 // mangle nested type names using entire parent chain
496 std::string qualifiedName( AggregateDecl * aggr ) {
497 std::ostringstream ss;
498 qualifiedName( aggr, ss );
499 return ss.str();
500 }
501 }
502
[a08ba92]503 template< typename AggDecl >
[ef5b828]504 void HoistStruct::handleAggregate( AggDecl * aggregateDecl ) {
[bdad6eb7]505 if ( parentAggr ) {
[d419d8e]506 aggregateDecl->parent = parentAggr;
507 aggregateDecl->name = qualifiedName( aggregateDecl );
[0dd3a2f]508 // Add elements in stack order corresponding to nesting structure.
[a09e45b]509 declsToAddBefore.push_front( aggregateDecl );
[0dd3a2f]510 } else {
[bdad6eb7]511 GuardValue( parentAggr );
512 parentAggr = aggregateDecl;
[0dd3a2f]513 } // if
514 // Always remove the hoisted aggregate from the inner structure.
[0f40912]515 GuardAction( [aggregateDecl]() { filter( aggregateDecl->members, shouldHoist, false ); } );
[a08ba92]516 }
[c8ffe20b]517
[0f40912]518 void HoistStruct::previsit( StaticAssertDecl * assertDecl ) {
519 if ( parentAggr ) {
520 declsToAddBefore.push_back( assertDecl );
521 }
522 }
523
[a09e45b]524 void HoistStruct::previsit( StructDecl * aggregateDecl ) {
[0dd3a2f]525 handleAggregate( aggregateDecl );
[a08ba92]526 }
[c8ffe20b]527
[a09e45b]528 void HoistStruct::previsit( UnionDecl * aggregateDecl ) {
[0dd3a2f]529 handleAggregate( aggregateDecl );
[a08ba92]530 }
[c8ffe20b]531
[d419d8e]532 void HoistStruct::previsit( StructInstType * type ) {
533 // need to reset type name after expanding to qualified name
534 assert( type->baseStruct );
535 type->name = type->baseStruct->name;
536 }
537
538 void HoistStruct::previsit( UnionInstType * type ) {
539 assert( type->baseUnion );
540 type->name = type->baseUnion->name;
541 }
542
543 void HoistStruct::previsit( EnumInstType * type ) {
544 assert( type->baseEnum );
545 type->name = type->baseEnum->name;
546 }
547
548
[ef5b828]549 bool isTypedef( Declaration * decl ) {
[69918cea]550 return dynamic_cast< TypedefDecl * >( decl );
551 }
552
553 void EliminateTypedef::eliminateTypedef( std::list< Declaration * > &translationUnit ) {
554 PassVisitor<EliminateTypedef> eliminator;
555 acceptAll( translationUnit, eliminator );
556 filter( translationUnit, isTypedef, true );
557 }
558
559 template< typename AggDecl >
[ef5b828]560 void EliminateTypedef::handleAggregate( AggDecl * aggregateDecl ) {
[69918cea]561 filter( aggregateDecl->members, isTypedef, true );
562 }
563
564 void EliminateTypedef::previsit( StructDecl * aggregateDecl ) {
565 handleAggregate( aggregateDecl );
566 }
567
568 void EliminateTypedef::previsit( UnionDecl * aggregateDecl ) {
569 handleAggregate( aggregateDecl );
570 }
571
572 void EliminateTypedef::previsit( CompoundStmt * compoundStmt ) {
573 // remove and delete decl stmts
574 filter( compoundStmt->kids, [](Statement * stmt) {
[ef5b828]575 if ( DeclStmt * declStmt = dynamic_cast< DeclStmt * >( stmt ) ) {
[69918cea]576 if ( dynamic_cast< TypedefDecl * >( declStmt->decl ) ) {
577 return true;
578 } // if
579 } // if
580 return false;
581 }, true);
582 }
583
[be9036d]584 // expand assertions from trait instance, performing the appropriate type variable substitutions
585 template< typename Iterator >
586 void expandAssertions( TraitInstType * inst, Iterator out ) {
[eaa6430]587 assertf( inst->baseTrait, "Trait instance not linked to base trait: %s", toCString( inst ) );
[be9036d]588 std::list< DeclarationWithType * > asserts;
589 for ( Declaration * decl : inst->baseTrait->members ) {
[e3e16bc]590 asserts.push_back( strict_dynamic_cast<DeclarationWithType *>( decl->clone() ) );
[2c57025]591 }
[be9036d]592 // substitute trait decl parameters for instance parameters
593 applySubstitution( inst->baseTrait->parameters.begin(), inst->baseTrait->parameters.end(), inst->parameters.begin(), asserts.begin(), asserts.end(), out );
594 }
595
[6e50a6b]596 ResolveEnumInitializers::ResolveEnumInitializers( const Indexer * other_indexer ) : WithIndexer( true ) {
597 if ( other_indexer ) {
598 local_indexer = other_indexer;
599 } else {
600 local_indexer = &indexer;
601 } // if
602 }
603
604 void ResolveEnumInitializers::postvisit( EnumDecl * enumDecl ) {
605 if ( enumDecl->body ) {
606 for ( Declaration * member : enumDecl->members ) {
607 ObjectDecl * field = strict_dynamic_cast<ObjectDecl *>( member );
608 if ( field->init ) {
609 // need to resolve enumerator initializers early so that other passes that determine if an expression is constexpr have the appropriate information.
610 SingleInit * init = strict_dynamic_cast<SingleInit *>( field->init );
[4559b34]611 if ( !enumDecl->base || dynamic_cast<BasicType *>(enumDecl->base))
612 ResolvExpr::findSingleExpression( init->value, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), indexer );
613 else {
614 if (dynamic_cast<PointerType *>(enumDecl->base)) {
615 auto typePtr = dynamic_cast<PointerType *>(enumDecl->base);
616 ResolvExpr::findSingleExpression( init->value,
617 new PointerType( Type::Qualifiers(), typePtr->base ), indexer );
618 } else {
619 ResolvExpr::findSingleExpression( init->value, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), indexer );
620 }
621 }
[6e50a6b]622 }
623 }
[4559b34]624
[6e50a6b]625 } // if
626 }
627
[4a9ccc3]628 /// Fix up assertions - flattens assertion lists, removing all trait instances
[8b11840]629 void forallFixer( std::list< TypeDecl * > & forall, BaseSyntaxNode * node ) {
630 for ( TypeDecl * type : forall ) {
[be9036d]631 std::list< DeclarationWithType * > asserts;
632 asserts.splice( asserts.end(), type->assertions );
633 // expand trait instances into their members
634 for ( DeclarationWithType * assertion : asserts ) {
[ef5b828]635 if ( TraitInstType * traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) {
[be9036d]636 // expand trait instance into all of its members
637 expandAssertions( traitInst, back_inserter( type->assertions ) );
638 delete traitInst;
639 } else {
640 // pass other assertions through
641 type->assertions.push_back( assertion );
642 } // if
643 } // for
644 // apply FixFunction to every assertion to check for invalid void type
645 for ( DeclarationWithType *& assertion : type->assertions ) {
[4bda2cf]646 bool isVoid = fixFunction( assertion );
647 if ( isVoid ) {
[a16764a6]648 SemanticError( node, "invalid type void in assertion of function " );
[be9036d]649 } // if
650 } // for
651 // normalizeAssertions( type->assertions );
[0dd3a2f]652 } // for
[a08ba92]653 }
[c8ffe20b]654
[9490621]655 /// Replace all traits in assertion lists with their assertions.
656 void expandTraits( std::list< TypeDecl * > & forall ) {
657 for ( TypeDecl * type : forall ) {
658 std::list< DeclarationWithType * > asserts;
659 asserts.splice( asserts.end(), type->assertions );
660 // expand trait instances into their members
661 for ( DeclarationWithType * assertion : asserts ) {
662 if ( TraitInstType * traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) {
663 // expand trait instance into all of its members
664 expandAssertions( traitInst, back_inserter( type->assertions ) );
665 delete traitInst;
666 } else {
667 // pass other assertions through
668 type->assertions.push_back( assertion );
669 } // if
670 } // for
671 }
672 }
673
674 /// Fix each function in the assertion list and check for invalid void type.
675 void fixAssertions(
676 std::list< TypeDecl * > & forall, BaseSyntaxNode * node ) {
677 for ( TypeDecl * type : forall ) {
678 for ( DeclarationWithType *& assertion : type->assertions ) {
679 bool isVoid = fixFunction( assertion );
680 if ( isVoid ) {
681 SemanticError( node, "invalid type void in assertion of function " );
682 } // if
683 } // for
684 }
685 }
686
[ef5b828]687 void ForallPointerDecay_old::previsit( ObjectDecl * object ) {
[3d2b7bc]688 // ensure that operator names only apply to functions or function pointers
689 if ( CodeGen::isOperator( object->name ) && ! dynamic_cast< FunctionType * >( object->type->stripDeclarator() ) ) {
690 SemanticError( object->location, toCString( "operator ", object->name.c_str(), " is not a function or function pointer." ) );
691 }
[0dd3a2f]692 object->fixUniqueId();
[a08ba92]693 }
[c8ffe20b]694
[ef5b828]695 void ForallPointerDecay_old::previsit( FunctionDecl * func ) {
[0dd3a2f]696 func->fixUniqueId();
[a08ba92]697 }
[c8ffe20b]698
[c1ed2ee]699 void ForallPointerDecay_old::previsit( FunctionType * ftype ) {
[bbf3fda]700 forallFixer( ftype->forall, ftype );
701 }
702
[c1ed2ee]703 void ForallPointerDecay_old::previsit( StructDecl * aggrDecl ) {
[bd7e609]704 forallFixer( aggrDecl->parameters, aggrDecl );
705 }
706
[c1ed2ee]707 void ForallPointerDecay_old::previsit( UnionDecl * aggrDecl ) {
[bd7e609]708 forallFixer( aggrDecl->parameters, aggrDecl );
709 }
710
[de91427b]711 void ReturnChecker::checkFunctionReturns( std::list< Declaration * > & translationUnit ) {
[0db6fc0]712 PassVisitor<ReturnChecker> checker;
[de91427b]713 acceptAll( translationUnit, checker );
714 }
715
[0db6fc0]716 void ReturnChecker::previsit( FunctionDecl * functionDecl ) {
[0508ab3]717 GuardValue( returnVals );
[de91427b]718 returnVals = functionDecl->get_functionType()->get_returnVals();
719 }
720
[0db6fc0]721 void ReturnChecker::previsit( ReturnStmt * returnStmt ) {
[74d1804]722 // Previously this also checked for the existence of an expr paired with no return values on
723 // the function return type. This is incorrect, since you can have an expression attached to
724 // a return statement in a void-returning function in C. The expression is treated as if it
725 // were cast to void.
[30f9072]726 if ( ! returnStmt->get_expr() && returnVals.size() != 0 ) {
[a16764a6]727 SemanticError( returnStmt, "Non-void function returns no values: " );
[de91427b]728 }
729 }
730
731
[48ed81c]732 void ReplaceTypedef::replaceTypedef( std::list< Declaration * > &translationUnit ) {
733 PassVisitor<ReplaceTypedef> eliminator;
[0dd3a2f]734 mutateAll( translationUnit, eliminator );
[a506df4]735 if ( eliminator.pass.typedefNames.count( "size_t" ) ) {
[5f98ce5]736 // grab and remember declaration of size_t
[2bfc6b2]737 Validate::SizeType = eliminator.pass.typedefNames["size_t"].first->base->clone();
[5f98ce5]738 } else {
[40e636a]739 // xxx - missing global typedef for size_t - default to long unsigned int, even though that may be wrong
740 // eventually should have a warning for this case.
[2bfc6b2]741 Validate::SizeType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
[5f98ce5]742 }
[a08ba92]743 }
[c8ffe20b]744
[48ed81c]745 void ReplaceTypedef::premutate( QualifiedType * ) {
746 visit_children = false;
747 }
748
749 Type * ReplaceTypedef::postmutate( QualifiedType * qualType ) {
750 // replacing typedefs only makes sense for the 'oldest ancestor' of the qualified type
[ef5b828]751 qualType->parent = qualType->parent->acceptMutator( * visitor );
[48ed81c]752 return qualType;
753 }
754
[a7c31e0]755 static bool isNonParameterAttribute( Attribute * attr ) {
756 static const std::vector<std::string> bad_names = {
757 "aligned", "__aligned__",
758 };
759 for ( auto name : bad_names ) {
760 if ( name == attr->name ) {
761 return true;
762 }
763 }
764 return false;
765 }
766
[48ed81c]767 Type * ReplaceTypedef::postmutate( TypeInstType * typeInst ) {
[9cb8e88d]768 // instances of typedef types will come here. If it is an instance
[cc79d97]769 // of a typdef type, link the instance to its actual type.
[0b3b2ae]770 TypedefMap::const_iterator def = typedefNames.find( typeInst->name );
[0dd3a2f]771 if ( def != typedefNames.end() ) {
[ef5b828]772 Type * ret = def->second.first->base->clone();
[e82ef13]773 ret->location = typeInst->location;
[6f95000]774 ret->get_qualifiers() |= typeInst->get_qualifiers();
[a7c31e0]775 // GCC ignores certain attributes if they arrive by typedef, this mimics that.
776 if ( inFunctionType ) {
777 ret->attributes.remove_if( isNonParameterAttribute );
[1f370451]778 }
[a7c31e0]779 ret->attributes.splice( ret->attributes.end(), typeInst->attributes );
[0215a76f]780 // place instance parameters on the typedef'd type
[f53836b]781 if ( ! typeInst->parameters.empty() ) {
[ef5b828]782 ReferenceToType * rtt = dynamic_cast<ReferenceToType *>(ret);
[0215a76f]783 if ( ! rtt ) {
[a16764a6]784 SemanticError( typeInst->location, "Cannot apply type parameters to base type of " + typeInst->name );
[0215a76f]785 }
[0b3b2ae]786 rtt->parameters.clear();
[f53836b]787 cloneAll( typeInst->parameters, rtt->parameters );
[ef5b828]788 mutateAll( rtt->parameters, * visitor ); // recursively fix typedefs on parameters
[1db21619]789 } // if
[0dd3a2f]790 delete typeInst;
791 return ret;
[679864e1]792 } else {
[0b3b2ae]793 TypeDeclMap::const_iterator base = typedeclNames.find( typeInst->name );
[062e8df]794 if ( base == typedeclNames.end() ) {
795 SemanticError( typeInst->location, toString("Use of undefined type ", typeInst->name) );
796 }
[1e8b02f5]797 typeInst->set_baseType( base->second );
[062e8df]798 return typeInst;
[0dd3a2f]799 } // if
[062e8df]800 assert( false );
[a08ba92]801 }
[c8ffe20b]802
[f53836b]803 struct VarLenChecker : WithShortCircuiting {
804 void previsit( FunctionType * ) { visit_children = false; }
805 void previsit( ArrayType * at ) {
806 isVarLen |= at->isVarLen;
807 }
808 bool isVarLen = false;
809 };
810
811 bool isVariableLength( Type * t ) {
812 PassVisitor<VarLenChecker> varLenChecker;
813 maybeAccept( t, varLenChecker );
814 return varLenChecker.pass.isVarLen;
815 }
816
[48ed81c]817 Declaration * ReplaceTypedef::postmutate( TypedefDecl * tyDecl ) {
[0b3b2ae]818 if ( typedefNames.count( tyDecl->name ) == 1 && typedefNames[ tyDecl->name ].second == scopeLevel ) {
[9cb8e88d]819 // typedef to the same name from the same scope
[cc79d97]820 // must be from the same type
821
[0b3b2ae]822 Type * t1 = tyDecl->base;
823 Type * t2 = typedefNames[ tyDecl->name ].first->base;
[1cbca6e]824 if ( ! ResolvExpr::typesCompatible( t1, t2, Indexer() ) ) {
[a16764a6]825 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
[f53836b]826 }
[4b97770]827 // Cannot redefine VLA typedefs. Note: this is slightly incorrect, because our notion of VLAs
828 // at this point in the translator is imprecise. In particular, this will disallow redefining typedefs
829 // with arrays whose dimension is an enumerator or a cast of a constant/enumerator. The effort required
830 // to fix this corner case likely outweighs the utility of allowing it.
[f53836b]831 if ( isVariableLength( t1 ) || isVariableLength( t2 ) ) {
[a16764a6]832 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
[85c4ef0]833 }
[cc79d97]834 } else {
[0b3b2ae]835 typedefNames[ tyDecl->name ] = std::make_pair( TypedefDeclPtr( tyDecl ), scopeLevel );
[cc79d97]836 } // if
837
[0dd3a2f]838 // When a typedef is a forward declaration:
839 // typedef struct screen SCREEN;
840 // the declaration portion must be retained:
841 // struct screen;
842 // because the expansion of the typedef is:
[ef5b828]843 // void rtn( SCREEN * p ) => void rtn( struct screen * p )
[0dd3a2f]844 // hence the type-name "screen" must be defined.
845 // Note, qualifiers on the typedef are superfluous for the forward declaration.
[6f95000]846
[ef5b828]847 Type * designatorType = tyDecl->base->stripDeclarator();
848 if ( StructInstType * aggDecl = dynamic_cast< StructInstType * >( designatorType ) ) {
[312029a]849 declsToAddBefore.push_back( new StructDecl( aggDecl->name, AggregateDecl::Struct, noAttributes, tyDecl->linkage ) );
[ef5b828]850 } else if ( UnionInstType * aggDecl = dynamic_cast< UnionInstType * >( designatorType ) ) {
[48ed81c]851 declsToAddBefore.push_back( new UnionDecl( aggDecl->name, noAttributes, tyDecl->linkage ) );
[b0d9ff7]852 } else if ( EnumInstType * enumInst = dynamic_cast< EnumInstType * >( designatorType ) ) {
853 if ( enumInst->baseEnum ) {
854 const EnumDecl * enumDecl = enumInst->baseEnum;
855 declsToAddBefore.push_back( new EnumDecl( enumDecl->name, noAttributes, enumDecl->isTyped, tyDecl->linkage, enumDecl->base ) );
[3e54399]856 } else {
[b0d9ff7]857 declsToAddBefore.push_back( new EnumDecl( enumInst->name, noAttributes, tyDecl->linkage ) );
[3e54399]858 }
[0dd3a2f]859 } // if
[48ed81c]860 return tyDecl->clone();
[a08ba92]861 }
[c8ffe20b]862
[48ed81c]863 void ReplaceTypedef::premutate( TypeDecl * typeDecl ) {
[0b3b2ae]864 TypedefMap::iterator i = typedefNames.find( typeDecl->name );
[0dd3a2f]865 if ( i != typedefNames.end() ) {
866 typedefNames.erase( i ) ;
867 } // if
[679864e1]868
[0bcc2b7]869 typedeclNames.insert( typeDecl->name, typeDecl );
[a08ba92]870 }
[c8ffe20b]871
[48ed81c]872 void ReplaceTypedef::premutate( FunctionDecl * ) {
[a506df4]873 GuardScope( typedefNames );
[0bcc2b7]874 GuardScope( typedeclNames );
[a08ba92]875 }
[c8ffe20b]876
[48ed81c]877 void ReplaceTypedef::premutate( ObjectDecl * ) {
[a506df4]878 GuardScope( typedefNames );
[0bcc2b7]879 GuardScope( typedeclNames );
[a506df4]880 }
[dd020c0]881
[48ed81c]882 DeclarationWithType * ReplaceTypedef::postmutate( ObjectDecl * objDecl ) {
[ef5b828]883 if ( FunctionType * funtype = dynamic_cast<FunctionType *>( objDecl->type ) ) { // function type?
[02e5ab6]884 // replace the current object declaration with a function declaration
[0b3b2ae]885 FunctionDecl * newDecl = new FunctionDecl( objDecl->name, objDecl->get_storageClasses(), objDecl->linkage, funtype, 0, objDecl->attributes, objDecl->get_funcSpec() );
886 objDecl->attributes.clear();
[dbe8f244]887 objDecl->set_type( nullptr );
[0a86a30]888 delete objDecl;
889 return newDecl;
[1db21619]890 } // if
[a506df4]891 return objDecl;
[a08ba92]892 }
[c8ffe20b]893
[48ed81c]894 void ReplaceTypedef::premutate( CastExpr * ) {
[a506df4]895 GuardScope( typedefNames );
[0bcc2b7]896 GuardScope( typedeclNames );
[a08ba92]897 }
[c8ffe20b]898
[48ed81c]899 void ReplaceTypedef::premutate( CompoundStmt * ) {
[a506df4]900 GuardScope( typedefNames );
[0bcc2b7]901 GuardScope( typedeclNames );
[cc79d97]902 scopeLevel += 1;
[a506df4]903 GuardAction( [this](){ scopeLevel -= 1; } );
904 }
905
[45161b4d]906 template<typename AggDecl>
[48ed81c]907 void ReplaceTypedef::addImplicitTypedef( AggDecl * aggDecl ) {
[45161b4d]908 if ( typedefNames.count( aggDecl->get_name() ) == 0 ) {
[ef5b828]909 Type * type = nullptr;
[45161b4d]910 if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( aggDecl ) ) {
911 type = new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() );
912 } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( aggDecl ) ) {
913 type = new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() );
914 } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( aggDecl ) ) {
915 type = new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() );
916 } // if
[0b0f1dd]917 TypedefDeclPtr tyDecl( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type, aggDecl->get_linkage() ) );
[46f6134]918 typedefNames[ aggDecl->get_name() ] = std::make_pair( std::move( tyDecl ), scopeLevel );
[48ed81c]919 // add the implicit typedef to the AST
920 declsToAddBefore.push_back( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type->clone(), aggDecl->get_linkage() ) );
[45161b4d]921 } // if
922 }
[4e06c1e]923
[48ed81c]924 template< typename AggDecl >
925 void ReplaceTypedef::handleAggregate( AggDecl * aggr ) {
926 SemanticErrorException errors;
[a506df4]927
[48ed81c]928 ValueGuard< std::list<Declaration * > > oldBeforeDecls( declsToAddBefore );
929 ValueGuard< std::list<Declaration * > > oldAfterDecls ( declsToAddAfter );
930 declsToAddBefore.clear();
931 declsToAddAfter.clear();
[a506df4]932
[48ed81c]933 GuardScope( typedefNames );
[0bcc2b7]934 GuardScope( typedeclNames );
[ef5b828]935 mutateAll( aggr->parameters, * visitor );
[798a8b3]936 mutateAll( aggr->attributes, * visitor );
[85c4ef0]937
[48ed81c]938 // unroll mutateAll for aggr->members so that implicit typedefs for nested types are added to the aggregate body.
939 for ( std::list< Declaration * >::iterator i = aggr->members.begin(); i != aggr->members.end(); ++i ) {
940 if ( !declsToAddAfter.empty() ) { aggr->members.splice( i, declsToAddAfter ); }
[a506df4]941
[48ed81c]942 try {
[ef5b828]943 * i = maybeMutate( * i, * visitor );
[48ed81c]944 } catch ( SemanticErrorException &e ) {
945 errors.append( e );
946 }
947
948 if ( !declsToAddBefore.empty() ) { aggr->members.splice( i, declsToAddBefore ); }
949 }
950
951 if ( !declsToAddAfter.empty() ) { aggr->members.splice( aggr->members.end(), declsToAddAfter ); }
952 if ( !errors.isEmpty() ) { throw errors; }
[85c4ef0]953 }
954
[48ed81c]955 void ReplaceTypedef::premutate( StructDecl * structDecl ) {
956 visit_children = false;
957 addImplicitTypedef( structDecl );
958 handleAggregate( structDecl );
[a506df4]959 }
960
[48ed81c]961 void ReplaceTypedef::premutate( UnionDecl * unionDecl ) {
962 visit_children = false;
963 addImplicitTypedef( unionDecl );
964 handleAggregate( unionDecl );
[85c4ef0]965 }
966
[48ed81c]967 void ReplaceTypedef::premutate( EnumDecl * enumDecl ) {
968 addImplicitTypedef( enumDecl );
[85c4ef0]969 }
970
[48ed81c]971 void ReplaceTypedef::premutate( FunctionType * ) {
[1f370451]972 GuardValue( inFunctionType );
973 inFunctionType = true;
974 }
975
[0bcc2b7]976 void ReplaceTypedef::premutate( TraitDecl * ) {
977 GuardScope( typedefNames );
978 GuardScope( typedeclNames);
979 }
980
[d1969a6]981 void VerifyCtorDtorAssign::verify( std::list< Declaration * > & translationUnit ) {
[0db6fc0]982 PassVisitor<VerifyCtorDtorAssign> verifier;
[9cb8e88d]983 acceptAll( translationUnit, verifier );
984 }
985
[0db6fc0]986 void VerifyCtorDtorAssign::previsit( FunctionDecl * funcDecl ) {
[9cb8e88d]987 FunctionType * funcType = funcDecl->get_functionType();
988 std::list< DeclarationWithType * > &returnVals = funcType->get_returnVals();
989 std::list< DeclarationWithType * > &params = funcType->get_parameters();
990
[bff227f]991 if ( CodeGen::isCtorDtorAssign( funcDecl->get_name() ) ) { // TODO: also check /=, etc.
[9cb8e88d]992 if ( params.size() == 0 ) {
[98538288]993 SemanticError( funcDecl->location, "Constructors, destructors, and assignment functions require at least one parameter." );
[9cb8e88d]994 }
[ce8c12f]995 ReferenceType * refType = dynamic_cast< ReferenceType * >( params.front()->get_type() );
[084fecc]996 if ( ! refType ) {
[98538288]997 SemanticError( funcDecl->location, "First parameter of a constructor, destructor, or assignment function must be a reference." );
[9cb8e88d]998 }
[bff227f]999 if ( CodeGen::isCtorDtor( funcDecl->get_name() ) && returnVals.size() != 0 ) {
[98538288]1000 if(!returnVals.front()->get_type()->isVoid()) {
1001 SemanticError( funcDecl->location, "Constructors and destructors cannot have explicit return values." );
1002 }
[9cb8e88d]1003 }
1004 }
1005 }
[70a06f6]1006
[6e50a6b]1007 // Test for special name on a generic parameter. Special treatment for the
1008 // special name is a bootstrapping hack. In most cases, the worlds of T's
1009 // and of N's don't overlap (normal treamtemt). The foundations in
1010 // array.hfa use tagging for both types and dimensions. Tagging treats
1011 // its subject parameter even more opaquely than T&, which assumes it is
1012 // possible to have a pointer/reference to such an object. Tagging only
1013 // seeks to identify the type-system resident at compile time. Both N's
1014 // and T's can make tags. The tag definition uses the special name, which
1015 // is treated as "an N or a T." This feature is not inteded to be used
1016 // outside of the definition and immediate uses of a tag.
1017 static inline bool isReservedTysysIdOnlyName( const std::string & name ) {
1018 // name's prefix was __CFA_tysys_id_only, before it got wrapped in __..._generic
1019 int foundAt = name.find("__CFA_tysys_id_only");
1020 if (foundAt == 0) return true;
1021 if (foundAt == 2 && name[0] == '_' && name[1] == '_') return true;
1022 return false;
1023 }
1024
[11ab8ea8]1025 template< typename Aggr >
1026 void validateGeneric( Aggr * inst ) {
1027 std::list< TypeDecl * > * params = inst->get_baseParameters();
[30f9072]1028 if ( params ) {
[11ab8ea8]1029 std::list< Expression * > & args = inst->get_parameters();
[67cf18c]1030
1031 // insert defaults arguments when a type argument is missing (currently only supports missing arguments at the end of the list).
1032 // A substitution is used to ensure that defaults are replaced correctly, e.g.,
1033 // forall(otype T, otype alloc = heap_allocator(T)) struct vector;
1034 // vector(int) v;
1035 // after insertion of default values becomes
1036 // vector(int, heap_allocator(T))
1037 // and the substitution is built with T=int so that after substitution, the result is
1038 // vector(int, heap_allocator(int))
1039 TypeSubstitution sub;
1040 auto paramIter = params->begin();
[6e50a6b]1041 auto argIter = args.begin();
1042 for ( ; paramIter != params->end(); ++paramIter, ++argIter ) {
1043 if ( argIter != args.end() ) {
1044 TypeExpr * expr = dynamic_cast< TypeExpr * >( * argIter );
1045 if ( expr ) {
1046 sub.add( (* paramIter)->get_name(), expr->get_type()->clone() );
1047 }
1048 } else {
[ef5b828]1049 Type * defaultType = (* paramIter)->get_init();
[67cf18c]1050 if ( defaultType ) {
1051 args.push_back( new TypeExpr( defaultType->clone() ) );
[ef5b828]1052 sub.add( (* paramIter)->get_name(), defaultType->clone() );
[6e50a6b]1053 argIter = std::prev(args.end());
1054 } else {
1055 SemanticError( inst, "Too few type arguments in generic type " );
[67cf18c]1056 }
1057 }
[6e50a6b]1058 assert( argIter != args.end() );
1059 bool typeParamDeclared = (*paramIter)->kind != TypeDecl::Kind::Dimension;
1060 bool typeArgGiven;
1061 if ( isReservedTysysIdOnlyName( (*paramIter)->name ) ) {
1062 // coerce a match when declaration is reserved name, which means "either"
1063 typeArgGiven = typeParamDeclared;
1064 } else {
1065 typeArgGiven = dynamic_cast< TypeExpr * >( * argIter );
1066 }
1067 if ( ! typeParamDeclared && typeArgGiven ) SemanticError( inst, "Type argument given for value parameter: " );
1068 if ( typeParamDeclared && ! typeArgGiven ) SemanticError( inst, "Expression argument given for type parameter: " );
[67cf18c]1069 }
1070
1071 sub.apply( inst );
[a16764a6]1072 if ( args.size() > params->size() ) SemanticError( inst, "Too many type arguments in generic type " );
[11ab8ea8]1073 }
1074 }
1075
[0db6fc0]1076 void ValidateGenericParameters::previsit( StructInstType * inst ) {
[11ab8ea8]1077 validateGeneric( inst );
1078 }
[9cb8e88d]1079
[0db6fc0]1080 void ValidateGenericParameters::previsit( UnionInstType * inst ) {
[11ab8ea8]1081 validateGeneric( inst );
[9cb8e88d]1082 }
[70a06f6]1083
[6e50a6b]1084 void TranslateDimensionGenericParameters::translateDimensions( std::list< Declaration * > &translationUnit ) {
1085 PassVisitor<TranslateDimensionGenericParameters> translator;
1086 mutateAll( translationUnit, translator );
1087 }
1088
1089 TranslateDimensionGenericParameters::TranslateDimensionGenericParameters() : WithIndexer( false ) {}
1090
1091 // Declaration of type variable: forall( [N] ) -> forall( N & | sized( N ) )
1092 TypeDecl * TranslateDimensionGenericParameters::postmutate( TypeDecl * td ) {
1093 if ( td->kind == TypeDecl::Dimension ) {
1094 td->kind = TypeDecl::Dtype;
1095 if ( ! isReservedTysysIdOnlyName( td->name ) ) {
1096 td->sized = true;
1097 }
1098 }
1099 return td;
1100 }
1101
1102 // Situational awareness:
1103 // array( float, [[currentExpr]] ) has visitingChildOfSUIT == true
1104 // array( float, [[currentExpr]] - 1 ) has visitingChildOfSUIT == false
1105 // size_t x = [[currentExpr]] has visitingChildOfSUIT == false
1106 void TranslateDimensionGenericParameters::changeState_ChildOfSUIT( bool newVal ) {
1107 GuardValue( nextVisitedNodeIsChildOfSUIT );
1108 GuardValue( visitingChildOfSUIT );
1109 visitingChildOfSUIT = nextVisitedNodeIsChildOfSUIT;
1110 nextVisitedNodeIsChildOfSUIT = newVal;
1111 }
1112 void TranslateDimensionGenericParameters::premutate( StructInstType * sit ) {
1113 (void) sit;
1114 changeState_ChildOfSUIT(true);
1115 }
1116 void TranslateDimensionGenericParameters::premutate( UnionInstType * uit ) {
1117 (void) uit;
1118 changeState_ChildOfSUIT(true);
1119 }
1120 void TranslateDimensionGenericParameters::premutate( BaseSyntaxNode * node ) {
1121 (void) node;
1122 changeState_ChildOfSUIT(false);
1123 }
1124
1125 // Passing values as dimension arguments: array( float, 7 ) -> array( float, char[ 7 ] )
1126 // Consuming dimension parameters: size_t x = N - 1 ; -> size_t x = sizeof(N) - 1 ;
1127 // Intertwined reality: array( float, N ) -> array( float, N )
1128 // array( float, N - 1 ) -> array( float, char[ sizeof(N) - 1 ] )
1129 // Intertwined case 1 is not just an optimization.
1130 // Avoiding char[sizeof(-)] is necessary to enable the call of f to bind the value of N, in:
1131 // forall([N]) void f( array(float, N) & );
1132 // array(float, 7) a;
1133 // f(a);
1134
1135 Expression * TranslateDimensionGenericParameters::postmutate( DimensionExpr * de ) {
1136 // Expression de is an occurrence of N in LHS of above examples.
1137 // Look up the name that de references.
1138 // If we are in a struct body, then this reference can be to an entry of the stuct's forall list.
1139 // Whether or not we are in a struct body, this reference can be to an entry of a containing function's forall list.
1140 // If we are in a struct body, then the stuct's forall declarations are innermost (functions don't occur in structs).
1141 // Thus, a potential struct's declaration is highest priority.
1142 // A struct's forall declarations are already renamed with _generic_ suffix. Try that name variant first.
1143
1144 std::string useName = "__" + de->name + "_generic_";
1145 TypeDecl * namedParamDecl = const_cast<TypeDecl *>( strict_dynamic_cast<const TypeDecl *, nullptr >( indexer.lookupType( useName ) ) );
1146
1147 if ( ! namedParamDecl ) {
1148 useName = de->name;
1149 namedParamDecl = const_cast<TypeDecl *>( strict_dynamic_cast<const TypeDecl *, nullptr >( indexer.lookupType( useName ) ) );
1150 }
1151
1152 // Expect to find it always. A misspelled name would have been parsed as an identifier.
1153 assert( namedParamDecl && "Type-system-managed value name not found in symbol table" );
1154
1155 delete de;
1156
1157 TypeInstType * refToDecl = new TypeInstType( 0, useName, namedParamDecl );
1158
1159 if ( visitingChildOfSUIT ) {
1160 // As in postmutate( Expression * ), topmost expression needs a TypeExpr wrapper
1161 // But avoid ArrayType-Sizeof
1162 return new TypeExpr( refToDecl );
1163 } else {
1164 // the N occurrence is being used directly as a runtime value,
1165 // if we are in a type instantiation, then the N is within a bigger value computation
1166 return new SizeofExpr( refToDecl );
1167 }
1168 }
1169
1170 Expression * TranslateDimensionGenericParameters::postmutate( Expression * e ) {
1171 if ( visitingChildOfSUIT ) {
1172 // e is an expression used as an argument to instantiate a type
1173 if (! dynamic_cast< TypeExpr * >( e ) ) {
1174 // e is a value expression
1175 // but not a DimensionExpr, which has a distinct postmutate
1176 Type * typeExprContent = new ArrayType( 0, new BasicType( 0, BasicType::Char ), e, true, false );
1177 TypeExpr * result = new TypeExpr( typeExprContent );
1178 return result;
1179 }
1180 }
1181 return e;
1182 }
1183
[ef5b828]1184 void CompoundLiteral::premutate( ObjectDecl * objectDecl ) {
[a7c90d4]1185 storageClasses = objectDecl->get_storageClasses();
[630a82a]1186 }
1187
[ef5b828]1188 Expression * CompoundLiteral::postmutate( CompoundLiteralExpr * compLitExpr ) {
[630a82a]1189 // transform [storage_class] ... (struct S){ 3, ... };
1190 // into [storage_class] struct S temp = { 3, ... };
1191 static UniqueName indexName( "_compLit" );
1192
[ef5b828]1193 ObjectDecl * tempvar = new ObjectDecl( indexName.newName(), storageClasses, LinkageSpec::C, nullptr, compLitExpr->get_result(), compLitExpr->get_initializer() );
[d24d4e1]1194 compLitExpr->set_result( nullptr );
1195 compLitExpr->set_initializer( nullptr );
[630a82a]1196 delete compLitExpr;
[d24d4e1]1197 declsToAddBefore.push_back( tempvar ); // add modified temporary to current block
1198 return new VariableExpr( tempvar );
[630a82a]1199 }
[cce9429]1200
1201 void ReturnTypeFixer::fix( std::list< Declaration * > &translationUnit ) {
[0db6fc0]1202 PassVisitor<ReturnTypeFixer> fixer;
[cce9429]1203 acceptAll( translationUnit, fixer );
1204 }
1205
[0db6fc0]1206 void ReturnTypeFixer::postvisit( FunctionDecl * functionDecl ) {
[9facf3b]1207 FunctionType * ftype = functionDecl->get_functionType();
1208 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
[56e49b0]1209 assertf( retVals.size() == 0 || retVals.size() == 1, "Function %s has too many return values: %zu", functionDecl->get_name().c_str(), retVals.size() );
[9facf3b]1210 if ( retVals.size() == 1 ) {
[861799c7]1211 // ensure all function return values have a name - use the name of the function to disambiguate (this also provides a nice bit of help for debugging).
1212 // ensure other return values have a name.
[9facf3b]1213 DeclarationWithType * ret = retVals.front();
1214 if ( ret->get_name() == "" ) {
1215 ret->set_name( toString( "_retval_", CodeGen::genName( functionDecl ) ) );
1216 }
[c6d2e93]1217 ret->get_attributes().push_back( new Attribute( "unused" ) );
[9facf3b]1218 }
1219 }
[cce9429]1220
[0db6fc0]1221 void ReturnTypeFixer::postvisit( FunctionType * ftype ) {
[cce9429]1222 // xxx - need to handle named return values - this information needs to be saved somehow
1223 // so that resolution has access to the names.
1224 // Note that this pass needs to happen early so that other passes which look for tuple types
1225 // find them in all of the right places, including function return types.
1226 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
1227 if ( retVals.size() > 1 ) {
1228 // generate a single return parameter which is the tuple of all of the return values
[e3e16bc]1229 TupleType * tupleType = strict_dynamic_cast< TupleType * >( ResolvExpr::extractResultType( ftype ) );
[cce9429]1230 // ensure return value is not destructed by explicitly creating an empty ListInit node wherein maybeConstruct is false.
[ef5b828]1231 ObjectDecl * newRet = new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, tupleType, new ListInit( std::list<Initializer *>(), noDesignators, false ) );
[cce9429]1232 deleteAll( retVals );
1233 retVals.clear();
1234 retVals.push_back( newRet );
1235 }
1236 }
[fbd7ad6]1237
[2b79a70]1238 void FixObjectType::fix( std::list< Declaration * > & translationUnit ) {
1239 PassVisitor<FixObjectType> fixer;
1240 acceptAll( translationUnit, fixer );
1241 }
1242
1243 void FixObjectType::previsit( ObjectDecl * objDecl ) {
[ef5b828]1244 Type * new_type = ResolvExpr::resolveTypeof( objDecl->get_type(), indexer );
[2b79a70]1245 objDecl->set_type( new_type );
1246 }
1247
1248 void FixObjectType::previsit( FunctionDecl * funcDecl ) {
[ef5b828]1249 Type * new_type = ResolvExpr::resolveTypeof( funcDecl->type, indexer );
[2b79a70]1250 funcDecl->set_type( new_type );
1251 }
1252
[ef5b828]1253 void FixObjectType::previsit( TypeDecl * typeDecl ) {
[2b79a70]1254 if ( typeDecl->get_base() ) {
[ef5b828]1255 Type * new_type = ResolvExpr::resolveTypeof( typeDecl->get_base(), indexer );
[2b79a70]1256 typeDecl->set_base( new_type );
1257 } // if
1258 }
1259
[09867ec]1260 void InitializerLength::computeLength( std::list< Declaration * > & translationUnit ) {
1261 PassVisitor<InitializerLength> len;
1262 acceptAll( translationUnit, len );
1263 }
1264
[fbd7ad6]1265 void ArrayLength::computeLength( std::list< Declaration * > & translationUnit ) {
[0db6fc0]1266 PassVisitor<ArrayLength> len;
[fbd7ad6]1267 acceptAll( translationUnit, len );
1268 }
1269
[09867ec]1270 void InitializerLength::previsit( ObjectDecl * objDecl ) {
[0b3b2ae]1271 if ( ArrayType * at = dynamic_cast< ArrayType * >( objDecl->type ) ) {
[f072892]1272 if ( at->dimension ) return;
[0b3b2ae]1273 if ( ListInit * init = dynamic_cast< ListInit * >( objDecl->init ) ) {
[f072892]1274 at->dimension = new ConstantExpr( Constant::from_ulong( init->initializers.size() ) );
[fbd7ad6]1275 }
1276 }
1277 }
[4fbdfae0]1278
[4934ea3]1279 void ArrayLength::previsit( ArrayType * type ) {
[09867ec]1280 if ( type->dimension ) {
1281 // need to resolve array dimensions early so that constructor code can correctly determine
1282 // if a type is a VLA (and hence whether its elements need to be constructed)
1283 ResolvExpr::findSingleExpression( type->dimension, Validate::SizeType->clone(), indexer );
1284
1285 // must re-evaluate whether a type is a VLA, now that more information is available
1286 // (e.g. the dimension may have been an enumerator, which was unknown prior to this step)
1287 type->isVarLen = ! InitTweak::isConstExpr( type->dimension );
[4934ea3]1288 }
1289 }
1290
[5809461]1291 struct LabelFinder {
1292 std::set< Label > & labels;
1293 LabelFinder( std::set< Label > & labels ) : labels( labels ) {}
1294 void previsit( Statement * stmt ) {
1295 for ( Label & l : stmt->labels ) {
1296 labels.insert( l );
1297 }
1298 }
1299 };
1300
1301 void LabelAddressFixer::premutate( FunctionDecl * funcDecl ) {
1302 GuardValue( labels );
1303 PassVisitor<LabelFinder> finder( labels );
1304 funcDecl->accept( finder );
1305 }
1306
1307 Expression * LabelAddressFixer::postmutate( AddressExpr * addrExpr ) {
1308 // convert &&label into label address
1309 if ( AddressExpr * inner = dynamic_cast< AddressExpr * >( addrExpr->arg ) ) {
1310 if ( NameExpr * nameExpr = dynamic_cast< NameExpr * >( inner->arg ) ) {
1311 if ( labels.count( nameExpr->name ) ) {
1312 Label name = nameExpr->name;
1313 delete addrExpr;
1314 return new LabelAddressExpr( name );
1315 }
1316 }
1317 }
1318 return addrExpr;
1319 }
[c8e4d2f8]1320
[51b73452]1321} // namespace SymTab
[0dd3a2f]1322
1323// Local Variables: //
1324// tab-width: 4 //
1325// mode: c++ //
1326// compile-command: "make install" //
1327// End: //
Note: See TracBrowser for help on using the repository browser.