source: src/SymTab/Validate.cc@ bcb14b5

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr no_list persistent-indexer pthread-emulation qualifiedEnum
Last change on this file since bcb14b5 was 2a6292d, checked in by Rob Schluntz <rschlunt@…>, 7 years ago

Resolve with expressions earlier to ensure new local variables are present before other user-code is resolved

  • Property mode set to 100644
File size: 52.6 KB
RevLine 
[0dd3a2f]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
[9cb8e88d]7// Validate.cc --
[0dd3a2f]8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 21:50:04 2015
[b128d3e]11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon Aug 28 13:47:23 2017
13// Update Count : 359
[0dd3a2f]14//
15
16// The "validate" phase of translation is used to take a syntax tree and convert it into a standard form that aims to be
17// as regular in structure as possible. Some assumptions can be made regarding the state of the tree after this pass is
18// complete, including:
19//
20// - No nested structure or union definitions; any in the input are "hoisted" to the level of the containing struct or
21// union.
22//
23// - All enumeration constants have type EnumInstType.
24//
[3c13c03]25// - The type "void" never occurs in lists of function parameter or return types. A function
26// taking no arguments has no argument types.
[0dd3a2f]27//
28// - No context instances exist; they are all replaced by the set of declarations signified by the context, instantiated
29// by the particular set of type arguments.
30//
31// - Every declaration is assigned a unique id.
32//
33// - No typedef declarations or instances exist; the actual type is substituted for each instance.
34//
35// - Each type, struct, and union definition is followed by an appropriate assignment operator.
36//
37// - Each use of a struct or union is connected to a complete definition of that struct or union, even if that
38// definition occurs later in the input.
[51b73452]39
[0db6fc0]40#include "Validate.h"
41
[d180746]42#include <cassert> // for assertf, assert
[30f9072]43#include <cstddef> // for size_t
[d180746]44#include <list> // for list
45#include <string> // for string
46#include <utility> // for pair
[30f9072]47
48#include "CodeGen/CodeGenerator.h" // for genName
[9236060]49#include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign
[25fcb84]50#include "ControlStruct/Mutate.h" // for ForExprMutator
[30f9072]51#include "Common/PassVisitor.h" // for PassVisitor, WithDeclsToAdd
[d180746]52#include "Common/ScopedMap.h" // for ScopedMap
[30f9072]53#include "Common/SemanticError.h" // for SemanticError
54#include "Common/UniqueName.h" // for UniqueName
55#include "Common/utility.h" // for operator+, cloneAll, deleteAll
[be9288a]56#include "Concurrency/Keywords.h" // for applyKeywords
[30f9072]57#include "FixFunction.h" // for FixFunction
58#include "Indexer.h" // for Indexer
[8b11840]59#include "InitTweak/GenInit.h" // for fixReturnStatements
[d180746]60#include "InitTweak/InitTweak.h" // for isCtorDtorAssign
61#include "Parser/LinkageSpec.h" // for C
62#include "ResolvExpr/typeops.h" // for typesCompatible
[4934ea3]63#include "ResolvExpr/Resolver.h" // for findSingleExpression
[2b79a70]64#include "ResolvExpr/ResolveTypeof.h" // for resolveTypeof
[be9288a]65#include "SymTab/Autogen.h" // for SizeType
66#include "SynTree/Attribute.h" // for noAttributes, Attribute
[30f9072]67#include "SynTree/Constant.h" // for Constant
[d180746]68#include "SynTree/Declaration.h" // for ObjectDecl, DeclarationWithType
69#include "SynTree/Expression.h" // for CompoundLiteralExpr, Expressio...
70#include "SynTree/Initializer.h" // for ListInit, Initializer
71#include "SynTree/Label.h" // for operator==, Label
72#include "SynTree/Mutator.h" // for Mutator
73#include "SynTree/Type.h" // for Type, TypeInstType, EnumInstType
74#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
75#include "SynTree/Visitor.h" // for Visitor
[fd2debf]76#include "Validate/HandleAttributes.h" // for handleAttributes
[d180746]77
78class CompoundStmt;
79class ReturnStmt;
80class SwitchStmt;
[51b73452]81
[b16923d]82#define debugPrint( x ) if ( doDebug ) x
[51b73452]83
84namespace SymTab {
[15f5c5e]85 /// hoists declarations that are difficult to hoist while parsing
86 struct HoistTypeDecls final : public WithDeclsToAdd {
[29f9e20]87 void previsit( SizeofExpr * );
88 void previsit( AlignofExpr * );
89 void previsit( UntypedOffsetofExpr * );
[95d09bdb]90 void previsit( CompoundLiteralExpr * );
[29f9e20]91 void handleType( Type * );
92 };
93
[a12c81f3]94 struct FixQualifiedTypes final : public WithIndexer {
95 Type * postmutate( QualifiedType * );
96 };
97
[a09e45b]98 struct HoistStruct final : public WithDeclsToAdd, public WithGuards {
[82dd287]99 /// Flattens nested struct types
[0dd3a2f]100 static void hoistStruct( std::list< Declaration * > &translationUnit );
[9cb8e88d]101
[a09e45b]102 void previsit( StructDecl * aggregateDecl );
103 void previsit( UnionDecl * aggregateDecl );
[0f40912]104 void previsit( StaticAssertDecl * assertDecl );
[d419d8e]105 void previsit( StructInstType * type );
106 void previsit( UnionInstType * type );
107 void previsit( EnumInstType * type );
[9cb8e88d]108
[a08ba92]109 private:
[0dd3a2f]110 template< typename AggDecl > void handleAggregate( AggDecl *aggregateDecl );
[c8ffe20b]111
[bdad6eb7]112 AggregateDecl * parentAggr = nullptr;
[a08ba92]113 };
[c8ffe20b]114
[cce9429]115 /// Fix return types so that every function returns exactly one value
[d24d4e1]116 struct ReturnTypeFixer {
[cce9429]117 static void fix( std::list< Declaration * > &translationUnit );
118
[0db6fc0]119 void postvisit( FunctionDecl * functionDecl );
120 void postvisit( FunctionType * ftype );
[cce9429]121 };
122
[de91427b]123 /// Replaces enum types by int, and function or array types in function parameter and return lists by appropriate pointers.
[d24d4e1]124 struct EnumAndPointerDecay {
[06edda0]125 void previsit( EnumDecl *aggregateDecl );
126 void previsit( FunctionType *func );
[a08ba92]127 };
[82dd287]128
129 /// Associates forward declarations of aggregates with their definitions
[afcb0a3]130 struct LinkReferenceToTypes final : public WithIndexer, public WithGuards, public WithVisitorRef<LinkReferenceToTypes>, public WithShortCircuiting {
[522363e]131 LinkReferenceToTypes( const Indexer *indexer );
132 void postvisit( TypeInstType *typeInst );
[be9036d]133
[522363e]134 void postvisit( EnumInstType *enumInst );
135 void postvisit( StructInstType *structInst );
136 void postvisit( UnionInstType *unionInst );
137 void postvisit( TraitInstType *traitInst );
[afcb0a3]138 void previsit( QualifiedType * qualType );
139 void postvisit( QualifiedType * qualType );
[be9036d]140
[522363e]141 void postvisit( EnumDecl *enumDecl );
142 void postvisit( StructDecl *structDecl );
143 void postvisit( UnionDecl *unionDecl );
144 void postvisit( TraitDecl * traitDecl );
[be9036d]145
[b95fe40]146 void previsit( StructDecl *structDecl );
147 void previsit( UnionDecl *unionDecl );
148
149 void renameGenericParams( std::list< TypeDecl * > & params );
150
[06edda0]151 private:
[522363e]152 const Indexer *local_indexer;
[9cb8e88d]153
[c0aa336]154 typedef std::map< std::string, std::list< EnumInstType * > > ForwardEnumsType;
[0dd3a2f]155 typedef std::map< std::string, std::list< StructInstType * > > ForwardStructsType;
156 typedef std::map< std::string, std::list< UnionInstType * > > ForwardUnionsType;
[c0aa336]157 ForwardEnumsType forwardEnums;
[0dd3a2f]158 ForwardStructsType forwardStructs;
159 ForwardUnionsType forwardUnions;
[b95fe40]160 /// true if currently in a generic type body, so that type parameter instances can be renamed appropriately
161 bool inGeneric = false;
[a08ba92]162 };
[c8ffe20b]163
[06edda0]164 /// Replaces array and function types in forall lists by appropriate pointer type and assigns each Object and Function declaration a unique ID.
[522363e]165 struct ForallPointerDecay final {
[8b11840]166 void previsit( ObjectDecl * object );
167 void previsit( FunctionDecl * func );
[bbf3fda]168 void previsit( FunctionType * ftype );
[bd7e609]169 void previsit( StructDecl * aggrDecl );
170 void previsit( UnionDecl * aggrDecl );
[a08ba92]171 };
[c8ffe20b]172
[d24d4e1]173 struct ReturnChecker : public WithGuards {
[de91427b]174 /// Checks that return statements return nothing if their return type is void
175 /// and return something if the return type is non-void.
176 static void checkFunctionReturns( std::list< Declaration * > & translationUnit );
177
[0db6fc0]178 void previsit( FunctionDecl * functionDecl );
179 void previsit( ReturnStmt * returnStmt );
[de91427b]180
[0db6fc0]181 typedef std::list< DeclarationWithType * > ReturnVals;
182 ReturnVals returnVals;
[de91427b]183 };
184
[48ed81c]185 struct ReplaceTypedef final : public WithVisitorRef<ReplaceTypedef>, public WithGuards, public WithShortCircuiting, public WithDeclsToAdd {
186 ReplaceTypedef() : scopeLevel( 0 ) {}
[de91427b]187 /// Replaces typedefs by forward declarations
[48ed81c]188 static void replaceTypedef( std::list< Declaration * > &translationUnit );
[85c4ef0]189
[48ed81c]190 void premutate( QualifiedType * );
191 Type * postmutate( QualifiedType * qualType );
[a506df4]192 Type * postmutate( TypeInstType * aggregateUseType );
193 Declaration * postmutate( TypedefDecl * typeDecl );
194 void premutate( TypeDecl * typeDecl );
195 void premutate( FunctionDecl * funcDecl );
196 void premutate( ObjectDecl * objDecl );
197 DeclarationWithType * postmutate( ObjectDecl * objDecl );
198
199 void premutate( CastExpr * castExpr );
200
201 void premutate( CompoundStmt * compoundStmt );
202
203 void premutate( StructDecl * structDecl );
204 void premutate( UnionDecl * unionDecl );
205 void premutate( EnumDecl * enumDecl );
[0bcc2b7]206 void premutate( TraitDecl * );
[a506df4]207
[1f370451]208 void premutate( FunctionType * ftype );
209
[a506df4]210 private:
[45161b4d]211 template<typename AggDecl>
212 void addImplicitTypedef( AggDecl * aggDecl );
[48ed81c]213 template< typename AggDecl >
214 void handleAggregate( AggDecl * aggr );
[70a06f6]215
[46f6134]216 typedef std::unique_ptr<TypedefDecl> TypedefDeclPtr;
[e491159]217 typedef ScopedMap< std::string, std::pair< TypedefDeclPtr, int > > TypedefMap;
[0bcc2b7]218 typedef ScopedMap< std::string, TypeDecl * > TypeDeclMap;
[cc79d97]219 TypedefMap typedefNames;
[679864e1]220 TypeDeclMap typedeclNames;
[cc79d97]221 int scopeLevel;
[1f370451]222 bool inFunctionType = false;
[a08ba92]223 };
[c8ffe20b]224
[69918cea]225 struct EliminateTypedef {
226 /// removes TypedefDecls from the AST
227 static void eliminateTypedef( std::list< Declaration * > &translationUnit );
228
229 template<typename AggDecl>
230 void handleAggregate( AggDecl *aggregateDecl );
231
232 void previsit( StructDecl * aggregateDecl );
233 void previsit( UnionDecl * aggregateDecl );
234 void previsit( CompoundStmt * compoundStmt );
235 };
236
[d24d4e1]237 struct VerifyCtorDtorAssign {
[d1969a6]238 /// ensure that constructors, destructors, and assignment have at least one
239 /// parameter, the first of which must be a pointer, and that ctor/dtors have no
[9cb8e88d]240 /// return values.
241 static void verify( std::list< Declaration * > &translationUnit );
242
[0db6fc0]243 void previsit( FunctionDecl *funcDecl );
[5f98ce5]244 };
[70a06f6]245
[11ab8ea8]246 /// ensure that generic types have the correct number of type arguments
[d24d4e1]247 struct ValidateGenericParameters {
[0db6fc0]248 void previsit( StructInstType * inst );
249 void previsit( UnionInstType * inst );
[5f98ce5]250 };
[70a06f6]251
[2b79a70]252 struct FixObjectType : public WithIndexer {
253 /// resolves typeof type in object, function, and type declarations
254 static void fix( std::list< Declaration * > & translationUnit );
255
256 void previsit( ObjectDecl * );
257 void previsit( FunctionDecl * );
258 void previsit( TypeDecl * );
259 };
260
[4934ea3]261 struct ArrayLength : public WithIndexer {
[fbd7ad6]262 /// for array types without an explicit length, compute the length and store it so that it
263 /// is known to the rest of the phases. For example,
264 /// int x[] = { 1, 2, 3 };
265 /// int y[][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
266 /// here x and y are known at compile-time to have length 3, so change this into
267 /// int x[3] = { 1, 2, 3 };
268 /// int y[3][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
269 static void computeLength( std::list< Declaration * > & translationUnit );
270
[0db6fc0]271 void previsit( ObjectDecl * objDecl );
[4934ea3]272 void previsit( ArrayType * arrayType );
[fbd7ad6]273 };
274
[d24d4e1]275 struct CompoundLiteral final : public WithDeclsToAdd, public WithVisitorRef<CompoundLiteral> {
[68fe077a]276 Type::StorageClasses storageClasses;
[630a82a]277
[d24d4e1]278 void premutate( ObjectDecl *objectDecl );
279 Expression * postmutate( CompoundLiteralExpr *compLitExpr );
[9cb8e88d]280 };
281
[5809461]282 struct LabelAddressFixer final : public WithGuards {
283 std::set< Label > labels;
284
285 void premutate( FunctionDecl * funcDecl );
286 Expression * postmutate( AddressExpr * addrExpr );
287 };
[4fbdfae0]288
289 FunctionDecl * dereferenceOperator = nullptr;
290 struct FindSpecialDeclarations final {
291 void previsit( FunctionDecl * funcDecl );
292 };
293
[522363e]294 void validate( std::list< Declaration * > &translationUnit, __attribute__((unused)) bool doDebug ) {
[06edda0]295 PassVisitor<EnumAndPointerDecay> epc;
[522363e]296 PassVisitor<LinkReferenceToTypes> lrt( nullptr );
297 PassVisitor<ForallPointerDecay> fpd;
[d24d4e1]298 PassVisitor<CompoundLiteral> compoundliteral;
[0db6fc0]299 PassVisitor<ValidateGenericParameters> genericParams;
[4fbdfae0]300 PassVisitor<FindSpecialDeclarations> finder;
[5809461]301 PassVisitor<LabelAddressFixer> labelAddrFixer;
[15f5c5e]302 PassVisitor<HoistTypeDecls> hoistDecls;
[a12c81f3]303 PassVisitor<FixQualifiedTypes> fixQual;
[630a82a]304
[15f5c5e]305 acceptAll( translationUnit, hoistDecls );
[48ed81c]306 ReplaceTypedef::replaceTypedef( translationUnit );
[cce9429]307 ReturnTypeFixer::fix( translationUnit ); // must happen before autogen
[8e0147a]308 acceptAll( translationUnit, epc ); // must happen before VerifyCtorDtorAssign, because void return objects should not exist; before LinkReferenceToTypes because it is an indexer and needs correct types for mangling
[861799c7]309 acceptAll( translationUnit, lrt ); // must happen before autogen, because sized flag needs to propagate to generated functions
[a12c81f3]310 mutateAll( translationUnit, fixQual ); // must happen after LinkReferenceToTypes, because aggregate members are accessed
[29f9e20]311 HoistStruct::hoistStruct( translationUnit ); // must happen after EliminateTypedef, so that aggregate typedefs occur in the correct order
[69918cea]312 EliminateTypedef::eliminateTypedef( translationUnit ); //
[11ab8ea8]313 acceptAll( translationUnit, genericParams ); // check as early as possible - can't happen before LinkReferenceToTypes
[ed8a0d2]314 VerifyCtorDtorAssign::verify( translationUnit ); // must happen before autogen, because autogen examines existing ctor/dtors
[bd7e609]315 ReturnChecker::checkFunctionReturns( translationUnit );
316 InitTweak::fixReturnStatements( translationUnit ); // must happen before autogen
[bcda04c]317 Concurrency::applyKeywords( translationUnit );
[bd7e609]318 acceptAll( translationUnit, fpd ); // must happen before autogenerateRoutines, after Concurrency::applyKeywords because uniqueIds must be set on declaration before resolution
[25fcb84]319 ControlStruct::hoistControlDecls( translationUnit ); // hoist initialization out of for statements; must happen before autogenerateRoutines
[06edda0]320 autogenerateRoutines( translationUnit ); // moved up, used to be below compoundLiteral - currently needs EnumAndPointerDecay
[bcda04c]321 Concurrency::implementMutexFuncs( translationUnit );
322 Concurrency::implementThreadStarter( translationUnit );
[d24d4e1]323 mutateAll( translationUnit, compoundliteral );
[2a6292d]324 ResolvExpr::resolveWithExprs( translationUnit ); // must happen before FixObjectType because user-code is resolved and may contain with variables
[2b79a70]325 FixObjectType::fix( translationUnit );
[fbd7ad6]326 ArrayLength::computeLength( translationUnit );
[bd7e609]327 acceptAll( translationUnit, finder ); // xxx - remove this pass soon
[5809461]328 mutateAll( translationUnit, labelAddrFixer );
[fd2debf]329 Validate::handleAttributes( translationUnit );
[a08ba92]330 }
[9cb8e88d]331
[a08ba92]332 void validateType( Type *type, const Indexer *indexer ) {
[06edda0]333 PassVisitor<EnumAndPointerDecay> epc;
[522363e]334 PassVisitor<LinkReferenceToTypes> lrt( indexer );
335 PassVisitor<ForallPointerDecay> fpd;
[bda58ad]336 type->accept( epc );
[cce9429]337 type->accept( lrt );
[06edda0]338 type->accept( fpd );
[a08ba92]339 }
[c8ffe20b]340
[29f9e20]341
[15f5c5e]342 void HoistTypeDecls::handleType( Type * type ) {
[29f9e20]343 // some type declarations are buried in expressions and not easy to hoist during parsing; hoist them here
344 AggregateDecl * aggr = nullptr;
345 if ( StructInstType * inst = dynamic_cast< StructInstType * >( type ) ) {
346 aggr = inst->baseStruct;
347 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( type ) ) {
348 aggr = inst->baseUnion;
349 } else if ( EnumInstType * inst = dynamic_cast< EnumInstType * >( type ) ) {
350 aggr = inst->baseEnum;
351 }
352 if ( aggr && aggr->body ) {
353 declsToAddBefore.push_front( aggr );
354 }
355 }
356
[15f5c5e]357 void HoistTypeDecls::previsit( SizeofExpr * expr ) {
[29f9e20]358 handleType( expr->type );
359 }
360
[15f5c5e]361 void HoistTypeDecls::previsit( AlignofExpr * expr ) {
[29f9e20]362 handleType( expr->type );
363 }
364
[15f5c5e]365 void HoistTypeDecls::previsit( UntypedOffsetofExpr * expr ) {
[29f9e20]366 handleType( expr->type );
367 }
368
[95d09bdb]369 void HoistTypeDecls::previsit( CompoundLiteralExpr * expr ) {
370 handleType( expr->result );
371 }
372
[29f9e20]373
[a12c81f3]374 Type * FixQualifiedTypes::postmutate( QualifiedType * qualType ) {
375 Type * parent = qualType->parent;
376 Type * child = qualType->child;
377 if ( dynamic_cast< GlobalScopeType * >( qualType->parent ) ) {
378 // .T => lookup T at global scope
[062e8df]379 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
[a12c81f3]380 auto td = indexer.globalLookupType( inst->name );
[062e8df]381 if ( ! td ) {
382 SemanticError( qualType->location, toString("Use of undefined global type ", inst->name) );
383 }
[a12c81f3]384 auto base = td->base;
[062e8df]385 assert( base );
[8a3ecb9]386 Type * ret = base->clone();
387 ret->get_qualifiers() = qualType->get_qualifiers();
388 return ret;
[a12c81f3]389 } else {
[062e8df]390 // .T => T is not a type name
391 assertf( false, "unhandled global qualified child type: %s", toCString(child) );
[a12c81f3]392 }
393 } else {
394 // S.T => S must be an aggregate type, find the declaration for T in S.
395 AggregateDecl * aggr = nullptr;
396 if ( StructInstType * inst = dynamic_cast< StructInstType * >( parent ) ) {
397 aggr = inst->baseStruct;
398 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * > ( parent ) ) {
399 aggr = inst->baseUnion;
400 } else {
[062e8df]401 SemanticError( qualType->location, toString("Qualified type requires an aggregate on the left, but has: ", parent) );
[a12c81f3]402 }
403 assert( aggr ); // TODO: need to handle forward declarations
404 for ( Declaration * member : aggr->members ) {
405 if ( StructInstType * inst = dynamic_cast< StructInstType * >( child ) ) {
406 if ( StructDecl * aggr = dynamic_cast< StructDecl * >( member ) ) {
407 if ( aggr->name == inst->name ) {
[8a3ecb9]408 // TODO: is this case, and other non-TypeInstType cases, necessary?
[a12c81f3]409 return new StructInstType( qualType->get_qualifiers(), aggr );
410 }
411 }
412 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( child ) ) {
413 if ( UnionDecl * aggr = dynamic_cast< UnionDecl * > ( member ) ) {
414 if ( aggr->name == inst->name ) {
415 return new UnionInstType( qualType->get_qualifiers(), aggr );
416 }
417 }
418 } else if ( EnumInstType * inst = dynamic_cast< EnumInstType * >( child ) ) {
419 if ( EnumDecl * aggr = dynamic_cast< EnumDecl * > ( member ) ) {
420 if ( aggr->name == inst->name ) {
421 return new EnumInstType( qualType->get_qualifiers(), aggr );
422 }
423 }
424 } else if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
[8a3ecb9]425 // name on the right is a typedef
[a12c81f3]426 if ( NamedTypeDecl * aggr = dynamic_cast< NamedTypeDecl * > ( member ) ) {
427 if ( aggr->name == inst->name ) {
[062e8df]428 assert( aggr->base );
[8a3ecb9]429 Type * ret = aggr->base->clone();
430 ret->get_qualifiers() = qualType->get_qualifiers();
431 return ret;
[a12c81f3]432 }
433 }
434 } else {
435 // S.T - S is not an aggregate => error
436 assertf( false, "unhandled qualified child type: %s", toCString(qualType) );
437 }
438 }
439 // failed to find a satisfying definition of type
[062e8df]440 SemanticError( qualType->location, toString("Undefined type in qualified type: ", qualType) );
[a12c81f3]441 }
442
443 // ... may want to link canonical SUE definition to each forward decl so that it becomes easier to lookup?
444 }
445
446
[a08ba92]447 void HoistStruct::hoistStruct( std::list< Declaration * > &translationUnit ) {
[a09e45b]448 PassVisitor<HoistStruct> hoister;
449 acceptAll( translationUnit, hoister );
[a08ba92]450 }
[c8ffe20b]451
[0f40912]452 bool shouldHoist( Declaration *decl ) {
453 return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl ) || dynamic_cast< StaticAssertDecl * >( decl );
[a08ba92]454 }
[c0aa336]455
[d419d8e]456 namespace {
457 void qualifiedName( AggregateDecl * aggr, std::ostringstream & ss ) {
458 if ( aggr->parent ) qualifiedName( aggr->parent, ss );
459 ss << "__" << aggr->name;
460 }
461
462 // mangle nested type names using entire parent chain
463 std::string qualifiedName( AggregateDecl * aggr ) {
464 std::ostringstream ss;
465 qualifiedName( aggr, ss );
466 return ss.str();
467 }
468 }
469
[a08ba92]470 template< typename AggDecl >
471 void HoistStruct::handleAggregate( AggDecl *aggregateDecl ) {
[bdad6eb7]472 if ( parentAggr ) {
[d419d8e]473 aggregateDecl->parent = parentAggr;
474 aggregateDecl->name = qualifiedName( aggregateDecl );
[0dd3a2f]475 // Add elements in stack order corresponding to nesting structure.
[a09e45b]476 declsToAddBefore.push_front( aggregateDecl );
[0dd3a2f]477 } else {
[bdad6eb7]478 GuardValue( parentAggr );
479 parentAggr = aggregateDecl;
[0dd3a2f]480 } // if
481 // Always remove the hoisted aggregate from the inner structure.
[0f40912]482 GuardAction( [aggregateDecl]() { filter( aggregateDecl->members, shouldHoist, false ); } );
[a08ba92]483 }
[c8ffe20b]484
[0f40912]485 void HoistStruct::previsit( StaticAssertDecl * assertDecl ) {
486 if ( parentAggr ) {
487 declsToAddBefore.push_back( assertDecl );
488 }
489 }
490
[a09e45b]491 void HoistStruct::previsit( StructDecl * aggregateDecl ) {
[0dd3a2f]492 handleAggregate( aggregateDecl );
[a08ba92]493 }
[c8ffe20b]494
[a09e45b]495 void HoistStruct::previsit( UnionDecl * aggregateDecl ) {
[0dd3a2f]496 handleAggregate( aggregateDecl );
[a08ba92]497 }
[c8ffe20b]498
[d419d8e]499 void HoistStruct::previsit( StructInstType * type ) {
500 // need to reset type name after expanding to qualified name
501 assert( type->baseStruct );
502 type->name = type->baseStruct->name;
503 }
504
505 void HoistStruct::previsit( UnionInstType * type ) {
506 assert( type->baseUnion );
507 type->name = type->baseUnion->name;
508 }
509
510 void HoistStruct::previsit( EnumInstType * type ) {
511 assert( type->baseEnum );
512 type->name = type->baseEnum->name;
513 }
514
515
[69918cea]516 bool isTypedef( Declaration *decl ) {
517 return dynamic_cast< TypedefDecl * >( decl );
518 }
519
520 void EliminateTypedef::eliminateTypedef( std::list< Declaration * > &translationUnit ) {
521 PassVisitor<EliminateTypedef> eliminator;
522 acceptAll( translationUnit, eliminator );
523 filter( translationUnit, isTypedef, true );
524 }
525
526 template< typename AggDecl >
527 void EliminateTypedef::handleAggregate( AggDecl *aggregateDecl ) {
528 filter( aggregateDecl->members, isTypedef, true );
529 }
530
531 void EliminateTypedef::previsit( StructDecl * aggregateDecl ) {
532 handleAggregate( aggregateDecl );
533 }
534
535 void EliminateTypedef::previsit( UnionDecl * aggregateDecl ) {
536 handleAggregate( aggregateDecl );
537 }
538
539 void EliminateTypedef::previsit( CompoundStmt * compoundStmt ) {
540 // remove and delete decl stmts
541 filter( compoundStmt->kids, [](Statement * stmt) {
542 if ( DeclStmt *declStmt = dynamic_cast< DeclStmt * >( stmt ) ) {
543 if ( dynamic_cast< TypedefDecl * >( declStmt->decl ) ) {
544 return true;
545 } // if
546 } // if
547 return false;
548 }, true);
549 }
550
[06edda0]551 void EnumAndPointerDecay::previsit( EnumDecl *enumDecl ) {
[0dd3a2f]552 // Set the type of each member of the enumeration to be EnumConstant
[0b3b2ae]553 for ( std::list< Declaration * >::iterator i = enumDecl->members.begin(); i != enumDecl->members.end(); ++i ) {
[f6d7e0f]554 ObjectDecl * obj = dynamic_cast< ObjectDecl * >( *i );
[0dd3a2f]555 assert( obj );
[0b3b2ae]556 obj->set_type( new EnumInstType( Type::Qualifiers( Type::Const ), enumDecl->name ) );
[0dd3a2f]557 } // for
[a08ba92]558 }
[51b73452]559
[a08ba92]560 namespace {
[83de11e]561 template< typename DWTList >
[4bda2cf]562 void fixFunctionList( DWTList & dwts, bool isVarArgs, FunctionType * func ) {
563 auto nvals = dwts.size();
564 bool containsVoid = false;
565 for ( auto & dwt : dwts ) {
566 // fix each DWT and record whether a void was found
567 containsVoid |= fixFunction( dwt );
568 }
569
570 // the only case in which "void" is valid is where it is the only one in the list
571 if ( containsVoid && ( nvals > 1 || isVarArgs ) ) {
[a16764a6]572 SemanticError( func, "invalid type void in function type " );
[4bda2cf]573 }
574
575 // one void is the only thing in the list; remove it.
576 if ( containsVoid ) {
577 delete dwts.front();
578 dwts.clear();
579 }
[0dd3a2f]580 }
[a08ba92]581 }
[c8ffe20b]582
[06edda0]583 void EnumAndPointerDecay::previsit( FunctionType *func ) {
[0dd3a2f]584 // Fix up parameters and return types
[4bda2cf]585 fixFunctionList( func->parameters, func->isVarArgs, func );
586 fixFunctionList( func->returnVals, false, func );
[a08ba92]587 }
[c8ffe20b]588
[522363e]589 LinkReferenceToTypes::LinkReferenceToTypes( const Indexer *other_indexer ) {
[0dd3a2f]590 if ( other_indexer ) {
[522363e]591 local_indexer = other_indexer;
[0dd3a2f]592 } else {
[522363e]593 local_indexer = &indexer;
[0dd3a2f]594 } // if
[a08ba92]595 }
[c8ffe20b]596
[522363e]597 void LinkReferenceToTypes::postvisit( EnumInstType *enumInst ) {
[eaa6430]598 EnumDecl *st = local_indexer->lookupEnum( enumInst->name );
[c0aa336]599 // it's not a semantic error if the enum is not found, just an implicit forward declaration
600 if ( st ) {
[eaa6430]601 enumInst->baseEnum = st;
[c0aa336]602 } // if
[29f9e20]603 if ( ! st || ! st->body ) {
[c0aa336]604 // use of forward declaration
[eaa6430]605 forwardEnums[ enumInst->name ].push_back( enumInst );
[c0aa336]606 } // if
607 }
608
[48fa824]609 void checkGenericParameters( ReferenceToType * inst ) {
610 for ( Expression * param : inst->parameters ) {
611 if ( ! dynamic_cast< TypeExpr * >( param ) ) {
[a16764a6]612 SemanticError( inst, "Expression parameters for generic types are currently unsupported: " );
[48fa824]613 }
614 }
615 }
616
[522363e]617 void LinkReferenceToTypes::postvisit( StructInstType *structInst ) {
[eaa6430]618 StructDecl *st = local_indexer->lookupStruct( structInst->name );
[0dd3a2f]619 // it's not a semantic error if the struct is not found, just an implicit forward declaration
620 if ( st ) {
[eaa6430]621 structInst->baseStruct = st;
[0dd3a2f]622 } // if
[29f9e20]623 if ( ! st || ! st->body ) {
[0dd3a2f]624 // use of forward declaration
[eaa6430]625 forwardStructs[ structInst->name ].push_back( structInst );
[0dd3a2f]626 } // if
[48fa824]627 checkGenericParameters( structInst );
[a08ba92]628 }
[c8ffe20b]629
[522363e]630 void LinkReferenceToTypes::postvisit( UnionInstType *unionInst ) {
[eaa6430]631 UnionDecl *un = local_indexer->lookupUnion( unionInst->name );
[0dd3a2f]632 // it's not a semantic error if the union is not found, just an implicit forward declaration
633 if ( un ) {
[eaa6430]634 unionInst->baseUnion = un;
[0dd3a2f]635 } // if
[29f9e20]636 if ( ! un || ! un->body ) {
[0dd3a2f]637 // use of forward declaration
[eaa6430]638 forwardUnions[ unionInst->name ].push_back( unionInst );
[0dd3a2f]639 } // if
[48fa824]640 checkGenericParameters( unionInst );
[a08ba92]641 }
[c8ffe20b]642
[afcb0a3]643 void LinkReferenceToTypes::previsit( QualifiedType * ) {
644 visit_children = false;
645 }
646
647 void LinkReferenceToTypes::postvisit( QualifiedType * qualType ) {
648 // linking only makes sense for the 'oldest ancestor' of the qualified type
649 qualType->parent->accept( *visitor );
650 }
651
[be9036d]652 template< typename Decl >
653 void normalizeAssertions( std::list< Decl * > & assertions ) {
654 // ensure no duplicate trait members after the clone
655 auto pred = [](Decl * d1, Decl * d2) {
656 // only care if they're equal
657 DeclarationWithType * dwt1 = dynamic_cast<DeclarationWithType *>( d1 );
658 DeclarationWithType * dwt2 = dynamic_cast<DeclarationWithType *>( d2 );
659 if ( dwt1 && dwt2 ) {
[eaa6430]660 if ( dwt1->name == dwt2->name && ResolvExpr::typesCompatible( dwt1->get_type(), dwt2->get_type(), SymTab::Indexer() ) ) {
[be9036d]661 // std::cerr << "=========== equal:" << std::endl;
662 // std::cerr << "d1: " << d1 << std::endl;
663 // std::cerr << "d2: " << d2 << std::endl;
664 return false;
665 }
[2c57025]666 }
[be9036d]667 return d1 < d2;
668 };
669 std::set<Decl *, decltype(pred)> unique_members( assertions.begin(), assertions.end(), pred );
670 // if ( unique_members.size() != assertions.size() ) {
671 // std::cerr << "============different" << std::endl;
672 // std::cerr << unique_members.size() << " " << assertions.size() << std::endl;
673 // }
674
675 std::list< Decl * > order;
676 order.splice( order.end(), assertions );
677 std::copy_if( order.begin(), order.end(), back_inserter( assertions ), [&]( Decl * decl ) {
678 return unique_members.count( decl );
679 });
680 }
681
682 // expand assertions from trait instance, performing the appropriate type variable substitutions
683 template< typename Iterator >
684 void expandAssertions( TraitInstType * inst, Iterator out ) {
[eaa6430]685 assertf( inst->baseTrait, "Trait instance not linked to base trait: %s", toCString( inst ) );
[be9036d]686 std::list< DeclarationWithType * > asserts;
687 for ( Declaration * decl : inst->baseTrait->members ) {
[e3e16bc]688 asserts.push_back( strict_dynamic_cast<DeclarationWithType *>( decl->clone() ) );
[2c57025]689 }
[be9036d]690 // substitute trait decl parameters for instance parameters
691 applySubstitution( inst->baseTrait->parameters.begin(), inst->baseTrait->parameters.end(), inst->parameters.begin(), asserts.begin(), asserts.end(), out );
692 }
693
[522363e]694 void LinkReferenceToTypes::postvisit( TraitDecl * traitDecl ) {
[be9036d]695 if ( traitDecl->name == "sized" ) {
696 // "sized" is a special trait - flick the sized status on for the type variable
697 assertf( traitDecl->parameters.size() == 1, "Built-in trait 'sized' has incorrect number of parameters: %zd", traitDecl->parameters.size() );
698 TypeDecl * td = traitDecl->parameters.front();
699 td->set_sized( true );
700 }
701
702 // move assertions from type parameters into the body of the trait
703 for ( TypeDecl * td : traitDecl->parameters ) {
704 for ( DeclarationWithType * assert : td->assertions ) {
705 if ( TraitInstType * inst = dynamic_cast< TraitInstType * >( assert->get_type() ) ) {
706 expandAssertions( inst, back_inserter( traitDecl->members ) );
707 } else {
708 traitDecl->members.push_back( assert->clone() );
709 }
710 }
711 deleteAll( td->assertions );
712 td->assertions.clear();
713 } // for
714 }
[2ae171d8]715
[522363e]716 void LinkReferenceToTypes::postvisit( TraitInstType * traitInst ) {
[2ae171d8]717 // handle other traits
[522363e]718 TraitDecl *traitDecl = local_indexer->lookupTrait( traitInst->name );
[4a9ccc3]719 if ( ! traitDecl ) {
[a16764a6]720 SemanticError( traitInst->location, "use of undeclared trait " + traitInst->name );
[17cd4eb]721 } // if
[0b3b2ae]722 if ( traitDecl->parameters.size() != traitInst->parameters.size() ) {
[a16764a6]723 SemanticError( traitInst, "incorrect number of trait parameters: " );
[4a9ccc3]724 } // if
[be9036d]725 traitInst->baseTrait = traitDecl;
[79970ed]726
[4a9ccc3]727 // need to carry over the 'sized' status of each decl in the instance
[eaa6430]728 for ( auto p : group_iterate( traitDecl->parameters, traitInst->parameters ) ) {
[5c4d27f]729 TypeExpr * expr = dynamic_cast< TypeExpr * >( std::get<1>(p) );
730 if ( ! expr ) {
[a16764a6]731 SemanticError( std::get<1>(p), "Expression parameters for trait instances are currently unsupported: " );
[5c4d27f]732 }
[4a9ccc3]733 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( expr->get_type() ) ) {
734 TypeDecl * formalDecl = std::get<0>(p);
[eaa6430]735 TypeDecl * instDecl = inst->baseType;
[4a9ccc3]736 if ( formalDecl->get_sized() ) instDecl->set_sized( true );
737 }
738 }
[be9036d]739 // normalizeAssertions( traitInst->members );
[a08ba92]740 }
[c8ffe20b]741
[522363e]742 void LinkReferenceToTypes::postvisit( EnumDecl *enumDecl ) {
[c0aa336]743 // visit enum members first so that the types of self-referencing members are updated properly
[b16923d]744 if ( enumDecl->body ) {
[eaa6430]745 ForwardEnumsType::iterator fwds = forwardEnums.find( enumDecl->name );
[c0aa336]746 if ( fwds != forwardEnums.end() ) {
747 for ( std::list< EnumInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
[eaa6430]748 (*inst)->baseEnum = enumDecl;
[c0aa336]749 } // for
750 forwardEnums.erase( fwds );
751 } // if
[ac3362c]752
753 for ( Declaration * member : enumDecl->members ) {
754 ObjectDecl * field = strict_dynamic_cast<ObjectDecl *>( member );
755 if ( field->init ) {
756 // need to resolve enumerator initializers early so that other passes that determine if an expression is constexpr have the appropriate information.
757 SingleInit * init = strict_dynamic_cast<SingleInit *>( field->init );
758 ResolvExpr::findSingleExpression( init->value, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), indexer );
759 }
760 }
[c0aa336]761 } // if
762 }
763
[b95fe40]764 void LinkReferenceToTypes::renameGenericParams( std::list< TypeDecl * > & params ) {
765 // rename generic type parameters uniquely so that they do not conflict with user-defined function forall parameters, e.g.
766 // forall(otype T)
767 // struct Box {
768 // T x;
769 // };
770 // forall(otype T)
771 // void f(Box(T) b) {
772 // ...
773 // }
774 // The T in Box and the T in f are different, so internally the naming must reflect that.
775 GuardValue( inGeneric );
776 inGeneric = ! params.empty();
777 for ( TypeDecl * td : params ) {
778 td->name = "__" + td->name + "_generic_";
779 }
780 }
781
782 void LinkReferenceToTypes::previsit( StructDecl * structDecl ) {
783 renameGenericParams( structDecl->parameters );
784 }
785
786 void LinkReferenceToTypes::previsit( UnionDecl * unionDecl ) {
787 renameGenericParams( unionDecl->parameters );
788 }
789
[522363e]790 void LinkReferenceToTypes::postvisit( StructDecl *structDecl ) {
[677c1be]791 // visit struct members first so that the types of self-referencing members are updated properly
[522363e]792 // xxx - need to ensure that type parameters match up between forward declarations and definition (most importantly, number of type parameters and their defaults)
[b16923d]793 if ( structDecl->body ) {
[eaa6430]794 ForwardStructsType::iterator fwds = forwardStructs.find( structDecl->name );
[0dd3a2f]795 if ( fwds != forwardStructs.end() ) {
796 for ( std::list< StructInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
[eaa6430]797 (*inst)->baseStruct = structDecl;
[0dd3a2f]798 } // for
799 forwardStructs.erase( fwds );
800 } // if
801 } // if
[a08ba92]802 }
[c8ffe20b]803
[522363e]804 void LinkReferenceToTypes::postvisit( UnionDecl *unionDecl ) {
[b16923d]805 if ( unionDecl->body ) {
[eaa6430]806 ForwardUnionsType::iterator fwds = forwardUnions.find( unionDecl->name );
[0dd3a2f]807 if ( fwds != forwardUnions.end() ) {
808 for ( std::list< UnionInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
[eaa6430]809 (*inst)->baseUnion = unionDecl;
[0dd3a2f]810 } // for
811 forwardUnions.erase( fwds );
812 } // if
813 } // if
[a08ba92]814 }
[c8ffe20b]815
[522363e]816 void LinkReferenceToTypes::postvisit( TypeInstType *typeInst ) {
[b95fe40]817 // ensure generic parameter instances are renamed like the base type
818 if ( inGeneric && typeInst->baseType ) typeInst->name = typeInst->baseType->name;
[eaa6430]819 if ( NamedTypeDecl *namedTypeDecl = local_indexer->lookupType( typeInst->name ) ) {
[0dd3a2f]820 if ( TypeDecl *typeDecl = dynamic_cast< TypeDecl * >( namedTypeDecl ) ) {
821 typeInst->set_isFtype( typeDecl->get_kind() == TypeDecl::Ftype );
822 } // if
823 } // if
[a08ba92]824 }
[c8ffe20b]825
[4a9ccc3]826 /// Fix up assertions - flattens assertion lists, removing all trait instances
[8b11840]827 void forallFixer( std::list< TypeDecl * > & forall, BaseSyntaxNode * node ) {
828 for ( TypeDecl * type : forall ) {
[be9036d]829 std::list< DeclarationWithType * > asserts;
830 asserts.splice( asserts.end(), type->assertions );
831 // expand trait instances into their members
832 for ( DeclarationWithType * assertion : asserts ) {
833 if ( TraitInstType *traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) {
834 // expand trait instance into all of its members
835 expandAssertions( traitInst, back_inserter( type->assertions ) );
836 delete traitInst;
837 } else {
838 // pass other assertions through
839 type->assertions.push_back( assertion );
840 } // if
841 } // for
842 // apply FixFunction to every assertion to check for invalid void type
843 for ( DeclarationWithType *& assertion : type->assertions ) {
[4bda2cf]844 bool isVoid = fixFunction( assertion );
845 if ( isVoid ) {
[a16764a6]846 SemanticError( node, "invalid type void in assertion of function " );
[be9036d]847 } // if
848 } // for
849 // normalizeAssertions( type->assertions );
[0dd3a2f]850 } // for
[a08ba92]851 }
[c8ffe20b]852
[522363e]853 void ForallPointerDecay::previsit( ObjectDecl *object ) {
[3d2b7bc]854 // ensure that operator names only apply to functions or function pointers
855 if ( CodeGen::isOperator( object->name ) && ! dynamic_cast< FunctionType * >( object->type->stripDeclarator() ) ) {
856 SemanticError( object->location, toCString( "operator ", object->name.c_str(), " is not a function or function pointer." ) );
857 }
[0dd3a2f]858 object->fixUniqueId();
[a08ba92]859 }
[c8ffe20b]860
[522363e]861 void ForallPointerDecay::previsit( FunctionDecl *func ) {
[0dd3a2f]862 func->fixUniqueId();
[a08ba92]863 }
[c8ffe20b]864
[bbf3fda]865 void ForallPointerDecay::previsit( FunctionType * ftype ) {
866 forallFixer( ftype->forall, ftype );
867 }
868
[bd7e609]869 void ForallPointerDecay::previsit( StructDecl * aggrDecl ) {
870 forallFixer( aggrDecl->parameters, aggrDecl );
871 }
872
873 void ForallPointerDecay::previsit( UnionDecl * aggrDecl ) {
874 forallFixer( aggrDecl->parameters, aggrDecl );
875 }
876
[de91427b]877 void ReturnChecker::checkFunctionReturns( std::list< Declaration * > & translationUnit ) {
[0db6fc0]878 PassVisitor<ReturnChecker> checker;
[de91427b]879 acceptAll( translationUnit, checker );
880 }
881
[0db6fc0]882 void ReturnChecker::previsit( FunctionDecl * functionDecl ) {
[0508ab3]883 GuardValue( returnVals );
[de91427b]884 returnVals = functionDecl->get_functionType()->get_returnVals();
885 }
886
[0db6fc0]887 void ReturnChecker::previsit( ReturnStmt * returnStmt ) {
[74d1804]888 // Previously this also checked for the existence of an expr paired with no return values on
889 // the function return type. This is incorrect, since you can have an expression attached to
890 // a return statement in a void-returning function in C. The expression is treated as if it
891 // were cast to void.
[30f9072]892 if ( ! returnStmt->get_expr() && returnVals.size() != 0 ) {
[a16764a6]893 SemanticError( returnStmt, "Non-void function returns no values: " );
[de91427b]894 }
895 }
896
897
[48ed81c]898 void ReplaceTypedef::replaceTypedef( std::list< Declaration * > &translationUnit ) {
899 PassVisitor<ReplaceTypedef> eliminator;
[0dd3a2f]900 mutateAll( translationUnit, eliminator );
[a506df4]901 if ( eliminator.pass.typedefNames.count( "size_t" ) ) {
[5f98ce5]902 // grab and remember declaration of size_t
[0b3b2ae]903 SizeType = eliminator.pass.typedefNames["size_t"].first->base->clone();
[5f98ce5]904 } else {
[40e636a]905 // xxx - missing global typedef for size_t - default to long unsigned int, even though that may be wrong
906 // eventually should have a warning for this case.
907 SizeType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
[5f98ce5]908 }
[a08ba92]909 }
[c8ffe20b]910
[48ed81c]911 void ReplaceTypedef::premutate( QualifiedType * ) {
912 visit_children = false;
913 }
914
915 Type * ReplaceTypedef::postmutate( QualifiedType * qualType ) {
916 // replacing typedefs only makes sense for the 'oldest ancestor' of the qualified type
917 qualType->parent = qualType->parent->acceptMutator( *visitor );
918 return qualType;
919 }
920
921 Type * ReplaceTypedef::postmutate( TypeInstType * typeInst ) {
[9cb8e88d]922 // instances of typedef types will come here. If it is an instance
[cc79d97]923 // of a typdef type, link the instance to its actual type.
[0b3b2ae]924 TypedefMap::const_iterator def = typedefNames.find( typeInst->name );
[0dd3a2f]925 if ( def != typedefNames.end() ) {
[f53836b]926 Type *ret = def->second.first->base->clone();
[e82ef13]927 ret->location = typeInst->location;
[6f95000]928 ret->get_qualifiers() |= typeInst->get_qualifiers();
[1f370451]929 // attributes are not carried over from typedef to function parameters/return values
930 if ( ! inFunctionType ) {
931 ret->attributes.splice( ret->attributes.end(), typeInst->attributes );
932 } else {
933 deleteAll( ret->attributes );
934 ret->attributes.clear();
935 }
[0215a76f]936 // place instance parameters on the typedef'd type
[f53836b]937 if ( ! typeInst->parameters.empty() ) {
[0215a76f]938 ReferenceToType *rtt = dynamic_cast<ReferenceToType*>(ret);
939 if ( ! rtt ) {
[a16764a6]940 SemanticError( typeInst->location, "Cannot apply type parameters to base type of " + typeInst->name );
[0215a76f]941 }
[0b3b2ae]942 rtt->parameters.clear();
[f53836b]943 cloneAll( typeInst->parameters, rtt->parameters );
944 mutateAll( rtt->parameters, *visitor ); // recursively fix typedefs on parameters
[1db21619]945 } // if
[0dd3a2f]946 delete typeInst;
947 return ret;
[679864e1]948 } else {
[0b3b2ae]949 TypeDeclMap::const_iterator base = typedeclNames.find( typeInst->name );
[062e8df]950 if ( base == typedeclNames.end() ) {
951 SemanticError( typeInst->location, toString("Use of undefined type ", typeInst->name) );
952 }
[1e8b02f5]953 typeInst->set_baseType( base->second );
[062e8df]954 return typeInst;
[0dd3a2f]955 } // if
[062e8df]956 assert( false );
[a08ba92]957 }
[c8ffe20b]958
[f53836b]959 struct VarLenChecker : WithShortCircuiting {
960 void previsit( FunctionType * ) { visit_children = false; }
961 void previsit( ArrayType * at ) {
962 isVarLen |= at->isVarLen;
963 }
964 bool isVarLen = false;
965 };
966
967 bool isVariableLength( Type * t ) {
968 PassVisitor<VarLenChecker> varLenChecker;
969 maybeAccept( t, varLenChecker );
970 return varLenChecker.pass.isVarLen;
971 }
972
[48ed81c]973 Declaration * ReplaceTypedef::postmutate( TypedefDecl * tyDecl ) {
[0b3b2ae]974 if ( typedefNames.count( tyDecl->name ) == 1 && typedefNames[ tyDecl->name ].second == scopeLevel ) {
[9cb8e88d]975 // typedef to the same name from the same scope
[cc79d97]976 // must be from the same type
977
[0b3b2ae]978 Type * t1 = tyDecl->base;
979 Type * t2 = typedefNames[ tyDecl->name ].first->base;
[1cbca6e]980 if ( ! ResolvExpr::typesCompatible( t1, t2, Indexer() ) ) {
[a16764a6]981 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
[f53836b]982 }
[4b97770]983 // Cannot redefine VLA typedefs. Note: this is slightly incorrect, because our notion of VLAs
984 // at this point in the translator is imprecise. In particular, this will disallow redefining typedefs
985 // with arrays whose dimension is an enumerator or a cast of a constant/enumerator. The effort required
986 // to fix this corner case likely outweighs the utility of allowing it.
[f53836b]987 if ( isVariableLength( t1 ) || isVariableLength( t2 ) ) {
[a16764a6]988 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
[85c4ef0]989 }
[cc79d97]990 } else {
[0b3b2ae]991 typedefNames[ tyDecl->name ] = std::make_pair( TypedefDeclPtr( tyDecl ), scopeLevel );
[cc79d97]992 } // if
993
[0dd3a2f]994 // When a typedef is a forward declaration:
995 // typedef struct screen SCREEN;
996 // the declaration portion must be retained:
997 // struct screen;
998 // because the expansion of the typedef is:
999 // void rtn( SCREEN *p ) => void rtn( struct screen *p )
1000 // hence the type-name "screen" must be defined.
1001 // Note, qualifiers on the typedef are superfluous for the forward declaration.
[6f95000]1002
[0b3b2ae]1003 Type *designatorType = tyDecl->base->stripDeclarator();
[6f95000]1004 if ( StructInstType *aggDecl = dynamic_cast< StructInstType * >( designatorType ) ) {
[48ed81c]1005 declsToAddBefore.push_back( new StructDecl( aggDecl->name, DeclarationNode::Struct, noAttributes, tyDecl->linkage ) );
[6f95000]1006 } else if ( UnionInstType *aggDecl = dynamic_cast< UnionInstType * >( designatorType ) ) {
[48ed81c]1007 declsToAddBefore.push_back( new UnionDecl( aggDecl->name, noAttributes, tyDecl->linkage ) );
[6f95000]1008 } else if ( EnumInstType *enumDecl = dynamic_cast< EnumInstType * >( designatorType ) ) {
[48ed81c]1009 declsToAddBefore.push_back( new EnumDecl( enumDecl->name, noAttributes, tyDecl->linkage ) );
[0dd3a2f]1010 } // if
[48ed81c]1011 return tyDecl->clone();
[a08ba92]1012 }
[c8ffe20b]1013
[48ed81c]1014 void ReplaceTypedef::premutate( TypeDecl * typeDecl ) {
[0b3b2ae]1015 TypedefMap::iterator i = typedefNames.find( typeDecl->name );
[0dd3a2f]1016 if ( i != typedefNames.end() ) {
1017 typedefNames.erase( i ) ;
1018 } // if
[679864e1]1019
[0bcc2b7]1020 typedeclNames.insert( typeDecl->name, typeDecl );
[a08ba92]1021 }
[c8ffe20b]1022
[48ed81c]1023 void ReplaceTypedef::premutate( FunctionDecl * ) {
[a506df4]1024 GuardScope( typedefNames );
[0bcc2b7]1025 GuardScope( typedeclNames );
[a08ba92]1026 }
[c8ffe20b]1027
[48ed81c]1028 void ReplaceTypedef::premutate( ObjectDecl * ) {
[a506df4]1029 GuardScope( typedefNames );
[0bcc2b7]1030 GuardScope( typedeclNames );
[a506df4]1031 }
[dd020c0]1032
[48ed81c]1033 DeclarationWithType * ReplaceTypedef::postmutate( ObjectDecl * objDecl ) {
[0b3b2ae]1034 if ( FunctionType *funtype = dynamic_cast<FunctionType *>( objDecl->type ) ) { // function type?
[02e5ab6]1035 // replace the current object declaration with a function declaration
[0b3b2ae]1036 FunctionDecl * newDecl = new FunctionDecl( objDecl->name, objDecl->get_storageClasses(), objDecl->linkage, funtype, 0, objDecl->attributes, objDecl->get_funcSpec() );
1037 objDecl->attributes.clear();
[dbe8f244]1038 objDecl->set_type( nullptr );
[0a86a30]1039 delete objDecl;
1040 return newDecl;
[1db21619]1041 } // if
[a506df4]1042 return objDecl;
[a08ba92]1043 }
[c8ffe20b]1044
[48ed81c]1045 void ReplaceTypedef::premutate( CastExpr * ) {
[a506df4]1046 GuardScope( typedefNames );
[0bcc2b7]1047 GuardScope( typedeclNames );
[a08ba92]1048 }
[c8ffe20b]1049
[48ed81c]1050 void ReplaceTypedef::premutate( CompoundStmt * ) {
[a506df4]1051 GuardScope( typedefNames );
[0bcc2b7]1052 GuardScope( typedeclNames );
[cc79d97]1053 scopeLevel += 1;
[a506df4]1054 GuardAction( [this](){ scopeLevel -= 1; } );
1055 }
1056
[45161b4d]1057 template<typename AggDecl>
[48ed81c]1058 void ReplaceTypedef::addImplicitTypedef( AggDecl * aggDecl ) {
[45161b4d]1059 if ( typedefNames.count( aggDecl->get_name() ) == 0 ) {
[62e5546]1060 Type *type = nullptr;
[45161b4d]1061 if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( aggDecl ) ) {
1062 type = new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() );
1063 } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( aggDecl ) ) {
1064 type = new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() );
1065 } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( aggDecl ) ) {
1066 type = new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() );
1067 } // if
[0b0f1dd]1068 TypedefDeclPtr tyDecl( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type, aggDecl->get_linkage() ) );
[46f6134]1069 typedefNames[ aggDecl->get_name() ] = std::make_pair( std::move( tyDecl ), scopeLevel );
[48ed81c]1070 // add the implicit typedef to the AST
1071 declsToAddBefore.push_back( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type->clone(), aggDecl->get_linkage() ) );
[45161b4d]1072 } // if
1073 }
[4e06c1e]1074
[48ed81c]1075 template< typename AggDecl >
1076 void ReplaceTypedef::handleAggregate( AggDecl * aggr ) {
1077 SemanticErrorException errors;
[a506df4]1078
[48ed81c]1079 ValueGuard< std::list<Declaration * > > oldBeforeDecls( declsToAddBefore );
1080 ValueGuard< std::list<Declaration * > > oldAfterDecls ( declsToAddAfter );
1081 declsToAddBefore.clear();
1082 declsToAddAfter.clear();
[a506df4]1083
[48ed81c]1084 GuardScope( typedefNames );
[0bcc2b7]1085 GuardScope( typedeclNames );
[48ed81c]1086 mutateAll( aggr->parameters, *visitor );
[85c4ef0]1087
[48ed81c]1088 // unroll mutateAll for aggr->members so that implicit typedefs for nested types are added to the aggregate body.
1089 for ( std::list< Declaration * >::iterator i = aggr->members.begin(); i != aggr->members.end(); ++i ) {
1090 if ( !declsToAddAfter.empty() ) { aggr->members.splice( i, declsToAddAfter ); }
[a506df4]1091
[48ed81c]1092 try {
1093 *i = maybeMutate( *i, *visitor );
1094 } catch ( SemanticErrorException &e ) {
1095 errors.append( e );
1096 }
1097
1098 if ( !declsToAddBefore.empty() ) { aggr->members.splice( i, declsToAddBefore ); }
1099 }
1100
1101 if ( !declsToAddAfter.empty() ) { aggr->members.splice( aggr->members.end(), declsToAddAfter ); }
1102 if ( !errors.isEmpty() ) { throw errors; }
[85c4ef0]1103 }
1104
[48ed81c]1105 void ReplaceTypedef::premutate( StructDecl * structDecl ) {
1106 visit_children = false;
1107 addImplicitTypedef( structDecl );
1108 handleAggregate( structDecl );
[a506df4]1109 }
1110
[48ed81c]1111 void ReplaceTypedef::premutate( UnionDecl * unionDecl ) {
1112 visit_children = false;
1113 addImplicitTypedef( unionDecl );
1114 handleAggregate( unionDecl );
[85c4ef0]1115 }
1116
[48ed81c]1117 void ReplaceTypedef::premutate( EnumDecl * enumDecl ) {
1118 addImplicitTypedef( enumDecl );
[85c4ef0]1119 }
1120
[48ed81c]1121 void ReplaceTypedef::premutate( FunctionType * ) {
[1f370451]1122 GuardValue( inFunctionType );
1123 inFunctionType = true;
1124 }
1125
[0bcc2b7]1126 void ReplaceTypedef::premutate( TraitDecl * ) {
1127 GuardScope( typedefNames );
1128 GuardScope( typedeclNames);
1129 }
1130
[d1969a6]1131 void VerifyCtorDtorAssign::verify( std::list< Declaration * > & translationUnit ) {
[0db6fc0]1132 PassVisitor<VerifyCtorDtorAssign> verifier;
[9cb8e88d]1133 acceptAll( translationUnit, verifier );
1134 }
1135
[0db6fc0]1136 void VerifyCtorDtorAssign::previsit( FunctionDecl * funcDecl ) {
[9cb8e88d]1137 FunctionType * funcType = funcDecl->get_functionType();
1138 std::list< DeclarationWithType * > &returnVals = funcType->get_returnVals();
1139 std::list< DeclarationWithType * > &params = funcType->get_parameters();
1140
[bff227f]1141 if ( CodeGen::isCtorDtorAssign( funcDecl->get_name() ) ) { // TODO: also check /=, etc.
[9cb8e88d]1142 if ( params.size() == 0 ) {
[a16764a6]1143 SemanticError( funcDecl, "Constructors, destructors, and assignment functions require at least one parameter " );
[9cb8e88d]1144 }
[ce8c12f]1145 ReferenceType * refType = dynamic_cast< ReferenceType * >( params.front()->get_type() );
[084fecc]1146 if ( ! refType ) {
[a16764a6]1147 SemanticError( funcDecl, "First parameter of a constructor, destructor, or assignment function must be a reference " );
[9cb8e88d]1148 }
[bff227f]1149 if ( CodeGen::isCtorDtor( funcDecl->get_name() ) && returnVals.size() != 0 ) {
[a16764a6]1150 SemanticError( funcDecl, "Constructors and destructors cannot have explicit return values " );
[9cb8e88d]1151 }
1152 }
1153 }
[70a06f6]1154
[11ab8ea8]1155 template< typename Aggr >
1156 void validateGeneric( Aggr * inst ) {
1157 std::list< TypeDecl * > * params = inst->get_baseParameters();
[30f9072]1158 if ( params ) {
[11ab8ea8]1159 std::list< Expression * > & args = inst->get_parameters();
[67cf18c]1160
1161 // insert defaults arguments when a type argument is missing (currently only supports missing arguments at the end of the list).
1162 // A substitution is used to ensure that defaults are replaced correctly, e.g.,
1163 // forall(otype T, otype alloc = heap_allocator(T)) struct vector;
1164 // vector(int) v;
1165 // after insertion of default values becomes
1166 // vector(int, heap_allocator(T))
1167 // and the substitution is built with T=int so that after substitution, the result is
1168 // vector(int, heap_allocator(int))
1169 TypeSubstitution sub;
1170 auto paramIter = params->begin();
1171 for ( size_t i = 0; paramIter != params->end(); ++paramIter, ++i ) {
1172 if ( i < args.size() ) {
[e3e16bc]1173 TypeExpr * expr = strict_dynamic_cast< TypeExpr * >( *std::next( args.begin(), i ) );
[67cf18c]1174 sub.add( (*paramIter)->get_name(), expr->get_type()->clone() );
1175 } else if ( i == args.size() ) {
1176 Type * defaultType = (*paramIter)->get_init();
1177 if ( defaultType ) {
1178 args.push_back( new TypeExpr( defaultType->clone() ) );
1179 sub.add( (*paramIter)->get_name(), defaultType->clone() );
1180 }
1181 }
1182 }
1183
1184 sub.apply( inst );
[a16764a6]1185 if ( args.size() < params->size() ) SemanticError( inst, "Too few type arguments in generic type " );
1186 if ( args.size() > params->size() ) SemanticError( inst, "Too many type arguments in generic type " );
[11ab8ea8]1187 }
1188 }
1189
[0db6fc0]1190 void ValidateGenericParameters::previsit( StructInstType * inst ) {
[11ab8ea8]1191 validateGeneric( inst );
1192 }
[9cb8e88d]1193
[0db6fc0]1194 void ValidateGenericParameters::previsit( UnionInstType * inst ) {
[11ab8ea8]1195 validateGeneric( inst );
[9cb8e88d]1196 }
[70a06f6]1197
[d24d4e1]1198 void CompoundLiteral::premutate( ObjectDecl *objectDecl ) {
[a7c90d4]1199 storageClasses = objectDecl->get_storageClasses();
[630a82a]1200 }
1201
[d24d4e1]1202 Expression *CompoundLiteral::postmutate( CompoundLiteralExpr *compLitExpr ) {
[630a82a]1203 // transform [storage_class] ... (struct S){ 3, ... };
1204 // into [storage_class] struct S temp = { 3, ... };
1205 static UniqueName indexName( "_compLit" );
1206
[d24d4e1]1207 ObjectDecl *tempvar = new ObjectDecl( indexName.newName(), storageClasses, LinkageSpec::C, nullptr, compLitExpr->get_result(), compLitExpr->get_initializer() );
1208 compLitExpr->set_result( nullptr );
1209 compLitExpr->set_initializer( nullptr );
[630a82a]1210 delete compLitExpr;
[d24d4e1]1211 declsToAddBefore.push_back( tempvar ); // add modified temporary to current block
1212 return new VariableExpr( tempvar );
[630a82a]1213 }
[cce9429]1214
1215 void ReturnTypeFixer::fix( std::list< Declaration * > &translationUnit ) {
[0db6fc0]1216 PassVisitor<ReturnTypeFixer> fixer;
[cce9429]1217 acceptAll( translationUnit, fixer );
1218 }
1219
[0db6fc0]1220 void ReturnTypeFixer::postvisit( FunctionDecl * functionDecl ) {
[9facf3b]1221 FunctionType * ftype = functionDecl->get_functionType();
1222 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
[56e49b0]1223 assertf( retVals.size() == 0 || retVals.size() == 1, "Function %s has too many return values: %zu", functionDecl->get_name().c_str(), retVals.size() );
[9facf3b]1224 if ( retVals.size() == 1 ) {
[861799c7]1225 // ensure all function return values have a name - use the name of the function to disambiguate (this also provides a nice bit of help for debugging).
1226 // ensure other return values have a name.
[9facf3b]1227 DeclarationWithType * ret = retVals.front();
1228 if ( ret->get_name() == "" ) {
1229 ret->set_name( toString( "_retval_", CodeGen::genName( functionDecl ) ) );
1230 }
[c6d2e93]1231 ret->get_attributes().push_back( new Attribute( "unused" ) );
[9facf3b]1232 }
1233 }
[cce9429]1234
[0db6fc0]1235 void ReturnTypeFixer::postvisit( FunctionType * ftype ) {
[cce9429]1236 // xxx - need to handle named return values - this information needs to be saved somehow
1237 // so that resolution has access to the names.
1238 // Note that this pass needs to happen early so that other passes which look for tuple types
1239 // find them in all of the right places, including function return types.
1240 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
1241 if ( retVals.size() > 1 ) {
1242 // generate a single return parameter which is the tuple of all of the return values
[e3e16bc]1243 TupleType * tupleType = strict_dynamic_cast< TupleType * >( ResolvExpr::extractResultType( ftype ) );
[cce9429]1244 // ensure return value is not destructed by explicitly creating an empty ListInit node wherein maybeConstruct is false.
[68fe077a]1245 ObjectDecl * newRet = new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, tupleType, new ListInit( std::list<Initializer*>(), noDesignators, false ) );
[cce9429]1246 deleteAll( retVals );
1247 retVals.clear();
1248 retVals.push_back( newRet );
1249 }
1250 }
[fbd7ad6]1251
[2b79a70]1252 void FixObjectType::fix( std::list< Declaration * > & translationUnit ) {
1253 PassVisitor<FixObjectType> fixer;
1254 acceptAll( translationUnit, fixer );
1255 }
1256
1257 void FixObjectType::previsit( ObjectDecl * objDecl ) {
1258 Type *new_type = ResolvExpr::resolveTypeof( objDecl->get_type(), indexer );
1259 new_type->get_qualifiers() -= Type::Lvalue; // even if typeof is lvalue, variable can never have lvalue-qualified type
1260 objDecl->set_type( new_type );
1261 }
1262
1263 void FixObjectType::previsit( FunctionDecl * funcDecl ) {
1264 Type *new_type = ResolvExpr::resolveTypeof( funcDecl->type, indexer );
1265 new_type->get_qualifiers() -= Type::Lvalue; // even if typeof is lvalue, variable can never have lvalue-qualified type
1266 funcDecl->set_type( new_type );
1267 }
1268
1269 void FixObjectType::previsit( TypeDecl *typeDecl ) {
1270 if ( typeDecl->get_base() ) {
1271 Type *new_type = ResolvExpr::resolveTypeof( typeDecl->get_base(), indexer );
1272 new_type->get_qualifiers() -= Type::Lvalue; // even if typeof is lvalue, variable can never have lvalue-qualified type
1273 typeDecl->set_base( new_type );
1274 } // if
1275 }
1276
[fbd7ad6]1277 void ArrayLength::computeLength( std::list< Declaration * > & translationUnit ) {
[0db6fc0]1278 PassVisitor<ArrayLength> len;
[fbd7ad6]1279 acceptAll( translationUnit, len );
1280 }
1281
[0db6fc0]1282 void ArrayLength::previsit( ObjectDecl * objDecl ) {
[0b3b2ae]1283 if ( ArrayType * at = dynamic_cast< ArrayType * >( objDecl->type ) ) {
[f072892]1284 if ( at->dimension ) return;
[0b3b2ae]1285 if ( ListInit * init = dynamic_cast< ListInit * >( objDecl->init ) ) {
[f072892]1286 at->dimension = new ConstantExpr( Constant::from_ulong( init->initializers.size() ) );
[fbd7ad6]1287 }
1288 }
1289 }
[4fbdfae0]1290
[4934ea3]1291 void ArrayLength::previsit( ArrayType * type ) {
1292 if ( type->dimension ) {
1293 // need to resolve array dimensions early so that constructor code can correctly determine
1294 // if a type is a VLA (and hence whether its elements need to be constructed)
1295 ResolvExpr::findSingleExpression( type->dimension, SymTab::SizeType->clone(), indexer );
1296
1297 // must re-evaluate whether a type is a VLA, now that more information is available
1298 // (e.g. the dimension may have been an enumerator, which was unknown prior to this step)
1299 type->isVarLen = ! InitTweak::isConstExpr( type->dimension );
1300 }
1301 }
1302
[5809461]1303 struct LabelFinder {
1304 std::set< Label > & labels;
1305 LabelFinder( std::set< Label > & labels ) : labels( labels ) {}
1306 void previsit( Statement * stmt ) {
1307 for ( Label & l : stmt->labels ) {
1308 labels.insert( l );
1309 }
1310 }
1311 };
1312
1313 void LabelAddressFixer::premutate( FunctionDecl * funcDecl ) {
1314 GuardValue( labels );
1315 PassVisitor<LabelFinder> finder( labels );
1316 funcDecl->accept( finder );
1317 }
1318
1319 Expression * LabelAddressFixer::postmutate( AddressExpr * addrExpr ) {
1320 // convert &&label into label address
1321 if ( AddressExpr * inner = dynamic_cast< AddressExpr * >( addrExpr->arg ) ) {
1322 if ( NameExpr * nameExpr = dynamic_cast< NameExpr * >( inner->arg ) ) {
1323 if ( labels.count( nameExpr->name ) ) {
1324 Label name = nameExpr->name;
1325 delete addrExpr;
1326 return new LabelAddressExpr( name );
1327 }
1328 }
1329 }
1330 return addrExpr;
1331 }
1332
[4fbdfae0]1333 void FindSpecialDeclarations::previsit( FunctionDecl * funcDecl ) {
1334 if ( ! dereferenceOperator ) {
1335 if ( funcDecl->get_name() == "*?" && funcDecl->get_linkage() == LinkageSpec::Intrinsic ) {
1336 FunctionType * ftype = funcDecl->get_functionType();
1337 if ( ftype->get_parameters().size() == 1 && ftype->get_parameters().front()->get_type()->get_qualifiers() == Type::Qualifiers() ) {
1338 dereferenceOperator = funcDecl;
1339 }
1340 }
1341 }
1342 }
[51b73452]1343} // namespace SymTab
[0dd3a2f]1344
1345// Local Variables: //
1346// tab-width: 4 //
1347// mode: c++ //
1348// compile-command: "make install" //
1349// End: //
Note: See TracBrowser for help on using the repository browser.