source: src/SymTab/Validate.cc@ 8faaca1f

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr no_list persistent-indexer pthread-emulation qualifiedEnum
Last change on this file since 8faaca1f was 2f84692, checked in by Rob Schluntz <rschlunt@…>, 7 years ago

Merge branch 'master' of plg.uwaterloo.ca:/u/cforall/software/cfa/cfa-cc

  • Property mode set to 100644
File size: 49.8 KB
RevLine 
[0dd3a2f]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
[9cb8e88d]7// Validate.cc --
[0dd3a2f]8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 21:50:04 2015
[b128d3e]11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon Aug 28 13:47:23 2017
13// Update Count : 359
[0dd3a2f]14//
15
16// The "validate" phase of translation is used to take a syntax tree and convert it into a standard form that aims to be
17// as regular in structure as possible. Some assumptions can be made regarding the state of the tree after this pass is
18// complete, including:
19//
20// - No nested structure or union definitions; any in the input are "hoisted" to the level of the containing struct or
21// union.
22//
23// - All enumeration constants have type EnumInstType.
24//
[3c13c03]25// - The type "void" never occurs in lists of function parameter or return types. A function
26// taking no arguments has no argument types.
[0dd3a2f]27//
28// - No context instances exist; they are all replaced by the set of declarations signified by the context, instantiated
29// by the particular set of type arguments.
30//
31// - Every declaration is assigned a unique id.
32//
33// - No typedef declarations or instances exist; the actual type is substituted for each instance.
34//
35// - Each type, struct, and union definition is followed by an appropriate assignment operator.
36//
37// - Each use of a struct or union is connected to a complete definition of that struct or union, even if that
38// definition occurs later in the input.
[51b73452]39
[0db6fc0]40#include "Validate.h"
41
[d180746]42#include <cassert> // for assertf, assert
[30f9072]43#include <cstddef> // for size_t
[d180746]44#include <list> // for list
45#include <string> // for string
46#include <utility> // for pair
[30f9072]47
48#include "CodeGen/CodeGenerator.h" // for genName
[9236060]49#include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign
[25fcb84]50#include "ControlStruct/Mutate.h" // for ForExprMutator
[30f9072]51#include "Common/PassVisitor.h" // for PassVisitor, WithDeclsToAdd
[d180746]52#include "Common/ScopedMap.h" // for ScopedMap
[30f9072]53#include "Common/SemanticError.h" // for SemanticError
54#include "Common/UniqueName.h" // for UniqueName
55#include "Common/utility.h" // for operator+, cloneAll, deleteAll
[be9288a]56#include "Concurrency/Keywords.h" // for applyKeywords
[30f9072]57#include "FixFunction.h" // for FixFunction
58#include "Indexer.h" // for Indexer
[8b11840]59#include "InitTweak/GenInit.h" // for fixReturnStatements
[d180746]60#include "InitTweak/InitTweak.h" // for isCtorDtorAssign
61#include "Parser/LinkageSpec.h" // for C
62#include "ResolvExpr/typeops.h" // for typesCompatible
[be9288a]63#include "SymTab/Autogen.h" // for SizeType
64#include "SynTree/Attribute.h" // for noAttributes, Attribute
[30f9072]65#include "SynTree/Constant.h" // for Constant
[d180746]66#include "SynTree/Declaration.h" // for ObjectDecl, DeclarationWithType
67#include "SynTree/Expression.h" // for CompoundLiteralExpr, Expressio...
68#include "SynTree/Initializer.h" // for ListInit, Initializer
69#include "SynTree/Label.h" // for operator==, Label
70#include "SynTree/Mutator.h" // for Mutator
71#include "SynTree/Type.h" // for Type, TypeInstType, EnumInstType
72#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
73#include "SynTree/Visitor.h" // for Visitor
74
75class CompoundStmt;
76class ReturnStmt;
77class SwitchStmt;
[51b73452]78
[b16923d]79#define debugPrint( x ) if ( doDebug ) x
[51b73452]80
81namespace SymTab {
[15f5c5e]82 /// hoists declarations that are difficult to hoist while parsing
83 struct HoistTypeDecls final : public WithDeclsToAdd {
[29f9e20]84 void previsit( SizeofExpr * );
85 void previsit( AlignofExpr * );
86 void previsit( UntypedOffsetofExpr * );
[95d09bdb]87 void previsit( CompoundLiteralExpr * );
[29f9e20]88 void handleType( Type * );
89 };
90
[a12c81f3]91 struct FixQualifiedTypes final : public WithIndexer {
92 Type * postmutate( QualifiedType * );
93 };
94
[a09e45b]95 struct HoistStruct final : public WithDeclsToAdd, public WithGuards {
[82dd287]96 /// Flattens nested struct types
[0dd3a2f]97 static void hoistStruct( std::list< Declaration * > &translationUnit );
[9cb8e88d]98
[a09e45b]99 void previsit( StructDecl * aggregateDecl );
100 void previsit( UnionDecl * aggregateDecl );
[0f40912]101 void previsit( StaticAssertDecl * assertDecl );
[d419d8e]102 void previsit( StructInstType * type );
103 void previsit( UnionInstType * type );
104 void previsit( EnumInstType * type );
[9cb8e88d]105
[a08ba92]106 private:
[0dd3a2f]107 template< typename AggDecl > void handleAggregate( AggDecl *aggregateDecl );
[c8ffe20b]108
[bdad6eb7]109 AggregateDecl * parentAggr = nullptr;
[a08ba92]110 };
[c8ffe20b]111
[cce9429]112 /// Fix return types so that every function returns exactly one value
[d24d4e1]113 struct ReturnTypeFixer {
[cce9429]114 static void fix( std::list< Declaration * > &translationUnit );
115
[0db6fc0]116 void postvisit( FunctionDecl * functionDecl );
117 void postvisit( FunctionType * ftype );
[cce9429]118 };
119
[de91427b]120 /// Replaces enum types by int, and function or array types in function parameter and return lists by appropriate pointers.
[d24d4e1]121 struct EnumAndPointerDecay {
[06edda0]122 void previsit( EnumDecl *aggregateDecl );
123 void previsit( FunctionType *func );
[a08ba92]124 };
[82dd287]125
126 /// Associates forward declarations of aggregates with their definitions
[afcb0a3]127 struct LinkReferenceToTypes final : public WithIndexer, public WithGuards, public WithVisitorRef<LinkReferenceToTypes>, public WithShortCircuiting {
[522363e]128 LinkReferenceToTypes( const Indexer *indexer );
129 void postvisit( TypeInstType *typeInst );
[be9036d]130
[522363e]131 void postvisit( EnumInstType *enumInst );
132 void postvisit( StructInstType *structInst );
133 void postvisit( UnionInstType *unionInst );
134 void postvisit( TraitInstType *traitInst );
[afcb0a3]135 void previsit( QualifiedType * qualType );
136 void postvisit( QualifiedType * qualType );
[be9036d]137
[522363e]138 void postvisit( EnumDecl *enumDecl );
139 void postvisit( StructDecl *structDecl );
140 void postvisit( UnionDecl *unionDecl );
141 void postvisit( TraitDecl * traitDecl );
[be9036d]142
[b95fe40]143 void previsit( StructDecl *structDecl );
144 void previsit( UnionDecl *unionDecl );
145
146 void renameGenericParams( std::list< TypeDecl * > & params );
147
[06edda0]148 private:
[522363e]149 const Indexer *local_indexer;
[9cb8e88d]150
[c0aa336]151 typedef std::map< std::string, std::list< EnumInstType * > > ForwardEnumsType;
[0dd3a2f]152 typedef std::map< std::string, std::list< StructInstType * > > ForwardStructsType;
153 typedef std::map< std::string, std::list< UnionInstType * > > ForwardUnionsType;
[c0aa336]154 ForwardEnumsType forwardEnums;
[0dd3a2f]155 ForwardStructsType forwardStructs;
156 ForwardUnionsType forwardUnions;
[b95fe40]157 /// true if currently in a generic type body, so that type parameter instances can be renamed appropriately
158 bool inGeneric = false;
[a08ba92]159 };
[c8ffe20b]160
[06edda0]161 /// Replaces array and function types in forall lists by appropriate pointer type and assigns each Object and Function declaration a unique ID.
[522363e]162 struct ForallPointerDecay final {
[8b11840]163 void previsit( ObjectDecl * object );
164 void previsit( FunctionDecl * func );
[bbf3fda]165 void previsit( FunctionType * ftype );
[bd7e609]166 void previsit( StructDecl * aggrDecl );
167 void previsit( UnionDecl * aggrDecl );
[a08ba92]168 };
[c8ffe20b]169
[d24d4e1]170 struct ReturnChecker : public WithGuards {
[de91427b]171 /// Checks that return statements return nothing if their return type is void
172 /// and return something if the return type is non-void.
173 static void checkFunctionReturns( std::list< Declaration * > & translationUnit );
174
[0db6fc0]175 void previsit( FunctionDecl * functionDecl );
176 void previsit( ReturnStmt * returnStmt );
[de91427b]177
[0db6fc0]178 typedef std::list< DeclarationWithType * > ReturnVals;
179 ReturnVals returnVals;
[de91427b]180 };
181
[48ed81c]182 struct ReplaceTypedef final : public WithVisitorRef<ReplaceTypedef>, public WithGuards, public WithShortCircuiting, public WithDeclsToAdd {
183 ReplaceTypedef() : scopeLevel( 0 ) {}
[de91427b]184 /// Replaces typedefs by forward declarations
[48ed81c]185 static void replaceTypedef( std::list< Declaration * > &translationUnit );
[85c4ef0]186
[48ed81c]187 void premutate( QualifiedType * );
188 Type * postmutate( QualifiedType * qualType );
[a506df4]189 Type * postmutate( TypeInstType * aggregateUseType );
190 Declaration * postmutate( TypedefDecl * typeDecl );
191 void premutate( TypeDecl * typeDecl );
192 void premutate( FunctionDecl * funcDecl );
193 void premutate( ObjectDecl * objDecl );
194 DeclarationWithType * postmutate( ObjectDecl * objDecl );
195
196 void premutate( CastExpr * castExpr );
197
198 void premutate( CompoundStmt * compoundStmt );
199
200 void premutate( StructDecl * structDecl );
201 void premutate( UnionDecl * unionDecl );
202 void premutate( EnumDecl * enumDecl );
[0bcc2b7]203 void premutate( TraitDecl * );
[a506df4]204
[1f370451]205 void premutate( FunctionType * ftype );
206
[a506df4]207 private:
[45161b4d]208 template<typename AggDecl>
209 void addImplicitTypedef( AggDecl * aggDecl );
[48ed81c]210 template< typename AggDecl >
211 void handleAggregate( AggDecl * aggr );
[70a06f6]212
[46f6134]213 typedef std::unique_ptr<TypedefDecl> TypedefDeclPtr;
[e491159]214 typedef ScopedMap< std::string, std::pair< TypedefDeclPtr, int > > TypedefMap;
[0bcc2b7]215 typedef ScopedMap< std::string, TypeDecl * > TypeDeclMap;
[cc79d97]216 TypedefMap typedefNames;
[679864e1]217 TypeDeclMap typedeclNames;
[cc79d97]218 int scopeLevel;
[1f370451]219 bool inFunctionType = false;
[a08ba92]220 };
[c8ffe20b]221
[69918cea]222 struct EliminateTypedef {
223 /// removes TypedefDecls from the AST
224 static void eliminateTypedef( std::list< Declaration * > &translationUnit );
225
226 template<typename AggDecl>
227 void handleAggregate( AggDecl *aggregateDecl );
228
229 void previsit( StructDecl * aggregateDecl );
230 void previsit( UnionDecl * aggregateDecl );
231 void previsit( CompoundStmt * compoundStmt );
232 };
233
[d24d4e1]234 struct VerifyCtorDtorAssign {
[d1969a6]235 /// ensure that constructors, destructors, and assignment have at least one
236 /// parameter, the first of which must be a pointer, and that ctor/dtors have no
[9cb8e88d]237 /// return values.
238 static void verify( std::list< Declaration * > &translationUnit );
239
[0db6fc0]240 void previsit( FunctionDecl *funcDecl );
[5f98ce5]241 };
[70a06f6]242
[11ab8ea8]243 /// ensure that generic types have the correct number of type arguments
[d24d4e1]244 struct ValidateGenericParameters {
[0db6fc0]245 void previsit( StructInstType * inst );
246 void previsit( UnionInstType * inst );
[5f98ce5]247 };
[70a06f6]248
[d24d4e1]249 struct ArrayLength {
[fbd7ad6]250 /// for array types without an explicit length, compute the length and store it so that it
251 /// is known to the rest of the phases. For example,
252 /// int x[] = { 1, 2, 3 };
253 /// int y[][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
254 /// here x and y are known at compile-time to have length 3, so change this into
255 /// int x[3] = { 1, 2, 3 };
256 /// int y[3][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
257 static void computeLength( std::list< Declaration * > & translationUnit );
258
[0db6fc0]259 void previsit( ObjectDecl * objDecl );
[fbd7ad6]260 };
261
[d24d4e1]262 struct CompoundLiteral final : public WithDeclsToAdd, public WithVisitorRef<CompoundLiteral> {
[68fe077a]263 Type::StorageClasses storageClasses;
[630a82a]264
[d24d4e1]265 void premutate( ObjectDecl *objectDecl );
266 Expression * postmutate( CompoundLiteralExpr *compLitExpr );
[9cb8e88d]267 };
268
[5809461]269 struct LabelAddressFixer final : public WithGuards {
270 std::set< Label > labels;
271
272 void premutate( FunctionDecl * funcDecl );
273 Expression * postmutate( AddressExpr * addrExpr );
274 };
[4fbdfae0]275
276 FunctionDecl * dereferenceOperator = nullptr;
277 struct FindSpecialDeclarations final {
278 void previsit( FunctionDecl * funcDecl );
279 };
280
[522363e]281 void validate( std::list< Declaration * > &translationUnit, __attribute__((unused)) bool doDebug ) {
[06edda0]282 PassVisitor<EnumAndPointerDecay> epc;
[522363e]283 PassVisitor<LinkReferenceToTypes> lrt( nullptr );
284 PassVisitor<ForallPointerDecay> fpd;
[d24d4e1]285 PassVisitor<CompoundLiteral> compoundliteral;
[0db6fc0]286 PassVisitor<ValidateGenericParameters> genericParams;
[4fbdfae0]287 PassVisitor<FindSpecialDeclarations> finder;
[5809461]288 PassVisitor<LabelAddressFixer> labelAddrFixer;
[15f5c5e]289 PassVisitor<HoistTypeDecls> hoistDecls;
[a12c81f3]290 PassVisitor<FixQualifiedTypes> fixQual;
[630a82a]291
[15f5c5e]292 acceptAll( translationUnit, hoistDecls );
[48ed81c]293 ReplaceTypedef::replaceTypedef( translationUnit );
[cce9429]294 ReturnTypeFixer::fix( translationUnit ); // must happen before autogen
[8e0147a]295 acceptAll( translationUnit, epc ); // must happen before VerifyCtorDtorAssign, because void return objects should not exist; before LinkReferenceToTypes because it is an indexer and needs correct types for mangling
[861799c7]296 acceptAll( translationUnit, lrt ); // must happen before autogen, because sized flag needs to propagate to generated functions
[a12c81f3]297 mutateAll( translationUnit, fixQual ); // must happen after LinkReferenceToTypes, because aggregate members are accessed
[29f9e20]298 HoistStruct::hoistStruct( translationUnit ); // must happen after EliminateTypedef, so that aggregate typedefs occur in the correct order
[69918cea]299 EliminateTypedef::eliminateTypedef( translationUnit ); //
[11ab8ea8]300 acceptAll( translationUnit, genericParams ); // check as early as possible - can't happen before LinkReferenceToTypes
[ed8a0d2]301 VerifyCtorDtorAssign::verify( translationUnit ); // must happen before autogen, because autogen examines existing ctor/dtors
[bd7e609]302 ReturnChecker::checkFunctionReturns( translationUnit );
303 InitTweak::fixReturnStatements( translationUnit ); // must happen before autogen
[bcda04c]304 Concurrency::applyKeywords( translationUnit );
[bd7e609]305 acceptAll( translationUnit, fpd ); // must happen before autogenerateRoutines, after Concurrency::applyKeywords because uniqueIds must be set on declaration before resolution
[25fcb84]306 ControlStruct::hoistControlDecls( translationUnit ); // hoist initialization out of for statements; must happen before autogenerateRoutines
[06edda0]307 autogenerateRoutines( translationUnit ); // moved up, used to be below compoundLiteral - currently needs EnumAndPointerDecay
[bcda04c]308 Concurrency::implementMutexFuncs( translationUnit );
309 Concurrency::implementThreadStarter( translationUnit );
[d24d4e1]310 mutateAll( translationUnit, compoundliteral );
[fbd7ad6]311 ArrayLength::computeLength( translationUnit );
[bd7e609]312 acceptAll( translationUnit, finder ); // xxx - remove this pass soon
[5809461]313 mutateAll( translationUnit, labelAddrFixer );
[a08ba92]314 }
[9cb8e88d]315
[a08ba92]316 void validateType( Type *type, const Indexer *indexer ) {
[06edda0]317 PassVisitor<EnumAndPointerDecay> epc;
[522363e]318 PassVisitor<LinkReferenceToTypes> lrt( indexer );
319 PassVisitor<ForallPointerDecay> fpd;
[bda58ad]320 type->accept( epc );
[cce9429]321 type->accept( lrt );
[06edda0]322 type->accept( fpd );
[a08ba92]323 }
[c8ffe20b]324
[29f9e20]325
[15f5c5e]326 void HoistTypeDecls::handleType( Type * type ) {
[29f9e20]327 // some type declarations are buried in expressions and not easy to hoist during parsing; hoist them here
328 AggregateDecl * aggr = nullptr;
329 if ( StructInstType * inst = dynamic_cast< StructInstType * >( type ) ) {
330 aggr = inst->baseStruct;
331 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( type ) ) {
332 aggr = inst->baseUnion;
333 } else if ( EnumInstType * inst = dynamic_cast< EnumInstType * >( type ) ) {
334 aggr = inst->baseEnum;
335 }
336 if ( aggr && aggr->body ) {
337 declsToAddBefore.push_front( aggr );
338 }
339 }
340
[15f5c5e]341 void HoistTypeDecls::previsit( SizeofExpr * expr ) {
[29f9e20]342 handleType( expr->type );
343 }
344
[15f5c5e]345 void HoistTypeDecls::previsit( AlignofExpr * expr ) {
[29f9e20]346 handleType( expr->type );
347 }
348
[15f5c5e]349 void HoistTypeDecls::previsit( UntypedOffsetofExpr * expr ) {
[29f9e20]350 handleType( expr->type );
351 }
352
[95d09bdb]353 void HoistTypeDecls::previsit( CompoundLiteralExpr * expr ) {
354 handleType( expr->result );
355 }
356
[29f9e20]357
[a12c81f3]358 Type * FixQualifiedTypes::postmutate( QualifiedType * qualType ) {
359 Type * parent = qualType->parent;
360 Type * child = qualType->child;
361 if ( dynamic_cast< GlobalScopeType * >( qualType->parent ) ) {
362 // .T => lookup T at global scope
[062e8df]363 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
[a12c81f3]364 auto td = indexer.globalLookupType( inst->name );
[062e8df]365 if ( ! td ) {
366 SemanticError( qualType->location, toString("Use of undefined global type ", inst->name) );
367 }
[a12c81f3]368 auto base = td->base;
[062e8df]369 assert( base );
[8a3ecb9]370 Type * ret = base->clone();
371 ret->get_qualifiers() = qualType->get_qualifiers();
372 return ret;
[a12c81f3]373 } else {
[062e8df]374 // .T => T is not a type name
375 assertf( false, "unhandled global qualified child type: %s", toCString(child) );
[a12c81f3]376 }
377 } else {
378 // S.T => S must be an aggregate type, find the declaration for T in S.
379 AggregateDecl * aggr = nullptr;
380 if ( StructInstType * inst = dynamic_cast< StructInstType * >( parent ) ) {
381 aggr = inst->baseStruct;
382 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * > ( parent ) ) {
383 aggr = inst->baseUnion;
384 } else {
[062e8df]385 SemanticError( qualType->location, toString("Qualified type requires an aggregate on the left, but has: ", parent) );
[a12c81f3]386 }
387 assert( aggr ); // TODO: need to handle forward declarations
388 for ( Declaration * member : aggr->members ) {
389 if ( StructInstType * inst = dynamic_cast< StructInstType * >( child ) ) {
390 if ( StructDecl * aggr = dynamic_cast< StructDecl * >( member ) ) {
391 if ( aggr->name == inst->name ) {
[8a3ecb9]392 // TODO: is this case, and other non-TypeInstType cases, necessary?
[a12c81f3]393 return new StructInstType( qualType->get_qualifiers(), aggr );
394 }
395 }
396 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( child ) ) {
397 if ( UnionDecl * aggr = dynamic_cast< UnionDecl * > ( member ) ) {
398 if ( aggr->name == inst->name ) {
399 return new UnionInstType( qualType->get_qualifiers(), aggr );
400 }
401 }
402 } else if ( EnumInstType * inst = dynamic_cast< EnumInstType * >( child ) ) {
403 if ( EnumDecl * aggr = dynamic_cast< EnumDecl * > ( member ) ) {
404 if ( aggr->name == inst->name ) {
405 return new EnumInstType( qualType->get_qualifiers(), aggr );
406 }
407 }
408 } else if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
[8a3ecb9]409 // name on the right is a typedef
[a12c81f3]410 if ( NamedTypeDecl * aggr = dynamic_cast< NamedTypeDecl * > ( member ) ) {
411 if ( aggr->name == inst->name ) {
[062e8df]412 assert( aggr->base );
[8a3ecb9]413 Type * ret = aggr->base->clone();
414 ret->get_qualifiers() = qualType->get_qualifiers();
415 return ret;
[a12c81f3]416 }
417 }
418 } else {
419 // S.T - S is not an aggregate => error
420 assertf( false, "unhandled qualified child type: %s", toCString(qualType) );
421 }
422 }
423 // failed to find a satisfying definition of type
[062e8df]424 SemanticError( qualType->location, toString("Undefined type in qualified type: ", qualType) );
[a12c81f3]425 }
426
427 // ... may want to link canonical SUE definition to each forward decl so that it becomes easier to lookup?
428 }
429
430
[a08ba92]431 void HoistStruct::hoistStruct( std::list< Declaration * > &translationUnit ) {
[a09e45b]432 PassVisitor<HoistStruct> hoister;
433 acceptAll( translationUnit, hoister );
[a08ba92]434 }
[c8ffe20b]435
[0f40912]436 bool shouldHoist( Declaration *decl ) {
437 return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl ) || dynamic_cast< StaticAssertDecl * >( decl );
[a08ba92]438 }
[c0aa336]439
[d419d8e]440 namespace {
441 void qualifiedName( AggregateDecl * aggr, std::ostringstream & ss ) {
442 if ( aggr->parent ) qualifiedName( aggr->parent, ss );
443 ss << "__" << aggr->name;
444 }
445
446 // mangle nested type names using entire parent chain
447 std::string qualifiedName( AggregateDecl * aggr ) {
448 std::ostringstream ss;
449 qualifiedName( aggr, ss );
450 return ss.str();
451 }
452 }
453
[a08ba92]454 template< typename AggDecl >
455 void HoistStruct::handleAggregate( AggDecl *aggregateDecl ) {
[bdad6eb7]456 if ( parentAggr ) {
[d419d8e]457 aggregateDecl->parent = parentAggr;
458 aggregateDecl->name = qualifiedName( aggregateDecl );
[0dd3a2f]459 // Add elements in stack order corresponding to nesting structure.
[a09e45b]460 declsToAddBefore.push_front( aggregateDecl );
[0dd3a2f]461 } else {
[bdad6eb7]462 GuardValue( parentAggr );
463 parentAggr = aggregateDecl;
[0dd3a2f]464 } // if
465 // Always remove the hoisted aggregate from the inner structure.
[0f40912]466 GuardAction( [aggregateDecl]() { filter( aggregateDecl->members, shouldHoist, false ); } );
[a08ba92]467 }
[c8ffe20b]468
[0f40912]469 void HoistStruct::previsit( StaticAssertDecl * assertDecl ) {
470 if ( parentAggr ) {
471 declsToAddBefore.push_back( assertDecl );
472 }
473 }
474
[a09e45b]475 void HoistStruct::previsit( StructDecl * aggregateDecl ) {
[0dd3a2f]476 handleAggregate( aggregateDecl );
[a08ba92]477 }
[c8ffe20b]478
[a09e45b]479 void HoistStruct::previsit( UnionDecl * aggregateDecl ) {
[0dd3a2f]480 handleAggregate( aggregateDecl );
[a08ba92]481 }
[c8ffe20b]482
[d419d8e]483 void HoistStruct::previsit( StructInstType * type ) {
484 // need to reset type name after expanding to qualified name
485 assert( type->baseStruct );
486 type->name = type->baseStruct->name;
487 }
488
489 void HoistStruct::previsit( UnionInstType * type ) {
490 assert( type->baseUnion );
491 type->name = type->baseUnion->name;
492 }
493
494 void HoistStruct::previsit( EnumInstType * type ) {
495 assert( type->baseEnum );
496 type->name = type->baseEnum->name;
497 }
498
499
[69918cea]500 bool isTypedef( Declaration *decl ) {
501 return dynamic_cast< TypedefDecl * >( decl );
502 }
503
504 void EliminateTypedef::eliminateTypedef( std::list< Declaration * > &translationUnit ) {
505 PassVisitor<EliminateTypedef> eliminator;
506 acceptAll( translationUnit, eliminator );
507 filter( translationUnit, isTypedef, true );
508 }
509
510 template< typename AggDecl >
511 void EliminateTypedef::handleAggregate( AggDecl *aggregateDecl ) {
512 filter( aggregateDecl->members, isTypedef, true );
513 }
514
515 void EliminateTypedef::previsit( StructDecl * aggregateDecl ) {
516 handleAggregate( aggregateDecl );
517 }
518
519 void EliminateTypedef::previsit( UnionDecl * aggregateDecl ) {
520 handleAggregate( aggregateDecl );
521 }
522
523 void EliminateTypedef::previsit( CompoundStmt * compoundStmt ) {
524 // remove and delete decl stmts
525 filter( compoundStmt->kids, [](Statement * stmt) {
526 if ( DeclStmt *declStmt = dynamic_cast< DeclStmt * >( stmt ) ) {
527 if ( dynamic_cast< TypedefDecl * >( declStmt->decl ) ) {
528 return true;
529 } // if
530 } // if
531 return false;
532 }, true);
533 }
534
[06edda0]535 void EnumAndPointerDecay::previsit( EnumDecl *enumDecl ) {
[0dd3a2f]536 // Set the type of each member of the enumeration to be EnumConstant
[0b3b2ae]537 for ( std::list< Declaration * >::iterator i = enumDecl->members.begin(); i != enumDecl->members.end(); ++i ) {
[f6d7e0f]538 ObjectDecl * obj = dynamic_cast< ObjectDecl * >( *i );
[0dd3a2f]539 assert( obj );
[0b3b2ae]540 obj->set_type( new EnumInstType( Type::Qualifiers( Type::Const ), enumDecl->name ) );
[0dd3a2f]541 } // for
[a08ba92]542 }
[51b73452]543
[a08ba92]544 namespace {
[83de11e]545 template< typename DWTList >
[4bda2cf]546 void fixFunctionList( DWTList & dwts, bool isVarArgs, FunctionType * func ) {
547 auto nvals = dwts.size();
548 bool containsVoid = false;
549 for ( auto & dwt : dwts ) {
550 // fix each DWT and record whether a void was found
551 containsVoid |= fixFunction( dwt );
552 }
553
554 // the only case in which "void" is valid is where it is the only one in the list
555 if ( containsVoid && ( nvals > 1 || isVarArgs ) ) {
[a16764a6]556 SemanticError( func, "invalid type void in function type " );
[4bda2cf]557 }
558
559 // one void is the only thing in the list; remove it.
560 if ( containsVoid ) {
561 delete dwts.front();
562 dwts.clear();
563 }
[0dd3a2f]564 }
[a08ba92]565 }
[c8ffe20b]566
[06edda0]567 void EnumAndPointerDecay::previsit( FunctionType *func ) {
[0dd3a2f]568 // Fix up parameters and return types
[4bda2cf]569 fixFunctionList( func->parameters, func->isVarArgs, func );
570 fixFunctionList( func->returnVals, false, func );
[a08ba92]571 }
[c8ffe20b]572
[522363e]573 LinkReferenceToTypes::LinkReferenceToTypes( const Indexer *other_indexer ) {
[0dd3a2f]574 if ( other_indexer ) {
[522363e]575 local_indexer = other_indexer;
[0dd3a2f]576 } else {
[522363e]577 local_indexer = &indexer;
[0dd3a2f]578 } // if
[a08ba92]579 }
[c8ffe20b]580
[522363e]581 void LinkReferenceToTypes::postvisit( EnumInstType *enumInst ) {
[eaa6430]582 EnumDecl *st = local_indexer->lookupEnum( enumInst->name );
[c0aa336]583 // it's not a semantic error if the enum is not found, just an implicit forward declaration
584 if ( st ) {
[eaa6430]585 enumInst->baseEnum = st;
[c0aa336]586 } // if
[29f9e20]587 if ( ! st || ! st->body ) {
[c0aa336]588 // use of forward declaration
[eaa6430]589 forwardEnums[ enumInst->name ].push_back( enumInst );
[c0aa336]590 } // if
591 }
592
[48fa824]593 void checkGenericParameters( ReferenceToType * inst ) {
594 for ( Expression * param : inst->parameters ) {
595 if ( ! dynamic_cast< TypeExpr * >( param ) ) {
[a16764a6]596 SemanticError( inst, "Expression parameters for generic types are currently unsupported: " );
[48fa824]597 }
598 }
599 }
600
[522363e]601 void LinkReferenceToTypes::postvisit( StructInstType *structInst ) {
[eaa6430]602 StructDecl *st = local_indexer->lookupStruct( structInst->name );
[0dd3a2f]603 // it's not a semantic error if the struct is not found, just an implicit forward declaration
604 if ( st ) {
[eaa6430]605 structInst->baseStruct = st;
[0dd3a2f]606 } // if
[29f9e20]607 if ( ! st || ! st->body ) {
[0dd3a2f]608 // use of forward declaration
[eaa6430]609 forwardStructs[ structInst->name ].push_back( structInst );
[0dd3a2f]610 } // if
[48fa824]611 checkGenericParameters( structInst );
[a08ba92]612 }
[c8ffe20b]613
[522363e]614 void LinkReferenceToTypes::postvisit( UnionInstType *unionInst ) {
[eaa6430]615 UnionDecl *un = local_indexer->lookupUnion( unionInst->name );
[0dd3a2f]616 // it's not a semantic error if the union is not found, just an implicit forward declaration
617 if ( un ) {
[eaa6430]618 unionInst->baseUnion = un;
[0dd3a2f]619 } // if
[29f9e20]620 if ( ! un || ! un->body ) {
[0dd3a2f]621 // use of forward declaration
[eaa6430]622 forwardUnions[ unionInst->name ].push_back( unionInst );
[0dd3a2f]623 } // if
[48fa824]624 checkGenericParameters( unionInst );
[a08ba92]625 }
[c8ffe20b]626
[afcb0a3]627 void LinkReferenceToTypes::previsit( QualifiedType * ) {
628 visit_children = false;
629 }
630
631 void LinkReferenceToTypes::postvisit( QualifiedType * qualType ) {
632 // linking only makes sense for the 'oldest ancestor' of the qualified type
633 qualType->parent->accept( *visitor );
634 }
635
[be9036d]636 template< typename Decl >
637 void normalizeAssertions( std::list< Decl * > & assertions ) {
638 // ensure no duplicate trait members after the clone
639 auto pred = [](Decl * d1, Decl * d2) {
640 // only care if they're equal
641 DeclarationWithType * dwt1 = dynamic_cast<DeclarationWithType *>( d1 );
642 DeclarationWithType * dwt2 = dynamic_cast<DeclarationWithType *>( d2 );
643 if ( dwt1 && dwt2 ) {
[eaa6430]644 if ( dwt1->name == dwt2->name && ResolvExpr::typesCompatible( dwt1->get_type(), dwt2->get_type(), SymTab::Indexer() ) ) {
[be9036d]645 // std::cerr << "=========== equal:" << std::endl;
646 // std::cerr << "d1: " << d1 << std::endl;
647 // std::cerr << "d2: " << d2 << std::endl;
648 return false;
649 }
[2c57025]650 }
[be9036d]651 return d1 < d2;
652 };
653 std::set<Decl *, decltype(pred)> unique_members( assertions.begin(), assertions.end(), pred );
654 // if ( unique_members.size() != assertions.size() ) {
655 // std::cerr << "============different" << std::endl;
656 // std::cerr << unique_members.size() << " " << assertions.size() << std::endl;
657 // }
658
659 std::list< Decl * > order;
660 order.splice( order.end(), assertions );
661 std::copy_if( order.begin(), order.end(), back_inserter( assertions ), [&]( Decl * decl ) {
662 return unique_members.count( decl );
663 });
664 }
665
666 // expand assertions from trait instance, performing the appropriate type variable substitutions
667 template< typename Iterator >
668 void expandAssertions( TraitInstType * inst, Iterator out ) {
[eaa6430]669 assertf( inst->baseTrait, "Trait instance not linked to base trait: %s", toCString( inst ) );
[be9036d]670 std::list< DeclarationWithType * > asserts;
671 for ( Declaration * decl : inst->baseTrait->members ) {
[e3e16bc]672 asserts.push_back( strict_dynamic_cast<DeclarationWithType *>( decl->clone() ) );
[2c57025]673 }
[be9036d]674 // substitute trait decl parameters for instance parameters
675 applySubstitution( inst->baseTrait->parameters.begin(), inst->baseTrait->parameters.end(), inst->parameters.begin(), asserts.begin(), asserts.end(), out );
676 }
677
[522363e]678 void LinkReferenceToTypes::postvisit( TraitDecl * traitDecl ) {
[be9036d]679 if ( traitDecl->name == "sized" ) {
680 // "sized" is a special trait - flick the sized status on for the type variable
681 assertf( traitDecl->parameters.size() == 1, "Built-in trait 'sized' has incorrect number of parameters: %zd", traitDecl->parameters.size() );
682 TypeDecl * td = traitDecl->parameters.front();
683 td->set_sized( true );
684 }
685
686 // move assertions from type parameters into the body of the trait
687 for ( TypeDecl * td : traitDecl->parameters ) {
688 for ( DeclarationWithType * assert : td->assertions ) {
689 if ( TraitInstType * inst = dynamic_cast< TraitInstType * >( assert->get_type() ) ) {
690 expandAssertions( inst, back_inserter( traitDecl->members ) );
691 } else {
692 traitDecl->members.push_back( assert->clone() );
693 }
694 }
695 deleteAll( td->assertions );
696 td->assertions.clear();
697 } // for
698 }
[2ae171d8]699
[522363e]700 void LinkReferenceToTypes::postvisit( TraitInstType * traitInst ) {
[2ae171d8]701 // handle other traits
[522363e]702 TraitDecl *traitDecl = local_indexer->lookupTrait( traitInst->name );
[4a9ccc3]703 if ( ! traitDecl ) {
[a16764a6]704 SemanticError( traitInst->location, "use of undeclared trait " + traitInst->name );
[17cd4eb]705 } // if
[0b3b2ae]706 if ( traitDecl->parameters.size() != traitInst->parameters.size() ) {
[a16764a6]707 SemanticError( traitInst, "incorrect number of trait parameters: " );
[4a9ccc3]708 } // if
[be9036d]709 traitInst->baseTrait = traitDecl;
[79970ed]710
[4a9ccc3]711 // need to carry over the 'sized' status of each decl in the instance
[eaa6430]712 for ( auto p : group_iterate( traitDecl->parameters, traitInst->parameters ) ) {
[5c4d27f]713 TypeExpr * expr = dynamic_cast< TypeExpr * >( std::get<1>(p) );
714 if ( ! expr ) {
[a16764a6]715 SemanticError( std::get<1>(p), "Expression parameters for trait instances are currently unsupported: " );
[5c4d27f]716 }
[4a9ccc3]717 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( expr->get_type() ) ) {
718 TypeDecl * formalDecl = std::get<0>(p);
[eaa6430]719 TypeDecl * instDecl = inst->baseType;
[4a9ccc3]720 if ( formalDecl->get_sized() ) instDecl->set_sized( true );
721 }
722 }
[be9036d]723 // normalizeAssertions( traitInst->members );
[a08ba92]724 }
[c8ffe20b]725
[522363e]726 void LinkReferenceToTypes::postvisit( EnumDecl *enumDecl ) {
[c0aa336]727 // visit enum members first so that the types of self-referencing members are updated properly
[b16923d]728 if ( enumDecl->body ) {
[eaa6430]729 ForwardEnumsType::iterator fwds = forwardEnums.find( enumDecl->name );
[c0aa336]730 if ( fwds != forwardEnums.end() ) {
731 for ( std::list< EnumInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
[eaa6430]732 (*inst)->baseEnum = enumDecl;
[c0aa336]733 } // for
734 forwardEnums.erase( fwds );
735 } // if
736 } // if
737 }
738
[b95fe40]739 void LinkReferenceToTypes::renameGenericParams( std::list< TypeDecl * > & params ) {
740 // rename generic type parameters uniquely so that they do not conflict with user-defined function forall parameters, e.g.
741 // forall(otype T)
742 // struct Box {
743 // T x;
744 // };
745 // forall(otype T)
746 // void f(Box(T) b) {
747 // ...
748 // }
749 // The T in Box and the T in f are different, so internally the naming must reflect that.
750 GuardValue( inGeneric );
751 inGeneric = ! params.empty();
752 for ( TypeDecl * td : params ) {
753 td->name = "__" + td->name + "_generic_";
754 }
755 }
756
757 void LinkReferenceToTypes::previsit( StructDecl * structDecl ) {
758 renameGenericParams( structDecl->parameters );
759 }
760
761 void LinkReferenceToTypes::previsit( UnionDecl * unionDecl ) {
762 renameGenericParams( unionDecl->parameters );
763 }
764
[522363e]765 void LinkReferenceToTypes::postvisit( StructDecl *structDecl ) {
[677c1be]766 // visit struct members first so that the types of self-referencing members are updated properly
[522363e]767 // xxx - need to ensure that type parameters match up between forward declarations and definition (most importantly, number of type parameters and their defaults)
[b16923d]768 if ( structDecl->body ) {
[eaa6430]769 ForwardStructsType::iterator fwds = forwardStructs.find( structDecl->name );
[0dd3a2f]770 if ( fwds != forwardStructs.end() ) {
771 for ( std::list< StructInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
[eaa6430]772 (*inst)->baseStruct = structDecl;
[0dd3a2f]773 } // for
774 forwardStructs.erase( fwds );
775 } // if
776 } // if
[a08ba92]777 }
[c8ffe20b]778
[522363e]779 void LinkReferenceToTypes::postvisit( UnionDecl *unionDecl ) {
[b16923d]780 if ( unionDecl->body ) {
[eaa6430]781 ForwardUnionsType::iterator fwds = forwardUnions.find( unionDecl->name );
[0dd3a2f]782 if ( fwds != forwardUnions.end() ) {
783 for ( std::list< UnionInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
[eaa6430]784 (*inst)->baseUnion = unionDecl;
[0dd3a2f]785 } // for
786 forwardUnions.erase( fwds );
787 } // if
788 } // if
[a08ba92]789 }
[c8ffe20b]790
[522363e]791 void LinkReferenceToTypes::postvisit( TypeInstType *typeInst ) {
[b95fe40]792 // ensure generic parameter instances are renamed like the base type
793 if ( inGeneric && typeInst->baseType ) typeInst->name = typeInst->baseType->name;
[eaa6430]794 if ( NamedTypeDecl *namedTypeDecl = local_indexer->lookupType( typeInst->name ) ) {
[0dd3a2f]795 if ( TypeDecl *typeDecl = dynamic_cast< TypeDecl * >( namedTypeDecl ) ) {
796 typeInst->set_isFtype( typeDecl->get_kind() == TypeDecl::Ftype );
797 } // if
798 } // if
[a08ba92]799 }
[c8ffe20b]800
[4a9ccc3]801 /// Fix up assertions - flattens assertion lists, removing all trait instances
[8b11840]802 void forallFixer( std::list< TypeDecl * > & forall, BaseSyntaxNode * node ) {
803 for ( TypeDecl * type : forall ) {
[be9036d]804 std::list< DeclarationWithType * > asserts;
805 asserts.splice( asserts.end(), type->assertions );
806 // expand trait instances into their members
807 for ( DeclarationWithType * assertion : asserts ) {
808 if ( TraitInstType *traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) {
809 // expand trait instance into all of its members
810 expandAssertions( traitInst, back_inserter( type->assertions ) );
811 delete traitInst;
812 } else {
813 // pass other assertions through
814 type->assertions.push_back( assertion );
815 } // if
816 } // for
817 // apply FixFunction to every assertion to check for invalid void type
818 for ( DeclarationWithType *& assertion : type->assertions ) {
[4bda2cf]819 bool isVoid = fixFunction( assertion );
820 if ( isVoid ) {
[a16764a6]821 SemanticError( node, "invalid type void in assertion of function " );
[be9036d]822 } // if
823 } // for
824 // normalizeAssertions( type->assertions );
[0dd3a2f]825 } // for
[a08ba92]826 }
[c8ffe20b]827
[522363e]828 void ForallPointerDecay::previsit( ObjectDecl *object ) {
[3d2b7bc]829 // ensure that operator names only apply to functions or function pointers
830 if ( CodeGen::isOperator( object->name ) && ! dynamic_cast< FunctionType * >( object->type->stripDeclarator() ) ) {
831 SemanticError( object->location, toCString( "operator ", object->name.c_str(), " is not a function or function pointer." ) );
832 }
[0dd3a2f]833 object->fixUniqueId();
[a08ba92]834 }
[c8ffe20b]835
[522363e]836 void ForallPointerDecay::previsit( FunctionDecl *func ) {
[0dd3a2f]837 func->fixUniqueId();
[a08ba92]838 }
[c8ffe20b]839
[bbf3fda]840 void ForallPointerDecay::previsit( FunctionType * ftype ) {
841 forallFixer( ftype->forall, ftype );
842 }
843
[bd7e609]844 void ForallPointerDecay::previsit( StructDecl * aggrDecl ) {
845 forallFixer( aggrDecl->parameters, aggrDecl );
846 }
847
848 void ForallPointerDecay::previsit( UnionDecl * aggrDecl ) {
849 forallFixer( aggrDecl->parameters, aggrDecl );
850 }
851
[de91427b]852 void ReturnChecker::checkFunctionReturns( std::list< Declaration * > & translationUnit ) {
[0db6fc0]853 PassVisitor<ReturnChecker> checker;
[de91427b]854 acceptAll( translationUnit, checker );
855 }
856
[0db6fc0]857 void ReturnChecker::previsit( FunctionDecl * functionDecl ) {
[0508ab3]858 GuardValue( returnVals );
[de91427b]859 returnVals = functionDecl->get_functionType()->get_returnVals();
860 }
861
[0db6fc0]862 void ReturnChecker::previsit( ReturnStmt * returnStmt ) {
[74d1804]863 // Previously this also checked for the existence of an expr paired with no return values on
864 // the function return type. This is incorrect, since you can have an expression attached to
865 // a return statement in a void-returning function in C. The expression is treated as if it
866 // were cast to void.
[30f9072]867 if ( ! returnStmt->get_expr() && returnVals.size() != 0 ) {
[a16764a6]868 SemanticError( returnStmt, "Non-void function returns no values: " );
[de91427b]869 }
870 }
871
872
[48ed81c]873 void ReplaceTypedef::replaceTypedef( std::list< Declaration * > &translationUnit ) {
874 PassVisitor<ReplaceTypedef> eliminator;
[0dd3a2f]875 mutateAll( translationUnit, eliminator );
[a506df4]876 if ( eliminator.pass.typedefNames.count( "size_t" ) ) {
[5f98ce5]877 // grab and remember declaration of size_t
[0b3b2ae]878 SizeType = eliminator.pass.typedefNames["size_t"].first->base->clone();
[5f98ce5]879 } else {
[40e636a]880 // xxx - missing global typedef for size_t - default to long unsigned int, even though that may be wrong
881 // eventually should have a warning for this case.
882 SizeType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
[5f98ce5]883 }
[a08ba92]884 }
[c8ffe20b]885
[48ed81c]886 void ReplaceTypedef::premutate( QualifiedType * ) {
887 visit_children = false;
888 }
889
890 Type * ReplaceTypedef::postmutate( QualifiedType * qualType ) {
891 // replacing typedefs only makes sense for the 'oldest ancestor' of the qualified type
892 qualType->parent = qualType->parent->acceptMutator( *visitor );
893 return qualType;
894 }
895
896 Type * ReplaceTypedef::postmutate( TypeInstType * typeInst ) {
[9cb8e88d]897 // instances of typedef types will come here. If it is an instance
[cc79d97]898 // of a typdef type, link the instance to its actual type.
[0b3b2ae]899 TypedefMap::const_iterator def = typedefNames.find( typeInst->name );
[0dd3a2f]900 if ( def != typedefNames.end() ) {
[f53836b]901 Type *ret = def->second.first->base->clone();
[e82ef13]902 ret->location = typeInst->location;
[6f95000]903 ret->get_qualifiers() |= typeInst->get_qualifiers();
[1f370451]904 // attributes are not carried over from typedef to function parameters/return values
905 if ( ! inFunctionType ) {
906 ret->attributes.splice( ret->attributes.end(), typeInst->attributes );
907 } else {
908 deleteAll( ret->attributes );
909 ret->attributes.clear();
910 }
[0215a76f]911 // place instance parameters on the typedef'd type
[f53836b]912 if ( ! typeInst->parameters.empty() ) {
[0215a76f]913 ReferenceToType *rtt = dynamic_cast<ReferenceToType*>(ret);
914 if ( ! rtt ) {
[a16764a6]915 SemanticError( typeInst->location, "Cannot apply type parameters to base type of " + typeInst->name );
[0215a76f]916 }
[0b3b2ae]917 rtt->parameters.clear();
[f53836b]918 cloneAll( typeInst->parameters, rtt->parameters );
919 mutateAll( rtt->parameters, *visitor ); // recursively fix typedefs on parameters
[1db21619]920 } // if
[0dd3a2f]921 delete typeInst;
922 return ret;
[679864e1]923 } else {
[0b3b2ae]924 TypeDeclMap::const_iterator base = typedeclNames.find( typeInst->name );
[062e8df]925 if ( base == typedeclNames.end() ) {
926 SemanticError( typeInst->location, toString("Use of undefined type ", typeInst->name) );
927 }
[1e8b02f5]928 typeInst->set_baseType( base->second );
[062e8df]929 return typeInst;
[0dd3a2f]930 } // if
[062e8df]931 assert( false );
[a08ba92]932 }
[c8ffe20b]933
[f53836b]934 struct VarLenChecker : WithShortCircuiting {
935 void previsit( FunctionType * ) { visit_children = false; }
936 void previsit( ArrayType * at ) {
937 isVarLen |= at->isVarLen;
938 }
939 bool isVarLen = false;
940 };
941
942 bool isVariableLength( Type * t ) {
943 PassVisitor<VarLenChecker> varLenChecker;
944 maybeAccept( t, varLenChecker );
945 return varLenChecker.pass.isVarLen;
946 }
947
[48ed81c]948 Declaration * ReplaceTypedef::postmutate( TypedefDecl * tyDecl ) {
[0b3b2ae]949 if ( typedefNames.count( tyDecl->name ) == 1 && typedefNames[ tyDecl->name ].second == scopeLevel ) {
[9cb8e88d]950 // typedef to the same name from the same scope
[cc79d97]951 // must be from the same type
952
[0b3b2ae]953 Type * t1 = tyDecl->base;
954 Type * t2 = typedefNames[ tyDecl->name ].first->base;
[1cbca6e]955 if ( ! ResolvExpr::typesCompatible( t1, t2, Indexer() ) ) {
[a16764a6]956 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
[f53836b]957 }
[4b97770]958 // Cannot redefine VLA typedefs. Note: this is slightly incorrect, because our notion of VLAs
959 // at this point in the translator is imprecise. In particular, this will disallow redefining typedefs
960 // with arrays whose dimension is an enumerator or a cast of a constant/enumerator. The effort required
961 // to fix this corner case likely outweighs the utility of allowing it.
[f53836b]962 if ( isVariableLength( t1 ) || isVariableLength( t2 ) ) {
[a16764a6]963 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
[85c4ef0]964 }
[cc79d97]965 } else {
[0b3b2ae]966 typedefNames[ tyDecl->name ] = std::make_pair( TypedefDeclPtr( tyDecl ), scopeLevel );
[cc79d97]967 } // if
968
[0dd3a2f]969 // When a typedef is a forward declaration:
970 // typedef struct screen SCREEN;
971 // the declaration portion must be retained:
972 // struct screen;
973 // because the expansion of the typedef is:
974 // void rtn( SCREEN *p ) => void rtn( struct screen *p )
975 // hence the type-name "screen" must be defined.
976 // Note, qualifiers on the typedef are superfluous for the forward declaration.
[6f95000]977
[0b3b2ae]978 Type *designatorType = tyDecl->base->stripDeclarator();
[6f95000]979 if ( StructInstType *aggDecl = dynamic_cast< StructInstType * >( designatorType ) ) {
[48ed81c]980 declsToAddBefore.push_back( new StructDecl( aggDecl->name, DeclarationNode::Struct, noAttributes, tyDecl->linkage ) );
[6f95000]981 } else if ( UnionInstType *aggDecl = dynamic_cast< UnionInstType * >( designatorType ) ) {
[48ed81c]982 declsToAddBefore.push_back( new UnionDecl( aggDecl->name, noAttributes, tyDecl->linkage ) );
[6f95000]983 } else if ( EnumInstType *enumDecl = dynamic_cast< EnumInstType * >( designatorType ) ) {
[48ed81c]984 declsToAddBefore.push_back( new EnumDecl( enumDecl->name, noAttributes, tyDecl->linkage ) );
[0dd3a2f]985 } // if
[48ed81c]986 return tyDecl->clone();
[a08ba92]987 }
[c8ffe20b]988
[48ed81c]989 void ReplaceTypedef::premutate( TypeDecl * typeDecl ) {
[0b3b2ae]990 TypedefMap::iterator i = typedefNames.find( typeDecl->name );
[0dd3a2f]991 if ( i != typedefNames.end() ) {
992 typedefNames.erase( i ) ;
993 } // if
[679864e1]994
[0bcc2b7]995 typedeclNames.insert( typeDecl->name, typeDecl );
[a08ba92]996 }
[c8ffe20b]997
[48ed81c]998 void ReplaceTypedef::premutate( FunctionDecl * ) {
[a506df4]999 GuardScope( typedefNames );
[0bcc2b7]1000 GuardScope( typedeclNames );
[a08ba92]1001 }
[c8ffe20b]1002
[48ed81c]1003 void ReplaceTypedef::premutate( ObjectDecl * ) {
[a506df4]1004 GuardScope( typedefNames );
[0bcc2b7]1005 GuardScope( typedeclNames );
[a506df4]1006 }
[dd020c0]1007
[48ed81c]1008 DeclarationWithType * ReplaceTypedef::postmutate( ObjectDecl * objDecl ) {
[0b3b2ae]1009 if ( FunctionType *funtype = dynamic_cast<FunctionType *>( objDecl->type ) ) { // function type?
[02e5ab6]1010 // replace the current object declaration with a function declaration
[0b3b2ae]1011 FunctionDecl * newDecl = new FunctionDecl( objDecl->name, objDecl->get_storageClasses(), objDecl->linkage, funtype, 0, objDecl->attributes, objDecl->get_funcSpec() );
1012 objDecl->attributes.clear();
[dbe8f244]1013 objDecl->set_type( nullptr );
[0a86a30]1014 delete objDecl;
1015 return newDecl;
[1db21619]1016 } // if
[a506df4]1017 return objDecl;
[a08ba92]1018 }
[c8ffe20b]1019
[48ed81c]1020 void ReplaceTypedef::premutate( CastExpr * ) {
[a506df4]1021 GuardScope( typedefNames );
[0bcc2b7]1022 GuardScope( typedeclNames );
[a08ba92]1023 }
[c8ffe20b]1024
[48ed81c]1025 void ReplaceTypedef::premutate( CompoundStmt * ) {
[a506df4]1026 GuardScope( typedefNames );
[0bcc2b7]1027 GuardScope( typedeclNames );
[cc79d97]1028 scopeLevel += 1;
[a506df4]1029 GuardAction( [this](){ scopeLevel -= 1; } );
1030 }
1031
[45161b4d]1032 template<typename AggDecl>
[48ed81c]1033 void ReplaceTypedef::addImplicitTypedef( AggDecl * aggDecl ) {
[45161b4d]1034 if ( typedefNames.count( aggDecl->get_name() ) == 0 ) {
[62e5546]1035 Type *type = nullptr;
[45161b4d]1036 if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( aggDecl ) ) {
1037 type = new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() );
1038 } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( aggDecl ) ) {
1039 type = new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() );
1040 } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( aggDecl ) ) {
1041 type = new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() );
1042 } // if
[0b0f1dd]1043 TypedefDeclPtr tyDecl( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type, aggDecl->get_linkage() ) );
[46f6134]1044 typedefNames[ aggDecl->get_name() ] = std::make_pair( std::move( tyDecl ), scopeLevel );
[48ed81c]1045 // add the implicit typedef to the AST
1046 declsToAddBefore.push_back( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type->clone(), aggDecl->get_linkage() ) );
[45161b4d]1047 } // if
1048 }
[4e06c1e]1049
[48ed81c]1050 template< typename AggDecl >
1051 void ReplaceTypedef::handleAggregate( AggDecl * aggr ) {
1052 SemanticErrorException errors;
[a506df4]1053
[48ed81c]1054 ValueGuard< std::list<Declaration * > > oldBeforeDecls( declsToAddBefore );
1055 ValueGuard< std::list<Declaration * > > oldAfterDecls ( declsToAddAfter );
1056 declsToAddBefore.clear();
1057 declsToAddAfter.clear();
[a506df4]1058
[48ed81c]1059 GuardScope( typedefNames );
[0bcc2b7]1060 GuardScope( typedeclNames );
[48ed81c]1061 mutateAll( aggr->parameters, *visitor );
[85c4ef0]1062
[48ed81c]1063 // unroll mutateAll for aggr->members so that implicit typedefs for nested types are added to the aggregate body.
1064 for ( std::list< Declaration * >::iterator i = aggr->members.begin(); i != aggr->members.end(); ++i ) {
1065 if ( !declsToAddAfter.empty() ) { aggr->members.splice( i, declsToAddAfter ); }
[a506df4]1066
[48ed81c]1067 try {
1068 *i = maybeMutate( *i, *visitor );
1069 } catch ( SemanticErrorException &e ) {
1070 errors.append( e );
1071 }
1072
1073 if ( !declsToAddBefore.empty() ) { aggr->members.splice( i, declsToAddBefore ); }
1074 }
1075
1076 if ( !declsToAddAfter.empty() ) { aggr->members.splice( aggr->members.end(), declsToAddAfter ); }
1077 if ( !errors.isEmpty() ) { throw errors; }
[85c4ef0]1078 }
1079
[48ed81c]1080 void ReplaceTypedef::premutate( StructDecl * structDecl ) {
1081 visit_children = false;
1082 addImplicitTypedef( structDecl );
1083 handleAggregate( structDecl );
[a506df4]1084 }
1085
[48ed81c]1086 void ReplaceTypedef::premutate( UnionDecl * unionDecl ) {
1087 visit_children = false;
1088 addImplicitTypedef( unionDecl );
1089 handleAggregate( unionDecl );
[85c4ef0]1090 }
1091
[48ed81c]1092 void ReplaceTypedef::premutate( EnumDecl * enumDecl ) {
1093 addImplicitTypedef( enumDecl );
[85c4ef0]1094 }
1095
[48ed81c]1096 void ReplaceTypedef::premutate( FunctionType * ) {
[1f370451]1097 GuardValue( inFunctionType );
1098 inFunctionType = true;
1099 }
1100
[0bcc2b7]1101 void ReplaceTypedef::premutate( TraitDecl * ) {
1102 GuardScope( typedefNames );
1103 GuardScope( typedeclNames);
1104 }
1105
[d1969a6]1106 void VerifyCtorDtorAssign::verify( std::list< Declaration * > & translationUnit ) {
[0db6fc0]1107 PassVisitor<VerifyCtorDtorAssign> verifier;
[9cb8e88d]1108 acceptAll( translationUnit, verifier );
1109 }
1110
[0db6fc0]1111 void VerifyCtorDtorAssign::previsit( FunctionDecl * funcDecl ) {
[9cb8e88d]1112 FunctionType * funcType = funcDecl->get_functionType();
1113 std::list< DeclarationWithType * > &returnVals = funcType->get_returnVals();
1114 std::list< DeclarationWithType * > &params = funcType->get_parameters();
1115
[bff227f]1116 if ( CodeGen::isCtorDtorAssign( funcDecl->get_name() ) ) { // TODO: also check /=, etc.
[9cb8e88d]1117 if ( params.size() == 0 ) {
[a16764a6]1118 SemanticError( funcDecl, "Constructors, destructors, and assignment functions require at least one parameter " );
[9cb8e88d]1119 }
[ce8c12f]1120 ReferenceType * refType = dynamic_cast< ReferenceType * >( params.front()->get_type() );
[084fecc]1121 if ( ! refType ) {
[a16764a6]1122 SemanticError( funcDecl, "First parameter of a constructor, destructor, or assignment function must be a reference " );
[9cb8e88d]1123 }
[bff227f]1124 if ( CodeGen::isCtorDtor( funcDecl->get_name() ) && returnVals.size() != 0 ) {
[a16764a6]1125 SemanticError( funcDecl, "Constructors and destructors cannot have explicit return values " );
[9cb8e88d]1126 }
1127 }
1128 }
[70a06f6]1129
[11ab8ea8]1130 template< typename Aggr >
1131 void validateGeneric( Aggr * inst ) {
1132 std::list< TypeDecl * > * params = inst->get_baseParameters();
[30f9072]1133 if ( params ) {
[11ab8ea8]1134 std::list< Expression * > & args = inst->get_parameters();
[67cf18c]1135
1136 // insert defaults arguments when a type argument is missing (currently only supports missing arguments at the end of the list).
1137 // A substitution is used to ensure that defaults are replaced correctly, e.g.,
1138 // forall(otype T, otype alloc = heap_allocator(T)) struct vector;
1139 // vector(int) v;
1140 // after insertion of default values becomes
1141 // vector(int, heap_allocator(T))
1142 // and the substitution is built with T=int so that after substitution, the result is
1143 // vector(int, heap_allocator(int))
1144 TypeSubstitution sub;
1145 auto paramIter = params->begin();
1146 for ( size_t i = 0; paramIter != params->end(); ++paramIter, ++i ) {
1147 if ( i < args.size() ) {
[e3e16bc]1148 TypeExpr * expr = strict_dynamic_cast< TypeExpr * >( *std::next( args.begin(), i ) );
[67cf18c]1149 sub.add( (*paramIter)->get_name(), expr->get_type()->clone() );
1150 } else if ( i == args.size() ) {
1151 Type * defaultType = (*paramIter)->get_init();
1152 if ( defaultType ) {
1153 args.push_back( new TypeExpr( defaultType->clone() ) );
1154 sub.add( (*paramIter)->get_name(), defaultType->clone() );
1155 }
1156 }
1157 }
1158
1159 sub.apply( inst );
[a16764a6]1160 if ( args.size() < params->size() ) SemanticError( inst, "Too few type arguments in generic type " );
1161 if ( args.size() > params->size() ) SemanticError( inst, "Too many type arguments in generic type " );
[11ab8ea8]1162 }
1163 }
1164
[0db6fc0]1165 void ValidateGenericParameters::previsit( StructInstType * inst ) {
[11ab8ea8]1166 validateGeneric( inst );
1167 }
[9cb8e88d]1168
[0db6fc0]1169 void ValidateGenericParameters::previsit( UnionInstType * inst ) {
[11ab8ea8]1170 validateGeneric( inst );
[9cb8e88d]1171 }
[70a06f6]1172
[d24d4e1]1173 void CompoundLiteral::premutate( ObjectDecl *objectDecl ) {
[a7c90d4]1174 storageClasses = objectDecl->get_storageClasses();
[630a82a]1175 }
1176
[d24d4e1]1177 Expression *CompoundLiteral::postmutate( CompoundLiteralExpr *compLitExpr ) {
[630a82a]1178 // transform [storage_class] ... (struct S){ 3, ... };
1179 // into [storage_class] struct S temp = { 3, ... };
1180 static UniqueName indexName( "_compLit" );
1181
[d24d4e1]1182 ObjectDecl *tempvar = new ObjectDecl( indexName.newName(), storageClasses, LinkageSpec::C, nullptr, compLitExpr->get_result(), compLitExpr->get_initializer() );
1183 compLitExpr->set_result( nullptr );
1184 compLitExpr->set_initializer( nullptr );
[630a82a]1185 delete compLitExpr;
[d24d4e1]1186 declsToAddBefore.push_back( tempvar ); // add modified temporary to current block
1187 return new VariableExpr( tempvar );
[630a82a]1188 }
[cce9429]1189
1190 void ReturnTypeFixer::fix( std::list< Declaration * > &translationUnit ) {
[0db6fc0]1191 PassVisitor<ReturnTypeFixer> fixer;
[cce9429]1192 acceptAll( translationUnit, fixer );
1193 }
1194
[0db6fc0]1195 void ReturnTypeFixer::postvisit( FunctionDecl * functionDecl ) {
[9facf3b]1196 FunctionType * ftype = functionDecl->get_functionType();
1197 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
[56e49b0]1198 assertf( retVals.size() == 0 || retVals.size() == 1, "Function %s has too many return values: %zu", functionDecl->get_name().c_str(), retVals.size() );
[9facf3b]1199 if ( retVals.size() == 1 ) {
[861799c7]1200 // ensure all function return values have a name - use the name of the function to disambiguate (this also provides a nice bit of help for debugging).
1201 // ensure other return values have a name.
[9facf3b]1202 DeclarationWithType * ret = retVals.front();
1203 if ( ret->get_name() == "" ) {
1204 ret->set_name( toString( "_retval_", CodeGen::genName( functionDecl ) ) );
1205 }
[c6d2e93]1206 ret->get_attributes().push_back( new Attribute( "unused" ) );
[9facf3b]1207 }
1208 }
[cce9429]1209
[0db6fc0]1210 void ReturnTypeFixer::postvisit( FunctionType * ftype ) {
[cce9429]1211 // xxx - need to handle named return values - this information needs to be saved somehow
1212 // so that resolution has access to the names.
1213 // Note that this pass needs to happen early so that other passes which look for tuple types
1214 // find them in all of the right places, including function return types.
1215 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
1216 if ( retVals.size() > 1 ) {
1217 // generate a single return parameter which is the tuple of all of the return values
[e3e16bc]1218 TupleType * tupleType = strict_dynamic_cast< TupleType * >( ResolvExpr::extractResultType( ftype ) );
[cce9429]1219 // ensure return value is not destructed by explicitly creating an empty ListInit node wherein maybeConstruct is false.
[68fe077a]1220 ObjectDecl * newRet = new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, tupleType, new ListInit( std::list<Initializer*>(), noDesignators, false ) );
[cce9429]1221 deleteAll( retVals );
1222 retVals.clear();
1223 retVals.push_back( newRet );
1224 }
1225 }
[fbd7ad6]1226
1227 void ArrayLength::computeLength( std::list< Declaration * > & translationUnit ) {
[0db6fc0]1228 PassVisitor<ArrayLength> len;
[fbd7ad6]1229 acceptAll( translationUnit, len );
1230 }
1231
[0db6fc0]1232 void ArrayLength::previsit( ObjectDecl * objDecl ) {
[0b3b2ae]1233 if ( ArrayType * at = dynamic_cast< ArrayType * >( objDecl->type ) ) {
[30f9072]1234 if ( at->get_dimension() ) return;
[0b3b2ae]1235 if ( ListInit * init = dynamic_cast< ListInit * >( objDecl->init ) ) {
1236 at->set_dimension( new ConstantExpr( Constant::from_ulong( init->initializers.size() ) ) );
[fbd7ad6]1237 }
1238 }
1239 }
[4fbdfae0]1240
[5809461]1241 struct LabelFinder {
1242 std::set< Label > & labels;
1243 LabelFinder( std::set< Label > & labels ) : labels( labels ) {}
1244 void previsit( Statement * stmt ) {
1245 for ( Label & l : stmt->labels ) {
1246 labels.insert( l );
1247 }
1248 }
1249 };
1250
1251 void LabelAddressFixer::premutate( FunctionDecl * funcDecl ) {
1252 GuardValue( labels );
1253 PassVisitor<LabelFinder> finder( labels );
1254 funcDecl->accept( finder );
1255 }
1256
1257 Expression * LabelAddressFixer::postmutate( AddressExpr * addrExpr ) {
1258 // convert &&label into label address
1259 if ( AddressExpr * inner = dynamic_cast< AddressExpr * >( addrExpr->arg ) ) {
1260 if ( NameExpr * nameExpr = dynamic_cast< NameExpr * >( inner->arg ) ) {
1261 if ( labels.count( nameExpr->name ) ) {
1262 Label name = nameExpr->name;
1263 delete addrExpr;
1264 return new LabelAddressExpr( name );
1265 }
1266 }
1267 }
1268 return addrExpr;
1269 }
1270
[4fbdfae0]1271 void FindSpecialDeclarations::previsit( FunctionDecl * funcDecl ) {
1272 if ( ! dereferenceOperator ) {
1273 if ( funcDecl->get_name() == "*?" && funcDecl->get_linkage() == LinkageSpec::Intrinsic ) {
1274 FunctionType * ftype = funcDecl->get_functionType();
1275 if ( ftype->get_parameters().size() == 1 && ftype->get_parameters().front()->get_type()->get_qualifiers() == Type::Qualifiers() ) {
1276 dereferenceOperator = funcDecl;
1277 }
1278 }
1279 }
1280 }
[51b73452]1281} // namespace SymTab
[0dd3a2f]1282
1283// Local Variables: //
1284// tab-width: 4 //
1285// mode: c++ //
1286// compile-command: "make install" //
1287// End: //
Note: See TracBrowser for help on using the repository browser.