source: src/SymTab/Validate.cc@ 7b10ea9

ADT arm-eh ast-experimental cleanup-dtors enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 7b10ea9 was 2bfc6b2, checked in by Rob Schluntz <rschlunt@…>, 7 years ago

Refactor FindSpecialDeclarations and associated special declarations

  • Property mode set to 100644
File size: 52.1 KB
RevLine 
[0dd3a2f]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
[9cb8e88d]7// Validate.cc --
[0dd3a2f]8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 21:50:04 2015
[b128d3e]11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon Aug 28 13:47:23 2017
13// Update Count : 359
[0dd3a2f]14//
15
16// The "validate" phase of translation is used to take a syntax tree and convert it into a standard form that aims to be
17// as regular in structure as possible. Some assumptions can be made regarding the state of the tree after this pass is
18// complete, including:
19//
20// - No nested structure or union definitions; any in the input are "hoisted" to the level of the containing struct or
21// union.
22//
23// - All enumeration constants have type EnumInstType.
24//
[3c13c03]25// - The type "void" never occurs in lists of function parameter or return types. A function
26// taking no arguments has no argument types.
[0dd3a2f]27//
28// - No context instances exist; they are all replaced by the set of declarations signified by the context, instantiated
29// by the particular set of type arguments.
30//
31// - Every declaration is assigned a unique id.
32//
33// - No typedef declarations or instances exist; the actual type is substituted for each instance.
34//
35// - Each type, struct, and union definition is followed by an appropriate assignment operator.
36//
37// - Each use of a struct or union is connected to a complete definition of that struct or union, even if that
38// definition occurs later in the input.
[51b73452]39
[0db6fc0]40#include "Validate.h"
41
[d180746]42#include <cassert> // for assertf, assert
[30f9072]43#include <cstddef> // for size_t
[d180746]44#include <list> // for list
45#include <string> // for string
46#include <utility> // for pair
[30f9072]47
48#include "CodeGen/CodeGenerator.h" // for genName
[9236060]49#include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign
[25fcb84]50#include "ControlStruct/Mutate.h" // for ForExprMutator
[30f9072]51#include "Common/PassVisitor.h" // for PassVisitor, WithDeclsToAdd
[d180746]52#include "Common/ScopedMap.h" // for ScopedMap
[30f9072]53#include "Common/SemanticError.h" // for SemanticError
54#include "Common/UniqueName.h" // for UniqueName
55#include "Common/utility.h" // for operator+, cloneAll, deleteAll
[be9288a]56#include "Concurrency/Keywords.h" // for applyKeywords
[30f9072]57#include "FixFunction.h" // for FixFunction
58#include "Indexer.h" // for Indexer
[8b11840]59#include "InitTweak/GenInit.h" // for fixReturnStatements
[d180746]60#include "InitTweak/InitTweak.h" // for isCtorDtorAssign
61#include "Parser/LinkageSpec.h" // for C
62#include "ResolvExpr/typeops.h" // for typesCompatible
[4934ea3]63#include "ResolvExpr/Resolver.h" // for findSingleExpression
[2b79a70]64#include "ResolvExpr/ResolveTypeof.h" // for resolveTypeof
[be9288a]65#include "SymTab/Autogen.h" // for SizeType
66#include "SynTree/Attribute.h" // for noAttributes, Attribute
[30f9072]67#include "SynTree/Constant.h" // for Constant
[d180746]68#include "SynTree/Declaration.h" // for ObjectDecl, DeclarationWithType
69#include "SynTree/Expression.h" // for CompoundLiteralExpr, Expressio...
70#include "SynTree/Initializer.h" // for ListInit, Initializer
71#include "SynTree/Label.h" // for operator==, Label
72#include "SynTree/Mutator.h" // for Mutator
73#include "SynTree/Type.h" // for Type, TypeInstType, EnumInstType
74#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
75#include "SynTree/Visitor.h" // for Visitor
[fd2debf]76#include "Validate/HandleAttributes.h" // for handleAttributes
[2bfc6b2]77#include "Validate/FindSpecialDecls.h" // for FindSpecialDecls
[d180746]78
79class CompoundStmt;
80class ReturnStmt;
81class SwitchStmt;
[51b73452]82
[b16923d]83#define debugPrint( x ) if ( doDebug ) x
[51b73452]84
85namespace SymTab {
[15f5c5e]86 /// hoists declarations that are difficult to hoist while parsing
87 struct HoistTypeDecls final : public WithDeclsToAdd {
[29f9e20]88 void previsit( SizeofExpr * );
89 void previsit( AlignofExpr * );
90 void previsit( UntypedOffsetofExpr * );
[95d09bdb]91 void previsit( CompoundLiteralExpr * );
[29f9e20]92 void handleType( Type * );
93 };
94
[a12c81f3]95 struct FixQualifiedTypes final : public WithIndexer {
96 Type * postmutate( QualifiedType * );
97 };
98
[a09e45b]99 struct HoistStruct final : public WithDeclsToAdd, public WithGuards {
[82dd287]100 /// Flattens nested struct types
[0dd3a2f]101 static void hoistStruct( std::list< Declaration * > &translationUnit );
[9cb8e88d]102
[a09e45b]103 void previsit( StructDecl * aggregateDecl );
104 void previsit( UnionDecl * aggregateDecl );
[0f40912]105 void previsit( StaticAssertDecl * assertDecl );
[d419d8e]106 void previsit( StructInstType * type );
107 void previsit( UnionInstType * type );
108 void previsit( EnumInstType * type );
[9cb8e88d]109
[a08ba92]110 private:
[0dd3a2f]111 template< typename AggDecl > void handleAggregate( AggDecl *aggregateDecl );
[c8ffe20b]112
[bdad6eb7]113 AggregateDecl * parentAggr = nullptr;
[a08ba92]114 };
[c8ffe20b]115
[cce9429]116 /// Fix return types so that every function returns exactly one value
[d24d4e1]117 struct ReturnTypeFixer {
[cce9429]118 static void fix( std::list< Declaration * > &translationUnit );
119
[0db6fc0]120 void postvisit( FunctionDecl * functionDecl );
121 void postvisit( FunctionType * ftype );
[cce9429]122 };
123
[de91427b]124 /// Replaces enum types by int, and function or array types in function parameter and return lists by appropriate pointers.
[d24d4e1]125 struct EnumAndPointerDecay {
[06edda0]126 void previsit( EnumDecl *aggregateDecl );
127 void previsit( FunctionType *func );
[a08ba92]128 };
[82dd287]129
130 /// Associates forward declarations of aggregates with their definitions
[afcb0a3]131 struct LinkReferenceToTypes final : public WithIndexer, public WithGuards, public WithVisitorRef<LinkReferenceToTypes>, public WithShortCircuiting {
[522363e]132 LinkReferenceToTypes( const Indexer *indexer );
133 void postvisit( TypeInstType *typeInst );
[be9036d]134
[522363e]135 void postvisit( EnumInstType *enumInst );
136 void postvisit( StructInstType *structInst );
137 void postvisit( UnionInstType *unionInst );
138 void postvisit( TraitInstType *traitInst );
[afcb0a3]139 void previsit( QualifiedType * qualType );
140 void postvisit( QualifiedType * qualType );
[be9036d]141
[522363e]142 void postvisit( EnumDecl *enumDecl );
143 void postvisit( StructDecl *structDecl );
144 void postvisit( UnionDecl *unionDecl );
145 void postvisit( TraitDecl * traitDecl );
[be9036d]146
[b95fe40]147 void previsit( StructDecl *structDecl );
148 void previsit( UnionDecl *unionDecl );
149
150 void renameGenericParams( std::list< TypeDecl * > & params );
151
[06edda0]152 private:
[522363e]153 const Indexer *local_indexer;
[9cb8e88d]154
[c0aa336]155 typedef std::map< std::string, std::list< EnumInstType * > > ForwardEnumsType;
[0dd3a2f]156 typedef std::map< std::string, std::list< StructInstType * > > ForwardStructsType;
157 typedef std::map< std::string, std::list< UnionInstType * > > ForwardUnionsType;
[c0aa336]158 ForwardEnumsType forwardEnums;
[0dd3a2f]159 ForwardStructsType forwardStructs;
160 ForwardUnionsType forwardUnions;
[b95fe40]161 /// true if currently in a generic type body, so that type parameter instances can be renamed appropriately
162 bool inGeneric = false;
[a08ba92]163 };
[c8ffe20b]164
[06edda0]165 /// Replaces array and function types in forall lists by appropriate pointer type and assigns each Object and Function declaration a unique ID.
[522363e]166 struct ForallPointerDecay final {
[8b11840]167 void previsit( ObjectDecl * object );
168 void previsit( FunctionDecl * func );
[bbf3fda]169 void previsit( FunctionType * ftype );
[bd7e609]170 void previsit( StructDecl * aggrDecl );
171 void previsit( UnionDecl * aggrDecl );
[a08ba92]172 };
[c8ffe20b]173
[d24d4e1]174 struct ReturnChecker : public WithGuards {
[de91427b]175 /// Checks that return statements return nothing if their return type is void
176 /// and return something if the return type is non-void.
177 static void checkFunctionReturns( std::list< Declaration * > & translationUnit );
178
[0db6fc0]179 void previsit( FunctionDecl * functionDecl );
180 void previsit( ReturnStmt * returnStmt );
[de91427b]181
[0db6fc0]182 typedef std::list< DeclarationWithType * > ReturnVals;
183 ReturnVals returnVals;
[de91427b]184 };
185
[48ed81c]186 struct ReplaceTypedef final : public WithVisitorRef<ReplaceTypedef>, public WithGuards, public WithShortCircuiting, public WithDeclsToAdd {
187 ReplaceTypedef() : scopeLevel( 0 ) {}
[de91427b]188 /// Replaces typedefs by forward declarations
[48ed81c]189 static void replaceTypedef( std::list< Declaration * > &translationUnit );
[85c4ef0]190
[48ed81c]191 void premutate( QualifiedType * );
192 Type * postmutate( QualifiedType * qualType );
[a506df4]193 Type * postmutate( TypeInstType * aggregateUseType );
194 Declaration * postmutate( TypedefDecl * typeDecl );
195 void premutate( TypeDecl * typeDecl );
196 void premutate( FunctionDecl * funcDecl );
197 void premutate( ObjectDecl * objDecl );
198 DeclarationWithType * postmutate( ObjectDecl * objDecl );
199
200 void premutate( CastExpr * castExpr );
201
202 void premutate( CompoundStmt * compoundStmt );
203
204 void premutate( StructDecl * structDecl );
205 void premutate( UnionDecl * unionDecl );
206 void premutate( EnumDecl * enumDecl );
[0bcc2b7]207 void premutate( TraitDecl * );
[a506df4]208
[1f370451]209 void premutate( FunctionType * ftype );
210
[a506df4]211 private:
[45161b4d]212 template<typename AggDecl>
213 void addImplicitTypedef( AggDecl * aggDecl );
[48ed81c]214 template< typename AggDecl >
215 void handleAggregate( AggDecl * aggr );
[70a06f6]216
[46f6134]217 typedef std::unique_ptr<TypedefDecl> TypedefDeclPtr;
[e491159]218 typedef ScopedMap< std::string, std::pair< TypedefDeclPtr, int > > TypedefMap;
[0bcc2b7]219 typedef ScopedMap< std::string, TypeDecl * > TypeDeclMap;
[cc79d97]220 TypedefMap typedefNames;
[679864e1]221 TypeDeclMap typedeclNames;
[cc79d97]222 int scopeLevel;
[1f370451]223 bool inFunctionType = false;
[a08ba92]224 };
[c8ffe20b]225
[69918cea]226 struct EliminateTypedef {
227 /// removes TypedefDecls from the AST
228 static void eliminateTypedef( std::list< Declaration * > &translationUnit );
229
230 template<typename AggDecl>
231 void handleAggregate( AggDecl *aggregateDecl );
232
233 void previsit( StructDecl * aggregateDecl );
234 void previsit( UnionDecl * aggregateDecl );
235 void previsit( CompoundStmt * compoundStmt );
236 };
237
[d24d4e1]238 struct VerifyCtorDtorAssign {
[d1969a6]239 /// ensure that constructors, destructors, and assignment have at least one
240 /// parameter, the first of which must be a pointer, and that ctor/dtors have no
[9cb8e88d]241 /// return values.
242 static void verify( std::list< Declaration * > &translationUnit );
243
[0db6fc0]244 void previsit( FunctionDecl *funcDecl );
[5f98ce5]245 };
[70a06f6]246
[11ab8ea8]247 /// ensure that generic types have the correct number of type arguments
[d24d4e1]248 struct ValidateGenericParameters {
[0db6fc0]249 void previsit( StructInstType * inst );
250 void previsit( UnionInstType * inst );
[5f98ce5]251 };
[70a06f6]252
[2b79a70]253 struct FixObjectType : public WithIndexer {
254 /// resolves typeof type in object, function, and type declarations
255 static void fix( std::list< Declaration * > & translationUnit );
256
257 void previsit( ObjectDecl * );
258 void previsit( FunctionDecl * );
259 void previsit( TypeDecl * );
260 };
261
[4934ea3]262 struct ArrayLength : public WithIndexer {
[fbd7ad6]263 /// for array types without an explicit length, compute the length and store it so that it
264 /// is known to the rest of the phases. For example,
265 /// int x[] = { 1, 2, 3 };
266 /// int y[][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
267 /// here x and y are known at compile-time to have length 3, so change this into
268 /// int x[3] = { 1, 2, 3 };
269 /// int y[3][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
270 static void computeLength( std::list< Declaration * > & translationUnit );
271
[0db6fc0]272 void previsit( ObjectDecl * objDecl );
[4934ea3]273 void previsit( ArrayType * arrayType );
[fbd7ad6]274 };
275
[d24d4e1]276 struct CompoundLiteral final : public WithDeclsToAdd, public WithVisitorRef<CompoundLiteral> {
[68fe077a]277 Type::StorageClasses storageClasses;
[630a82a]278
[d24d4e1]279 void premutate( ObjectDecl *objectDecl );
280 Expression * postmutate( CompoundLiteralExpr *compLitExpr );
[9cb8e88d]281 };
282
[5809461]283 struct LabelAddressFixer final : public WithGuards {
284 std::set< Label > labels;
285
286 void premutate( FunctionDecl * funcDecl );
287 Expression * postmutate( AddressExpr * addrExpr );
288 };
[4fbdfae0]289
[522363e]290 void validate( std::list< Declaration * > &translationUnit, __attribute__((unused)) bool doDebug ) {
[06edda0]291 PassVisitor<EnumAndPointerDecay> epc;
[522363e]292 PassVisitor<LinkReferenceToTypes> lrt( nullptr );
293 PassVisitor<ForallPointerDecay> fpd;
[d24d4e1]294 PassVisitor<CompoundLiteral> compoundliteral;
[0db6fc0]295 PassVisitor<ValidateGenericParameters> genericParams;
[5809461]296 PassVisitor<LabelAddressFixer> labelAddrFixer;
[15f5c5e]297 PassVisitor<HoistTypeDecls> hoistDecls;
[a12c81f3]298 PassVisitor<FixQualifiedTypes> fixQual;
[630a82a]299
[15f5c5e]300 acceptAll( translationUnit, hoistDecls );
[48ed81c]301 ReplaceTypedef::replaceTypedef( translationUnit );
[cce9429]302 ReturnTypeFixer::fix( translationUnit ); // must happen before autogen
[8e0147a]303 acceptAll( translationUnit, epc ); // must happen before VerifyCtorDtorAssign, because void return objects should not exist; before LinkReferenceToTypes because it is an indexer and needs correct types for mangling
[861799c7]304 acceptAll( translationUnit, lrt ); // must happen before autogen, because sized flag needs to propagate to generated functions
[a12c81f3]305 mutateAll( translationUnit, fixQual ); // must happen after LinkReferenceToTypes, because aggregate members are accessed
[29f9e20]306 HoistStruct::hoistStruct( translationUnit ); // must happen after EliminateTypedef, so that aggregate typedefs occur in the correct order
[69918cea]307 EliminateTypedef::eliminateTypedef( translationUnit ); //
[11ab8ea8]308 acceptAll( translationUnit, genericParams ); // check as early as possible - can't happen before LinkReferenceToTypes
[ed8a0d2]309 VerifyCtorDtorAssign::verify( translationUnit ); // must happen before autogen, because autogen examines existing ctor/dtors
[bd7e609]310 ReturnChecker::checkFunctionReturns( translationUnit );
311 InitTweak::fixReturnStatements( translationUnit ); // must happen before autogen
[bcda04c]312 Concurrency::applyKeywords( translationUnit );
[bd7e609]313 acceptAll( translationUnit, fpd ); // must happen before autogenerateRoutines, after Concurrency::applyKeywords because uniqueIds must be set on declaration before resolution
[25fcb84]314 ControlStruct::hoistControlDecls( translationUnit ); // hoist initialization out of for statements; must happen before autogenerateRoutines
[06edda0]315 autogenerateRoutines( translationUnit ); // moved up, used to be below compoundLiteral - currently needs EnumAndPointerDecay
[bcda04c]316 Concurrency::implementMutexFuncs( translationUnit );
317 Concurrency::implementThreadStarter( translationUnit );
[d24d4e1]318 mutateAll( translationUnit, compoundliteral );
[2a6292d]319 ResolvExpr::resolveWithExprs( translationUnit ); // must happen before FixObjectType because user-code is resolved and may contain with variables
[2b79a70]320 FixObjectType::fix( translationUnit );
[fbd7ad6]321 ArrayLength::computeLength( translationUnit );
[2bfc6b2]322 Validate::findSpecialDecls( translationUnit );
[5809461]323 mutateAll( translationUnit, labelAddrFixer );
[fd2debf]324 Validate::handleAttributes( translationUnit );
[a08ba92]325 }
[9cb8e88d]326
[a08ba92]327 void validateType( Type *type, const Indexer *indexer ) {
[06edda0]328 PassVisitor<EnumAndPointerDecay> epc;
[522363e]329 PassVisitor<LinkReferenceToTypes> lrt( indexer );
330 PassVisitor<ForallPointerDecay> fpd;
[bda58ad]331 type->accept( epc );
[cce9429]332 type->accept( lrt );
[06edda0]333 type->accept( fpd );
[a08ba92]334 }
[c8ffe20b]335
[29f9e20]336
[15f5c5e]337 void HoistTypeDecls::handleType( Type * type ) {
[29f9e20]338 // some type declarations are buried in expressions and not easy to hoist during parsing; hoist them here
339 AggregateDecl * aggr = nullptr;
340 if ( StructInstType * inst = dynamic_cast< StructInstType * >( type ) ) {
341 aggr = inst->baseStruct;
342 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( type ) ) {
343 aggr = inst->baseUnion;
344 } else if ( EnumInstType * inst = dynamic_cast< EnumInstType * >( type ) ) {
345 aggr = inst->baseEnum;
346 }
347 if ( aggr && aggr->body ) {
348 declsToAddBefore.push_front( aggr );
349 }
350 }
351
[15f5c5e]352 void HoistTypeDecls::previsit( SizeofExpr * expr ) {
[29f9e20]353 handleType( expr->type );
354 }
355
[15f5c5e]356 void HoistTypeDecls::previsit( AlignofExpr * expr ) {
[29f9e20]357 handleType( expr->type );
358 }
359
[15f5c5e]360 void HoistTypeDecls::previsit( UntypedOffsetofExpr * expr ) {
[29f9e20]361 handleType( expr->type );
362 }
363
[95d09bdb]364 void HoistTypeDecls::previsit( CompoundLiteralExpr * expr ) {
365 handleType( expr->result );
366 }
367
[29f9e20]368
[a12c81f3]369 Type * FixQualifiedTypes::postmutate( QualifiedType * qualType ) {
370 Type * parent = qualType->parent;
371 Type * child = qualType->child;
372 if ( dynamic_cast< GlobalScopeType * >( qualType->parent ) ) {
373 // .T => lookup T at global scope
[062e8df]374 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
[a12c81f3]375 auto td = indexer.globalLookupType( inst->name );
[062e8df]376 if ( ! td ) {
377 SemanticError( qualType->location, toString("Use of undefined global type ", inst->name) );
378 }
[a12c81f3]379 auto base = td->base;
[062e8df]380 assert( base );
[8a3ecb9]381 Type * ret = base->clone();
382 ret->get_qualifiers() = qualType->get_qualifiers();
383 return ret;
[a12c81f3]384 } else {
[062e8df]385 // .T => T is not a type name
386 assertf( false, "unhandled global qualified child type: %s", toCString(child) );
[a12c81f3]387 }
388 } else {
389 // S.T => S must be an aggregate type, find the declaration for T in S.
390 AggregateDecl * aggr = nullptr;
391 if ( StructInstType * inst = dynamic_cast< StructInstType * >( parent ) ) {
392 aggr = inst->baseStruct;
393 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * > ( parent ) ) {
394 aggr = inst->baseUnion;
395 } else {
[062e8df]396 SemanticError( qualType->location, toString("Qualified type requires an aggregate on the left, but has: ", parent) );
[a12c81f3]397 }
398 assert( aggr ); // TODO: need to handle forward declarations
399 for ( Declaration * member : aggr->members ) {
400 if ( StructInstType * inst = dynamic_cast< StructInstType * >( child ) ) {
401 if ( StructDecl * aggr = dynamic_cast< StructDecl * >( member ) ) {
402 if ( aggr->name == inst->name ) {
[8a3ecb9]403 // TODO: is this case, and other non-TypeInstType cases, necessary?
[a12c81f3]404 return new StructInstType( qualType->get_qualifiers(), aggr );
405 }
406 }
407 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( child ) ) {
408 if ( UnionDecl * aggr = dynamic_cast< UnionDecl * > ( member ) ) {
409 if ( aggr->name == inst->name ) {
410 return new UnionInstType( qualType->get_qualifiers(), aggr );
411 }
412 }
413 } else if ( EnumInstType * inst = dynamic_cast< EnumInstType * >( child ) ) {
414 if ( EnumDecl * aggr = dynamic_cast< EnumDecl * > ( member ) ) {
415 if ( aggr->name == inst->name ) {
416 return new EnumInstType( qualType->get_qualifiers(), aggr );
417 }
418 }
419 } else if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
[8a3ecb9]420 // name on the right is a typedef
[a12c81f3]421 if ( NamedTypeDecl * aggr = dynamic_cast< NamedTypeDecl * > ( member ) ) {
422 if ( aggr->name == inst->name ) {
[062e8df]423 assert( aggr->base );
[8a3ecb9]424 Type * ret = aggr->base->clone();
425 ret->get_qualifiers() = qualType->get_qualifiers();
426 return ret;
[a12c81f3]427 }
428 }
429 } else {
430 // S.T - S is not an aggregate => error
431 assertf( false, "unhandled qualified child type: %s", toCString(qualType) );
432 }
433 }
434 // failed to find a satisfying definition of type
[062e8df]435 SemanticError( qualType->location, toString("Undefined type in qualified type: ", qualType) );
[a12c81f3]436 }
437
438 // ... may want to link canonical SUE definition to each forward decl so that it becomes easier to lookup?
439 }
440
441
[a08ba92]442 void HoistStruct::hoistStruct( std::list< Declaration * > &translationUnit ) {
[a09e45b]443 PassVisitor<HoistStruct> hoister;
444 acceptAll( translationUnit, hoister );
[a08ba92]445 }
[c8ffe20b]446
[0f40912]447 bool shouldHoist( Declaration *decl ) {
448 return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl ) || dynamic_cast< StaticAssertDecl * >( decl );
[a08ba92]449 }
[c0aa336]450
[d419d8e]451 namespace {
452 void qualifiedName( AggregateDecl * aggr, std::ostringstream & ss ) {
453 if ( aggr->parent ) qualifiedName( aggr->parent, ss );
454 ss << "__" << aggr->name;
455 }
456
457 // mangle nested type names using entire parent chain
458 std::string qualifiedName( AggregateDecl * aggr ) {
459 std::ostringstream ss;
460 qualifiedName( aggr, ss );
461 return ss.str();
462 }
463 }
464
[a08ba92]465 template< typename AggDecl >
466 void HoistStruct::handleAggregate( AggDecl *aggregateDecl ) {
[bdad6eb7]467 if ( parentAggr ) {
[d419d8e]468 aggregateDecl->parent = parentAggr;
469 aggregateDecl->name = qualifiedName( aggregateDecl );
[0dd3a2f]470 // Add elements in stack order corresponding to nesting structure.
[a09e45b]471 declsToAddBefore.push_front( aggregateDecl );
[0dd3a2f]472 } else {
[bdad6eb7]473 GuardValue( parentAggr );
474 parentAggr = aggregateDecl;
[0dd3a2f]475 } // if
476 // Always remove the hoisted aggregate from the inner structure.
[0f40912]477 GuardAction( [aggregateDecl]() { filter( aggregateDecl->members, shouldHoist, false ); } );
[a08ba92]478 }
[c8ffe20b]479
[0f40912]480 void HoistStruct::previsit( StaticAssertDecl * assertDecl ) {
481 if ( parentAggr ) {
482 declsToAddBefore.push_back( assertDecl );
483 }
484 }
485
[a09e45b]486 void HoistStruct::previsit( StructDecl * aggregateDecl ) {
[0dd3a2f]487 handleAggregate( aggregateDecl );
[a08ba92]488 }
[c8ffe20b]489
[a09e45b]490 void HoistStruct::previsit( UnionDecl * aggregateDecl ) {
[0dd3a2f]491 handleAggregate( aggregateDecl );
[a08ba92]492 }
[c8ffe20b]493
[d419d8e]494 void HoistStruct::previsit( StructInstType * type ) {
495 // need to reset type name after expanding to qualified name
496 assert( type->baseStruct );
497 type->name = type->baseStruct->name;
498 }
499
500 void HoistStruct::previsit( UnionInstType * type ) {
501 assert( type->baseUnion );
502 type->name = type->baseUnion->name;
503 }
504
505 void HoistStruct::previsit( EnumInstType * type ) {
506 assert( type->baseEnum );
507 type->name = type->baseEnum->name;
508 }
509
510
[69918cea]511 bool isTypedef( Declaration *decl ) {
512 return dynamic_cast< TypedefDecl * >( decl );
513 }
514
515 void EliminateTypedef::eliminateTypedef( std::list< Declaration * > &translationUnit ) {
516 PassVisitor<EliminateTypedef> eliminator;
517 acceptAll( translationUnit, eliminator );
518 filter( translationUnit, isTypedef, true );
519 }
520
521 template< typename AggDecl >
522 void EliminateTypedef::handleAggregate( AggDecl *aggregateDecl ) {
523 filter( aggregateDecl->members, isTypedef, true );
524 }
525
526 void EliminateTypedef::previsit( StructDecl * aggregateDecl ) {
527 handleAggregate( aggregateDecl );
528 }
529
530 void EliminateTypedef::previsit( UnionDecl * aggregateDecl ) {
531 handleAggregate( aggregateDecl );
532 }
533
534 void EliminateTypedef::previsit( CompoundStmt * compoundStmt ) {
535 // remove and delete decl stmts
536 filter( compoundStmt->kids, [](Statement * stmt) {
537 if ( DeclStmt *declStmt = dynamic_cast< DeclStmt * >( stmt ) ) {
538 if ( dynamic_cast< TypedefDecl * >( declStmt->decl ) ) {
539 return true;
540 } // if
541 } // if
542 return false;
543 }, true);
544 }
545
[06edda0]546 void EnumAndPointerDecay::previsit( EnumDecl *enumDecl ) {
[0dd3a2f]547 // Set the type of each member of the enumeration to be EnumConstant
[0b3b2ae]548 for ( std::list< Declaration * >::iterator i = enumDecl->members.begin(); i != enumDecl->members.end(); ++i ) {
[f6d7e0f]549 ObjectDecl * obj = dynamic_cast< ObjectDecl * >( *i );
[0dd3a2f]550 assert( obj );
[0b3b2ae]551 obj->set_type( new EnumInstType( Type::Qualifiers( Type::Const ), enumDecl->name ) );
[0dd3a2f]552 } // for
[a08ba92]553 }
[51b73452]554
[a08ba92]555 namespace {
[83de11e]556 template< typename DWTList >
[4bda2cf]557 void fixFunctionList( DWTList & dwts, bool isVarArgs, FunctionType * func ) {
558 auto nvals = dwts.size();
559 bool containsVoid = false;
560 for ( auto & dwt : dwts ) {
561 // fix each DWT and record whether a void was found
562 containsVoid |= fixFunction( dwt );
563 }
564
565 // the only case in which "void" is valid is where it is the only one in the list
566 if ( containsVoid && ( nvals > 1 || isVarArgs ) ) {
[a16764a6]567 SemanticError( func, "invalid type void in function type " );
[4bda2cf]568 }
569
570 // one void is the only thing in the list; remove it.
571 if ( containsVoid ) {
572 delete dwts.front();
573 dwts.clear();
574 }
[0dd3a2f]575 }
[a08ba92]576 }
[c8ffe20b]577
[06edda0]578 void EnumAndPointerDecay::previsit( FunctionType *func ) {
[0dd3a2f]579 // Fix up parameters and return types
[4bda2cf]580 fixFunctionList( func->parameters, func->isVarArgs, func );
581 fixFunctionList( func->returnVals, false, func );
[a08ba92]582 }
[c8ffe20b]583
[522363e]584 LinkReferenceToTypes::LinkReferenceToTypes( const Indexer *other_indexer ) {
[0dd3a2f]585 if ( other_indexer ) {
[522363e]586 local_indexer = other_indexer;
[0dd3a2f]587 } else {
[522363e]588 local_indexer = &indexer;
[0dd3a2f]589 } // if
[a08ba92]590 }
[c8ffe20b]591
[522363e]592 void LinkReferenceToTypes::postvisit( EnumInstType *enumInst ) {
[eaa6430]593 EnumDecl *st = local_indexer->lookupEnum( enumInst->name );
[c0aa336]594 // it's not a semantic error if the enum is not found, just an implicit forward declaration
595 if ( st ) {
[eaa6430]596 enumInst->baseEnum = st;
[c0aa336]597 } // if
[29f9e20]598 if ( ! st || ! st->body ) {
[c0aa336]599 // use of forward declaration
[eaa6430]600 forwardEnums[ enumInst->name ].push_back( enumInst );
[c0aa336]601 } // if
602 }
603
[48fa824]604 void checkGenericParameters( ReferenceToType * inst ) {
605 for ( Expression * param : inst->parameters ) {
606 if ( ! dynamic_cast< TypeExpr * >( param ) ) {
[a16764a6]607 SemanticError( inst, "Expression parameters for generic types are currently unsupported: " );
[48fa824]608 }
609 }
610 }
611
[522363e]612 void LinkReferenceToTypes::postvisit( StructInstType *structInst ) {
[eaa6430]613 StructDecl *st = local_indexer->lookupStruct( structInst->name );
[0dd3a2f]614 // it's not a semantic error if the struct is not found, just an implicit forward declaration
615 if ( st ) {
[eaa6430]616 structInst->baseStruct = st;
[0dd3a2f]617 } // if
[29f9e20]618 if ( ! st || ! st->body ) {
[0dd3a2f]619 // use of forward declaration
[eaa6430]620 forwardStructs[ structInst->name ].push_back( structInst );
[0dd3a2f]621 } // if
[48fa824]622 checkGenericParameters( structInst );
[a08ba92]623 }
[c8ffe20b]624
[522363e]625 void LinkReferenceToTypes::postvisit( UnionInstType *unionInst ) {
[eaa6430]626 UnionDecl *un = local_indexer->lookupUnion( unionInst->name );
[0dd3a2f]627 // it's not a semantic error if the union is not found, just an implicit forward declaration
628 if ( un ) {
[eaa6430]629 unionInst->baseUnion = un;
[0dd3a2f]630 } // if
[29f9e20]631 if ( ! un || ! un->body ) {
[0dd3a2f]632 // use of forward declaration
[eaa6430]633 forwardUnions[ unionInst->name ].push_back( unionInst );
[0dd3a2f]634 } // if
[48fa824]635 checkGenericParameters( unionInst );
[a08ba92]636 }
[c8ffe20b]637
[afcb0a3]638 void LinkReferenceToTypes::previsit( QualifiedType * ) {
639 visit_children = false;
640 }
641
642 void LinkReferenceToTypes::postvisit( QualifiedType * qualType ) {
643 // linking only makes sense for the 'oldest ancestor' of the qualified type
644 qualType->parent->accept( *visitor );
645 }
646
[be9036d]647 template< typename Decl >
648 void normalizeAssertions( std::list< Decl * > & assertions ) {
649 // ensure no duplicate trait members after the clone
650 auto pred = [](Decl * d1, Decl * d2) {
651 // only care if they're equal
652 DeclarationWithType * dwt1 = dynamic_cast<DeclarationWithType *>( d1 );
653 DeclarationWithType * dwt2 = dynamic_cast<DeclarationWithType *>( d2 );
654 if ( dwt1 && dwt2 ) {
[eaa6430]655 if ( dwt1->name == dwt2->name && ResolvExpr::typesCompatible( dwt1->get_type(), dwt2->get_type(), SymTab::Indexer() ) ) {
[be9036d]656 // std::cerr << "=========== equal:" << std::endl;
657 // std::cerr << "d1: " << d1 << std::endl;
658 // std::cerr << "d2: " << d2 << std::endl;
659 return false;
660 }
[2c57025]661 }
[be9036d]662 return d1 < d2;
663 };
664 std::set<Decl *, decltype(pred)> unique_members( assertions.begin(), assertions.end(), pred );
665 // if ( unique_members.size() != assertions.size() ) {
666 // std::cerr << "============different" << std::endl;
667 // std::cerr << unique_members.size() << " " << assertions.size() << std::endl;
668 // }
669
670 std::list< Decl * > order;
671 order.splice( order.end(), assertions );
672 std::copy_if( order.begin(), order.end(), back_inserter( assertions ), [&]( Decl * decl ) {
673 return unique_members.count( decl );
674 });
675 }
676
677 // expand assertions from trait instance, performing the appropriate type variable substitutions
678 template< typename Iterator >
679 void expandAssertions( TraitInstType * inst, Iterator out ) {
[eaa6430]680 assertf( inst->baseTrait, "Trait instance not linked to base trait: %s", toCString( inst ) );
[be9036d]681 std::list< DeclarationWithType * > asserts;
682 for ( Declaration * decl : inst->baseTrait->members ) {
[e3e16bc]683 asserts.push_back( strict_dynamic_cast<DeclarationWithType *>( decl->clone() ) );
[2c57025]684 }
[be9036d]685 // substitute trait decl parameters for instance parameters
686 applySubstitution( inst->baseTrait->parameters.begin(), inst->baseTrait->parameters.end(), inst->parameters.begin(), asserts.begin(), asserts.end(), out );
687 }
688
[522363e]689 void LinkReferenceToTypes::postvisit( TraitDecl * traitDecl ) {
[be9036d]690 if ( traitDecl->name == "sized" ) {
691 // "sized" is a special trait - flick the sized status on for the type variable
692 assertf( traitDecl->parameters.size() == 1, "Built-in trait 'sized' has incorrect number of parameters: %zd", traitDecl->parameters.size() );
693 TypeDecl * td = traitDecl->parameters.front();
694 td->set_sized( true );
695 }
696
697 // move assertions from type parameters into the body of the trait
698 for ( TypeDecl * td : traitDecl->parameters ) {
699 for ( DeclarationWithType * assert : td->assertions ) {
700 if ( TraitInstType * inst = dynamic_cast< TraitInstType * >( assert->get_type() ) ) {
701 expandAssertions( inst, back_inserter( traitDecl->members ) );
702 } else {
703 traitDecl->members.push_back( assert->clone() );
704 }
705 }
706 deleteAll( td->assertions );
707 td->assertions.clear();
708 } // for
709 }
[2ae171d8]710
[522363e]711 void LinkReferenceToTypes::postvisit( TraitInstType * traitInst ) {
[2ae171d8]712 // handle other traits
[522363e]713 TraitDecl *traitDecl = local_indexer->lookupTrait( traitInst->name );
[4a9ccc3]714 if ( ! traitDecl ) {
[a16764a6]715 SemanticError( traitInst->location, "use of undeclared trait " + traitInst->name );
[17cd4eb]716 } // if
[0b3b2ae]717 if ( traitDecl->parameters.size() != traitInst->parameters.size() ) {
[a16764a6]718 SemanticError( traitInst, "incorrect number of trait parameters: " );
[4a9ccc3]719 } // if
[be9036d]720 traitInst->baseTrait = traitDecl;
[79970ed]721
[4a9ccc3]722 // need to carry over the 'sized' status of each decl in the instance
[eaa6430]723 for ( auto p : group_iterate( traitDecl->parameters, traitInst->parameters ) ) {
[5c4d27f]724 TypeExpr * expr = dynamic_cast< TypeExpr * >( std::get<1>(p) );
725 if ( ! expr ) {
[a16764a6]726 SemanticError( std::get<1>(p), "Expression parameters for trait instances are currently unsupported: " );
[5c4d27f]727 }
[4a9ccc3]728 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( expr->get_type() ) ) {
729 TypeDecl * formalDecl = std::get<0>(p);
[eaa6430]730 TypeDecl * instDecl = inst->baseType;
[4a9ccc3]731 if ( formalDecl->get_sized() ) instDecl->set_sized( true );
732 }
733 }
[be9036d]734 // normalizeAssertions( traitInst->members );
[a08ba92]735 }
[c8ffe20b]736
[522363e]737 void LinkReferenceToTypes::postvisit( EnumDecl *enumDecl ) {
[c0aa336]738 // visit enum members first so that the types of self-referencing members are updated properly
[b16923d]739 if ( enumDecl->body ) {
[eaa6430]740 ForwardEnumsType::iterator fwds = forwardEnums.find( enumDecl->name );
[c0aa336]741 if ( fwds != forwardEnums.end() ) {
742 for ( std::list< EnumInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
[eaa6430]743 (*inst)->baseEnum = enumDecl;
[c0aa336]744 } // for
745 forwardEnums.erase( fwds );
746 } // if
[ac3362c]747
748 for ( Declaration * member : enumDecl->members ) {
749 ObjectDecl * field = strict_dynamic_cast<ObjectDecl *>( member );
750 if ( field->init ) {
751 // need to resolve enumerator initializers early so that other passes that determine if an expression is constexpr have the appropriate information.
752 SingleInit * init = strict_dynamic_cast<SingleInit *>( field->init );
753 ResolvExpr::findSingleExpression( init->value, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), indexer );
754 }
755 }
[c0aa336]756 } // if
757 }
758
[b95fe40]759 void LinkReferenceToTypes::renameGenericParams( std::list< TypeDecl * > & params ) {
760 // rename generic type parameters uniquely so that they do not conflict with user-defined function forall parameters, e.g.
761 // forall(otype T)
762 // struct Box {
763 // T x;
764 // };
765 // forall(otype T)
766 // void f(Box(T) b) {
767 // ...
768 // }
769 // The T in Box and the T in f are different, so internally the naming must reflect that.
770 GuardValue( inGeneric );
771 inGeneric = ! params.empty();
772 for ( TypeDecl * td : params ) {
773 td->name = "__" + td->name + "_generic_";
774 }
775 }
776
777 void LinkReferenceToTypes::previsit( StructDecl * structDecl ) {
778 renameGenericParams( structDecl->parameters );
779 }
780
781 void LinkReferenceToTypes::previsit( UnionDecl * unionDecl ) {
782 renameGenericParams( unionDecl->parameters );
783 }
784
[522363e]785 void LinkReferenceToTypes::postvisit( StructDecl *structDecl ) {
[677c1be]786 // visit struct members first so that the types of self-referencing members are updated properly
[522363e]787 // xxx - need to ensure that type parameters match up between forward declarations and definition (most importantly, number of type parameters and their defaults)
[b16923d]788 if ( structDecl->body ) {
[eaa6430]789 ForwardStructsType::iterator fwds = forwardStructs.find( structDecl->name );
[0dd3a2f]790 if ( fwds != forwardStructs.end() ) {
791 for ( std::list< StructInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
[eaa6430]792 (*inst)->baseStruct = structDecl;
[0dd3a2f]793 } // for
794 forwardStructs.erase( fwds );
795 } // if
796 } // if
[a08ba92]797 }
[c8ffe20b]798
[522363e]799 void LinkReferenceToTypes::postvisit( UnionDecl *unionDecl ) {
[b16923d]800 if ( unionDecl->body ) {
[eaa6430]801 ForwardUnionsType::iterator fwds = forwardUnions.find( unionDecl->name );
[0dd3a2f]802 if ( fwds != forwardUnions.end() ) {
803 for ( std::list< UnionInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
[eaa6430]804 (*inst)->baseUnion = unionDecl;
[0dd3a2f]805 } // for
806 forwardUnions.erase( fwds );
807 } // if
808 } // if
[a08ba92]809 }
[c8ffe20b]810
[522363e]811 void LinkReferenceToTypes::postvisit( TypeInstType *typeInst ) {
[b95fe40]812 // ensure generic parameter instances are renamed like the base type
813 if ( inGeneric && typeInst->baseType ) typeInst->name = typeInst->baseType->name;
[eaa6430]814 if ( NamedTypeDecl *namedTypeDecl = local_indexer->lookupType( typeInst->name ) ) {
[0dd3a2f]815 if ( TypeDecl *typeDecl = dynamic_cast< TypeDecl * >( namedTypeDecl ) ) {
816 typeInst->set_isFtype( typeDecl->get_kind() == TypeDecl::Ftype );
817 } // if
818 } // if
[a08ba92]819 }
[c8ffe20b]820
[4a9ccc3]821 /// Fix up assertions - flattens assertion lists, removing all trait instances
[8b11840]822 void forallFixer( std::list< TypeDecl * > & forall, BaseSyntaxNode * node ) {
823 for ( TypeDecl * type : forall ) {
[be9036d]824 std::list< DeclarationWithType * > asserts;
825 asserts.splice( asserts.end(), type->assertions );
826 // expand trait instances into their members
827 for ( DeclarationWithType * assertion : asserts ) {
828 if ( TraitInstType *traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) {
829 // expand trait instance into all of its members
830 expandAssertions( traitInst, back_inserter( type->assertions ) );
831 delete traitInst;
832 } else {
833 // pass other assertions through
834 type->assertions.push_back( assertion );
835 } // if
836 } // for
837 // apply FixFunction to every assertion to check for invalid void type
838 for ( DeclarationWithType *& assertion : type->assertions ) {
[4bda2cf]839 bool isVoid = fixFunction( assertion );
840 if ( isVoid ) {
[a16764a6]841 SemanticError( node, "invalid type void in assertion of function " );
[be9036d]842 } // if
843 } // for
844 // normalizeAssertions( type->assertions );
[0dd3a2f]845 } // for
[a08ba92]846 }
[c8ffe20b]847
[522363e]848 void ForallPointerDecay::previsit( ObjectDecl *object ) {
[3d2b7bc]849 // ensure that operator names only apply to functions or function pointers
850 if ( CodeGen::isOperator( object->name ) && ! dynamic_cast< FunctionType * >( object->type->stripDeclarator() ) ) {
851 SemanticError( object->location, toCString( "operator ", object->name.c_str(), " is not a function or function pointer." ) );
852 }
[0dd3a2f]853 object->fixUniqueId();
[a08ba92]854 }
[c8ffe20b]855
[522363e]856 void ForallPointerDecay::previsit( FunctionDecl *func ) {
[0dd3a2f]857 func->fixUniqueId();
[a08ba92]858 }
[c8ffe20b]859
[bbf3fda]860 void ForallPointerDecay::previsit( FunctionType * ftype ) {
861 forallFixer( ftype->forall, ftype );
862 }
863
[bd7e609]864 void ForallPointerDecay::previsit( StructDecl * aggrDecl ) {
865 forallFixer( aggrDecl->parameters, aggrDecl );
866 }
867
868 void ForallPointerDecay::previsit( UnionDecl * aggrDecl ) {
869 forallFixer( aggrDecl->parameters, aggrDecl );
870 }
871
[de91427b]872 void ReturnChecker::checkFunctionReturns( std::list< Declaration * > & translationUnit ) {
[0db6fc0]873 PassVisitor<ReturnChecker> checker;
[de91427b]874 acceptAll( translationUnit, checker );
875 }
876
[0db6fc0]877 void ReturnChecker::previsit( FunctionDecl * functionDecl ) {
[0508ab3]878 GuardValue( returnVals );
[de91427b]879 returnVals = functionDecl->get_functionType()->get_returnVals();
880 }
881
[0db6fc0]882 void ReturnChecker::previsit( ReturnStmt * returnStmt ) {
[74d1804]883 // Previously this also checked for the existence of an expr paired with no return values on
884 // the function return type. This is incorrect, since you can have an expression attached to
885 // a return statement in a void-returning function in C. The expression is treated as if it
886 // were cast to void.
[30f9072]887 if ( ! returnStmt->get_expr() && returnVals.size() != 0 ) {
[a16764a6]888 SemanticError( returnStmt, "Non-void function returns no values: " );
[de91427b]889 }
890 }
891
892
[48ed81c]893 void ReplaceTypedef::replaceTypedef( std::list< Declaration * > &translationUnit ) {
894 PassVisitor<ReplaceTypedef> eliminator;
[0dd3a2f]895 mutateAll( translationUnit, eliminator );
[a506df4]896 if ( eliminator.pass.typedefNames.count( "size_t" ) ) {
[5f98ce5]897 // grab and remember declaration of size_t
[2bfc6b2]898 Validate::SizeType = eliminator.pass.typedefNames["size_t"].first->base->clone();
[5f98ce5]899 } else {
[40e636a]900 // xxx - missing global typedef for size_t - default to long unsigned int, even though that may be wrong
901 // eventually should have a warning for this case.
[2bfc6b2]902 Validate::SizeType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
[5f98ce5]903 }
[a08ba92]904 }
[c8ffe20b]905
[48ed81c]906 void ReplaceTypedef::premutate( QualifiedType * ) {
907 visit_children = false;
908 }
909
910 Type * ReplaceTypedef::postmutate( QualifiedType * qualType ) {
911 // replacing typedefs only makes sense for the 'oldest ancestor' of the qualified type
912 qualType->parent = qualType->parent->acceptMutator( *visitor );
913 return qualType;
914 }
915
916 Type * ReplaceTypedef::postmutate( TypeInstType * typeInst ) {
[9cb8e88d]917 // instances of typedef types will come here. If it is an instance
[cc79d97]918 // of a typdef type, link the instance to its actual type.
[0b3b2ae]919 TypedefMap::const_iterator def = typedefNames.find( typeInst->name );
[0dd3a2f]920 if ( def != typedefNames.end() ) {
[f53836b]921 Type *ret = def->second.first->base->clone();
[e82ef13]922 ret->location = typeInst->location;
[6f95000]923 ret->get_qualifiers() |= typeInst->get_qualifiers();
[1f370451]924 // attributes are not carried over from typedef to function parameters/return values
925 if ( ! inFunctionType ) {
926 ret->attributes.splice( ret->attributes.end(), typeInst->attributes );
927 } else {
928 deleteAll( ret->attributes );
929 ret->attributes.clear();
930 }
[0215a76f]931 // place instance parameters on the typedef'd type
[f53836b]932 if ( ! typeInst->parameters.empty() ) {
[0215a76f]933 ReferenceToType *rtt = dynamic_cast<ReferenceToType*>(ret);
934 if ( ! rtt ) {
[a16764a6]935 SemanticError( typeInst->location, "Cannot apply type parameters to base type of " + typeInst->name );
[0215a76f]936 }
[0b3b2ae]937 rtt->parameters.clear();
[f53836b]938 cloneAll( typeInst->parameters, rtt->parameters );
939 mutateAll( rtt->parameters, *visitor ); // recursively fix typedefs on parameters
[1db21619]940 } // if
[0dd3a2f]941 delete typeInst;
942 return ret;
[679864e1]943 } else {
[0b3b2ae]944 TypeDeclMap::const_iterator base = typedeclNames.find( typeInst->name );
[062e8df]945 if ( base == typedeclNames.end() ) {
946 SemanticError( typeInst->location, toString("Use of undefined type ", typeInst->name) );
947 }
[1e8b02f5]948 typeInst->set_baseType( base->second );
[062e8df]949 return typeInst;
[0dd3a2f]950 } // if
[062e8df]951 assert( false );
[a08ba92]952 }
[c8ffe20b]953
[f53836b]954 struct VarLenChecker : WithShortCircuiting {
955 void previsit( FunctionType * ) { visit_children = false; }
956 void previsit( ArrayType * at ) {
957 isVarLen |= at->isVarLen;
958 }
959 bool isVarLen = false;
960 };
961
962 bool isVariableLength( Type * t ) {
963 PassVisitor<VarLenChecker> varLenChecker;
964 maybeAccept( t, varLenChecker );
965 return varLenChecker.pass.isVarLen;
966 }
967
[48ed81c]968 Declaration * ReplaceTypedef::postmutate( TypedefDecl * tyDecl ) {
[0b3b2ae]969 if ( typedefNames.count( tyDecl->name ) == 1 && typedefNames[ tyDecl->name ].second == scopeLevel ) {
[9cb8e88d]970 // typedef to the same name from the same scope
[cc79d97]971 // must be from the same type
972
[0b3b2ae]973 Type * t1 = tyDecl->base;
974 Type * t2 = typedefNames[ tyDecl->name ].first->base;
[1cbca6e]975 if ( ! ResolvExpr::typesCompatible( t1, t2, Indexer() ) ) {
[a16764a6]976 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
[f53836b]977 }
[4b97770]978 // Cannot redefine VLA typedefs. Note: this is slightly incorrect, because our notion of VLAs
979 // at this point in the translator is imprecise. In particular, this will disallow redefining typedefs
980 // with arrays whose dimension is an enumerator or a cast of a constant/enumerator. The effort required
981 // to fix this corner case likely outweighs the utility of allowing it.
[f53836b]982 if ( isVariableLength( t1 ) || isVariableLength( t2 ) ) {
[a16764a6]983 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
[85c4ef0]984 }
[cc79d97]985 } else {
[0b3b2ae]986 typedefNames[ tyDecl->name ] = std::make_pair( TypedefDeclPtr( tyDecl ), scopeLevel );
[cc79d97]987 } // if
988
[0dd3a2f]989 // When a typedef is a forward declaration:
990 // typedef struct screen SCREEN;
991 // the declaration portion must be retained:
992 // struct screen;
993 // because the expansion of the typedef is:
994 // void rtn( SCREEN *p ) => void rtn( struct screen *p )
995 // hence the type-name "screen" must be defined.
996 // Note, qualifiers on the typedef are superfluous for the forward declaration.
[6f95000]997
[0b3b2ae]998 Type *designatorType = tyDecl->base->stripDeclarator();
[6f95000]999 if ( StructInstType *aggDecl = dynamic_cast< StructInstType * >( designatorType ) ) {
[48ed81c]1000 declsToAddBefore.push_back( new StructDecl( aggDecl->name, DeclarationNode::Struct, noAttributes, tyDecl->linkage ) );
[6f95000]1001 } else if ( UnionInstType *aggDecl = dynamic_cast< UnionInstType * >( designatorType ) ) {
[48ed81c]1002 declsToAddBefore.push_back( new UnionDecl( aggDecl->name, noAttributes, tyDecl->linkage ) );
[6f95000]1003 } else if ( EnumInstType *enumDecl = dynamic_cast< EnumInstType * >( designatorType ) ) {
[48ed81c]1004 declsToAddBefore.push_back( new EnumDecl( enumDecl->name, noAttributes, tyDecl->linkage ) );
[0dd3a2f]1005 } // if
[48ed81c]1006 return tyDecl->clone();
[a08ba92]1007 }
[c8ffe20b]1008
[48ed81c]1009 void ReplaceTypedef::premutate( TypeDecl * typeDecl ) {
[0b3b2ae]1010 TypedefMap::iterator i = typedefNames.find( typeDecl->name );
[0dd3a2f]1011 if ( i != typedefNames.end() ) {
1012 typedefNames.erase( i ) ;
1013 } // if
[679864e1]1014
[0bcc2b7]1015 typedeclNames.insert( typeDecl->name, typeDecl );
[a08ba92]1016 }
[c8ffe20b]1017
[48ed81c]1018 void ReplaceTypedef::premutate( FunctionDecl * ) {
[a506df4]1019 GuardScope( typedefNames );
[0bcc2b7]1020 GuardScope( typedeclNames );
[a08ba92]1021 }
[c8ffe20b]1022
[48ed81c]1023 void ReplaceTypedef::premutate( ObjectDecl * ) {
[a506df4]1024 GuardScope( typedefNames );
[0bcc2b7]1025 GuardScope( typedeclNames );
[a506df4]1026 }
[dd020c0]1027
[48ed81c]1028 DeclarationWithType * ReplaceTypedef::postmutate( ObjectDecl * objDecl ) {
[0b3b2ae]1029 if ( FunctionType *funtype = dynamic_cast<FunctionType *>( objDecl->type ) ) { // function type?
[02e5ab6]1030 // replace the current object declaration with a function declaration
[0b3b2ae]1031 FunctionDecl * newDecl = new FunctionDecl( objDecl->name, objDecl->get_storageClasses(), objDecl->linkage, funtype, 0, objDecl->attributes, objDecl->get_funcSpec() );
1032 objDecl->attributes.clear();
[dbe8f244]1033 objDecl->set_type( nullptr );
[0a86a30]1034 delete objDecl;
1035 return newDecl;
[1db21619]1036 } // if
[a506df4]1037 return objDecl;
[a08ba92]1038 }
[c8ffe20b]1039
[48ed81c]1040 void ReplaceTypedef::premutate( CastExpr * ) {
[a506df4]1041 GuardScope( typedefNames );
[0bcc2b7]1042 GuardScope( typedeclNames );
[a08ba92]1043 }
[c8ffe20b]1044
[48ed81c]1045 void ReplaceTypedef::premutate( CompoundStmt * ) {
[a506df4]1046 GuardScope( typedefNames );
[0bcc2b7]1047 GuardScope( typedeclNames );
[cc79d97]1048 scopeLevel += 1;
[a506df4]1049 GuardAction( [this](){ scopeLevel -= 1; } );
1050 }
1051
[45161b4d]1052 template<typename AggDecl>
[48ed81c]1053 void ReplaceTypedef::addImplicitTypedef( AggDecl * aggDecl ) {
[45161b4d]1054 if ( typedefNames.count( aggDecl->get_name() ) == 0 ) {
[62e5546]1055 Type *type = nullptr;
[45161b4d]1056 if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( aggDecl ) ) {
1057 type = new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() );
1058 } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( aggDecl ) ) {
1059 type = new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() );
1060 } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( aggDecl ) ) {
1061 type = new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() );
1062 } // if
[0b0f1dd]1063 TypedefDeclPtr tyDecl( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type, aggDecl->get_linkage() ) );
[46f6134]1064 typedefNames[ aggDecl->get_name() ] = std::make_pair( std::move( tyDecl ), scopeLevel );
[48ed81c]1065 // add the implicit typedef to the AST
1066 declsToAddBefore.push_back( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type->clone(), aggDecl->get_linkage() ) );
[45161b4d]1067 } // if
1068 }
[4e06c1e]1069
[48ed81c]1070 template< typename AggDecl >
1071 void ReplaceTypedef::handleAggregate( AggDecl * aggr ) {
1072 SemanticErrorException errors;
[a506df4]1073
[48ed81c]1074 ValueGuard< std::list<Declaration * > > oldBeforeDecls( declsToAddBefore );
1075 ValueGuard< std::list<Declaration * > > oldAfterDecls ( declsToAddAfter );
1076 declsToAddBefore.clear();
1077 declsToAddAfter.clear();
[a506df4]1078
[48ed81c]1079 GuardScope( typedefNames );
[0bcc2b7]1080 GuardScope( typedeclNames );
[48ed81c]1081 mutateAll( aggr->parameters, *visitor );
[85c4ef0]1082
[48ed81c]1083 // unroll mutateAll for aggr->members so that implicit typedefs for nested types are added to the aggregate body.
1084 for ( std::list< Declaration * >::iterator i = aggr->members.begin(); i != aggr->members.end(); ++i ) {
1085 if ( !declsToAddAfter.empty() ) { aggr->members.splice( i, declsToAddAfter ); }
[a506df4]1086
[48ed81c]1087 try {
1088 *i = maybeMutate( *i, *visitor );
1089 } catch ( SemanticErrorException &e ) {
1090 errors.append( e );
1091 }
1092
1093 if ( !declsToAddBefore.empty() ) { aggr->members.splice( i, declsToAddBefore ); }
1094 }
1095
1096 if ( !declsToAddAfter.empty() ) { aggr->members.splice( aggr->members.end(), declsToAddAfter ); }
1097 if ( !errors.isEmpty() ) { throw errors; }
[85c4ef0]1098 }
1099
[48ed81c]1100 void ReplaceTypedef::premutate( StructDecl * structDecl ) {
1101 visit_children = false;
1102 addImplicitTypedef( structDecl );
1103 handleAggregate( structDecl );
[a506df4]1104 }
1105
[48ed81c]1106 void ReplaceTypedef::premutate( UnionDecl * unionDecl ) {
1107 visit_children = false;
1108 addImplicitTypedef( unionDecl );
1109 handleAggregate( unionDecl );
[85c4ef0]1110 }
1111
[48ed81c]1112 void ReplaceTypedef::premutate( EnumDecl * enumDecl ) {
1113 addImplicitTypedef( enumDecl );
[85c4ef0]1114 }
1115
[48ed81c]1116 void ReplaceTypedef::premutate( FunctionType * ) {
[1f370451]1117 GuardValue( inFunctionType );
1118 inFunctionType = true;
1119 }
1120
[0bcc2b7]1121 void ReplaceTypedef::premutate( TraitDecl * ) {
1122 GuardScope( typedefNames );
1123 GuardScope( typedeclNames);
1124 }
1125
[d1969a6]1126 void VerifyCtorDtorAssign::verify( std::list< Declaration * > & translationUnit ) {
[0db6fc0]1127 PassVisitor<VerifyCtorDtorAssign> verifier;
[9cb8e88d]1128 acceptAll( translationUnit, verifier );
1129 }
1130
[0db6fc0]1131 void VerifyCtorDtorAssign::previsit( FunctionDecl * funcDecl ) {
[9cb8e88d]1132 FunctionType * funcType = funcDecl->get_functionType();
1133 std::list< DeclarationWithType * > &returnVals = funcType->get_returnVals();
1134 std::list< DeclarationWithType * > &params = funcType->get_parameters();
1135
[bff227f]1136 if ( CodeGen::isCtorDtorAssign( funcDecl->get_name() ) ) { // TODO: also check /=, etc.
[9cb8e88d]1137 if ( params.size() == 0 ) {
[a16764a6]1138 SemanticError( funcDecl, "Constructors, destructors, and assignment functions require at least one parameter " );
[9cb8e88d]1139 }
[ce8c12f]1140 ReferenceType * refType = dynamic_cast< ReferenceType * >( params.front()->get_type() );
[084fecc]1141 if ( ! refType ) {
[a16764a6]1142 SemanticError( funcDecl, "First parameter of a constructor, destructor, or assignment function must be a reference " );
[9cb8e88d]1143 }
[bff227f]1144 if ( CodeGen::isCtorDtor( funcDecl->get_name() ) && returnVals.size() != 0 ) {
[a16764a6]1145 SemanticError( funcDecl, "Constructors and destructors cannot have explicit return values " );
[9cb8e88d]1146 }
1147 }
1148 }
[70a06f6]1149
[11ab8ea8]1150 template< typename Aggr >
1151 void validateGeneric( Aggr * inst ) {
1152 std::list< TypeDecl * > * params = inst->get_baseParameters();
[30f9072]1153 if ( params ) {
[11ab8ea8]1154 std::list< Expression * > & args = inst->get_parameters();
[67cf18c]1155
1156 // insert defaults arguments when a type argument is missing (currently only supports missing arguments at the end of the list).
1157 // A substitution is used to ensure that defaults are replaced correctly, e.g.,
1158 // forall(otype T, otype alloc = heap_allocator(T)) struct vector;
1159 // vector(int) v;
1160 // after insertion of default values becomes
1161 // vector(int, heap_allocator(T))
1162 // and the substitution is built with T=int so that after substitution, the result is
1163 // vector(int, heap_allocator(int))
1164 TypeSubstitution sub;
1165 auto paramIter = params->begin();
1166 for ( size_t i = 0; paramIter != params->end(); ++paramIter, ++i ) {
1167 if ( i < args.size() ) {
[e3e16bc]1168 TypeExpr * expr = strict_dynamic_cast< TypeExpr * >( *std::next( args.begin(), i ) );
[67cf18c]1169 sub.add( (*paramIter)->get_name(), expr->get_type()->clone() );
1170 } else if ( i == args.size() ) {
1171 Type * defaultType = (*paramIter)->get_init();
1172 if ( defaultType ) {
1173 args.push_back( new TypeExpr( defaultType->clone() ) );
1174 sub.add( (*paramIter)->get_name(), defaultType->clone() );
1175 }
1176 }
1177 }
1178
1179 sub.apply( inst );
[a16764a6]1180 if ( args.size() < params->size() ) SemanticError( inst, "Too few type arguments in generic type " );
1181 if ( args.size() > params->size() ) SemanticError( inst, "Too many type arguments in generic type " );
[11ab8ea8]1182 }
1183 }
1184
[0db6fc0]1185 void ValidateGenericParameters::previsit( StructInstType * inst ) {
[11ab8ea8]1186 validateGeneric( inst );
1187 }
[9cb8e88d]1188
[0db6fc0]1189 void ValidateGenericParameters::previsit( UnionInstType * inst ) {
[11ab8ea8]1190 validateGeneric( inst );
[9cb8e88d]1191 }
[70a06f6]1192
[d24d4e1]1193 void CompoundLiteral::premutate( ObjectDecl *objectDecl ) {
[a7c90d4]1194 storageClasses = objectDecl->get_storageClasses();
[630a82a]1195 }
1196
[d24d4e1]1197 Expression *CompoundLiteral::postmutate( CompoundLiteralExpr *compLitExpr ) {
[630a82a]1198 // transform [storage_class] ... (struct S){ 3, ... };
1199 // into [storage_class] struct S temp = { 3, ... };
1200 static UniqueName indexName( "_compLit" );
1201
[d24d4e1]1202 ObjectDecl *tempvar = new ObjectDecl( indexName.newName(), storageClasses, LinkageSpec::C, nullptr, compLitExpr->get_result(), compLitExpr->get_initializer() );
1203 compLitExpr->set_result( nullptr );
1204 compLitExpr->set_initializer( nullptr );
[630a82a]1205 delete compLitExpr;
[d24d4e1]1206 declsToAddBefore.push_back( tempvar ); // add modified temporary to current block
1207 return new VariableExpr( tempvar );
[630a82a]1208 }
[cce9429]1209
1210 void ReturnTypeFixer::fix( std::list< Declaration * > &translationUnit ) {
[0db6fc0]1211 PassVisitor<ReturnTypeFixer> fixer;
[cce9429]1212 acceptAll( translationUnit, fixer );
1213 }
1214
[0db6fc0]1215 void ReturnTypeFixer::postvisit( FunctionDecl * functionDecl ) {
[9facf3b]1216 FunctionType * ftype = functionDecl->get_functionType();
1217 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
[56e49b0]1218 assertf( retVals.size() == 0 || retVals.size() == 1, "Function %s has too many return values: %zu", functionDecl->get_name().c_str(), retVals.size() );
[9facf3b]1219 if ( retVals.size() == 1 ) {
[861799c7]1220 // ensure all function return values have a name - use the name of the function to disambiguate (this also provides a nice bit of help for debugging).
1221 // ensure other return values have a name.
[9facf3b]1222 DeclarationWithType * ret = retVals.front();
1223 if ( ret->get_name() == "" ) {
1224 ret->set_name( toString( "_retval_", CodeGen::genName( functionDecl ) ) );
1225 }
[c6d2e93]1226 ret->get_attributes().push_back( new Attribute( "unused" ) );
[9facf3b]1227 }
1228 }
[cce9429]1229
[0db6fc0]1230 void ReturnTypeFixer::postvisit( FunctionType * ftype ) {
[cce9429]1231 // xxx - need to handle named return values - this information needs to be saved somehow
1232 // so that resolution has access to the names.
1233 // Note that this pass needs to happen early so that other passes which look for tuple types
1234 // find them in all of the right places, including function return types.
1235 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
1236 if ( retVals.size() > 1 ) {
1237 // generate a single return parameter which is the tuple of all of the return values
[e3e16bc]1238 TupleType * tupleType = strict_dynamic_cast< TupleType * >( ResolvExpr::extractResultType( ftype ) );
[cce9429]1239 // ensure return value is not destructed by explicitly creating an empty ListInit node wherein maybeConstruct is false.
[68fe077a]1240 ObjectDecl * newRet = new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, tupleType, new ListInit( std::list<Initializer*>(), noDesignators, false ) );
[cce9429]1241 deleteAll( retVals );
1242 retVals.clear();
1243 retVals.push_back( newRet );
1244 }
1245 }
[fbd7ad6]1246
[2b79a70]1247 void FixObjectType::fix( std::list< Declaration * > & translationUnit ) {
1248 PassVisitor<FixObjectType> fixer;
1249 acceptAll( translationUnit, fixer );
1250 }
1251
1252 void FixObjectType::previsit( ObjectDecl * objDecl ) {
1253 Type *new_type = ResolvExpr::resolveTypeof( objDecl->get_type(), indexer );
1254 new_type->get_qualifiers() -= Type::Lvalue; // even if typeof is lvalue, variable can never have lvalue-qualified type
1255 objDecl->set_type( new_type );
1256 }
1257
1258 void FixObjectType::previsit( FunctionDecl * funcDecl ) {
1259 Type *new_type = ResolvExpr::resolveTypeof( funcDecl->type, indexer );
1260 new_type->get_qualifiers() -= Type::Lvalue; // even if typeof is lvalue, variable can never have lvalue-qualified type
1261 funcDecl->set_type( new_type );
1262 }
1263
1264 void FixObjectType::previsit( TypeDecl *typeDecl ) {
1265 if ( typeDecl->get_base() ) {
1266 Type *new_type = ResolvExpr::resolveTypeof( typeDecl->get_base(), indexer );
1267 new_type->get_qualifiers() -= Type::Lvalue; // even if typeof is lvalue, variable can never have lvalue-qualified type
1268 typeDecl->set_base( new_type );
1269 } // if
1270 }
1271
[fbd7ad6]1272 void ArrayLength::computeLength( std::list< Declaration * > & translationUnit ) {
[0db6fc0]1273 PassVisitor<ArrayLength> len;
[fbd7ad6]1274 acceptAll( translationUnit, len );
1275 }
1276
[0db6fc0]1277 void ArrayLength::previsit( ObjectDecl * objDecl ) {
[0b3b2ae]1278 if ( ArrayType * at = dynamic_cast< ArrayType * >( objDecl->type ) ) {
[f072892]1279 if ( at->dimension ) return;
[0b3b2ae]1280 if ( ListInit * init = dynamic_cast< ListInit * >( objDecl->init ) ) {
[f072892]1281 at->dimension = new ConstantExpr( Constant::from_ulong( init->initializers.size() ) );
[fbd7ad6]1282 }
1283 }
1284 }
[4fbdfae0]1285
[4934ea3]1286 void ArrayLength::previsit( ArrayType * type ) {
1287 if ( type->dimension ) {
1288 // need to resolve array dimensions early so that constructor code can correctly determine
1289 // if a type is a VLA (and hence whether its elements need to be constructed)
[2bfc6b2]1290 ResolvExpr::findSingleExpression( type->dimension, Validate::SizeType->clone(), indexer );
[4934ea3]1291
1292 // must re-evaluate whether a type is a VLA, now that more information is available
1293 // (e.g. the dimension may have been an enumerator, which was unknown prior to this step)
1294 type->isVarLen = ! InitTweak::isConstExpr( type->dimension );
1295 }
1296 }
1297
[5809461]1298 struct LabelFinder {
1299 std::set< Label > & labels;
1300 LabelFinder( std::set< Label > & labels ) : labels( labels ) {}
1301 void previsit( Statement * stmt ) {
1302 for ( Label & l : stmt->labels ) {
1303 labels.insert( l );
1304 }
1305 }
1306 };
1307
1308 void LabelAddressFixer::premutate( FunctionDecl * funcDecl ) {
1309 GuardValue( labels );
1310 PassVisitor<LabelFinder> finder( labels );
1311 funcDecl->accept( finder );
1312 }
1313
1314 Expression * LabelAddressFixer::postmutate( AddressExpr * addrExpr ) {
1315 // convert &&label into label address
1316 if ( AddressExpr * inner = dynamic_cast< AddressExpr * >( addrExpr->arg ) ) {
1317 if ( NameExpr * nameExpr = dynamic_cast< NameExpr * >( inner->arg ) ) {
1318 if ( labels.count( nameExpr->name ) ) {
1319 Label name = nameExpr->name;
1320 delete addrExpr;
1321 return new LabelAddressExpr( name );
1322 }
1323 }
1324 }
1325 return addrExpr;
1326 }
[51b73452]1327} // namespace SymTab
[0dd3a2f]1328
1329// Local Variables: //
1330// tab-width: 4 //
1331// mode: c++ //
1332// compile-command: "make install" //
1333// End: //
Note: See TracBrowser for help on using the repository browser.