source: src/SymTab/Validate.cc@ 2c04369

ADT arm-eh ast-experimental cleanup-dtors enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 2c04369 was 2c04369, checked in by Andrew Beach <ajbeach@…>, 7 years ago

Fixed some problems in convert. One of which was better solved by removing the FindSpecialDeclarations hack.

  • Property mode set to 100644
File size: 52.8 KB
RevLine 
[0dd3a2f]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
[9cb8e88d]7// Validate.cc --
[0dd3a2f]8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 21:50:04 2015
[2c04369]11// Last Modified By : Andrew Beach
12// Last Modified On : Tue May 28 11:07:00 2019
13// Update Count : 360
[0dd3a2f]14//
15
16// The "validate" phase of translation is used to take a syntax tree and convert it into a standard form that aims to be
17// as regular in structure as possible. Some assumptions can be made regarding the state of the tree after this pass is
18// complete, including:
19//
20// - No nested structure or union definitions; any in the input are "hoisted" to the level of the containing struct or
21// union.
22//
23// - All enumeration constants have type EnumInstType.
24//
[3c13c03]25// - The type "void" never occurs in lists of function parameter or return types. A function
26// taking no arguments has no argument types.
[0dd3a2f]27//
28// - No context instances exist; they are all replaced by the set of declarations signified by the context, instantiated
29// by the particular set of type arguments.
30//
31// - Every declaration is assigned a unique id.
32//
33// - No typedef declarations or instances exist; the actual type is substituted for each instance.
34//
35// - Each type, struct, and union definition is followed by an appropriate assignment operator.
36//
37// - Each use of a struct or union is connected to a complete definition of that struct or union, even if that
38// definition occurs later in the input.
[51b73452]39
[0db6fc0]40#include "Validate.h"
41
[d180746]42#include <cassert> // for assertf, assert
[30f9072]43#include <cstddef> // for size_t
[d180746]44#include <list> // for list
45#include <string> // for string
46#include <utility> // for pair
[30f9072]47
48#include "CodeGen/CodeGenerator.h" // for genName
[9236060]49#include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign
[25fcb84]50#include "ControlStruct/Mutate.h" // for ForExprMutator
[7abee38]51#include "Common/Stats.h" // for Stats::Heap
[30f9072]52#include "Common/PassVisitor.h" // for PassVisitor, WithDeclsToAdd
[d180746]53#include "Common/ScopedMap.h" // for ScopedMap
[30f9072]54#include "Common/SemanticError.h" // for SemanticError
55#include "Common/UniqueName.h" // for UniqueName
56#include "Common/utility.h" // for operator+, cloneAll, deleteAll
[be9288a]57#include "Concurrency/Keywords.h" // for applyKeywords
[30f9072]58#include "FixFunction.h" // for FixFunction
59#include "Indexer.h" // for Indexer
[8b11840]60#include "InitTweak/GenInit.h" // for fixReturnStatements
[d180746]61#include "InitTweak/InitTweak.h" // for isCtorDtorAssign
62#include "Parser/LinkageSpec.h" // for C
63#include "ResolvExpr/typeops.h" // for typesCompatible
[4934ea3]64#include "ResolvExpr/Resolver.h" // for findSingleExpression
[2b79a70]65#include "ResolvExpr/ResolveTypeof.h" // for resolveTypeof
[be9288a]66#include "SymTab/Autogen.h" // for SizeType
67#include "SynTree/Attribute.h" // for noAttributes, Attribute
[30f9072]68#include "SynTree/Constant.h" // for Constant
[d180746]69#include "SynTree/Declaration.h" // for ObjectDecl, DeclarationWithType
70#include "SynTree/Expression.h" // for CompoundLiteralExpr, Expressio...
71#include "SynTree/Initializer.h" // for ListInit, Initializer
72#include "SynTree/Label.h" // for operator==, Label
73#include "SynTree/Mutator.h" // for Mutator
74#include "SynTree/Type.h" // for Type, TypeInstType, EnumInstType
75#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
76#include "SynTree/Visitor.h" // for Visitor
[fd2debf]77#include "Validate/HandleAttributes.h" // for handleAttributes
[d180746]78
79class CompoundStmt;
80class ReturnStmt;
81class SwitchStmt;
[51b73452]82
[b16923d]83#define debugPrint( x ) if ( doDebug ) x
[51b73452]84
85namespace SymTab {
[15f5c5e]86 /// hoists declarations that are difficult to hoist while parsing
87 struct HoistTypeDecls final : public WithDeclsToAdd {
[29f9e20]88 void previsit( SizeofExpr * );
89 void previsit( AlignofExpr * );
90 void previsit( UntypedOffsetofExpr * );
[95d09bdb]91 void previsit( CompoundLiteralExpr * );
[29f9e20]92 void handleType( Type * );
93 };
94
[a12c81f3]95 struct FixQualifiedTypes final : public WithIndexer {
96 Type * postmutate( QualifiedType * );
97 };
98
[a09e45b]99 struct HoistStruct final : public WithDeclsToAdd, public WithGuards {
[82dd287]100 /// Flattens nested struct types
[0dd3a2f]101 static void hoistStruct( std::list< Declaration * > &translationUnit );
[9cb8e88d]102
[a09e45b]103 void previsit( StructDecl * aggregateDecl );
104 void previsit( UnionDecl * aggregateDecl );
[0f40912]105 void previsit( StaticAssertDecl * assertDecl );
[d419d8e]106 void previsit( StructInstType * type );
107 void previsit( UnionInstType * type );
108 void previsit( EnumInstType * type );
[9cb8e88d]109
[a08ba92]110 private:
[0dd3a2f]111 template< typename AggDecl > void handleAggregate( AggDecl *aggregateDecl );
[c8ffe20b]112
[bdad6eb7]113 AggregateDecl * parentAggr = nullptr;
[a08ba92]114 };
[c8ffe20b]115
[cce9429]116 /// Fix return types so that every function returns exactly one value
[d24d4e1]117 struct ReturnTypeFixer {
[cce9429]118 static void fix( std::list< Declaration * > &translationUnit );
119
[0db6fc0]120 void postvisit( FunctionDecl * functionDecl );
121 void postvisit( FunctionType * ftype );
[cce9429]122 };
123
[de91427b]124 /// Replaces enum types by int, and function or array types in function parameter and return lists by appropriate pointers.
[d24d4e1]125 struct EnumAndPointerDecay {
[06edda0]126 void previsit( EnumDecl *aggregateDecl );
127 void previsit( FunctionType *func );
[a08ba92]128 };
[82dd287]129
130 /// Associates forward declarations of aggregates with their definitions
[afcb0a3]131 struct LinkReferenceToTypes final : public WithIndexer, public WithGuards, public WithVisitorRef<LinkReferenceToTypes>, public WithShortCircuiting {
[522363e]132 LinkReferenceToTypes( const Indexer *indexer );
133 void postvisit( TypeInstType *typeInst );
[be9036d]134
[522363e]135 void postvisit( EnumInstType *enumInst );
136 void postvisit( StructInstType *structInst );
137 void postvisit( UnionInstType *unionInst );
138 void postvisit( TraitInstType *traitInst );
[afcb0a3]139 void previsit( QualifiedType * qualType );
140 void postvisit( QualifiedType * qualType );
[be9036d]141
[522363e]142 void postvisit( EnumDecl *enumDecl );
143 void postvisit( StructDecl *structDecl );
144 void postvisit( UnionDecl *unionDecl );
145 void postvisit( TraitDecl * traitDecl );
[be9036d]146
[b95fe40]147 void previsit( StructDecl *structDecl );
148 void previsit( UnionDecl *unionDecl );
149
150 void renameGenericParams( std::list< TypeDecl * > & params );
151
[06edda0]152 private:
[522363e]153 const Indexer *local_indexer;
[9cb8e88d]154
[c0aa336]155 typedef std::map< std::string, std::list< EnumInstType * > > ForwardEnumsType;
[0dd3a2f]156 typedef std::map< std::string, std::list< StructInstType * > > ForwardStructsType;
157 typedef std::map< std::string, std::list< UnionInstType * > > ForwardUnionsType;
[c0aa336]158 ForwardEnumsType forwardEnums;
[0dd3a2f]159 ForwardStructsType forwardStructs;
160 ForwardUnionsType forwardUnions;
[b95fe40]161 /// true if currently in a generic type body, so that type parameter instances can be renamed appropriately
162 bool inGeneric = false;
[a08ba92]163 };
[c8ffe20b]164
[06edda0]165 /// Replaces array and function types in forall lists by appropriate pointer type and assigns each Object and Function declaration a unique ID.
[522363e]166 struct ForallPointerDecay final {
[8b11840]167 void previsit( ObjectDecl * object );
168 void previsit( FunctionDecl * func );
[bbf3fda]169 void previsit( FunctionType * ftype );
[bd7e609]170 void previsit( StructDecl * aggrDecl );
171 void previsit( UnionDecl * aggrDecl );
[a08ba92]172 };
[c8ffe20b]173
[d24d4e1]174 struct ReturnChecker : public WithGuards {
[de91427b]175 /// Checks that return statements return nothing if their return type is void
176 /// and return something if the return type is non-void.
177 static void checkFunctionReturns( std::list< Declaration * > & translationUnit );
178
[0db6fc0]179 void previsit( FunctionDecl * functionDecl );
180 void previsit( ReturnStmt * returnStmt );
[de91427b]181
[0db6fc0]182 typedef std::list< DeclarationWithType * > ReturnVals;
183 ReturnVals returnVals;
[de91427b]184 };
185
[48ed81c]186 struct ReplaceTypedef final : public WithVisitorRef<ReplaceTypedef>, public WithGuards, public WithShortCircuiting, public WithDeclsToAdd {
187 ReplaceTypedef() : scopeLevel( 0 ) {}
[de91427b]188 /// Replaces typedefs by forward declarations
[48ed81c]189 static void replaceTypedef( std::list< Declaration * > &translationUnit );
[85c4ef0]190
[48ed81c]191 void premutate( QualifiedType * );
192 Type * postmutate( QualifiedType * qualType );
[a506df4]193 Type * postmutate( TypeInstType * aggregateUseType );
194 Declaration * postmutate( TypedefDecl * typeDecl );
195 void premutate( TypeDecl * typeDecl );
196 void premutate( FunctionDecl * funcDecl );
197 void premutate( ObjectDecl * objDecl );
198 DeclarationWithType * postmutate( ObjectDecl * objDecl );
199
200 void premutate( CastExpr * castExpr );
201
202 void premutate( CompoundStmt * compoundStmt );
203
204 void premutate( StructDecl * structDecl );
205 void premutate( UnionDecl * unionDecl );
206 void premutate( EnumDecl * enumDecl );
[0bcc2b7]207 void premutate( TraitDecl * );
[a506df4]208
[1f370451]209 void premutate( FunctionType * ftype );
210
[a506df4]211 private:
[45161b4d]212 template<typename AggDecl>
213 void addImplicitTypedef( AggDecl * aggDecl );
[48ed81c]214 template< typename AggDecl >
215 void handleAggregate( AggDecl * aggr );
[70a06f6]216
[46f6134]217 typedef std::unique_ptr<TypedefDecl> TypedefDeclPtr;
[e491159]218 typedef ScopedMap< std::string, std::pair< TypedefDeclPtr, int > > TypedefMap;
[0bcc2b7]219 typedef ScopedMap< std::string, TypeDecl * > TypeDeclMap;
[cc79d97]220 TypedefMap typedefNames;
[679864e1]221 TypeDeclMap typedeclNames;
[cc79d97]222 int scopeLevel;
[1f370451]223 bool inFunctionType = false;
[a08ba92]224 };
[c8ffe20b]225
[69918cea]226 struct EliminateTypedef {
227 /// removes TypedefDecls from the AST
228 static void eliminateTypedef( std::list< Declaration * > &translationUnit );
229
230 template<typename AggDecl>
231 void handleAggregate( AggDecl *aggregateDecl );
232
233 void previsit( StructDecl * aggregateDecl );
234 void previsit( UnionDecl * aggregateDecl );
235 void previsit( CompoundStmt * compoundStmt );
236 };
237
[d24d4e1]238 struct VerifyCtorDtorAssign {
[d1969a6]239 /// ensure that constructors, destructors, and assignment have at least one
240 /// parameter, the first of which must be a pointer, and that ctor/dtors have no
[9cb8e88d]241 /// return values.
242 static void verify( std::list< Declaration * > &translationUnit );
243
[0db6fc0]244 void previsit( FunctionDecl *funcDecl );
[5f98ce5]245 };
[70a06f6]246
[11ab8ea8]247 /// ensure that generic types have the correct number of type arguments
[d24d4e1]248 struct ValidateGenericParameters {
[0db6fc0]249 void previsit( StructInstType * inst );
250 void previsit( UnionInstType * inst );
[5f98ce5]251 };
[70a06f6]252
[2b79a70]253 struct FixObjectType : public WithIndexer {
254 /// resolves typeof type in object, function, and type declarations
255 static void fix( std::list< Declaration * > & translationUnit );
256
257 void previsit( ObjectDecl * );
258 void previsit( FunctionDecl * );
259 void previsit( TypeDecl * );
260 };
261
[4934ea3]262 struct ArrayLength : public WithIndexer {
[fbd7ad6]263 /// for array types without an explicit length, compute the length and store it so that it
264 /// is known to the rest of the phases. For example,
265 /// int x[] = { 1, 2, 3 };
266 /// int y[][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
267 /// here x and y are known at compile-time to have length 3, so change this into
268 /// int x[3] = { 1, 2, 3 };
269 /// int y[3][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
270 static void computeLength( std::list< Declaration * > & translationUnit );
271
[0db6fc0]272 void previsit( ObjectDecl * objDecl );
[4934ea3]273 void previsit( ArrayType * arrayType );
[fbd7ad6]274 };
275
[d24d4e1]276 struct CompoundLiteral final : public WithDeclsToAdd, public WithVisitorRef<CompoundLiteral> {
[68fe077a]277 Type::StorageClasses storageClasses;
[630a82a]278
[d24d4e1]279 void premutate( ObjectDecl *objectDecl );
280 Expression * postmutate( CompoundLiteralExpr *compLitExpr );
[9cb8e88d]281 };
282
[5809461]283 struct LabelAddressFixer final : public WithGuards {
284 std::set< Label > labels;
285
286 void premutate( FunctionDecl * funcDecl );
287 Expression * postmutate( AddressExpr * addrExpr );
288 };
[4fbdfae0]289
[522363e]290 void validate( std::list< Declaration * > &translationUnit, __attribute__((unused)) bool doDebug ) {
[06edda0]291 PassVisitor<EnumAndPointerDecay> epc;
[522363e]292 PassVisitor<LinkReferenceToTypes> lrt( nullptr );
293 PassVisitor<ForallPointerDecay> fpd;
[d24d4e1]294 PassVisitor<CompoundLiteral> compoundliteral;
[0db6fc0]295 PassVisitor<ValidateGenericParameters> genericParams;
[5809461]296 PassVisitor<LabelAddressFixer> labelAddrFixer;
[15f5c5e]297 PassVisitor<HoistTypeDecls> hoistDecls;
[a12c81f3]298 PassVisitor<FixQualifiedTypes> fixQual;
[630a82a]299
[3c0d4cd]300 {
301 Stats::Heap::newPass("validate-A");
302 Stats::Time::BlockGuard guard("validate-A");
303 acceptAll( translationUnit, hoistDecls );
304 ReplaceTypedef::replaceTypedef( translationUnit );
305 ReturnTypeFixer::fix( translationUnit ); // must happen before autogen
306 acceptAll( translationUnit, epc ); // must happen before VerifyCtorDtorAssign, because void return objects should not exist; before LinkReferenceToTypes because it is an indexer and needs correct types for mangling
307 }
308 {
309 Stats::Heap::newPass("validate-B");
310 Stats::Time::BlockGuard guard("validate-B");
[c884f2d]311 Stats::Time::TimeBlock("Link Reference To Types", [&]() {
312 acceptAll( translationUnit, lrt ); // must happen before autogen, because sized flag needs to propagate to generated functions
313 });
314 Stats::Time::TimeBlock("Fix Qualified Types", [&]() {
315 mutateAll( translationUnit, fixQual ); // must happen after LinkReferenceToTypes, because aggregate members are accessed
316 });
317 Stats::Time::TimeBlock("Hoist Structs", [&]() {
318 HoistStruct::hoistStruct( translationUnit ); // must happen after EliminateTypedef, so that aggregate typedefs occur in the correct order
319 });
320 Stats::Time::TimeBlock("Eliminate Typedefs", [&]() {
321 EliminateTypedef::eliminateTypedef( translationUnit ); //
322 });
[3c0d4cd]323 }
324 {
325 Stats::Heap::newPass("validate-C");
326 Stats::Time::BlockGuard guard("validate-C");
327 acceptAll( translationUnit, genericParams ); // check as early as possible - can't happen before LinkReferenceToTypes
328 VerifyCtorDtorAssign::verify( translationUnit ); // must happen before autogen, because autogen examines existing ctor/dtors
329 ReturnChecker::checkFunctionReturns( translationUnit );
330 InitTweak::fixReturnStatements( translationUnit ); // must happen before autogen
331 }
332 {
333 Stats::Heap::newPass("validate-D");
334 Stats::Time::BlockGuard guard("validate-D");
[c884f2d]335 Stats::Time::TimeBlock("Apply Concurrent Keywords", [&]() {
336 Concurrency::applyKeywords( translationUnit );
337 });
338 Stats::Time::TimeBlock("Forall Pointer Decay", [&]() {
339 acceptAll( translationUnit, fpd ); // must happen before autogenerateRoutines, after Concurrency::applyKeywords because uniqueIds must be set on declaration before resolution
340 });
341 Stats::Time::TimeBlock("Hoist Control Declarations", [&]() {
342 ControlStruct::hoistControlDecls( translationUnit ); // hoist initialization out of for statements; must happen before autogenerateRoutines
343 });
344 Stats::Time::TimeBlock("Generate Autogen routines", [&]() {
345 autogenerateRoutines( translationUnit ); // moved up, used to be below compoundLiteral - currently needs EnumAndPointerDecay
346 });
[3c0d4cd]347 }
348 {
349 Stats::Heap::newPass("validate-E");
350 Stats::Time::BlockGuard guard("validate-E");
[c884f2d]351 Stats::Time::TimeBlock("Implement Mutex Func", [&]() {
352 Concurrency::implementMutexFuncs( translationUnit );
353 });
354 Stats::Time::TimeBlock("Implement Thread Start", [&]() {
355 Concurrency::implementThreadStarter( translationUnit );
356 });
357 Stats::Time::TimeBlock("Compound Literal", [&]() {
358 mutateAll( translationUnit, compoundliteral );
359 });
360 Stats::Time::TimeBlock("Resolve With Expressions", [&]() {
361 ResolvExpr::resolveWithExprs( translationUnit ); // must happen before FixObjectType because user-code is resolved and may contain with variables
362 });
[3c0d4cd]363 }
364 {
365 Stats::Heap::newPass("validate-F");
366 Stats::Time::BlockGuard guard("validate-F");
[c884f2d]367 Stats::Time::TimeBlock("Fix Object Type", [&]() {
368 FixObjectType::fix( translationUnit );
369 });
370 Stats::Time::TimeBlock("Array Length", [&]() {
371 ArrayLength::computeLength( translationUnit );
372 });
373 Stats::Time::TimeBlock("Fix Label Address", [&]() {
374 mutateAll( translationUnit, labelAddrFixer );
375 });
376 Stats::Time::TimeBlock("Handle Attributes", [&]() {
377 Validate::handleAttributes( translationUnit );
378 });
[3c0d4cd]379 }
[a08ba92]380 }
[9cb8e88d]381
[a08ba92]382 void validateType( Type *type, const Indexer *indexer ) {
[06edda0]383 PassVisitor<EnumAndPointerDecay> epc;
[522363e]384 PassVisitor<LinkReferenceToTypes> lrt( indexer );
385 PassVisitor<ForallPointerDecay> fpd;
[bda58ad]386 type->accept( epc );
[cce9429]387 type->accept( lrt );
[06edda0]388 type->accept( fpd );
[a08ba92]389 }
[c8ffe20b]390
[29f9e20]391
[15f5c5e]392 void HoistTypeDecls::handleType( Type * type ) {
[29f9e20]393 // some type declarations are buried in expressions and not easy to hoist during parsing; hoist them here
394 AggregateDecl * aggr = nullptr;
395 if ( StructInstType * inst = dynamic_cast< StructInstType * >( type ) ) {
396 aggr = inst->baseStruct;
397 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( type ) ) {
398 aggr = inst->baseUnion;
399 } else if ( EnumInstType * inst = dynamic_cast< EnumInstType * >( type ) ) {
400 aggr = inst->baseEnum;
401 }
402 if ( aggr && aggr->body ) {
403 declsToAddBefore.push_front( aggr );
404 }
405 }
406
[15f5c5e]407 void HoistTypeDecls::previsit( SizeofExpr * expr ) {
[29f9e20]408 handleType( expr->type );
409 }
410
[15f5c5e]411 void HoistTypeDecls::previsit( AlignofExpr * expr ) {
[29f9e20]412 handleType( expr->type );
413 }
414
[15f5c5e]415 void HoistTypeDecls::previsit( UntypedOffsetofExpr * expr ) {
[29f9e20]416 handleType( expr->type );
417 }
418
[95d09bdb]419 void HoistTypeDecls::previsit( CompoundLiteralExpr * expr ) {
420 handleType( expr->result );
421 }
422
[29f9e20]423
[a12c81f3]424 Type * FixQualifiedTypes::postmutate( QualifiedType * qualType ) {
425 Type * parent = qualType->parent;
426 Type * child = qualType->child;
427 if ( dynamic_cast< GlobalScopeType * >( qualType->parent ) ) {
428 // .T => lookup T at global scope
[062e8df]429 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
[a12c81f3]430 auto td = indexer.globalLookupType( inst->name );
[062e8df]431 if ( ! td ) {
432 SemanticError( qualType->location, toString("Use of undefined global type ", inst->name) );
433 }
[a12c81f3]434 auto base = td->base;
[062e8df]435 assert( base );
[8a3ecb9]436 Type * ret = base->clone();
437 ret->get_qualifiers() = qualType->get_qualifiers();
438 return ret;
[a12c81f3]439 } else {
[062e8df]440 // .T => T is not a type name
441 assertf( false, "unhandled global qualified child type: %s", toCString(child) );
[a12c81f3]442 }
443 } else {
444 // S.T => S must be an aggregate type, find the declaration for T in S.
445 AggregateDecl * aggr = nullptr;
446 if ( StructInstType * inst = dynamic_cast< StructInstType * >( parent ) ) {
447 aggr = inst->baseStruct;
448 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * > ( parent ) ) {
449 aggr = inst->baseUnion;
450 } else {
[062e8df]451 SemanticError( qualType->location, toString("Qualified type requires an aggregate on the left, but has: ", parent) );
[a12c81f3]452 }
453 assert( aggr ); // TODO: need to handle forward declarations
454 for ( Declaration * member : aggr->members ) {
[7e08acf]455 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
[8a3ecb9]456 // name on the right is a typedef
[a12c81f3]457 if ( NamedTypeDecl * aggr = dynamic_cast< NamedTypeDecl * > ( member ) ) {
458 if ( aggr->name == inst->name ) {
[062e8df]459 assert( aggr->base );
[8a3ecb9]460 Type * ret = aggr->base->clone();
461 ret->get_qualifiers() = qualType->get_qualifiers();
[7e08acf]462 TypeSubstitution sub = parent->genericSubstitution();
463 sub.apply(ret);
[8a3ecb9]464 return ret;
[a12c81f3]465 }
466 }
467 } else {
468 // S.T - S is not an aggregate => error
469 assertf( false, "unhandled qualified child type: %s", toCString(qualType) );
470 }
471 }
472 // failed to find a satisfying definition of type
[062e8df]473 SemanticError( qualType->location, toString("Undefined type in qualified type: ", qualType) );
[a12c81f3]474 }
475
476 // ... may want to link canonical SUE definition to each forward decl so that it becomes easier to lookup?
477 }
478
479
[a08ba92]480 void HoistStruct::hoistStruct( std::list< Declaration * > &translationUnit ) {
[a09e45b]481 PassVisitor<HoistStruct> hoister;
482 acceptAll( translationUnit, hoister );
[a08ba92]483 }
[c8ffe20b]484
[0f40912]485 bool shouldHoist( Declaration *decl ) {
486 return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl ) || dynamic_cast< StaticAssertDecl * >( decl );
[a08ba92]487 }
[c0aa336]488
[d419d8e]489 namespace {
490 void qualifiedName( AggregateDecl * aggr, std::ostringstream & ss ) {
491 if ( aggr->parent ) qualifiedName( aggr->parent, ss );
492 ss << "__" << aggr->name;
493 }
494
495 // mangle nested type names using entire parent chain
496 std::string qualifiedName( AggregateDecl * aggr ) {
497 std::ostringstream ss;
498 qualifiedName( aggr, ss );
499 return ss.str();
500 }
501 }
502
[a08ba92]503 template< typename AggDecl >
504 void HoistStruct::handleAggregate( AggDecl *aggregateDecl ) {
[bdad6eb7]505 if ( parentAggr ) {
[d419d8e]506 aggregateDecl->parent = parentAggr;
507 aggregateDecl->name = qualifiedName( aggregateDecl );
[0dd3a2f]508 // Add elements in stack order corresponding to nesting structure.
[a09e45b]509 declsToAddBefore.push_front( aggregateDecl );
[0dd3a2f]510 } else {
[bdad6eb7]511 GuardValue( parentAggr );
512 parentAggr = aggregateDecl;
[0dd3a2f]513 } // if
514 // Always remove the hoisted aggregate from the inner structure.
[0f40912]515 GuardAction( [aggregateDecl]() { filter( aggregateDecl->members, shouldHoist, false ); } );
[a08ba92]516 }
[c8ffe20b]517
[0f40912]518 void HoistStruct::previsit( StaticAssertDecl * assertDecl ) {
519 if ( parentAggr ) {
520 declsToAddBefore.push_back( assertDecl );
521 }
522 }
523
[a09e45b]524 void HoistStruct::previsit( StructDecl * aggregateDecl ) {
[0dd3a2f]525 handleAggregate( aggregateDecl );
[a08ba92]526 }
[c8ffe20b]527
[a09e45b]528 void HoistStruct::previsit( UnionDecl * aggregateDecl ) {
[0dd3a2f]529 handleAggregate( aggregateDecl );
[a08ba92]530 }
[c8ffe20b]531
[d419d8e]532 void HoistStruct::previsit( StructInstType * type ) {
533 // need to reset type name after expanding to qualified name
534 assert( type->baseStruct );
535 type->name = type->baseStruct->name;
536 }
537
538 void HoistStruct::previsit( UnionInstType * type ) {
539 assert( type->baseUnion );
540 type->name = type->baseUnion->name;
541 }
542
543 void HoistStruct::previsit( EnumInstType * type ) {
544 assert( type->baseEnum );
545 type->name = type->baseEnum->name;
546 }
547
548
[69918cea]549 bool isTypedef( Declaration *decl ) {
550 return dynamic_cast< TypedefDecl * >( decl );
551 }
552
553 void EliminateTypedef::eliminateTypedef( std::list< Declaration * > &translationUnit ) {
554 PassVisitor<EliminateTypedef> eliminator;
555 acceptAll( translationUnit, eliminator );
556 filter( translationUnit, isTypedef, true );
557 }
558
559 template< typename AggDecl >
560 void EliminateTypedef::handleAggregate( AggDecl *aggregateDecl ) {
561 filter( aggregateDecl->members, isTypedef, true );
562 }
563
564 void EliminateTypedef::previsit( StructDecl * aggregateDecl ) {
565 handleAggregate( aggregateDecl );
566 }
567
568 void EliminateTypedef::previsit( UnionDecl * aggregateDecl ) {
569 handleAggregate( aggregateDecl );
570 }
571
572 void EliminateTypedef::previsit( CompoundStmt * compoundStmt ) {
573 // remove and delete decl stmts
574 filter( compoundStmt->kids, [](Statement * stmt) {
575 if ( DeclStmt *declStmt = dynamic_cast< DeclStmt * >( stmt ) ) {
576 if ( dynamic_cast< TypedefDecl * >( declStmt->decl ) ) {
577 return true;
578 } // if
579 } // if
580 return false;
581 }, true);
582 }
583
[06edda0]584 void EnumAndPointerDecay::previsit( EnumDecl *enumDecl ) {
[0dd3a2f]585 // Set the type of each member of the enumeration to be EnumConstant
[0b3b2ae]586 for ( std::list< Declaration * >::iterator i = enumDecl->members.begin(); i != enumDecl->members.end(); ++i ) {
[f6d7e0f]587 ObjectDecl * obj = dynamic_cast< ObjectDecl * >( *i );
[0dd3a2f]588 assert( obj );
[0b3b2ae]589 obj->set_type( new EnumInstType( Type::Qualifiers( Type::Const ), enumDecl->name ) );
[0dd3a2f]590 } // for
[a08ba92]591 }
[51b73452]592
[a08ba92]593 namespace {
[83de11e]594 template< typename DWTList >
[4bda2cf]595 void fixFunctionList( DWTList & dwts, bool isVarArgs, FunctionType * func ) {
596 auto nvals = dwts.size();
597 bool containsVoid = false;
598 for ( auto & dwt : dwts ) {
599 // fix each DWT and record whether a void was found
600 containsVoid |= fixFunction( dwt );
601 }
602
603 // the only case in which "void" is valid is where it is the only one in the list
604 if ( containsVoid && ( nvals > 1 || isVarArgs ) ) {
[a16764a6]605 SemanticError( func, "invalid type void in function type " );
[4bda2cf]606 }
607
608 // one void is the only thing in the list; remove it.
609 if ( containsVoid ) {
610 delete dwts.front();
611 dwts.clear();
612 }
[0dd3a2f]613 }
[a08ba92]614 }
[c8ffe20b]615
[06edda0]616 void EnumAndPointerDecay::previsit( FunctionType *func ) {
[0dd3a2f]617 // Fix up parameters and return types
[4bda2cf]618 fixFunctionList( func->parameters, func->isVarArgs, func );
619 fixFunctionList( func->returnVals, false, func );
[a08ba92]620 }
[c8ffe20b]621
[522363e]622 LinkReferenceToTypes::LinkReferenceToTypes( const Indexer *other_indexer ) {
[0dd3a2f]623 if ( other_indexer ) {
[522363e]624 local_indexer = other_indexer;
[0dd3a2f]625 } else {
[522363e]626 local_indexer = &indexer;
[0dd3a2f]627 } // if
[a08ba92]628 }
[c8ffe20b]629
[522363e]630 void LinkReferenceToTypes::postvisit( EnumInstType *enumInst ) {
[eaa6430]631 EnumDecl *st = local_indexer->lookupEnum( enumInst->name );
[c0aa336]632 // it's not a semantic error if the enum is not found, just an implicit forward declaration
633 if ( st ) {
[eaa6430]634 enumInst->baseEnum = st;
[c0aa336]635 } // if
[29f9e20]636 if ( ! st || ! st->body ) {
[c0aa336]637 // use of forward declaration
[eaa6430]638 forwardEnums[ enumInst->name ].push_back( enumInst );
[c0aa336]639 } // if
640 }
641
[48fa824]642 void checkGenericParameters( ReferenceToType * inst ) {
643 for ( Expression * param : inst->parameters ) {
644 if ( ! dynamic_cast< TypeExpr * >( param ) ) {
[a16764a6]645 SemanticError( inst, "Expression parameters for generic types are currently unsupported: " );
[48fa824]646 }
647 }
648 }
649
[522363e]650 void LinkReferenceToTypes::postvisit( StructInstType *structInst ) {
[eaa6430]651 StructDecl *st = local_indexer->lookupStruct( structInst->name );
[0dd3a2f]652 // it's not a semantic error if the struct is not found, just an implicit forward declaration
653 if ( st ) {
[eaa6430]654 structInst->baseStruct = st;
[0dd3a2f]655 } // if
[29f9e20]656 if ( ! st || ! st->body ) {
[0dd3a2f]657 // use of forward declaration
[eaa6430]658 forwardStructs[ structInst->name ].push_back( structInst );
[0dd3a2f]659 } // if
[48fa824]660 checkGenericParameters( structInst );
[a08ba92]661 }
[c8ffe20b]662
[522363e]663 void LinkReferenceToTypes::postvisit( UnionInstType *unionInst ) {
[eaa6430]664 UnionDecl *un = local_indexer->lookupUnion( unionInst->name );
[0dd3a2f]665 // it's not a semantic error if the union is not found, just an implicit forward declaration
666 if ( un ) {
[eaa6430]667 unionInst->baseUnion = un;
[0dd3a2f]668 } // if
[29f9e20]669 if ( ! un || ! un->body ) {
[0dd3a2f]670 // use of forward declaration
[eaa6430]671 forwardUnions[ unionInst->name ].push_back( unionInst );
[0dd3a2f]672 } // if
[48fa824]673 checkGenericParameters( unionInst );
[a08ba92]674 }
[c8ffe20b]675
[afcb0a3]676 void LinkReferenceToTypes::previsit( QualifiedType * ) {
677 visit_children = false;
678 }
679
680 void LinkReferenceToTypes::postvisit( QualifiedType * qualType ) {
681 // linking only makes sense for the 'oldest ancestor' of the qualified type
682 qualType->parent->accept( *visitor );
683 }
684
[be9036d]685 template< typename Decl >
686 void normalizeAssertions( std::list< Decl * > & assertions ) {
687 // ensure no duplicate trait members after the clone
688 auto pred = [](Decl * d1, Decl * d2) {
689 // only care if they're equal
690 DeclarationWithType * dwt1 = dynamic_cast<DeclarationWithType *>( d1 );
691 DeclarationWithType * dwt2 = dynamic_cast<DeclarationWithType *>( d2 );
692 if ( dwt1 && dwt2 ) {
[eaa6430]693 if ( dwt1->name == dwt2->name && ResolvExpr::typesCompatible( dwt1->get_type(), dwt2->get_type(), SymTab::Indexer() ) ) {
[be9036d]694 // std::cerr << "=========== equal:" << std::endl;
695 // std::cerr << "d1: " << d1 << std::endl;
696 // std::cerr << "d2: " << d2 << std::endl;
697 return false;
698 }
[2c57025]699 }
[be9036d]700 return d1 < d2;
701 };
702 std::set<Decl *, decltype(pred)> unique_members( assertions.begin(), assertions.end(), pred );
703 // if ( unique_members.size() != assertions.size() ) {
704 // std::cerr << "============different" << std::endl;
705 // std::cerr << unique_members.size() << " " << assertions.size() << std::endl;
706 // }
707
708 std::list< Decl * > order;
709 order.splice( order.end(), assertions );
710 std::copy_if( order.begin(), order.end(), back_inserter( assertions ), [&]( Decl * decl ) {
711 return unique_members.count( decl );
712 });
713 }
714
715 // expand assertions from trait instance, performing the appropriate type variable substitutions
716 template< typename Iterator >
717 void expandAssertions( TraitInstType * inst, Iterator out ) {
[eaa6430]718 assertf( inst->baseTrait, "Trait instance not linked to base trait: %s", toCString( inst ) );
[be9036d]719 std::list< DeclarationWithType * > asserts;
720 for ( Declaration * decl : inst->baseTrait->members ) {
[e3e16bc]721 asserts.push_back( strict_dynamic_cast<DeclarationWithType *>( decl->clone() ) );
[2c57025]722 }
[be9036d]723 // substitute trait decl parameters for instance parameters
724 applySubstitution( inst->baseTrait->parameters.begin(), inst->baseTrait->parameters.end(), inst->parameters.begin(), asserts.begin(), asserts.end(), out );
725 }
726
[522363e]727 void LinkReferenceToTypes::postvisit( TraitDecl * traitDecl ) {
[be9036d]728 if ( traitDecl->name == "sized" ) {
729 // "sized" is a special trait - flick the sized status on for the type variable
730 assertf( traitDecl->parameters.size() == 1, "Built-in trait 'sized' has incorrect number of parameters: %zd", traitDecl->parameters.size() );
731 TypeDecl * td = traitDecl->parameters.front();
732 td->set_sized( true );
733 }
734
735 // move assertions from type parameters into the body of the trait
736 for ( TypeDecl * td : traitDecl->parameters ) {
737 for ( DeclarationWithType * assert : td->assertions ) {
738 if ( TraitInstType * inst = dynamic_cast< TraitInstType * >( assert->get_type() ) ) {
739 expandAssertions( inst, back_inserter( traitDecl->members ) );
740 } else {
741 traitDecl->members.push_back( assert->clone() );
742 }
743 }
744 deleteAll( td->assertions );
745 td->assertions.clear();
746 } // for
747 }
[2ae171d8]748
[522363e]749 void LinkReferenceToTypes::postvisit( TraitInstType * traitInst ) {
[2ae171d8]750 // handle other traits
[522363e]751 TraitDecl *traitDecl = local_indexer->lookupTrait( traitInst->name );
[4a9ccc3]752 if ( ! traitDecl ) {
[a16764a6]753 SemanticError( traitInst->location, "use of undeclared trait " + traitInst->name );
[17cd4eb]754 } // if
[0b3b2ae]755 if ( traitDecl->parameters.size() != traitInst->parameters.size() ) {
[a16764a6]756 SemanticError( traitInst, "incorrect number of trait parameters: " );
[4a9ccc3]757 } // if
[be9036d]758 traitInst->baseTrait = traitDecl;
[79970ed]759
[4a9ccc3]760 // need to carry over the 'sized' status of each decl in the instance
[eaa6430]761 for ( auto p : group_iterate( traitDecl->parameters, traitInst->parameters ) ) {
[5c4d27f]762 TypeExpr * expr = dynamic_cast< TypeExpr * >( std::get<1>(p) );
763 if ( ! expr ) {
[a16764a6]764 SemanticError( std::get<1>(p), "Expression parameters for trait instances are currently unsupported: " );
[5c4d27f]765 }
[4a9ccc3]766 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( expr->get_type() ) ) {
767 TypeDecl * formalDecl = std::get<0>(p);
[eaa6430]768 TypeDecl * instDecl = inst->baseType;
[4a9ccc3]769 if ( formalDecl->get_sized() ) instDecl->set_sized( true );
770 }
771 }
[be9036d]772 // normalizeAssertions( traitInst->members );
[a08ba92]773 }
[c8ffe20b]774
[522363e]775 void LinkReferenceToTypes::postvisit( EnumDecl *enumDecl ) {
[c0aa336]776 // visit enum members first so that the types of self-referencing members are updated properly
[b16923d]777 if ( enumDecl->body ) {
[eaa6430]778 ForwardEnumsType::iterator fwds = forwardEnums.find( enumDecl->name );
[c0aa336]779 if ( fwds != forwardEnums.end() ) {
780 for ( std::list< EnumInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
[eaa6430]781 (*inst)->baseEnum = enumDecl;
[c0aa336]782 } // for
783 forwardEnums.erase( fwds );
784 } // if
[ac3362c]785
786 for ( Declaration * member : enumDecl->members ) {
787 ObjectDecl * field = strict_dynamic_cast<ObjectDecl *>( member );
788 if ( field->init ) {
789 // need to resolve enumerator initializers early so that other passes that determine if an expression is constexpr have the appropriate information.
790 SingleInit * init = strict_dynamic_cast<SingleInit *>( field->init );
791 ResolvExpr::findSingleExpression( init->value, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), indexer );
792 }
793 }
[c0aa336]794 } // if
795 }
796
[b95fe40]797 void LinkReferenceToTypes::renameGenericParams( std::list< TypeDecl * > & params ) {
798 // rename generic type parameters uniquely so that they do not conflict with user-defined function forall parameters, e.g.
799 // forall(otype T)
800 // struct Box {
801 // T x;
802 // };
803 // forall(otype T)
804 // void f(Box(T) b) {
805 // ...
806 // }
807 // The T in Box and the T in f are different, so internally the naming must reflect that.
808 GuardValue( inGeneric );
809 inGeneric = ! params.empty();
810 for ( TypeDecl * td : params ) {
811 td->name = "__" + td->name + "_generic_";
812 }
813 }
814
815 void LinkReferenceToTypes::previsit( StructDecl * structDecl ) {
816 renameGenericParams( structDecl->parameters );
817 }
818
819 void LinkReferenceToTypes::previsit( UnionDecl * unionDecl ) {
820 renameGenericParams( unionDecl->parameters );
821 }
822
[522363e]823 void LinkReferenceToTypes::postvisit( StructDecl *structDecl ) {
[677c1be]824 // visit struct members first so that the types of self-referencing members are updated properly
[522363e]825 // xxx - need to ensure that type parameters match up between forward declarations and definition (most importantly, number of type parameters and their defaults)
[b16923d]826 if ( structDecl->body ) {
[eaa6430]827 ForwardStructsType::iterator fwds = forwardStructs.find( structDecl->name );
[0dd3a2f]828 if ( fwds != forwardStructs.end() ) {
829 for ( std::list< StructInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
[eaa6430]830 (*inst)->baseStruct = structDecl;
[0dd3a2f]831 } // for
832 forwardStructs.erase( fwds );
833 } // if
834 } // if
[a08ba92]835 }
[c8ffe20b]836
[522363e]837 void LinkReferenceToTypes::postvisit( UnionDecl *unionDecl ) {
[b16923d]838 if ( unionDecl->body ) {
[eaa6430]839 ForwardUnionsType::iterator fwds = forwardUnions.find( unionDecl->name );
[0dd3a2f]840 if ( fwds != forwardUnions.end() ) {
841 for ( std::list< UnionInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
[eaa6430]842 (*inst)->baseUnion = unionDecl;
[0dd3a2f]843 } // for
844 forwardUnions.erase( fwds );
845 } // if
846 } // if
[a08ba92]847 }
[c8ffe20b]848
[522363e]849 void LinkReferenceToTypes::postvisit( TypeInstType *typeInst ) {
[b95fe40]850 // ensure generic parameter instances are renamed like the base type
851 if ( inGeneric && typeInst->baseType ) typeInst->name = typeInst->baseType->name;
[eaa6430]852 if ( NamedTypeDecl *namedTypeDecl = local_indexer->lookupType( typeInst->name ) ) {
[0dd3a2f]853 if ( TypeDecl *typeDecl = dynamic_cast< TypeDecl * >( namedTypeDecl ) ) {
854 typeInst->set_isFtype( typeDecl->get_kind() == TypeDecl::Ftype );
855 } // if
856 } // if
[a08ba92]857 }
[c8ffe20b]858
[4a9ccc3]859 /// Fix up assertions - flattens assertion lists, removing all trait instances
[8b11840]860 void forallFixer( std::list< TypeDecl * > & forall, BaseSyntaxNode * node ) {
861 for ( TypeDecl * type : forall ) {
[be9036d]862 std::list< DeclarationWithType * > asserts;
863 asserts.splice( asserts.end(), type->assertions );
864 // expand trait instances into their members
865 for ( DeclarationWithType * assertion : asserts ) {
866 if ( TraitInstType *traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) {
867 // expand trait instance into all of its members
868 expandAssertions( traitInst, back_inserter( type->assertions ) );
869 delete traitInst;
870 } else {
871 // pass other assertions through
872 type->assertions.push_back( assertion );
873 } // if
874 } // for
875 // apply FixFunction to every assertion to check for invalid void type
876 for ( DeclarationWithType *& assertion : type->assertions ) {
[4bda2cf]877 bool isVoid = fixFunction( assertion );
878 if ( isVoid ) {
[a16764a6]879 SemanticError( node, "invalid type void in assertion of function " );
[be9036d]880 } // if
881 } // for
882 // normalizeAssertions( type->assertions );
[0dd3a2f]883 } // for
[a08ba92]884 }
[c8ffe20b]885
[522363e]886 void ForallPointerDecay::previsit( ObjectDecl *object ) {
[3d2b7bc]887 // ensure that operator names only apply to functions or function pointers
888 if ( CodeGen::isOperator( object->name ) && ! dynamic_cast< FunctionType * >( object->type->stripDeclarator() ) ) {
889 SemanticError( object->location, toCString( "operator ", object->name.c_str(), " is not a function or function pointer." ) );
890 }
[0dd3a2f]891 object->fixUniqueId();
[a08ba92]892 }
[c8ffe20b]893
[522363e]894 void ForallPointerDecay::previsit( FunctionDecl *func ) {
[0dd3a2f]895 func->fixUniqueId();
[a08ba92]896 }
[c8ffe20b]897
[bbf3fda]898 void ForallPointerDecay::previsit( FunctionType * ftype ) {
899 forallFixer( ftype->forall, ftype );
900 }
901
[bd7e609]902 void ForallPointerDecay::previsit( StructDecl * aggrDecl ) {
903 forallFixer( aggrDecl->parameters, aggrDecl );
904 }
905
906 void ForallPointerDecay::previsit( UnionDecl * aggrDecl ) {
907 forallFixer( aggrDecl->parameters, aggrDecl );
908 }
909
[de91427b]910 void ReturnChecker::checkFunctionReturns( std::list< Declaration * > & translationUnit ) {
[0db6fc0]911 PassVisitor<ReturnChecker> checker;
[de91427b]912 acceptAll( translationUnit, checker );
913 }
914
[0db6fc0]915 void ReturnChecker::previsit( FunctionDecl * functionDecl ) {
[0508ab3]916 GuardValue( returnVals );
[de91427b]917 returnVals = functionDecl->get_functionType()->get_returnVals();
918 }
919
[0db6fc0]920 void ReturnChecker::previsit( ReturnStmt * returnStmt ) {
[74d1804]921 // Previously this also checked for the existence of an expr paired with no return values on
922 // the function return type. This is incorrect, since you can have an expression attached to
923 // a return statement in a void-returning function in C. The expression is treated as if it
924 // were cast to void.
[30f9072]925 if ( ! returnStmt->get_expr() && returnVals.size() != 0 ) {
[a16764a6]926 SemanticError( returnStmt, "Non-void function returns no values: " );
[de91427b]927 }
928 }
929
930
[48ed81c]931 void ReplaceTypedef::replaceTypedef( std::list< Declaration * > &translationUnit ) {
932 PassVisitor<ReplaceTypedef> eliminator;
[0dd3a2f]933 mutateAll( translationUnit, eliminator );
[a506df4]934 if ( eliminator.pass.typedefNames.count( "size_t" ) ) {
[5f98ce5]935 // grab and remember declaration of size_t
[0b3b2ae]936 SizeType = eliminator.pass.typedefNames["size_t"].first->base->clone();
[5f98ce5]937 } else {
[40e636a]938 // xxx - missing global typedef for size_t - default to long unsigned int, even though that may be wrong
939 // eventually should have a warning for this case.
940 SizeType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
[5f98ce5]941 }
[a08ba92]942 }
[c8ffe20b]943
[48ed81c]944 void ReplaceTypedef::premutate( QualifiedType * ) {
945 visit_children = false;
946 }
947
948 Type * ReplaceTypedef::postmutate( QualifiedType * qualType ) {
949 // replacing typedefs only makes sense for the 'oldest ancestor' of the qualified type
950 qualType->parent = qualType->parent->acceptMutator( *visitor );
951 return qualType;
952 }
953
954 Type * ReplaceTypedef::postmutate( TypeInstType * typeInst ) {
[9cb8e88d]955 // instances of typedef types will come here. If it is an instance
[cc79d97]956 // of a typdef type, link the instance to its actual type.
[0b3b2ae]957 TypedefMap::const_iterator def = typedefNames.find( typeInst->name );
[0dd3a2f]958 if ( def != typedefNames.end() ) {
[f53836b]959 Type *ret = def->second.first->base->clone();
[e82ef13]960 ret->location = typeInst->location;
[6f95000]961 ret->get_qualifiers() |= typeInst->get_qualifiers();
[1f370451]962 // attributes are not carried over from typedef to function parameters/return values
963 if ( ! inFunctionType ) {
964 ret->attributes.splice( ret->attributes.end(), typeInst->attributes );
965 } else {
966 deleteAll( ret->attributes );
967 ret->attributes.clear();
968 }
[0215a76f]969 // place instance parameters on the typedef'd type
[f53836b]970 if ( ! typeInst->parameters.empty() ) {
[0215a76f]971 ReferenceToType *rtt = dynamic_cast<ReferenceToType*>(ret);
972 if ( ! rtt ) {
[a16764a6]973 SemanticError( typeInst->location, "Cannot apply type parameters to base type of " + typeInst->name );
[0215a76f]974 }
[0b3b2ae]975 rtt->parameters.clear();
[f53836b]976 cloneAll( typeInst->parameters, rtt->parameters );
977 mutateAll( rtt->parameters, *visitor ); // recursively fix typedefs on parameters
[1db21619]978 } // if
[0dd3a2f]979 delete typeInst;
980 return ret;
[679864e1]981 } else {
[0b3b2ae]982 TypeDeclMap::const_iterator base = typedeclNames.find( typeInst->name );
[062e8df]983 if ( base == typedeclNames.end() ) {
984 SemanticError( typeInst->location, toString("Use of undefined type ", typeInst->name) );
985 }
[1e8b02f5]986 typeInst->set_baseType( base->second );
[062e8df]987 return typeInst;
[0dd3a2f]988 } // if
[062e8df]989 assert( false );
[a08ba92]990 }
[c8ffe20b]991
[f53836b]992 struct VarLenChecker : WithShortCircuiting {
993 void previsit( FunctionType * ) { visit_children = false; }
994 void previsit( ArrayType * at ) {
995 isVarLen |= at->isVarLen;
996 }
997 bool isVarLen = false;
998 };
999
1000 bool isVariableLength( Type * t ) {
1001 PassVisitor<VarLenChecker> varLenChecker;
1002 maybeAccept( t, varLenChecker );
1003 return varLenChecker.pass.isVarLen;
1004 }
1005
[48ed81c]1006 Declaration * ReplaceTypedef::postmutate( TypedefDecl * tyDecl ) {
[0b3b2ae]1007 if ( typedefNames.count( tyDecl->name ) == 1 && typedefNames[ tyDecl->name ].second == scopeLevel ) {
[9cb8e88d]1008 // typedef to the same name from the same scope
[cc79d97]1009 // must be from the same type
1010
[0b3b2ae]1011 Type * t1 = tyDecl->base;
1012 Type * t2 = typedefNames[ tyDecl->name ].first->base;
[1cbca6e]1013 if ( ! ResolvExpr::typesCompatible( t1, t2, Indexer() ) ) {
[a16764a6]1014 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
[f53836b]1015 }
[4b97770]1016 // Cannot redefine VLA typedefs. Note: this is slightly incorrect, because our notion of VLAs
1017 // at this point in the translator is imprecise. In particular, this will disallow redefining typedefs
1018 // with arrays whose dimension is an enumerator or a cast of a constant/enumerator. The effort required
1019 // to fix this corner case likely outweighs the utility of allowing it.
[f53836b]1020 if ( isVariableLength( t1 ) || isVariableLength( t2 ) ) {
[a16764a6]1021 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
[85c4ef0]1022 }
[cc79d97]1023 } else {
[0b3b2ae]1024 typedefNames[ tyDecl->name ] = std::make_pair( TypedefDeclPtr( tyDecl ), scopeLevel );
[cc79d97]1025 } // if
1026
[0dd3a2f]1027 // When a typedef is a forward declaration:
1028 // typedef struct screen SCREEN;
1029 // the declaration portion must be retained:
1030 // struct screen;
1031 // because the expansion of the typedef is:
1032 // void rtn( SCREEN *p ) => void rtn( struct screen *p )
1033 // hence the type-name "screen" must be defined.
1034 // Note, qualifiers on the typedef are superfluous for the forward declaration.
[6f95000]1035
[0b3b2ae]1036 Type *designatorType = tyDecl->base->stripDeclarator();
[6f95000]1037 if ( StructInstType *aggDecl = dynamic_cast< StructInstType * >( designatorType ) ) {
[48ed81c]1038 declsToAddBefore.push_back( new StructDecl( aggDecl->name, DeclarationNode::Struct, noAttributes, tyDecl->linkage ) );
[6f95000]1039 } else if ( UnionInstType *aggDecl = dynamic_cast< UnionInstType * >( designatorType ) ) {
[48ed81c]1040 declsToAddBefore.push_back( new UnionDecl( aggDecl->name, noAttributes, tyDecl->linkage ) );
[6f95000]1041 } else if ( EnumInstType *enumDecl = dynamic_cast< EnumInstType * >( designatorType ) ) {
[48ed81c]1042 declsToAddBefore.push_back( new EnumDecl( enumDecl->name, noAttributes, tyDecl->linkage ) );
[0dd3a2f]1043 } // if
[48ed81c]1044 return tyDecl->clone();
[a08ba92]1045 }
[c8ffe20b]1046
[48ed81c]1047 void ReplaceTypedef::premutate( TypeDecl * typeDecl ) {
[0b3b2ae]1048 TypedefMap::iterator i = typedefNames.find( typeDecl->name );
[0dd3a2f]1049 if ( i != typedefNames.end() ) {
1050 typedefNames.erase( i ) ;
1051 } // if
[679864e1]1052
[0bcc2b7]1053 typedeclNames.insert( typeDecl->name, typeDecl );
[a08ba92]1054 }
[c8ffe20b]1055
[48ed81c]1056 void ReplaceTypedef::premutate( FunctionDecl * ) {
[a506df4]1057 GuardScope( typedefNames );
[0bcc2b7]1058 GuardScope( typedeclNames );
[a08ba92]1059 }
[c8ffe20b]1060
[48ed81c]1061 void ReplaceTypedef::premutate( ObjectDecl * ) {
[a506df4]1062 GuardScope( typedefNames );
[0bcc2b7]1063 GuardScope( typedeclNames );
[a506df4]1064 }
[dd020c0]1065
[48ed81c]1066 DeclarationWithType * ReplaceTypedef::postmutate( ObjectDecl * objDecl ) {
[0b3b2ae]1067 if ( FunctionType *funtype = dynamic_cast<FunctionType *>( objDecl->type ) ) { // function type?
[02e5ab6]1068 // replace the current object declaration with a function declaration
[0b3b2ae]1069 FunctionDecl * newDecl = new FunctionDecl( objDecl->name, objDecl->get_storageClasses(), objDecl->linkage, funtype, 0, objDecl->attributes, objDecl->get_funcSpec() );
1070 objDecl->attributes.clear();
[dbe8f244]1071 objDecl->set_type( nullptr );
[0a86a30]1072 delete objDecl;
1073 return newDecl;
[1db21619]1074 } // if
[a506df4]1075 return objDecl;
[a08ba92]1076 }
[c8ffe20b]1077
[48ed81c]1078 void ReplaceTypedef::premutate( CastExpr * ) {
[a506df4]1079 GuardScope( typedefNames );
[0bcc2b7]1080 GuardScope( typedeclNames );
[a08ba92]1081 }
[c8ffe20b]1082
[48ed81c]1083 void ReplaceTypedef::premutate( CompoundStmt * ) {
[a506df4]1084 GuardScope( typedefNames );
[0bcc2b7]1085 GuardScope( typedeclNames );
[cc79d97]1086 scopeLevel += 1;
[a506df4]1087 GuardAction( [this](){ scopeLevel -= 1; } );
1088 }
1089
[45161b4d]1090 template<typename AggDecl>
[48ed81c]1091 void ReplaceTypedef::addImplicitTypedef( AggDecl * aggDecl ) {
[45161b4d]1092 if ( typedefNames.count( aggDecl->get_name() ) == 0 ) {
[62e5546]1093 Type *type = nullptr;
[45161b4d]1094 if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( aggDecl ) ) {
1095 type = new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() );
1096 } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( aggDecl ) ) {
1097 type = new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() );
1098 } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( aggDecl ) ) {
1099 type = new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() );
1100 } // if
[0b0f1dd]1101 TypedefDeclPtr tyDecl( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type, aggDecl->get_linkage() ) );
[46f6134]1102 typedefNames[ aggDecl->get_name() ] = std::make_pair( std::move( tyDecl ), scopeLevel );
[48ed81c]1103 // add the implicit typedef to the AST
1104 declsToAddBefore.push_back( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type->clone(), aggDecl->get_linkage() ) );
[45161b4d]1105 } // if
1106 }
[4e06c1e]1107
[48ed81c]1108 template< typename AggDecl >
1109 void ReplaceTypedef::handleAggregate( AggDecl * aggr ) {
1110 SemanticErrorException errors;
[a506df4]1111
[48ed81c]1112 ValueGuard< std::list<Declaration * > > oldBeforeDecls( declsToAddBefore );
1113 ValueGuard< std::list<Declaration * > > oldAfterDecls ( declsToAddAfter );
1114 declsToAddBefore.clear();
1115 declsToAddAfter.clear();
[a506df4]1116
[48ed81c]1117 GuardScope( typedefNames );
[0bcc2b7]1118 GuardScope( typedeclNames );
[48ed81c]1119 mutateAll( aggr->parameters, *visitor );
[85c4ef0]1120
[48ed81c]1121 // unroll mutateAll for aggr->members so that implicit typedefs for nested types are added to the aggregate body.
1122 for ( std::list< Declaration * >::iterator i = aggr->members.begin(); i != aggr->members.end(); ++i ) {
1123 if ( !declsToAddAfter.empty() ) { aggr->members.splice( i, declsToAddAfter ); }
[a506df4]1124
[48ed81c]1125 try {
1126 *i = maybeMutate( *i, *visitor );
1127 } catch ( SemanticErrorException &e ) {
1128 errors.append( e );
1129 }
1130
1131 if ( !declsToAddBefore.empty() ) { aggr->members.splice( i, declsToAddBefore ); }
1132 }
1133
1134 if ( !declsToAddAfter.empty() ) { aggr->members.splice( aggr->members.end(), declsToAddAfter ); }
1135 if ( !errors.isEmpty() ) { throw errors; }
[85c4ef0]1136 }
1137
[48ed81c]1138 void ReplaceTypedef::premutate( StructDecl * structDecl ) {
1139 visit_children = false;
1140 addImplicitTypedef( structDecl );
1141 handleAggregate( structDecl );
[a506df4]1142 }
1143
[48ed81c]1144 void ReplaceTypedef::premutate( UnionDecl * unionDecl ) {
1145 visit_children = false;
1146 addImplicitTypedef( unionDecl );
1147 handleAggregate( unionDecl );
[85c4ef0]1148 }
1149
[48ed81c]1150 void ReplaceTypedef::premutate( EnumDecl * enumDecl ) {
1151 addImplicitTypedef( enumDecl );
[85c4ef0]1152 }
1153
[48ed81c]1154 void ReplaceTypedef::premutate( FunctionType * ) {
[1f370451]1155 GuardValue( inFunctionType );
1156 inFunctionType = true;
1157 }
1158
[0bcc2b7]1159 void ReplaceTypedef::premutate( TraitDecl * ) {
1160 GuardScope( typedefNames );
1161 GuardScope( typedeclNames);
1162 }
1163
[d1969a6]1164 void VerifyCtorDtorAssign::verify( std::list< Declaration * > & translationUnit ) {
[0db6fc0]1165 PassVisitor<VerifyCtorDtorAssign> verifier;
[9cb8e88d]1166 acceptAll( translationUnit, verifier );
1167 }
1168
[0db6fc0]1169 void VerifyCtorDtorAssign::previsit( FunctionDecl * funcDecl ) {
[9cb8e88d]1170 FunctionType * funcType = funcDecl->get_functionType();
1171 std::list< DeclarationWithType * > &returnVals = funcType->get_returnVals();
1172 std::list< DeclarationWithType * > &params = funcType->get_parameters();
1173
[bff227f]1174 if ( CodeGen::isCtorDtorAssign( funcDecl->get_name() ) ) { // TODO: also check /=, etc.
[9cb8e88d]1175 if ( params.size() == 0 ) {
[a16764a6]1176 SemanticError( funcDecl, "Constructors, destructors, and assignment functions require at least one parameter " );
[9cb8e88d]1177 }
[ce8c12f]1178 ReferenceType * refType = dynamic_cast< ReferenceType * >( params.front()->get_type() );
[084fecc]1179 if ( ! refType ) {
[a16764a6]1180 SemanticError( funcDecl, "First parameter of a constructor, destructor, or assignment function must be a reference " );
[9cb8e88d]1181 }
[bff227f]1182 if ( CodeGen::isCtorDtor( funcDecl->get_name() ) && returnVals.size() != 0 ) {
[a16764a6]1183 SemanticError( funcDecl, "Constructors and destructors cannot have explicit return values " );
[9cb8e88d]1184 }
1185 }
1186 }
[70a06f6]1187
[11ab8ea8]1188 template< typename Aggr >
1189 void validateGeneric( Aggr * inst ) {
1190 std::list< TypeDecl * > * params = inst->get_baseParameters();
[30f9072]1191 if ( params ) {
[11ab8ea8]1192 std::list< Expression * > & args = inst->get_parameters();
[67cf18c]1193
1194 // insert defaults arguments when a type argument is missing (currently only supports missing arguments at the end of the list).
1195 // A substitution is used to ensure that defaults are replaced correctly, e.g.,
1196 // forall(otype T, otype alloc = heap_allocator(T)) struct vector;
1197 // vector(int) v;
1198 // after insertion of default values becomes
1199 // vector(int, heap_allocator(T))
1200 // and the substitution is built with T=int so that after substitution, the result is
1201 // vector(int, heap_allocator(int))
1202 TypeSubstitution sub;
1203 auto paramIter = params->begin();
1204 for ( size_t i = 0; paramIter != params->end(); ++paramIter, ++i ) {
1205 if ( i < args.size() ) {
[e3e16bc]1206 TypeExpr * expr = strict_dynamic_cast< TypeExpr * >( *std::next( args.begin(), i ) );
[67cf18c]1207 sub.add( (*paramIter)->get_name(), expr->get_type()->clone() );
1208 } else if ( i == args.size() ) {
1209 Type * defaultType = (*paramIter)->get_init();
1210 if ( defaultType ) {
1211 args.push_back( new TypeExpr( defaultType->clone() ) );
1212 sub.add( (*paramIter)->get_name(), defaultType->clone() );
1213 }
1214 }
1215 }
1216
1217 sub.apply( inst );
[a16764a6]1218 if ( args.size() < params->size() ) SemanticError( inst, "Too few type arguments in generic type " );
1219 if ( args.size() > params->size() ) SemanticError( inst, "Too many type arguments in generic type " );
[11ab8ea8]1220 }
1221 }
1222
[0db6fc0]1223 void ValidateGenericParameters::previsit( StructInstType * inst ) {
[11ab8ea8]1224 validateGeneric( inst );
1225 }
[9cb8e88d]1226
[0db6fc0]1227 void ValidateGenericParameters::previsit( UnionInstType * inst ) {
[11ab8ea8]1228 validateGeneric( inst );
[9cb8e88d]1229 }
[70a06f6]1230
[d24d4e1]1231 void CompoundLiteral::premutate( ObjectDecl *objectDecl ) {
[a7c90d4]1232 storageClasses = objectDecl->get_storageClasses();
[630a82a]1233 }
1234
[d24d4e1]1235 Expression *CompoundLiteral::postmutate( CompoundLiteralExpr *compLitExpr ) {
[630a82a]1236 // transform [storage_class] ... (struct S){ 3, ... };
1237 // into [storage_class] struct S temp = { 3, ... };
1238 static UniqueName indexName( "_compLit" );
1239
[d24d4e1]1240 ObjectDecl *tempvar = new ObjectDecl( indexName.newName(), storageClasses, LinkageSpec::C, nullptr, compLitExpr->get_result(), compLitExpr->get_initializer() );
1241 compLitExpr->set_result( nullptr );
1242 compLitExpr->set_initializer( nullptr );
[630a82a]1243 delete compLitExpr;
[d24d4e1]1244 declsToAddBefore.push_back( tempvar ); // add modified temporary to current block
1245 return new VariableExpr( tempvar );
[630a82a]1246 }
[cce9429]1247
1248 void ReturnTypeFixer::fix( std::list< Declaration * > &translationUnit ) {
[0db6fc0]1249 PassVisitor<ReturnTypeFixer> fixer;
[cce9429]1250 acceptAll( translationUnit, fixer );
1251 }
1252
[0db6fc0]1253 void ReturnTypeFixer::postvisit( FunctionDecl * functionDecl ) {
[9facf3b]1254 FunctionType * ftype = functionDecl->get_functionType();
1255 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
[56e49b0]1256 assertf( retVals.size() == 0 || retVals.size() == 1, "Function %s has too many return values: %zu", functionDecl->get_name().c_str(), retVals.size() );
[9facf3b]1257 if ( retVals.size() == 1 ) {
[861799c7]1258 // ensure all function return values have a name - use the name of the function to disambiguate (this also provides a nice bit of help for debugging).
1259 // ensure other return values have a name.
[9facf3b]1260 DeclarationWithType * ret = retVals.front();
1261 if ( ret->get_name() == "" ) {
1262 ret->set_name( toString( "_retval_", CodeGen::genName( functionDecl ) ) );
1263 }
[c6d2e93]1264 ret->get_attributes().push_back( new Attribute( "unused" ) );
[9facf3b]1265 }
1266 }
[cce9429]1267
[0db6fc0]1268 void ReturnTypeFixer::postvisit( FunctionType * ftype ) {
[cce9429]1269 // xxx - need to handle named return values - this information needs to be saved somehow
1270 // so that resolution has access to the names.
1271 // Note that this pass needs to happen early so that other passes which look for tuple types
1272 // find them in all of the right places, including function return types.
1273 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
1274 if ( retVals.size() > 1 ) {
1275 // generate a single return parameter which is the tuple of all of the return values
[e3e16bc]1276 TupleType * tupleType = strict_dynamic_cast< TupleType * >( ResolvExpr::extractResultType( ftype ) );
[cce9429]1277 // ensure return value is not destructed by explicitly creating an empty ListInit node wherein maybeConstruct is false.
[68fe077a]1278 ObjectDecl * newRet = new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, tupleType, new ListInit( std::list<Initializer*>(), noDesignators, false ) );
[cce9429]1279 deleteAll( retVals );
1280 retVals.clear();
1281 retVals.push_back( newRet );
1282 }
1283 }
[fbd7ad6]1284
[2b79a70]1285 void FixObjectType::fix( std::list< Declaration * > & translationUnit ) {
1286 PassVisitor<FixObjectType> fixer;
1287 acceptAll( translationUnit, fixer );
1288 }
1289
1290 void FixObjectType::previsit( ObjectDecl * objDecl ) {
1291 Type *new_type = ResolvExpr::resolveTypeof( objDecl->get_type(), indexer );
1292 new_type->get_qualifiers() -= Type::Lvalue; // even if typeof is lvalue, variable can never have lvalue-qualified type
1293 objDecl->set_type( new_type );
1294 }
1295
1296 void FixObjectType::previsit( FunctionDecl * funcDecl ) {
1297 Type *new_type = ResolvExpr::resolveTypeof( funcDecl->type, indexer );
1298 new_type->get_qualifiers() -= Type::Lvalue; // even if typeof is lvalue, variable can never have lvalue-qualified type
1299 funcDecl->set_type( new_type );
1300 }
1301
1302 void FixObjectType::previsit( TypeDecl *typeDecl ) {
1303 if ( typeDecl->get_base() ) {
1304 Type *new_type = ResolvExpr::resolveTypeof( typeDecl->get_base(), indexer );
1305 new_type->get_qualifiers() -= Type::Lvalue; // even if typeof is lvalue, variable can never have lvalue-qualified type
1306 typeDecl->set_base( new_type );
1307 } // if
1308 }
1309
[fbd7ad6]1310 void ArrayLength::computeLength( std::list< Declaration * > & translationUnit ) {
[0db6fc0]1311 PassVisitor<ArrayLength> len;
[fbd7ad6]1312 acceptAll( translationUnit, len );
1313 }
1314
[0db6fc0]1315 void ArrayLength::previsit( ObjectDecl * objDecl ) {
[0b3b2ae]1316 if ( ArrayType * at = dynamic_cast< ArrayType * >( objDecl->type ) ) {
[f072892]1317 if ( at->dimension ) return;
[0b3b2ae]1318 if ( ListInit * init = dynamic_cast< ListInit * >( objDecl->init ) ) {
[f072892]1319 at->dimension = new ConstantExpr( Constant::from_ulong( init->initializers.size() ) );
[fbd7ad6]1320 }
1321 }
1322 }
[4fbdfae0]1323
[4934ea3]1324 void ArrayLength::previsit( ArrayType * type ) {
1325 if ( type->dimension ) {
1326 // need to resolve array dimensions early so that constructor code can correctly determine
1327 // if a type is a VLA (and hence whether its elements need to be constructed)
1328 ResolvExpr::findSingleExpression( type->dimension, SymTab::SizeType->clone(), indexer );
1329
1330 // must re-evaluate whether a type is a VLA, now that more information is available
1331 // (e.g. the dimension may have been an enumerator, which was unknown prior to this step)
1332 type->isVarLen = ! InitTweak::isConstExpr( type->dimension );
1333 }
1334 }
1335
[5809461]1336 struct LabelFinder {
1337 std::set< Label > & labels;
1338 LabelFinder( std::set< Label > & labels ) : labels( labels ) {}
1339 void previsit( Statement * stmt ) {
1340 for ( Label & l : stmt->labels ) {
1341 labels.insert( l );
1342 }
1343 }
1344 };
1345
1346 void LabelAddressFixer::premutate( FunctionDecl * funcDecl ) {
1347 GuardValue( labels );
1348 PassVisitor<LabelFinder> finder( labels );
1349 funcDecl->accept( finder );
1350 }
1351
1352 Expression * LabelAddressFixer::postmutate( AddressExpr * addrExpr ) {
1353 // convert &&label into label address
1354 if ( AddressExpr * inner = dynamic_cast< AddressExpr * >( addrExpr->arg ) ) {
1355 if ( NameExpr * nameExpr = dynamic_cast< NameExpr * >( inner->arg ) ) {
1356 if ( labels.count( nameExpr->name ) ) {
1357 Label name = nameExpr->name;
1358 delete addrExpr;
1359 return new LabelAddressExpr( name );
1360 }
1361 }
1362 }
1363 return addrExpr;
1364 }
[51b73452]1365} // namespace SymTab
[0dd3a2f]1366
1367// Local Variables: //
1368// tab-width: 4 //
1369// mode: c++ //
1370// compile-command: "make install" //
1371// End: //
Note: See TracBrowser for help on using the repository browser.