source: src/SymTab/Validate.cc@ 1b0184b

Last change on this file since 1b0184b was 9feb34b, checked in by Andrew Beach <ajbeach@…>, 2 years ago

Moved toString and toCString to a new header. Updated includes. cassert was somehow getting instances of toString before but that stopped working so I embedded the new smaller include.

  • Property mode set to 100644
File size: 52.2 KB
RevLine 
[0dd3a2f]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
[9cb8e88d]7// Validate.cc --
[0dd3a2f]8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 21:50:04 2015
[5dcb881]11// Last Modified By : Andrew Beach
[b9f8274]12// Last Modified On : Tue Jul 12 15:00:00 2022
13// Update Count : 367
[0dd3a2f]14//
15
16// The "validate" phase of translation is used to take a syntax tree and convert it into a standard form that aims to be
17// as regular in structure as possible. Some assumptions can be made regarding the state of the tree after this pass is
18// complete, including:
19//
20// - No nested structure or union definitions; any in the input are "hoisted" to the level of the containing struct or
21// union.
22//
23// - All enumeration constants have type EnumInstType.
24//
[3c13c03]25// - The type "void" never occurs in lists of function parameter or return types. A function
26// taking no arguments has no argument types.
[0dd3a2f]27//
28// - No context instances exist; they are all replaced by the set of declarations signified by the context, instantiated
29// by the particular set of type arguments.
30//
31// - Every declaration is assigned a unique id.
32//
33// - No typedef declarations or instances exist; the actual type is substituted for each instance.
34//
35// - Each type, struct, and union definition is followed by an appropriate assignment operator.
36//
37// - Each use of a struct or union is connected to a complete definition of that struct or union, even if that
38// definition occurs later in the input.
[51b73452]39
[0db6fc0]40#include "Validate.h"
41
[d180746]42#include <cassert> // for assertf, assert
[30f9072]43#include <cstddef> // for size_t
[d180746]44#include <list> // for list
45#include <string> // for string
[18e683b]46#include <unordered_map> // for unordered_map
[d180746]47#include <utility> // for pair
[30f9072]48
49#include "CodeGen/CodeGenerator.h" // for genName
[9236060]50#include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign
[25fcb84]51#include "ControlStruct/Mutate.h" // for ForExprMutator
[18e683b]52#include "Common/CodeLocation.h" // for CodeLocation
[7abee38]53#include "Common/Stats.h" // for Stats::Heap
[30f9072]54#include "Common/PassVisitor.h" // for PassVisitor, WithDeclsToAdd
[d180746]55#include "Common/ScopedMap.h" // for ScopedMap
[30f9072]56#include "Common/SemanticError.h" // for SemanticError
[9feb34b]57#include "Common/ToString.hpp" // for toCString
[30f9072]58#include "Common/UniqueName.h" // for UniqueName
[9feb34b]59#include "Common/utility.h" // for cloneAll, deleteAll
[16ba4a6f]60#include "CompilationState.h" // skip some passes in new-ast build
[be9288a]61#include "Concurrency/Keywords.h" // for applyKeywords
[30f9072]62#include "FixFunction.h" // for FixFunction
63#include "Indexer.h" // for Indexer
[8b11840]64#include "InitTweak/GenInit.h" // for fixReturnStatements
[d180746]65#include "InitTweak/InitTweak.h" // for isCtorDtorAssign
[e563edf]66#include "ResolvExpr/typeops.h" // for extractResultType
67#include "ResolvExpr/Unify.h" // for typesCompatible
[4934ea3]68#include "ResolvExpr/Resolver.h" // for findSingleExpression
[2b79a70]69#include "ResolvExpr/ResolveTypeof.h" // for resolveTypeof
[be9288a]70#include "SymTab/Autogen.h" // for SizeType
[9939dc3]71#include "SymTab/ValidateType.h" // for decayEnumsAndPointers, decayFo...
[07de76b]72#include "SynTree/LinkageSpec.h" // for C
[be9288a]73#include "SynTree/Attribute.h" // for noAttributes, Attribute
[30f9072]74#include "SynTree/Constant.h" // for Constant
[d180746]75#include "SynTree/Declaration.h" // for ObjectDecl, DeclarationWithType
76#include "SynTree/Expression.h" // for CompoundLiteralExpr, Expressio...
77#include "SynTree/Initializer.h" // for ListInit, Initializer
78#include "SynTree/Label.h" // for operator==, Label
79#include "SynTree/Mutator.h" // for Mutator
80#include "SynTree/Type.h" // for Type, TypeInstType, EnumInstType
81#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
82#include "SynTree/Visitor.h" // for Visitor
[fd2debf]83#include "Validate/HandleAttributes.h" // for handleAttributes
[2bfc6b2]84#include "Validate/FindSpecialDecls.h" // for FindSpecialDecls
[d180746]85
86class CompoundStmt;
87class ReturnStmt;
88class SwitchStmt;
[51b73452]89
[b16923d]90#define debugPrint( x ) if ( doDebug ) x
[51b73452]91
92namespace SymTab {
[15f5c5e]93 /// hoists declarations that are difficult to hoist while parsing
94 struct HoistTypeDecls final : public WithDeclsToAdd {
[29f9e20]95 void previsit( SizeofExpr * );
96 void previsit( AlignofExpr * );
97 void previsit( UntypedOffsetofExpr * );
[95d09bdb]98 void previsit( CompoundLiteralExpr * );
[29f9e20]99 void handleType( Type * );
100 };
101
[a12c81f3]102 struct FixQualifiedTypes final : public WithIndexer {
[6e50a6b]103 FixQualifiedTypes() : WithIndexer(false) {}
[a12c81f3]104 Type * postmutate( QualifiedType * );
105 };
106
[a09e45b]107 struct HoistStruct final : public WithDeclsToAdd, public WithGuards {
[82dd287]108 /// Flattens nested struct types
[0dd3a2f]109 static void hoistStruct( std::list< Declaration * > &translationUnit );
[9cb8e88d]110
[a09e45b]111 void previsit( StructDecl * aggregateDecl );
112 void previsit( UnionDecl * aggregateDecl );
[0f40912]113 void previsit( StaticAssertDecl * assertDecl );
[d419d8e]114 void previsit( StructInstType * type );
115 void previsit( UnionInstType * type );
116 void previsit( EnumInstType * type );
[9cb8e88d]117
[a08ba92]118 private:
[ef5b828]119 template< typename AggDecl > void handleAggregate( AggDecl * aggregateDecl );
[c8ffe20b]120
[bdad6eb7]121 AggregateDecl * parentAggr = nullptr;
[a08ba92]122 };
[c8ffe20b]123
[cce9429]124 /// Fix return types so that every function returns exactly one value
[d24d4e1]125 struct ReturnTypeFixer {
[cce9429]126 static void fix( std::list< Declaration * > &translationUnit );
127
[0db6fc0]128 void postvisit( FunctionDecl * functionDecl );
129 void postvisit( FunctionType * ftype );
[cce9429]130 };
131
[6e50a6b]132 /// Does early resolution on the expressions that give enumeration constants their values
133 struct ResolveEnumInitializers final : public WithIndexer, public WithGuards, public WithVisitorRef<ResolveEnumInitializers>, public WithShortCircuiting {
134 ResolveEnumInitializers( const Indexer * indexer );
135 void postvisit( EnumDecl * enumDecl );
136
137 private:
138 const Indexer * local_indexer;
139
140 };
141
[06edda0]142 /// Replaces array and function types in forall lists by appropriate pointer type and assigns each Object and Function declaration a unique ID.
[c1ed2ee]143 struct ForallPointerDecay_old final {
[8b11840]144 void previsit( ObjectDecl * object );
145 void previsit( FunctionDecl * func );
[bbf3fda]146 void previsit( FunctionType * ftype );
[bd7e609]147 void previsit( StructDecl * aggrDecl );
148 void previsit( UnionDecl * aggrDecl );
[a08ba92]149 };
[c8ffe20b]150
[d24d4e1]151 struct ReturnChecker : public WithGuards {
[de91427b]152 /// Checks that return statements return nothing if their return type is void
153 /// and return something if the return type is non-void.
154 static void checkFunctionReturns( std::list< Declaration * > & translationUnit );
155
[0db6fc0]156 void previsit( FunctionDecl * functionDecl );
157 void previsit( ReturnStmt * returnStmt );
[de91427b]158
[0db6fc0]159 typedef std::list< DeclarationWithType * > ReturnVals;
160 ReturnVals returnVals;
[de91427b]161 };
162
[48ed81c]163 struct ReplaceTypedef final : public WithVisitorRef<ReplaceTypedef>, public WithGuards, public WithShortCircuiting, public WithDeclsToAdd {
164 ReplaceTypedef() : scopeLevel( 0 ) {}
[de91427b]165 /// Replaces typedefs by forward declarations
[48ed81c]166 static void replaceTypedef( std::list< Declaration * > &translationUnit );
[85c4ef0]167
[48ed81c]168 void premutate( QualifiedType * );
169 Type * postmutate( QualifiedType * qualType );
[a506df4]170 Type * postmutate( TypeInstType * aggregateUseType );
171 Declaration * postmutate( TypedefDecl * typeDecl );
172 void premutate( TypeDecl * typeDecl );
173 void premutate( FunctionDecl * funcDecl );
174 void premutate( ObjectDecl * objDecl );
175 DeclarationWithType * postmutate( ObjectDecl * objDecl );
176
177 void premutate( CastExpr * castExpr );
178
179 void premutate( CompoundStmt * compoundStmt );
180
181 void premutate( StructDecl * structDecl );
182 void premutate( UnionDecl * unionDecl );
183 void premutate( EnumDecl * enumDecl );
[0bcc2b7]184 void premutate( TraitDecl * );
[a506df4]185
[1f370451]186 void premutate( FunctionType * ftype );
187
[a506df4]188 private:
[45161b4d]189 template<typename AggDecl>
190 void addImplicitTypedef( AggDecl * aggDecl );
[48ed81c]191 template< typename AggDecl >
192 void handleAggregate( AggDecl * aggr );
[70a06f6]193
[46f6134]194 typedef std::unique_ptr<TypedefDecl> TypedefDeclPtr;
[e491159]195 typedef ScopedMap< std::string, std::pair< TypedefDeclPtr, int > > TypedefMap;
[0bcc2b7]196 typedef ScopedMap< std::string, TypeDecl * > TypeDeclMap;
[cc79d97]197 TypedefMap typedefNames;
[679864e1]198 TypeDeclMap typedeclNames;
[cc79d97]199 int scopeLevel;
[1f370451]200 bool inFunctionType = false;
[a08ba92]201 };
[c8ffe20b]202
[69918cea]203 struct EliminateTypedef {
204 /// removes TypedefDecls from the AST
205 static void eliminateTypedef( std::list< Declaration * > &translationUnit );
206
207 template<typename AggDecl>
[ef5b828]208 void handleAggregate( AggDecl * aggregateDecl );
[69918cea]209
210 void previsit( StructDecl * aggregateDecl );
211 void previsit( UnionDecl * aggregateDecl );
212 void previsit( CompoundStmt * compoundStmt );
213 };
214
[d24d4e1]215 struct VerifyCtorDtorAssign {
[d1969a6]216 /// ensure that constructors, destructors, and assignment have at least one
217 /// parameter, the first of which must be a pointer, and that ctor/dtors have no
[9cb8e88d]218 /// return values.
219 static void verify( std::list< Declaration * > &translationUnit );
220
[ef5b828]221 void previsit( FunctionDecl * funcDecl );
[5f98ce5]222 };
[70a06f6]223
[11ab8ea8]224 /// ensure that generic types have the correct number of type arguments
[d24d4e1]225 struct ValidateGenericParameters {
[0db6fc0]226 void previsit( StructInstType * inst );
227 void previsit( UnionInstType * inst );
[5f98ce5]228 };
[70a06f6]229
[6e50a6b]230 /// desugar declarations and uses of dimension paramaters like [N],
231 /// from type-system managed values, to tunnneling via ordinary types,
232 /// as char[-] in and sizeof(-) out
233 struct TranslateDimensionGenericParameters : public WithIndexer, public WithGuards {
234 static void translateDimensions( std::list< Declaration * > &translationUnit );
235 TranslateDimensionGenericParameters();
236
237 bool nextVisitedNodeIsChildOfSUIT = false; // SUIT = Struct or Union -Inst Type
238 bool visitingChildOfSUIT = false;
239 void changeState_ChildOfSUIT( bool newVal );
240 void premutate( StructInstType * sit );
241 void premutate( UnionInstType * uit );
242 void premutate( BaseSyntaxNode * node );
243
244 TypeDecl * postmutate( TypeDecl * td );
245 Expression * postmutate( DimensionExpr * de );
246 Expression * postmutate( Expression * e );
247 };
248
[2b79a70]249 struct FixObjectType : public WithIndexer {
250 /// resolves typeof type in object, function, and type declarations
251 static void fix( std::list< Declaration * > & translationUnit );
252
253 void previsit( ObjectDecl * );
254 void previsit( FunctionDecl * );
255 void previsit( TypeDecl * );
256 };
257
[09867ec]258 struct InitializerLength {
[fbd7ad6]259 /// for array types without an explicit length, compute the length and store it so that it
260 /// is known to the rest of the phases. For example,
261 /// int x[] = { 1, 2, 3 };
262 /// int y[][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
263 /// here x and y are known at compile-time to have length 3, so change this into
264 /// int x[3] = { 1, 2, 3 };
265 /// int y[3][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
266 static void computeLength( std::list< Declaration * > & translationUnit );
267
[0db6fc0]268 void previsit( ObjectDecl * objDecl );
[09867ec]269 };
270
271 struct ArrayLength : public WithIndexer {
272 static void computeLength( std::list< Declaration * > & translationUnit );
273
[3ff4c1e]274 void previsit( ArrayType * arrayType );
[fbd7ad6]275 };
276
[d24d4e1]277 struct CompoundLiteral final : public WithDeclsToAdd, public WithVisitorRef<CompoundLiteral> {
[68fe077a]278 Type::StorageClasses storageClasses;
[630a82a]279
[ef5b828]280 void premutate( ObjectDecl * objectDecl );
281 Expression * postmutate( CompoundLiteralExpr * compLitExpr );
[9cb8e88d]282 };
283
[5809461]284 struct LabelAddressFixer final : public WithGuards {
285 std::set< Label > labels;
286
287 void premutate( FunctionDecl * funcDecl );
288 Expression * postmutate( AddressExpr * addrExpr );
289 };
[4fbdfae0]290
[b9f8274]291 void validate( std::list< Declaration * > &translationUnit, __attribute__((unused)) bool doDebug ) {
[15f5c5e]292 PassVisitor<HoistTypeDecls> hoistDecls;
[3c0d4cd]293 {
294 Stats::Heap::newPass("validate-A");
295 Stats::Time::BlockGuard guard("validate-A");
[98538288]296 VerifyCtorDtorAssign::verify( translationUnit ); // must happen before autogen, because autogen examines existing ctor/dtors
[3c0d4cd]297 acceptAll( translationUnit, hoistDecls );
298 ReplaceTypedef::replaceTypedef( translationUnit );
299 ReturnTypeFixer::fix( translationUnit ); // must happen before autogen
[9939dc3]300 decayEnumsAndPointers( translationUnit ); // must happen before VerifyCtorDtorAssign, because void return objects should not exist; before LinkReferenceToTypes_old because it is an indexer and needs correct types for mangling
[3c0d4cd]301 }
[5dcb881]302 PassVisitor<FixQualifiedTypes> fixQual;
[3c0d4cd]303 {
304 Stats::Heap::newPass("validate-B");
305 Stats::Time::BlockGuard guard("validate-B");
[72e76fd]306 linkReferenceToTypes( translationUnit ); // Must happen before auto-gen, because it uses the sized flag.
[6e50a6b]307 mutateAll( translationUnit, fixQual ); // must happen after LinkReferenceToTypes_old, because aggregate members are accessed
308 HoistStruct::hoistStruct( translationUnit );
309 EliminateTypedef::eliminateTypedef( translationUnit );
[3c0d4cd]310 }
[5dcb881]311 PassVisitor<ValidateGenericParameters> genericParams;
312 PassVisitor<ResolveEnumInitializers> rei( nullptr );
[3c0d4cd]313 {
314 Stats::Heap::newPass("validate-C");
315 Stats::Time::BlockGuard guard("validate-C");
[6e50a6b]316 Stats::Time::TimeBlock("Validate Generic Parameters", [&]() {
317 acceptAll( translationUnit, genericParams ); // check as early as possible - can't happen before LinkReferenceToTypes_old; observed failing when attempted before eliminateTypedef
318 });
319 Stats::Time::TimeBlock("Translate Dimensions", [&]() {
320 TranslateDimensionGenericParameters::translateDimensions( translationUnit );
321 });
[7c919559]322 if (!useNewAST) {
[6e50a6b]323 Stats::Time::TimeBlock("Resolve Enum Initializers", [&]() {
324 acceptAll( translationUnit, rei ); // must happen after translateDimensions because rei needs identifier lookup, which needs name mangling
325 });
[7c919559]326 }
[6e50a6b]327 Stats::Time::TimeBlock("Check Function Returns", [&]() {
328 ReturnChecker::checkFunctionReturns( translationUnit );
329 });
330 Stats::Time::TimeBlock("Fix Return Statements", [&]() {
331 InitTweak::fixReturnStatements( translationUnit ); // must happen before autogen
332 });
[3c0d4cd]333 }
334 {
335 Stats::Heap::newPass("validate-D");
336 Stats::Time::BlockGuard guard("validate-D");
[c884f2d]337 Stats::Time::TimeBlock("Apply Concurrent Keywords", [&]() {
338 Concurrency::applyKeywords( translationUnit );
339 });
340 Stats::Time::TimeBlock("Forall Pointer Decay", [&]() {
[9490621]341 decayForallPointers( translationUnit ); // must happen before autogenerateRoutines, after Concurrency::applyKeywords because uniqueIds must be set on declaration before resolution
[c884f2d]342 });
343 Stats::Time::TimeBlock("Hoist Control Declarations", [&]() {
344 ControlStruct::hoistControlDecls( translationUnit ); // hoist initialization out of for statements; must happen before autogenerateRoutines
345 });
346 Stats::Time::TimeBlock("Generate Autogen routines", [&]() {
[c1ed2ee]347 autogenerateRoutines( translationUnit ); // moved up, used to be below compoundLiteral - currently needs EnumAndPointerDecay_old
[c884f2d]348 });
[3c0d4cd]349 }
[5dcb881]350 PassVisitor<CompoundLiteral> compoundliteral;
[3c0d4cd]351 {
352 Stats::Heap::newPass("validate-E");
353 Stats::Time::BlockGuard guard("validate-E");
[c884f2d]354 Stats::Time::TimeBlock("Implement Mutex Func", [&]() {
355 Concurrency::implementMutexFuncs( translationUnit );
356 });
357 Stats::Time::TimeBlock("Implement Thread Start", [&]() {
358 Concurrency::implementThreadStarter( translationUnit );
359 });
360 Stats::Time::TimeBlock("Compound Literal", [&]() {
361 mutateAll( translationUnit, compoundliteral );
362 });
[16ba4a6f]363 if (!useNewAST) {
364 Stats::Time::TimeBlock("Resolve With Expressions", [&]() {
365 ResolvExpr::resolveWithExprs( translationUnit ); // must happen before FixObjectType because user-code is resolved and may contain with variables
366 });
367 }
[3c0d4cd]368 }
[5dcb881]369 PassVisitor<LabelAddressFixer> labelAddrFixer;
[3c0d4cd]370 {
371 Stats::Heap::newPass("validate-F");
372 Stats::Time::BlockGuard guard("validate-F");
[16ba4a6f]373 if (!useNewAST) {
374 Stats::Time::TimeCall("Fix Object Type",
375 FixObjectType::fix, translationUnit);
376 }
[09867ec]377 Stats::Time::TimeCall("Initializer Length",
378 InitializerLength::computeLength, translationUnit);
379 if (!useNewAST) {
380 Stats::Time::TimeCall("Array Length",
381 ArrayLength::computeLength, translationUnit);
382 }
[095b99a]383 Stats::Time::TimeCall("Find Special Declarations",
384 Validate::findSpecialDecls, translationUnit);
385 Stats::Time::TimeCall("Fix Label Address",
386 mutateAll<LabelAddressFixer>, translationUnit, labelAddrFixer);
[16ba4a6f]387 if (!useNewAST) {
388 Stats::Time::TimeCall("Handle Attributes",
389 Validate::handleAttributes, translationUnit);
390 }
[3c0d4cd]391 }
[a08ba92]392 }
[9cb8e88d]393
[15f5c5e]394 void HoistTypeDecls::handleType( Type * type ) {
[29f9e20]395 // some type declarations are buried in expressions and not easy to hoist during parsing; hoist them here
396 AggregateDecl * aggr = nullptr;
397 if ( StructInstType * inst = dynamic_cast< StructInstType * >( type ) ) {
398 aggr = inst->baseStruct;
399 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( type ) ) {
400 aggr = inst->baseUnion;
401 } else if ( EnumInstType * inst = dynamic_cast< EnumInstType * >( type ) ) {
402 aggr = inst->baseEnum;
403 }
404 if ( aggr && aggr->body ) {
405 declsToAddBefore.push_front( aggr );
406 }
407 }
408
[15f5c5e]409 void HoistTypeDecls::previsit( SizeofExpr * expr ) {
[29f9e20]410 handleType( expr->type );
411 }
412
[15f5c5e]413 void HoistTypeDecls::previsit( AlignofExpr * expr ) {
[29f9e20]414 handleType( expr->type );
415 }
416
[15f5c5e]417 void HoistTypeDecls::previsit( UntypedOffsetofExpr * expr ) {
[29f9e20]418 handleType( expr->type );
419 }
420
[95d09bdb]421 void HoistTypeDecls::previsit( CompoundLiteralExpr * expr ) {
422 handleType( expr->result );
423 }
424
[29f9e20]425
[a12c81f3]426 Type * FixQualifiedTypes::postmutate( QualifiedType * qualType ) {
427 Type * parent = qualType->parent;
428 Type * child = qualType->child;
429 if ( dynamic_cast< GlobalScopeType * >( qualType->parent ) ) {
430 // .T => lookup T at global scope
[062e8df]431 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
[a12c81f3]432 auto td = indexer.globalLookupType( inst->name );
[062e8df]433 if ( ! td ) {
434 SemanticError( qualType->location, toString("Use of undefined global type ", inst->name) );
435 }
[a12c81f3]436 auto base = td->base;
[062e8df]437 assert( base );
[8a3ecb9]438 Type * ret = base->clone();
439 ret->get_qualifiers() = qualType->get_qualifiers();
440 return ret;
[a12c81f3]441 } else {
[062e8df]442 // .T => T is not a type name
443 assertf( false, "unhandled global qualified child type: %s", toCString(child) );
[a12c81f3]444 }
445 } else {
446 // S.T => S must be an aggregate type, find the declaration for T in S.
447 AggregateDecl * aggr = nullptr;
448 if ( StructInstType * inst = dynamic_cast< StructInstType * >( parent ) ) {
449 aggr = inst->baseStruct;
450 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * > ( parent ) ) {
451 aggr = inst->baseUnion;
452 } else {
[062e8df]453 SemanticError( qualType->location, toString("Qualified type requires an aggregate on the left, but has: ", parent) );
[a12c81f3]454 }
455 assert( aggr ); // TODO: need to handle forward declarations
456 for ( Declaration * member : aggr->members ) {
[7e08acf]457 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
[8a3ecb9]458 // name on the right is a typedef
[a12c81f3]459 if ( NamedTypeDecl * aggr = dynamic_cast< NamedTypeDecl * > ( member ) ) {
460 if ( aggr->name == inst->name ) {
[062e8df]461 assert( aggr->base );
[8a3ecb9]462 Type * ret = aggr->base->clone();
463 ret->get_qualifiers() = qualType->get_qualifiers();
[7e08acf]464 TypeSubstitution sub = parent->genericSubstitution();
465 sub.apply(ret);
[8a3ecb9]466 return ret;
[a12c81f3]467 }
468 }
469 } else {
470 // S.T - S is not an aggregate => error
471 assertf( false, "unhandled qualified child type: %s", toCString(qualType) );
472 }
473 }
474 // failed to find a satisfying definition of type
[062e8df]475 SemanticError( qualType->location, toString("Undefined type in qualified type: ", qualType) );
[a12c81f3]476 }
477
478 // ... may want to link canonical SUE definition to each forward decl so that it becomes easier to lookup?
479 }
480
481
[a08ba92]482 void HoistStruct::hoistStruct( std::list< Declaration * > &translationUnit ) {
[a09e45b]483 PassVisitor<HoistStruct> hoister;
484 acceptAll( translationUnit, hoister );
[a08ba92]485 }
[c8ffe20b]486
[ef5b828]487 bool shouldHoist( Declaration * decl ) {
[0f40912]488 return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl ) || dynamic_cast< StaticAssertDecl * >( decl );
[a08ba92]489 }
[c0aa336]490
[d419d8e]491 namespace {
492 void qualifiedName( AggregateDecl * aggr, std::ostringstream & ss ) {
493 if ( aggr->parent ) qualifiedName( aggr->parent, ss );
494 ss << "__" << aggr->name;
495 }
496
497 // mangle nested type names using entire parent chain
498 std::string qualifiedName( AggregateDecl * aggr ) {
499 std::ostringstream ss;
500 qualifiedName( aggr, ss );
501 return ss.str();
502 }
503 }
504
[a08ba92]505 template< typename AggDecl >
[ef5b828]506 void HoistStruct::handleAggregate( AggDecl * aggregateDecl ) {
[bdad6eb7]507 if ( parentAggr ) {
[d419d8e]508 aggregateDecl->parent = parentAggr;
509 aggregateDecl->name = qualifiedName( aggregateDecl );
[0dd3a2f]510 // Add elements in stack order corresponding to nesting structure.
[a09e45b]511 declsToAddBefore.push_front( aggregateDecl );
[0dd3a2f]512 } else {
[bdad6eb7]513 GuardValue( parentAggr );
514 parentAggr = aggregateDecl;
[0dd3a2f]515 } // if
516 // Always remove the hoisted aggregate from the inner structure.
[0f40912]517 GuardAction( [aggregateDecl]() { filter( aggregateDecl->members, shouldHoist, false ); } );
[a08ba92]518 }
[c8ffe20b]519
[0f40912]520 void HoistStruct::previsit( StaticAssertDecl * assertDecl ) {
521 if ( parentAggr ) {
522 declsToAddBefore.push_back( assertDecl );
523 }
524 }
525
[a09e45b]526 void HoistStruct::previsit( StructDecl * aggregateDecl ) {
[0dd3a2f]527 handleAggregate( aggregateDecl );
[a08ba92]528 }
[c8ffe20b]529
[a09e45b]530 void HoistStruct::previsit( UnionDecl * aggregateDecl ) {
[0dd3a2f]531 handleAggregate( aggregateDecl );
[a08ba92]532 }
[c8ffe20b]533
[d419d8e]534 void HoistStruct::previsit( StructInstType * type ) {
535 // need to reset type name after expanding to qualified name
536 assert( type->baseStruct );
537 type->name = type->baseStruct->name;
538 }
539
540 void HoistStruct::previsit( UnionInstType * type ) {
541 assert( type->baseUnion );
542 type->name = type->baseUnion->name;
543 }
544
545 void HoistStruct::previsit( EnumInstType * type ) {
546 assert( type->baseEnum );
547 type->name = type->baseEnum->name;
548 }
549
550
[ef5b828]551 bool isTypedef( Declaration * decl ) {
[69918cea]552 return dynamic_cast< TypedefDecl * >( decl );
553 }
554
555 void EliminateTypedef::eliminateTypedef( std::list< Declaration * > &translationUnit ) {
556 PassVisitor<EliminateTypedef> eliminator;
557 acceptAll( translationUnit, eliminator );
558 filter( translationUnit, isTypedef, true );
559 }
560
561 template< typename AggDecl >
[ef5b828]562 void EliminateTypedef::handleAggregate( AggDecl * aggregateDecl ) {
[69918cea]563 filter( aggregateDecl->members, isTypedef, true );
564 }
565
566 void EliminateTypedef::previsit( StructDecl * aggregateDecl ) {
567 handleAggregate( aggregateDecl );
568 }
569
570 void EliminateTypedef::previsit( UnionDecl * aggregateDecl ) {
571 handleAggregate( aggregateDecl );
572 }
573
574 void EliminateTypedef::previsit( CompoundStmt * compoundStmt ) {
575 // remove and delete decl stmts
576 filter( compoundStmt->kids, [](Statement * stmt) {
[ef5b828]577 if ( DeclStmt * declStmt = dynamic_cast< DeclStmt * >( stmt ) ) {
[69918cea]578 if ( dynamic_cast< TypedefDecl * >( declStmt->decl ) ) {
579 return true;
580 } // if
581 } // if
582 return false;
583 }, true);
584 }
585
[be9036d]586 // expand assertions from trait instance, performing the appropriate type variable substitutions
587 template< typename Iterator >
588 void expandAssertions( TraitInstType * inst, Iterator out ) {
[eaa6430]589 assertf( inst->baseTrait, "Trait instance not linked to base trait: %s", toCString( inst ) );
[be9036d]590 std::list< DeclarationWithType * > asserts;
591 for ( Declaration * decl : inst->baseTrait->members ) {
[e3e16bc]592 asserts.push_back( strict_dynamic_cast<DeclarationWithType *>( decl->clone() ) );
[2c57025]593 }
[be9036d]594 // substitute trait decl parameters for instance parameters
595 applySubstitution( inst->baseTrait->parameters.begin(), inst->baseTrait->parameters.end(), inst->parameters.begin(), asserts.begin(), asserts.end(), out );
596 }
597
[6e50a6b]598 ResolveEnumInitializers::ResolveEnumInitializers( const Indexer * other_indexer ) : WithIndexer( true ) {
599 if ( other_indexer ) {
600 local_indexer = other_indexer;
601 } else {
602 local_indexer = &indexer;
603 } // if
604 }
605
606 void ResolveEnumInitializers::postvisit( EnumDecl * enumDecl ) {
607 if ( enumDecl->body ) {
608 for ( Declaration * member : enumDecl->members ) {
609 ObjectDecl * field = strict_dynamic_cast<ObjectDecl *>( member );
610 if ( field->init ) {
611 // need to resolve enumerator initializers early so that other passes that determine if an expression is constexpr have the appropriate information.
612 SingleInit * init = strict_dynamic_cast<SingleInit *>( field->init );
[4559b34]613 if ( !enumDecl->base || dynamic_cast<BasicType *>(enumDecl->base))
614 ResolvExpr::findSingleExpression( init->value, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), indexer );
615 else {
616 if (dynamic_cast<PointerType *>(enumDecl->base)) {
617 auto typePtr = dynamic_cast<PointerType *>(enumDecl->base);
618 ResolvExpr::findSingleExpression( init->value,
619 new PointerType( Type::Qualifiers(), typePtr->base ), indexer );
620 } else {
621 ResolvExpr::findSingleExpression( init->value, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), indexer );
622 }
623 }
[6e50a6b]624 }
625 }
[4559b34]626
[6e50a6b]627 } // if
628 }
629
[4a9ccc3]630 /// Fix up assertions - flattens assertion lists, removing all trait instances
[8b11840]631 void forallFixer( std::list< TypeDecl * > & forall, BaseSyntaxNode * node ) {
632 for ( TypeDecl * type : forall ) {
[be9036d]633 std::list< DeclarationWithType * > asserts;
634 asserts.splice( asserts.end(), type->assertions );
635 // expand trait instances into their members
636 for ( DeclarationWithType * assertion : asserts ) {
[ef5b828]637 if ( TraitInstType * traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) {
[be9036d]638 // expand trait instance into all of its members
639 expandAssertions( traitInst, back_inserter( type->assertions ) );
640 delete traitInst;
641 } else {
642 // pass other assertions through
643 type->assertions.push_back( assertion );
644 } // if
645 } // for
646 // apply FixFunction to every assertion to check for invalid void type
647 for ( DeclarationWithType *& assertion : type->assertions ) {
[4bda2cf]648 bool isVoid = fixFunction( assertion );
649 if ( isVoid ) {
[a16764a6]650 SemanticError( node, "invalid type void in assertion of function " );
[be9036d]651 } // if
652 } // for
653 // normalizeAssertions( type->assertions );
[0dd3a2f]654 } // for
[a08ba92]655 }
[c8ffe20b]656
[9490621]657 /// Replace all traits in assertion lists with their assertions.
658 void expandTraits( std::list< TypeDecl * > & forall ) {
659 for ( TypeDecl * type : forall ) {
660 std::list< DeclarationWithType * > asserts;
661 asserts.splice( asserts.end(), type->assertions );
662 // expand trait instances into their members
663 for ( DeclarationWithType * assertion : asserts ) {
664 if ( TraitInstType * traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) {
665 // expand trait instance into all of its members
666 expandAssertions( traitInst, back_inserter( type->assertions ) );
667 delete traitInst;
668 } else {
669 // pass other assertions through
670 type->assertions.push_back( assertion );
671 } // if
672 } // for
673 }
674 }
675
676 /// Fix each function in the assertion list and check for invalid void type.
677 void fixAssertions(
678 std::list< TypeDecl * > & forall, BaseSyntaxNode * node ) {
679 for ( TypeDecl * type : forall ) {
680 for ( DeclarationWithType *& assertion : type->assertions ) {
681 bool isVoid = fixFunction( assertion );
682 if ( isVoid ) {
683 SemanticError( node, "invalid type void in assertion of function " );
684 } // if
685 } // for
686 }
687 }
688
[ef5b828]689 void ForallPointerDecay_old::previsit( ObjectDecl * object ) {
[3d2b7bc]690 // ensure that operator names only apply to functions or function pointers
691 if ( CodeGen::isOperator( object->name ) && ! dynamic_cast< FunctionType * >( object->type->stripDeclarator() ) ) {
692 SemanticError( object->location, toCString( "operator ", object->name.c_str(), " is not a function or function pointer." ) );
693 }
[0dd3a2f]694 object->fixUniqueId();
[a08ba92]695 }
[c8ffe20b]696
[ef5b828]697 void ForallPointerDecay_old::previsit( FunctionDecl * func ) {
[0dd3a2f]698 func->fixUniqueId();
[a08ba92]699 }
[c8ffe20b]700
[c1ed2ee]701 void ForallPointerDecay_old::previsit( FunctionType * ftype ) {
[bbf3fda]702 forallFixer( ftype->forall, ftype );
703 }
704
[c1ed2ee]705 void ForallPointerDecay_old::previsit( StructDecl * aggrDecl ) {
[bd7e609]706 forallFixer( aggrDecl->parameters, aggrDecl );
707 }
708
[c1ed2ee]709 void ForallPointerDecay_old::previsit( UnionDecl * aggrDecl ) {
[bd7e609]710 forallFixer( aggrDecl->parameters, aggrDecl );
711 }
712
[de91427b]713 void ReturnChecker::checkFunctionReturns( std::list< Declaration * > & translationUnit ) {
[0db6fc0]714 PassVisitor<ReturnChecker> checker;
[de91427b]715 acceptAll( translationUnit, checker );
716 }
717
[0db6fc0]718 void ReturnChecker::previsit( FunctionDecl * functionDecl ) {
[0508ab3]719 GuardValue( returnVals );
[de91427b]720 returnVals = functionDecl->get_functionType()->get_returnVals();
721 }
722
[0db6fc0]723 void ReturnChecker::previsit( ReturnStmt * returnStmt ) {
[74d1804]724 // Previously this also checked for the existence of an expr paired with no return values on
725 // the function return type. This is incorrect, since you can have an expression attached to
726 // a return statement in a void-returning function in C. The expression is treated as if it
727 // were cast to void.
[30f9072]728 if ( ! returnStmt->get_expr() && returnVals.size() != 0 ) {
[a16764a6]729 SemanticError( returnStmt, "Non-void function returns no values: " );
[de91427b]730 }
731 }
732
733
[48ed81c]734 void ReplaceTypedef::replaceTypedef( std::list< Declaration * > &translationUnit ) {
735 PassVisitor<ReplaceTypedef> eliminator;
[0dd3a2f]736 mutateAll( translationUnit, eliminator );
[a506df4]737 if ( eliminator.pass.typedefNames.count( "size_t" ) ) {
[5f98ce5]738 // grab and remember declaration of size_t
[2bfc6b2]739 Validate::SizeType = eliminator.pass.typedefNames["size_t"].first->base->clone();
[5f98ce5]740 } else {
[40e636a]741 // xxx - missing global typedef for size_t - default to long unsigned int, even though that may be wrong
742 // eventually should have a warning for this case.
[2bfc6b2]743 Validate::SizeType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
[5f98ce5]744 }
[a08ba92]745 }
[c8ffe20b]746
[48ed81c]747 void ReplaceTypedef::premutate( QualifiedType * ) {
748 visit_children = false;
749 }
750
751 Type * ReplaceTypedef::postmutate( QualifiedType * qualType ) {
752 // replacing typedefs only makes sense for the 'oldest ancestor' of the qualified type
[ef5b828]753 qualType->parent = qualType->parent->acceptMutator( * visitor );
[48ed81c]754 return qualType;
755 }
756
[a7c31e0]757 static bool isNonParameterAttribute( Attribute * attr ) {
758 static const std::vector<std::string> bad_names = {
759 "aligned", "__aligned__",
760 };
761 for ( auto name : bad_names ) {
762 if ( name == attr->name ) {
763 return true;
764 }
765 }
766 return false;
767 }
768
[48ed81c]769 Type * ReplaceTypedef::postmutate( TypeInstType * typeInst ) {
[9cb8e88d]770 // instances of typedef types will come here. If it is an instance
[cc79d97]771 // of a typdef type, link the instance to its actual type.
[0b3b2ae]772 TypedefMap::const_iterator def = typedefNames.find( typeInst->name );
[0dd3a2f]773 if ( def != typedefNames.end() ) {
[ef5b828]774 Type * ret = def->second.first->base->clone();
[e82ef13]775 ret->location = typeInst->location;
[6f95000]776 ret->get_qualifiers() |= typeInst->get_qualifiers();
[a7c31e0]777 // GCC ignores certain attributes if they arrive by typedef, this mimics that.
778 if ( inFunctionType ) {
779 ret->attributes.remove_if( isNonParameterAttribute );
[1f370451]780 }
[a7c31e0]781 ret->attributes.splice( ret->attributes.end(), typeInst->attributes );
[0215a76f]782 // place instance parameters on the typedef'd type
[f53836b]783 if ( ! typeInst->parameters.empty() ) {
[ef5b828]784 ReferenceToType * rtt = dynamic_cast<ReferenceToType *>(ret);
[0215a76f]785 if ( ! rtt ) {
[a16764a6]786 SemanticError( typeInst->location, "Cannot apply type parameters to base type of " + typeInst->name );
[0215a76f]787 }
[0b3b2ae]788 rtt->parameters.clear();
[f53836b]789 cloneAll( typeInst->parameters, rtt->parameters );
[ef5b828]790 mutateAll( rtt->parameters, * visitor ); // recursively fix typedefs on parameters
[1db21619]791 } // if
[0dd3a2f]792 delete typeInst;
793 return ret;
[679864e1]794 } else {
[0b3b2ae]795 TypeDeclMap::const_iterator base = typedeclNames.find( typeInst->name );
[062e8df]796 if ( base == typedeclNames.end() ) {
797 SemanticError( typeInst->location, toString("Use of undefined type ", typeInst->name) );
798 }
[1e8b02f5]799 typeInst->set_baseType( base->second );
[062e8df]800 return typeInst;
[0dd3a2f]801 } // if
[062e8df]802 assert( false );
[a08ba92]803 }
[c8ffe20b]804
[f53836b]805 struct VarLenChecker : WithShortCircuiting {
806 void previsit( FunctionType * ) { visit_children = false; }
807 void previsit( ArrayType * at ) {
808 isVarLen |= at->isVarLen;
809 }
810 bool isVarLen = false;
811 };
812
813 bool isVariableLength( Type * t ) {
814 PassVisitor<VarLenChecker> varLenChecker;
815 maybeAccept( t, varLenChecker );
816 return varLenChecker.pass.isVarLen;
817 }
818
[48ed81c]819 Declaration * ReplaceTypedef::postmutate( TypedefDecl * tyDecl ) {
[0b3b2ae]820 if ( typedefNames.count( tyDecl->name ) == 1 && typedefNames[ tyDecl->name ].second == scopeLevel ) {
[9cb8e88d]821 // typedef to the same name from the same scope
[cc79d97]822 // must be from the same type
823
[0b3b2ae]824 Type * t1 = tyDecl->base;
825 Type * t2 = typedefNames[ tyDecl->name ].first->base;
[1cbca6e]826 if ( ! ResolvExpr::typesCompatible( t1, t2, Indexer() ) ) {
[a16764a6]827 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
[f53836b]828 }
[4b97770]829 // Cannot redefine VLA typedefs. Note: this is slightly incorrect, because our notion of VLAs
830 // at this point in the translator is imprecise. In particular, this will disallow redefining typedefs
831 // with arrays whose dimension is an enumerator or a cast of a constant/enumerator. The effort required
832 // to fix this corner case likely outweighs the utility of allowing it.
[f53836b]833 if ( isVariableLength( t1 ) || isVariableLength( t2 ) ) {
[a16764a6]834 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
[85c4ef0]835 }
[cc79d97]836 } else {
[0b3b2ae]837 typedefNames[ tyDecl->name ] = std::make_pair( TypedefDeclPtr( tyDecl ), scopeLevel );
[cc79d97]838 } // if
839
[0dd3a2f]840 // When a typedef is a forward declaration:
841 // typedef struct screen SCREEN;
842 // the declaration portion must be retained:
843 // struct screen;
844 // because the expansion of the typedef is:
[ef5b828]845 // void rtn( SCREEN * p ) => void rtn( struct screen * p )
[0dd3a2f]846 // hence the type-name "screen" must be defined.
847 // Note, qualifiers on the typedef are superfluous for the forward declaration.
[6f95000]848
[ef5b828]849 Type * designatorType = tyDecl->base->stripDeclarator();
850 if ( StructInstType * aggDecl = dynamic_cast< StructInstType * >( designatorType ) ) {
[312029a]851 declsToAddBefore.push_back( new StructDecl( aggDecl->name, AggregateDecl::Struct, noAttributes, tyDecl->linkage ) );
[ef5b828]852 } else if ( UnionInstType * aggDecl = dynamic_cast< UnionInstType * >( designatorType ) ) {
[48ed81c]853 declsToAddBefore.push_back( new UnionDecl( aggDecl->name, noAttributes, tyDecl->linkage ) );
[b0d9ff7]854 } else if ( EnumInstType * enumInst = dynamic_cast< EnumInstType * >( designatorType ) ) {
855 if ( enumInst->baseEnum ) {
856 const EnumDecl * enumDecl = enumInst->baseEnum;
857 declsToAddBefore.push_back( new EnumDecl( enumDecl->name, noAttributes, enumDecl->isTyped, tyDecl->linkage, enumDecl->base ) );
[3e54399]858 } else {
[b0d9ff7]859 declsToAddBefore.push_back( new EnumDecl( enumInst->name, noAttributes, tyDecl->linkage ) );
[3e54399]860 }
[0dd3a2f]861 } // if
[48ed81c]862 return tyDecl->clone();
[a08ba92]863 }
[c8ffe20b]864
[48ed81c]865 void ReplaceTypedef::premutate( TypeDecl * typeDecl ) {
[21a2a7d]866 typedefNames.erase( typeDecl->name );
[0bcc2b7]867 typedeclNames.insert( typeDecl->name, typeDecl );
[a08ba92]868 }
[c8ffe20b]869
[48ed81c]870 void ReplaceTypedef::premutate( FunctionDecl * ) {
[a506df4]871 GuardScope( typedefNames );
[0bcc2b7]872 GuardScope( typedeclNames );
[a08ba92]873 }
[c8ffe20b]874
[48ed81c]875 void ReplaceTypedef::premutate( ObjectDecl * ) {
[a506df4]876 GuardScope( typedefNames );
[0bcc2b7]877 GuardScope( typedeclNames );
[a506df4]878 }
[dd020c0]879
[48ed81c]880 DeclarationWithType * ReplaceTypedef::postmutate( ObjectDecl * objDecl ) {
[ef5b828]881 if ( FunctionType * funtype = dynamic_cast<FunctionType *>( objDecl->type ) ) { // function type?
[02e5ab6]882 // replace the current object declaration with a function declaration
[0b3b2ae]883 FunctionDecl * newDecl = new FunctionDecl( objDecl->name, objDecl->get_storageClasses(), objDecl->linkage, funtype, 0, objDecl->attributes, objDecl->get_funcSpec() );
884 objDecl->attributes.clear();
[dbe8f244]885 objDecl->set_type( nullptr );
[0a86a30]886 delete objDecl;
887 return newDecl;
[1db21619]888 } // if
[a506df4]889 return objDecl;
[a08ba92]890 }
[c8ffe20b]891
[48ed81c]892 void ReplaceTypedef::premutate( CastExpr * ) {
[a506df4]893 GuardScope( typedefNames );
[0bcc2b7]894 GuardScope( typedeclNames );
[a08ba92]895 }
[c8ffe20b]896
[48ed81c]897 void ReplaceTypedef::premutate( CompoundStmt * ) {
[a506df4]898 GuardScope( typedefNames );
[0bcc2b7]899 GuardScope( typedeclNames );
[cc79d97]900 scopeLevel += 1;
[a506df4]901 GuardAction( [this](){ scopeLevel -= 1; } );
902 }
903
[45161b4d]904 template<typename AggDecl>
[48ed81c]905 void ReplaceTypedef::addImplicitTypedef( AggDecl * aggDecl ) {
[45161b4d]906 if ( typedefNames.count( aggDecl->get_name() ) == 0 ) {
[ef5b828]907 Type * type = nullptr;
[45161b4d]908 if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( aggDecl ) ) {
909 type = new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() );
910 } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( aggDecl ) ) {
911 type = new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() );
912 } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( aggDecl ) ) {
913 type = new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() );
914 } // if
[0b0f1dd]915 TypedefDeclPtr tyDecl( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type, aggDecl->get_linkage() ) );
[46f6134]916 typedefNames[ aggDecl->get_name() ] = std::make_pair( std::move( tyDecl ), scopeLevel );
[48ed81c]917 // add the implicit typedef to the AST
918 declsToAddBefore.push_back( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type->clone(), aggDecl->get_linkage() ) );
[45161b4d]919 } // if
920 }
[4e06c1e]921
[48ed81c]922 template< typename AggDecl >
923 void ReplaceTypedef::handleAggregate( AggDecl * aggr ) {
924 SemanticErrorException errors;
[a506df4]925
[48ed81c]926 ValueGuard< std::list<Declaration * > > oldBeforeDecls( declsToAddBefore );
927 ValueGuard< std::list<Declaration * > > oldAfterDecls ( declsToAddAfter );
928 declsToAddBefore.clear();
929 declsToAddAfter.clear();
[a506df4]930
[48ed81c]931 GuardScope( typedefNames );
[0bcc2b7]932 GuardScope( typedeclNames );
[ef5b828]933 mutateAll( aggr->parameters, * visitor );
[798a8b3]934 mutateAll( aggr->attributes, * visitor );
[85c4ef0]935
[48ed81c]936 // unroll mutateAll for aggr->members so that implicit typedefs for nested types are added to the aggregate body.
937 for ( std::list< Declaration * >::iterator i = aggr->members.begin(); i != aggr->members.end(); ++i ) {
938 if ( !declsToAddAfter.empty() ) { aggr->members.splice( i, declsToAddAfter ); }
[a506df4]939
[48ed81c]940 try {
[ef5b828]941 * i = maybeMutate( * i, * visitor );
[48ed81c]942 } catch ( SemanticErrorException &e ) {
943 errors.append( e );
944 }
945
946 if ( !declsToAddBefore.empty() ) { aggr->members.splice( i, declsToAddBefore ); }
947 }
948
949 if ( !declsToAddAfter.empty() ) { aggr->members.splice( aggr->members.end(), declsToAddAfter ); }
950 if ( !errors.isEmpty() ) { throw errors; }
[85c4ef0]951 }
952
[48ed81c]953 void ReplaceTypedef::premutate( StructDecl * structDecl ) {
954 visit_children = false;
955 addImplicitTypedef( structDecl );
956 handleAggregate( structDecl );
[a506df4]957 }
958
[48ed81c]959 void ReplaceTypedef::premutate( UnionDecl * unionDecl ) {
960 visit_children = false;
961 addImplicitTypedef( unionDecl );
962 handleAggregate( unionDecl );
[85c4ef0]963 }
964
[48ed81c]965 void ReplaceTypedef::premutate( EnumDecl * enumDecl ) {
966 addImplicitTypedef( enumDecl );
[85c4ef0]967 }
968
[48ed81c]969 void ReplaceTypedef::premutate( FunctionType * ) {
[1f370451]970 GuardValue( inFunctionType );
971 inFunctionType = true;
972 }
973
[0bcc2b7]974 void ReplaceTypedef::premutate( TraitDecl * ) {
975 GuardScope( typedefNames );
976 GuardScope( typedeclNames);
977 }
978
[d1969a6]979 void VerifyCtorDtorAssign::verify( std::list< Declaration * > & translationUnit ) {
[0db6fc0]980 PassVisitor<VerifyCtorDtorAssign> verifier;
[9cb8e88d]981 acceptAll( translationUnit, verifier );
982 }
983
[0db6fc0]984 void VerifyCtorDtorAssign::previsit( FunctionDecl * funcDecl ) {
[9cb8e88d]985 FunctionType * funcType = funcDecl->get_functionType();
986 std::list< DeclarationWithType * > &returnVals = funcType->get_returnVals();
987 std::list< DeclarationWithType * > &params = funcType->get_parameters();
988
[bff227f]989 if ( CodeGen::isCtorDtorAssign( funcDecl->get_name() ) ) { // TODO: also check /=, etc.
[9cb8e88d]990 if ( params.size() == 0 ) {
[98538288]991 SemanticError( funcDecl->location, "Constructors, destructors, and assignment functions require at least one parameter." );
[9cb8e88d]992 }
[ce8c12f]993 ReferenceType * refType = dynamic_cast< ReferenceType * >( params.front()->get_type() );
[084fecc]994 if ( ! refType ) {
[98538288]995 SemanticError( funcDecl->location, "First parameter of a constructor, destructor, or assignment function must be a reference." );
[9cb8e88d]996 }
[bff227f]997 if ( CodeGen::isCtorDtor( funcDecl->get_name() ) && returnVals.size() != 0 ) {
[98538288]998 if(!returnVals.front()->get_type()->isVoid()) {
999 SemanticError( funcDecl->location, "Constructors and destructors cannot have explicit return values." );
1000 }
[9cb8e88d]1001 }
1002 }
1003 }
[70a06f6]1004
[6e50a6b]1005 // Test for special name on a generic parameter. Special treatment for the
1006 // special name is a bootstrapping hack. In most cases, the worlds of T's
1007 // and of N's don't overlap (normal treamtemt). The foundations in
1008 // array.hfa use tagging for both types and dimensions. Tagging treats
1009 // its subject parameter even more opaquely than T&, which assumes it is
1010 // possible to have a pointer/reference to such an object. Tagging only
1011 // seeks to identify the type-system resident at compile time. Both N's
1012 // and T's can make tags. The tag definition uses the special name, which
1013 // is treated as "an N or a T." This feature is not inteded to be used
1014 // outside of the definition and immediate uses of a tag.
1015 static inline bool isReservedTysysIdOnlyName( const std::string & name ) {
1016 // name's prefix was __CFA_tysys_id_only, before it got wrapped in __..._generic
1017 int foundAt = name.find("__CFA_tysys_id_only");
1018 if (foundAt == 0) return true;
1019 if (foundAt == 2 && name[0] == '_' && name[1] == '_') return true;
1020 return false;
1021 }
1022
[11ab8ea8]1023 template< typename Aggr >
1024 void validateGeneric( Aggr * inst ) {
1025 std::list< TypeDecl * > * params = inst->get_baseParameters();
[30f9072]1026 if ( params ) {
[11ab8ea8]1027 std::list< Expression * > & args = inst->get_parameters();
[67cf18c]1028
1029 // insert defaults arguments when a type argument is missing (currently only supports missing arguments at the end of the list).
1030 // A substitution is used to ensure that defaults are replaced correctly, e.g.,
1031 // forall(otype T, otype alloc = heap_allocator(T)) struct vector;
1032 // vector(int) v;
1033 // after insertion of default values becomes
1034 // vector(int, heap_allocator(T))
1035 // and the substitution is built with T=int so that after substitution, the result is
1036 // vector(int, heap_allocator(int))
1037 TypeSubstitution sub;
1038 auto paramIter = params->begin();
[6e50a6b]1039 auto argIter = args.begin();
1040 for ( ; paramIter != params->end(); ++paramIter, ++argIter ) {
1041 if ( argIter != args.end() ) {
1042 TypeExpr * expr = dynamic_cast< TypeExpr * >( * argIter );
1043 if ( expr ) {
1044 sub.add( (* paramIter)->get_name(), expr->get_type()->clone() );
1045 }
1046 } else {
[ef5b828]1047 Type * defaultType = (* paramIter)->get_init();
[67cf18c]1048 if ( defaultType ) {
1049 args.push_back( new TypeExpr( defaultType->clone() ) );
[ef5b828]1050 sub.add( (* paramIter)->get_name(), defaultType->clone() );
[6e50a6b]1051 argIter = std::prev(args.end());
1052 } else {
1053 SemanticError( inst, "Too few type arguments in generic type " );
[67cf18c]1054 }
1055 }
[6e50a6b]1056 assert( argIter != args.end() );
1057 bool typeParamDeclared = (*paramIter)->kind != TypeDecl::Kind::Dimension;
1058 bool typeArgGiven;
1059 if ( isReservedTysysIdOnlyName( (*paramIter)->name ) ) {
1060 // coerce a match when declaration is reserved name, which means "either"
1061 typeArgGiven = typeParamDeclared;
1062 } else {
1063 typeArgGiven = dynamic_cast< TypeExpr * >( * argIter );
1064 }
1065 if ( ! typeParamDeclared && typeArgGiven ) SemanticError( inst, "Type argument given for value parameter: " );
1066 if ( typeParamDeclared && ! typeArgGiven ) SemanticError( inst, "Expression argument given for type parameter: " );
[67cf18c]1067 }
1068
1069 sub.apply( inst );
[a16764a6]1070 if ( args.size() > params->size() ) SemanticError( inst, "Too many type arguments in generic type " );
[11ab8ea8]1071 }
1072 }
1073
[0db6fc0]1074 void ValidateGenericParameters::previsit( StructInstType * inst ) {
[11ab8ea8]1075 validateGeneric( inst );
1076 }
[9cb8e88d]1077
[0db6fc0]1078 void ValidateGenericParameters::previsit( UnionInstType * inst ) {
[11ab8ea8]1079 validateGeneric( inst );
[9cb8e88d]1080 }
[70a06f6]1081
[6e50a6b]1082 void TranslateDimensionGenericParameters::translateDimensions( std::list< Declaration * > &translationUnit ) {
1083 PassVisitor<TranslateDimensionGenericParameters> translator;
1084 mutateAll( translationUnit, translator );
1085 }
1086
1087 TranslateDimensionGenericParameters::TranslateDimensionGenericParameters() : WithIndexer( false ) {}
1088
1089 // Declaration of type variable: forall( [N] ) -> forall( N & | sized( N ) )
1090 TypeDecl * TranslateDimensionGenericParameters::postmutate( TypeDecl * td ) {
1091 if ( td->kind == TypeDecl::Dimension ) {
1092 td->kind = TypeDecl::Dtype;
1093 if ( ! isReservedTysysIdOnlyName( td->name ) ) {
1094 td->sized = true;
1095 }
1096 }
1097 return td;
1098 }
1099
1100 // Situational awareness:
1101 // array( float, [[currentExpr]] ) has visitingChildOfSUIT == true
1102 // array( float, [[currentExpr]] - 1 ) has visitingChildOfSUIT == false
1103 // size_t x = [[currentExpr]] has visitingChildOfSUIT == false
1104 void TranslateDimensionGenericParameters::changeState_ChildOfSUIT( bool newVal ) {
1105 GuardValue( nextVisitedNodeIsChildOfSUIT );
1106 GuardValue( visitingChildOfSUIT );
1107 visitingChildOfSUIT = nextVisitedNodeIsChildOfSUIT;
1108 nextVisitedNodeIsChildOfSUIT = newVal;
1109 }
1110 void TranslateDimensionGenericParameters::premutate( StructInstType * sit ) {
1111 (void) sit;
1112 changeState_ChildOfSUIT(true);
1113 }
1114 void TranslateDimensionGenericParameters::premutate( UnionInstType * uit ) {
1115 (void) uit;
1116 changeState_ChildOfSUIT(true);
1117 }
1118 void TranslateDimensionGenericParameters::premutate( BaseSyntaxNode * node ) {
1119 (void) node;
1120 changeState_ChildOfSUIT(false);
1121 }
1122
1123 // Passing values as dimension arguments: array( float, 7 ) -> array( float, char[ 7 ] )
1124 // Consuming dimension parameters: size_t x = N - 1 ; -> size_t x = sizeof(N) - 1 ;
1125 // Intertwined reality: array( float, N ) -> array( float, N )
1126 // array( float, N - 1 ) -> array( float, char[ sizeof(N) - 1 ] )
1127 // Intertwined case 1 is not just an optimization.
1128 // Avoiding char[sizeof(-)] is necessary to enable the call of f to bind the value of N, in:
1129 // forall([N]) void f( array(float, N) & );
1130 // array(float, 7) a;
1131 // f(a);
1132
1133 Expression * TranslateDimensionGenericParameters::postmutate( DimensionExpr * de ) {
1134 // Expression de is an occurrence of N in LHS of above examples.
1135 // Look up the name that de references.
1136 // If we are in a struct body, then this reference can be to an entry of the stuct's forall list.
1137 // Whether or not we are in a struct body, this reference can be to an entry of a containing function's forall list.
1138 // If we are in a struct body, then the stuct's forall declarations are innermost (functions don't occur in structs).
1139 // Thus, a potential struct's declaration is highest priority.
1140 // A struct's forall declarations are already renamed with _generic_ suffix. Try that name variant first.
1141
1142 std::string useName = "__" + de->name + "_generic_";
1143 TypeDecl * namedParamDecl = const_cast<TypeDecl *>( strict_dynamic_cast<const TypeDecl *, nullptr >( indexer.lookupType( useName ) ) );
1144
1145 if ( ! namedParamDecl ) {
1146 useName = de->name;
1147 namedParamDecl = const_cast<TypeDecl *>( strict_dynamic_cast<const TypeDecl *, nullptr >( indexer.lookupType( useName ) ) );
1148 }
1149
1150 // Expect to find it always. A misspelled name would have been parsed as an identifier.
1151 assert( namedParamDecl && "Type-system-managed value name not found in symbol table" );
1152
1153 delete de;
1154
1155 TypeInstType * refToDecl = new TypeInstType( 0, useName, namedParamDecl );
1156
1157 if ( visitingChildOfSUIT ) {
1158 // As in postmutate( Expression * ), topmost expression needs a TypeExpr wrapper
1159 // But avoid ArrayType-Sizeof
1160 return new TypeExpr( refToDecl );
1161 } else {
1162 // the N occurrence is being used directly as a runtime value,
1163 // if we are in a type instantiation, then the N is within a bigger value computation
1164 return new SizeofExpr( refToDecl );
1165 }
1166 }
1167
1168 Expression * TranslateDimensionGenericParameters::postmutate( Expression * e ) {
1169 if ( visitingChildOfSUIT ) {
1170 // e is an expression used as an argument to instantiate a type
1171 if (! dynamic_cast< TypeExpr * >( e ) ) {
1172 // e is a value expression
1173 // but not a DimensionExpr, which has a distinct postmutate
1174 Type * typeExprContent = new ArrayType( 0, new BasicType( 0, BasicType::Char ), e, true, false );
1175 TypeExpr * result = new TypeExpr( typeExprContent );
1176 return result;
1177 }
1178 }
1179 return e;
1180 }
1181
[ef5b828]1182 void CompoundLiteral::premutate( ObjectDecl * objectDecl ) {
[a7c90d4]1183 storageClasses = objectDecl->get_storageClasses();
[630a82a]1184 }
1185
[ef5b828]1186 Expression * CompoundLiteral::postmutate( CompoundLiteralExpr * compLitExpr ) {
[630a82a]1187 // transform [storage_class] ... (struct S){ 3, ... };
1188 // into [storage_class] struct S temp = { 3, ... };
1189 static UniqueName indexName( "_compLit" );
1190
[ef5b828]1191 ObjectDecl * tempvar = new ObjectDecl( indexName.newName(), storageClasses, LinkageSpec::C, nullptr, compLitExpr->get_result(), compLitExpr->get_initializer() );
[d24d4e1]1192 compLitExpr->set_result( nullptr );
1193 compLitExpr->set_initializer( nullptr );
[630a82a]1194 delete compLitExpr;
[d24d4e1]1195 declsToAddBefore.push_back( tempvar ); // add modified temporary to current block
1196 return new VariableExpr( tempvar );
[630a82a]1197 }
[cce9429]1198
1199 void ReturnTypeFixer::fix( std::list< Declaration * > &translationUnit ) {
[0db6fc0]1200 PassVisitor<ReturnTypeFixer> fixer;
[cce9429]1201 acceptAll( translationUnit, fixer );
1202 }
1203
[0db6fc0]1204 void ReturnTypeFixer::postvisit( FunctionDecl * functionDecl ) {
[9facf3b]1205 FunctionType * ftype = functionDecl->get_functionType();
1206 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
[56e49b0]1207 assertf( retVals.size() == 0 || retVals.size() == 1, "Function %s has too many return values: %zu", functionDecl->get_name().c_str(), retVals.size() );
[9facf3b]1208 if ( retVals.size() == 1 ) {
[861799c7]1209 // ensure all function return values have a name - use the name of the function to disambiguate (this also provides a nice bit of help for debugging).
1210 // ensure other return values have a name.
[9facf3b]1211 DeclarationWithType * ret = retVals.front();
1212 if ( ret->get_name() == "" ) {
1213 ret->set_name( toString( "_retval_", CodeGen::genName( functionDecl ) ) );
1214 }
[c6d2e93]1215 ret->get_attributes().push_back( new Attribute( "unused" ) );
[9facf3b]1216 }
1217 }
[cce9429]1218
[0db6fc0]1219 void ReturnTypeFixer::postvisit( FunctionType * ftype ) {
[cce9429]1220 // xxx - need to handle named return values - this information needs to be saved somehow
1221 // so that resolution has access to the names.
1222 // Note that this pass needs to happen early so that other passes which look for tuple types
1223 // find them in all of the right places, including function return types.
1224 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
1225 if ( retVals.size() > 1 ) {
1226 // generate a single return parameter which is the tuple of all of the return values
[e3e16bc]1227 TupleType * tupleType = strict_dynamic_cast< TupleType * >( ResolvExpr::extractResultType( ftype ) );
[cce9429]1228 // ensure return value is not destructed by explicitly creating an empty ListInit node wherein maybeConstruct is false.
[ef5b828]1229 ObjectDecl * newRet = new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, tupleType, new ListInit( std::list<Initializer *>(), noDesignators, false ) );
[cce9429]1230 deleteAll( retVals );
1231 retVals.clear();
1232 retVals.push_back( newRet );
1233 }
1234 }
[fbd7ad6]1235
[2b79a70]1236 void FixObjectType::fix( std::list< Declaration * > & translationUnit ) {
1237 PassVisitor<FixObjectType> fixer;
1238 acceptAll( translationUnit, fixer );
1239 }
1240
1241 void FixObjectType::previsit( ObjectDecl * objDecl ) {
[ef5b828]1242 Type * new_type = ResolvExpr::resolveTypeof( objDecl->get_type(), indexer );
[2b79a70]1243 objDecl->set_type( new_type );
1244 }
1245
1246 void FixObjectType::previsit( FunctionDecl * funcDecl ) {
[ef5b828]1247 Type * new_type = ResolvExpr::resolveTypeof( funcDecl->type, indexer );
[2b79a70]1248 funcDecl->set_type( new_type );
1249 }
1250
[ef5b828]1251 void FixObjectType::previsit( TypeDecl * typeDecl ) {
[2b79a70]1252 if ( typeDecl->get_base() ) {
[ef5b828]1253 Type * new_type = ResolvExpr::resolveTypeof( typeDecl->get_base(), indexer );
[2b79a70]1254 typeDecl->set_base( new_type );
1255 } // if
1256 }
1257
[09867ec]1258 void InitializerLength::computeLength( std::list< Declaration * > & translationUnit ) {
1259 PassVisitor<InitializerLength> len;
1260 acceptAll( translationUnit, len );
1261 }
1262
[fbd7ad6]1263 void ArrayLength::computeLength( std::list< Declaration * > & translationUnit ) {
[0db6fc0]1264 PassVisitor<ArrayLength> len;
[fbd7ad6]1265 acceptAll( translationUnit, len );
1266 }
1267
[09867ec]1268 void InitializerLength::previsit( ObjectDecl * objDecl ) {
[0b3b2ae]1269 if ( ArrayType * at = dynamic_cast< ArrayType * >( objDecl->type ) ) {
[f072892]1270 if ( at->dimension ) return;
[0b3b2ae]1271 if ( ListInit * init = dynamic_cast< ListInit * >( objDecl->init ) ) {
[f072892]1272 at->dimension = new ConstantExpr( Constant::from_ulong( init->initializers.size() ) );
[fbd7ad6]1273 }
1274 }
1275 }
[4fbdfae0]1276
[4934ea3]1277 void ArrayLength::previsit( ArrayType * type ) {
[09867ec]1278 if ( type->dimension ) {
1279 // need to resolve array dimensions early so that constructor code can correctly determine
1280 // if a type is a VLA (and hence whether its elements need to be constructed)
1281 ResolvExpr::findSingleExpression( type->dimension, Validate::SizeType->clone(), indexer );
1282
1283 // must re-evaluate whether a type is a VLA, now that more information is available
1284 // (e.g. the dimension may have been an enumerator, which was unknown prior to this step)
1285 type->isVarLen = ! InitTweak::isConstExpr( type->dimension );
[4934ea3]1286 }
1287 }
1288
[5809461]1289 struct LabelFinder {
1290 std::set< Label > & labels;
1291 LabelFinder( std::set< Label > & labels ) : labels( labels ) {}
1292 void previsit( Statement * stmt ) {
1293 for ( Label & l : stmt->labels ) {
1294 labels.insert( l );
1295 }
1296 }
1297 };
1298
1299 void LabelAddressFixer::premutate( FunctionDecl * funcDecl ) {
1300 GuardValue( labels );
1301 PassVisitor<LabelFinder> finder( labels );
1302 funcDecl->accept( finder );
1303 }
1304
1305 Expression * LabelAddressFixer::postmutate( AddressExpr * addrExpr ) {
1306 // convert &&label into label address
1307 if ( AddressExpr * inner = dynamic_cast< AddressExpr * >( addrExpr->arg ) ) {
1308 if ( NameExpr * nameExpr = dynamic_cast< NameExpr * >( inner->arg ) ) {
1309 if ( labels.count( nameExpr->name ) ) {
1310 Label name = nameExpr->name;
1311 delete addrExpr;
1312 return new LabelAddressExpr( name );
1313 }
1314 }
1315 }
1316 return addrExpr;
1317 }
[c8e4d2f8]1318
[51b73452]1319} // namespace SymTab
[0dd3a2f]1320
1321// Local Variables: //
1322// tab-width: 4 //
1323// mode: c++ //
1324// compile-command: "make install" //
1325// End: //
Note: See TracBrowser for help on using the repository browser.