source: src/SymTab/Validate.cc@ 0c3aa67

ADT ast-experimental enum pthread-emulation qualifiedEnum
Last change on this file since 0c3aa67 was 7c919559, checked in by Fangren Yu <f37yu@…>, 4 years ago

skip resolve enum initializer pass

  • Property mode set to 100644
File size: 82.1 KB
RevLine 
[0dd3a2f]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
[9cb8e88d]7// Validate.cc --
[0dd3a2f]8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 21:50:04 2015
[5dcb881]11// Last Modified By : Andrew Beach
12// Last Modified On : Fri Nov 12 11:00:00 2021
13// Update Count : 364
[0dd3a2f]14//
15
16// The "validate" phase of translation is used to take a syntax tree and convert it into a standard form that aims to be
17// as regular in structure as possible. Some assumptions can be made regarding the state of the tree after this pass is
18// complete, including:
19//
20// - No nested structure or union definitions; any in the input are "hoisted" to the level of the containing struct or
21// union.
22//
23// - All enumeration constants have type EnumInstType.
24//
[3c13c03]25// - The type "void" never occurs in lists of function parameter or return types. A function
26// taking no arguments has no argument types.
[0dd3a2f]27//
28// - No context instances exist; they are all replaced by the set of declarations signified by the context, instantiated
29// by the particular set of type arguments.
30//
31// - Every declaration is assigned a unique id.
32//
33// - No typedef declarations or instances exist; the actual type is substituted for each instance.
34//
35// - Each type, struct, and union definition is followed by an appropriate assignment operator.
36//
37// - Each use of a struct or union is connected to a complete definition of that struct or union, even if that
38// definition occurs later in the input.
[51b73452]39
[0db6fc0]40#include "Validate.h"
41
[d180746]42#include <cassert> // for assertf, assert
[30f9072]43#include <cstddef> // for size_t
[d180746]44#include <list> // for list
45#include <string> // for string
[18e683b]46#include <unordered_map> // for unordered_map
[d180746]47#include <utility> // for pair
[30f9072]48
[18e683b]49#include "AST/Chain.hpp"
[c1ed2ee]50#include "AST/Decl.hpp"
51#include "AST/Node.hpp"
52#include "AST/Pass.hpp"
53#include "AST/SymbolTable.hpp"
54#include "AST/Type.hpp"
[c1398e4]55#include "AST/TypeSubstitution.hpp"
[30f9072]56#include "CodeGen/CodeGenerator.h" // for genName
[9236060]57#include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign
[25fcb84]58#include "ControlStruct/Mutate.h" // for ForExprMutator
[18e683b]59#include "Common/CodeLocation.h" // for CodeLocation
[7abee38]60#include "Common/Stats.h" // for Stats::Heap
[30f9072]61#include "Common/PassVisitor.h" // for PassVisitor, WithDeclsToAdd
[d180746]62#include "Common/ScopedMap.h" // for ScopedMap
[30f9072]63#include "Common/SemanticError.h" // for SemanticError
64#include "Common/UniqueName.h" // for UniqueName
65#include "Common/utility.h" // for operator+, cloneAll, deleteAll
[16ba4a6f]66#include "CompilationState.h" // skip some passes in new-ast build
[be9288a]67#include "Concurrency/Keywords.h" // for applyKeywords
[30f9072]68#include "FixFunction.h" // for FixFunction
69#include "Indexer.h" // for Indexer
[8b11840]70#include "InitTweak/GenInit.h" // for fixReturnStatements
[d180746]71#include "InitTweak/InitTweak.h" // for isCtorDtorAssign
72#include "ResolvExpr/typeops.h" // for typesCompatible
[4934ea3]73#include "ResolvExpr/Resolver.h" // for findSingleExpression
[2b79a70]74#include "ResolvExpr/ResolveTypeof.h" // for resolveTypeof
[be9288a]75#include "SymTab/Autogen.h" // for SizeType
[07de76b]76#include "SynTree/LinkageSpec.h" // for C
[be9288a]77#include "SynTree/Attribute.h" // for noAttributes, Attribute
[30f9072]78#include "SynTree/Constant.h" // for Constant
[d180746]79#include "SynTree/Declaration.h" // for ObjectDecl, DeclarationWithType
80#include "SynTree/Expression.h" // for CompoundLiteralExpr, Expressio...
81#include "SynTree/Initializer.h" // for ListInit, Initializer
82#include "SynTree/Label.h" // for operator==, Label
83#include "SynTree/Mutator.h" // for Mutator
84#include "SynTree/Type.h" // for Type, TypeInstType, EnumInstType
85#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
86#include "SynTree/Visitor.h" // for Visitor
[fd2debf]87#include "Validate/HandleAttributes.h" // for handleAttributes
[2bfc6b2]88#include "Validate/FindSpecialDecls.h" // for FindSpecialDecls
[d180746]89
90class CompoundStmt;
91class ReturnStmt;
92class SwitchStmt;
[51b73452]93
[b16923d]94#define debugPrint( x ) if ( doDebug ) x
[51b73452]95
96namespace SymTab {
[15f5c5e]97 /// hoists declarations that are difficult to hoist while parsing
98 struct HoistTypeDecls final : public WithDeclsToAdd {
[29f9e20]99 void previsit( SizeofExpr * );
100 void previsit( AlignofExpr * );
101 void previsit( UntypedOffsetofExpr * );
[95d09bdb]102 void previsit( CompoundLiteralExpr * );
[29f9e20]103 void handleType( Type * );
104 };
105
[a12c81f3]106 struct FixQualifiedTypes final : public WithIndexer {
[6e50a6b]107 FixQualifiedTypes() : WithIndexer(false) {}
[a12c81f3]108 Type * postmutate( QualifiedType * );
109 };
110
[a09e45b]111 struct HoistStruct final : public WithDeclsToAdd, public WithGuards {
[82dd287]112 /// Flattens nested struct types
[0dd3a2f]113 static void hoistStruct( std::list< Declaration * > &translationUnit );
[9cb8e88d]114
[a09e45b]115 void previsit( StructDecl * aggregateDecl );
116 void previsit( UnionDecl * aggregateDecl );
[0f40912]117 void previsit( StaticAssertDecl * assertDecl );
[d419d8e]118 void previsit( StructInstType * type );
119 void previsit( UnionInstType * type );
120 void previsit( EnumInstType * type );
[9cb8e88d]121
[a08ba92]122 private:
[ef5b828]123 template< typename AggDecl > void handleAggregate( AggDecl * aggregateDecl );
[c8ffe20b]124
[bdad6eb7]125 AggregateDecl * parentAggr = nullptr;
[a08ba92]126 };
[c8ffe20b]127
[cce9429]128 /// Fix return types so that every function returns exactly one value
[d24d4e1]129 struct ReturnTypeFixer {
[cce9429]130 static void fix( std::list< Declaration * > &translationUnit );
131
[0db6fc0]132 void postvisit( FunctionDecl * functionDecl );
133 void postvisit( FunctionType * ftype );
[cce9429]134 };
135
[de91427b]136 /// Replaces enum types by int, and function or array types in function parameter and return lists by appropriate pointers.
[c1ed2ee]137 struct EnumAndPointerDecay_old {
[ef5b828]138 void previsit( EnumDecl * aggregateDecl );
139 void previsit( FunctionType * func );
[a08ba92]140 };
[82dd287]141
142 /// Associates forward declarations of aggregates with their definitions
[c1ed2ee]143 struct LinkReferenceToTypes_old final : public WithIndexer, public WithGuards, public WithVisitorRef<LinkReferenceToTypes_old>, public WithShortCircuiting {
[ef5b828]144 LinkReferenceToTypes_old( const Indexer * indexer );
145 void postvisit( TypeInstType * typeInst );
[be9036d]146
[ef5b828]147 void postvisit( EnumInstType * enumInst );
148 void postvisit( StructInstType * structInst );
149 void postvisit( UnionInstType * unionInst );
150 void postvisit( TraitInstType * traitInst );
[afcb0a3]151 void previsit( QualifiedType * qualType );
152 void postvisit( QualifiedType * qualType );
[be9036d]153
[ef5b828]154 void postvisit( EnumDecl * enumDecl );
155 void postvisit( StructDecl * structDecl );
156 void postvisit( UnionDecl * unionDecl );
[522363e]157 void postvisit( TraitDecl * traitDecl );
[be9036d]158
[ef5b828]159 void previsit( StructDecl * structDecl );
160 void previsit( UnionDecl * unionDecl );
[b95fe40]161
162 void renameGenericParams( std::list< TypeDecl * > & params );
163
[06edda0]164 private:
[ef5b828]165 const Indexer * local_indexer;
[9cb8e88d]166
[c0aa336]167 typedef std::map< std::string, std::list< EnumInstType * > > ForwardEnumsType;
[0dd3a2f]168 typedef std::map< std::string, std::list< StructInstType * > > ForwardStructsType;
169 typedef std::map< std::string, std::list< UnionInstType * > > ForwardUnionsType;
[c0aa336]170 ForwardEnumsType forwardEnums;
[0dd3a2f]171 ForwardStructsType forwardStructs;
172 ForwardUnionsType forwardUnions;
[b95fe40]173 /// true if currently in a generic type body, so that type parameter instances can be renamed appropriately
174 bool inGeneric = false;
[a08ba92]175 };
[c8ffe20b]176
[6e50a6b]177 /// Does early resolution on the expressions that give enumeration constants their values
178 struct ResolveEnumInitializers final : public WithIndexer, public WithGuards, public WithVisitorRef<ResolveEnumInitializers>, public WithShortCircuiting {
179 ResolveEnumInitializers( const Indexer * indexer );
180 void postvisit( EnumDecl * enumDecl );
181
182 private:
183 const Indexer * local_indexer;
184
185 };
186
[06edda0]187 /// Replaces array and function types in forall lists by appropriate pointer type and assigns each Object and Function declaration a unique ID.
[c1ed2ee]188 struct ForallPointerDecay_old final {
[8b11840]189 void previsit( ObjectDecl * object );
190 void previsit( FunctionDecl * func );
[bbf3fda]191 void previsit( FunctionType * ftype );
[bd7e609]192 void previsit( StructDecl * aggrDecl );
193 void previsit( UnionDecl * aggrDecl );
[a08ba92]194 };
[c8ffe20b]195
[9490621]196 // These structs are the sub-sub-passes of ForallPointerDecay_old.
197
198 struct TraitExpander_old final {
199 void previsit( FunctionType * );
200 void previsit( StructDecl * );
201 void previsit( UnionDecl * );
202 };
203
204 struct AssertionFixer_old final {
205 void previsit( FunctionType * );
206 void previsit( StructDecl * );
207 void previsit( UnionDecl * );
208 };
209
210 struct CheckOperatorTypes_old final {
211 void previsit( ObjectDecl * );
212 };
213
214 struct FixUniqueIds_old final {
215 void previsit( DeclarationWithType * );
216 };
217
[d24d4e1]218 struct ReturnChecker : public WithGuards {
[de91427b]219 /// Checks that return statements return nothing if their return type is void
220 /// and return something if the return type is non-void.
221 static void checkFunctionReturns( std::list< Declaration * > & translationUnit );
222
[0db6fc0]223 void previsit( FunctionDecl * functionDecl );
224 void previsit( ReturnStmt * returnStmt );
[de91427b]225
[0db6fc0]226 typedef std::list< DeclarationWithType * > ReturnVals;
227 ReturnVals returnVals;
[de91427b]228 };
229
[48ed81c]230 struct ReplaceTypedef final : public WithVisitorRef<ReplaceTypedef>, public WithGuards, public WithShortCircuiting, public WithDeclsToAdd {
231 ReplaceTypedef() : scopeLevel( 0 ) {}
[de91427b]232 /// Replaces typedefs by forward declarations
[48ed81c]233 static void replaceTypedef( std::list< Declaration * > &translationUnit );
[85c4ef0]234
[48ed81c]235 void premutate( QualifiedType * );
236 Type * postmutate( QualifiedType * qualType );
[a506df4]237 Type * postmutate( TypeInstType * aggregateUseType );
238 Declaration * postmutate( TypedefDecl * typeDecl );
239 void premutate( TypeDecl * typeDecl );
240 void premutate( FunctionDecl * funcDecl );
241 void premutate( ObjectDecl * objDecl );
242 DeclarationWithType * postmutate( ObjectDecl * objDecl );
243
244 void premutate( CastExpr * castExpr );
245
246 void premutate( CompoundStmt * compoundStmt );
247
248 void premutate( StructDecl * structDecl );
249 void premutate( UnionDecl * unionDecl );
250 void premutate( EnumDecl * enumDecl );
[0bcc2b7]251 void premutate( TraitDecl * );
[a506df4]252
[1f370451]253 void premutate( FunctionType * ftype );
254
[a506df4]255 private:
[45161b4d]256 template<typename AggDecl>
257 void addImplicitTypedef( AggDecl * aggDecl );
[48ed81c]258 template< typename AggDecl >
259 void handleAggregate( AggDecl * aggr );
[70a06f6]260
[46f6134]261 typedef std::unique_ptr<TypedefDecl> TypedefDeclPtr;
[e491159]262 typedef ScopedMap< std::string, std::pair< TypedefDeclPtr, int > > TypedefMap;
[0bcc2b7]263 typedef ScopedMap< std::string, TypeDecl * > TypeDeclMap;
[cc79d97]264 TypedefMap typedefNames;
[679864e1]265 TypeDeclMap typedeclNames;
[cc79d97]266 int scopeLevel;
[1f370451]267 bool inFunctionType = false;
[a08ba92]268 };
[c8ffe20b]269
[69918cea]270 struct EliminateTypedef {
271 /// removes TypedefDecls from the AST
272 static void eliminateTypedef( std::list< Declaration * > &translationUnit );
273
274 template<typename AggDecl>
[ef5b828]275 void handleAggregate( AggDecl * aggregateDecl );
[69918cea]276
277 void previsit( StructDecl * aggregateDecl );
278 void previsit( UnionDecl * aggregateDecl );
279 void previsit( CompoundStmt * compoundStmt );
280 };
281
[d24d4e1]282 struct VerifyCtorDtorAssign {
[d1969a6]283 /// ensure that constructors, destructors, and assignment have at least one
284 /// parameter, the first of which must be a pointer, and that ctor/dtors have no
[9cb8e88d]285 /// return values.
286 static void verify( std::list< Declaration * > &translationUnit );
287
[ef5b828]288 void previsit( FunctionDecl * funcDecl );
[5f98ce5]289 };
[70a06f6]290
[11ab8ea8]291 /// ensure that generic types have the correct number of type arguments
[d24d4e1]292 struct ValidateGenericParameters {
[0db6fc0]293 void previsit( StructInstType * inst );
294 void previsit( UnionInstType * inst );
[5f98ce5]295 };
[70a06f6]296
[6e50a6b]297 /// desugar declarations and uses of dimension paramaters like [N],
298 /// from type-system managed values, to tunnneling via ordinary types,
299 /// as char[-] in and sizeof(-) out
300 struct TranslateDimensionGenericParameters : public WithIndexer, public WithGuards {
301 static void translateDimensions( std::list< Declaration * > &translationUnit );
302 TranslateDimensionGenericParameters();
303
304 bool nextVisitedNodeIsChildOfSUIT = false; // SUIT = Struct or Union -Inst Type
305 bool visitingChildOfSUIT = false;
306 void changeState_ChildOfSUIT( bool newVal );
307 void premutate( StructInstType * sit );
308 void premutate( UnionInstType * uit );
309 void premutate( BaseSyntaxNode * node );
310
311 TypeDecl * postmutate( TypeDecl * td );
312 Expression * postmutate( DimensionExpr * de );
313 Expression * postmutate( Expression * e );
314 };
315
[2b79a70]316 struct FixObjectType : public WithIndexer {
317 /// resolves typeof type in object, function, and type declarations
318 static void fix( std::list< Declaration * > & translationUnit );
319
320 void previsit( ObjectDecl * );
321 void previsit( FunctionDecl * );
322 void previsit( TypeDecl * );
323 };
324
[09867ec]325 struct InitializerLength {
[fbd7ad6]326 /// for array types without an explicit length, compute the length and store it so that it
327 /// is known to the rest of the phases. For example,
328 /// int x[] = { 1, 2, 3 };
329 /// int y[][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
330 /// here x and y are known at compile-time to have length 3, so change this into
331 /// int x[3] = { 1, 2, 3 };
332 /// int y[3][2] = { { 1, 2, 3 }, { 1, 2, 3 } };
333 static void computeLength( std::list< Declaration * > & translationUnit );
334
[0db6fc0]335 void previsit( ObjectDecl * objDecl );
[09867ec]336 };
337
338 struct ArrayLength : public WithIndexer {
339 static void computeLength( std::list< Declaration * > & translationUnit );
340
[3ff4c1e]341 void previsit( ArrayType * arrayType );
[fbd7ad6]342 };
343
[d24d4e1]344 struct CompoundLiteral final : public WithDeclsToAdd, public WithVisitorRef<CompoundLiteral> {
[68fe077a]345 Type::StorageClasses storageClasses;
[630a82a]346
[ef5b828]347 void premutate( ObjectDecl * objectDecl );
348 Expression * postmutate( CompoundLiteralExpr * compLitExpr );
[9cb8e88d]349 };
350
[5809461]351 struct LabelAddressFixer final : public WithGuards {
352 std::set< Label > labels;
353
354 void premutate( FunctionDecl * funcDecl );
355 Expression * postmutate( AddressExpr * addrExpr );
356 };
[4fbdfae0]357
[5dcb881]358 void validate_A( std::list< Declaration * > & translationUnit ) {
[c1ed2ee]359 PassVisitor<EnumAndPointerDecay_old> epc;
[15f5c5e]360 PassVisitor<HoistTypeDecls> hoistDecls;
[3c0d4cd]361 {
362 Stats::Heap::newPass("validate-A");
363 Stats::Time::BlockGuard guard("validate-A");
[98538288]364 VerifyCtorDtorAssign::verify( translationUnit ); // must happen before autogen, because autogen examines existing ctor/dtors
[3c0d4cd]365 acceptAll( translationUnit, hoistDecls );
366 ReplaceTypedef::replaceTypedef( translationUnit );
367 ReturnTypeFixer::fix( translationUnit ); // must happen before autogen
[c1ed2ee]368 acceptAll( translationUnit, epc ); // must happen before VerifyCtorDtorAssign, because void return objects should not exist; before LinkReferenceToTypes_old because it is an indexer and needs correct types for mangling
[3c0d4cd]369 }
[5dcb881]370 }
371
372 void validate_B( std::list< Declaration * > & translationUnit ) {
373 PassVisitor<LinkReferenceToTypes_old> lrt( nullptr );
374 PassVisitor<FixQualifiedTypes> fixQual;
[3c0d4cd]375 {
376 Stats::Heap::newPass("validate-B");
377 Stats::Time::BlockGuard guard("validate-B");
[6e50a6b]378 acceptAll( translationUnit, lrt ); // must happen before autogen, because sized flag needs to propagate to generated functions
379 mutateAll( translationUnit, fixQual ); // must happen after LinkReferenceToTypes_old, because aggregate members are accessed
380 HoistStruct::hoistStruct( translationUnit );
381 EliminateTypedef::eliminateTypedef( translationUnit );
[3c0d4cd]382 }
[5dcb881]383 }
384
385 void validate_C( std::list< Declaration * > & translationUnit ) {
386 PassVisitor<ValidateGenericParameters> genericParams;
387 PassVisitor<ResolveEnumInitializers> rei( nullptr );
[3c0d4cd]388 {
389 Stats::Heap::newPass("validate-C");
390 Stats::Time::BlockGuard guard("validate-C");
[6e50a6b]391 Stats::Time::TimeBlock("Validate Generic Parameters", [&]() {
392 acceptAll( translationUnit, genericParams ); // check as early as possible - can't happen before LinkReferenceToTypes_old; observed failing when attempted before eliminateTypedef
393 });
394 Stats::Time::TimeBlock("Translate Dimensions", [&]() {
395 TranslateDimensionGenericParameters::translateDimensions( translationUnit );
396 });
[7c919559]397 if (!useNewAST) {
[6e50a6b]398 Stats::Time::TimeBlock("Resolve Enum Initializers", [&]() {
399 acceptAll( translationUnit, rei ); // must happen after translateDimensions because rei needs identifier lookup, which needs name mangling
400 });
[7c919559]401 }
[6e50a6b]402 Stats::Time::TimeBlock("Check Function Returns", [&]() {
403 ReturnChecker::checkFunctionReturns( translationUnit );
404 });
405 Stats::Time::TimeBlock("Fix Return Statements", [&]() {
406 InitTweak::fixReturnStatements( translationUnit ); // must happen before autogen
407 });
[3c0d4cd]408 }
[5dcb881]409 }
410
[a76202d]411 static void decayForallPointers( std::list< Declaration * > & translationUnit ) {
412 PassVisitor<TraitExpander_old> te;
413 acceptAll( translationUnit, te );
414 PassVisitor<AssertionFixer_old> af;
415 acceptAll( translationUnit, af );
416 PassVisitor<CheckOperatorTypes_old> cot;
417 acceptAll( translationUnit, cot );
418 PassVisitor<FixUniqueIds_old> fui;
419 acceptAll( translationUnit, fui );
420 }
421
[5dcb881]422 void validate_D( std::list< Declaration * > & translationUnit ) {
[3c0d4cd]423 {
424 Stats::Heap::newPass("validate-D");
425 Stats::Time::BlockGuard guard("validate-D");
[c884f2d]426 Stats::Time::TimeBlock("Apply Concurrent Keywords", [&]() {
427 Concurrency::applyKeywords( translationUnit );
428 });
429 Stats::Time::TimeBlock("Forall Pointer Decay", [&]() {
[9490621]430 decayForallPointers( translationUnit ); // must happen before autogenerateRoutines, after Concurrency::applyKeywords because uniqueIds must be set on declaration before resolution
[c884f2d]431 });
432 Stats::Time::TimeBlock("Hoist Control Declarations", [&]() {
433 ControlStruct::hoistControlDecls( translationUnit ); // hoist initialization out of for statements; must happen before autogenerateRoutines
434 });
435 Stats::Time::TimeBlock("Generate Autogen routines", [&]() {
[c1ed2ee]436 autogenerateRoutines( translationUnit ); // moved up, used to be below compoundLiteral - currently needs EnumAndPointerDecay_old
[c884f2d]437 });
[3c0d4cd]438 }
[5dcb881]439 }
440
441 void validate_E( std::list< Declaration * > & translationUnit ) {
442 PassVisitor<CompoundLiteral> compoundliteral;
[3c0d4cd]443 {
444 Stats::Heap::newPass("validate-E");
445 Stats::Time::BlockGuard guard("validate-E");
[c884f2d]446 Stats::Time::TimeBlock("Implement Mutex Func", [&]() {
447 Concurrency::implementMutexFuncs( translationUnit );
448 });
449 Stats::Time::TimeBlock("Implement Thread Start", [&]() {
450 Concurrency::implementThreadStarter( translationUnit );
451 });
452 Stats::Time::TimeBlock("Compound Literal", [&]() {
453 mutateAll( translationUnit, compoundliteral );
454 });
[16ba4a6f]455 if (!useNewAST) {
456 Stats::Time::TimeBlock("Resolve With Expressions", [&]() {
457 ResolvExpr::resolveWithExprs( translationUnit ); // must happen before FixObjectType because user-code is resolved and may contain with variables
458 });
459 }
[3c0d4cd]460 }
[5dcb881]461 }
462
463 void validate_F( std::list< Declaration * > & translationUnit ) {
464 PassVisitor<LabelAddressFixer> labelAddrFixer;
[3c0d4cd]465 {
466 Stats::Heap::newPass("validate-F");
467 Stats::Time::BlockGuard guard("validate-F");
[16ba4a6f]468 if (!useNewAST) {
469 Stats::Time::TimeCall("Fix Object Type",
470 FixObjectType::fix, translationUnit);
471 }
[09867ec]472 Stats::Time::TimeCall("Initializer Length",
473 InitializerLength::computeLength, translationUnit);
474 if (!useNewAST) {
475 Stats::Time::TimeCall("Array Length",
476 ArrayLength::computeLength, translationUnit);
477 }
[095b99a]478 Stats::Time::TimeCall("Find Special Declarations",
479 Validate::findSpecialDecls, translationUnit);
480 Stats::Time::TimeCall("Fix Label Address",
481 mutateAll<LabelAddressFixer>, translationUnit, labelAddrFixer);
[16ba4a6f]482 if (!useNewAST) {
483 Stats::Time::TimeCall("Handle Attributes",
484 Validate::handleAttributes, translationUnit);
485 }
[3c0d4cd]486 }
[a08ba92]487 }
[9cb8e88d]488
[5dcb881]489 void validate( std::list< Declaration * > &translationUnit, __attribute__((unused)) bool doDebug ) {
490 validate_A( translationUnit );
491 validate_B( translationUnit );
492 validate_C( translationUnit );
493 validate_D( translationUnit );
494 validate_E( translationUnit );
495 validate_F( translationUnit );
496 }
497
[ef5b828]498 void validateType( Type * type, const Indexer * indexer ) {
[c1ed2ee]499 PassVisitor<EnumAndPointerDecay_old> epc;
500 PassVisitor<LinkReferenceToTypes_old> lrt( indexer );
[9490621]501 PassVisitor<TraitExpander_old> te;
502 PassVisitor<AssertionFixer_old> af;
503 PassVisitor<CheckOperatorTypes_old> cot;
504 PassVisitor<FixUniqueIds_old> fui;
[bda58ad]505 type->accept( epc );
[cce9429]506 type->accept( lrt );
[9490621]507 type->accept( te );
508 type->accept( af );
509 type->accept( cot );
510 type->accept( fui );
[a08ba92]511 }
[c8ffe20b]512
[15f5c5e]513 void HoistTypeDecls::handleType( Type * type ) {
[29f9e20]514 // some type declarations are buried in expressions and not easy to hoist during parsing; hoist them here
515 AggregateDecl * aggr = nullptr;
516 if ( StructInstType * inst = dynamic_cast< StructInstType * >( type ) ) {
517 aggr = inst->baseStruct;
518 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( type ) ) {
519 aggr = inst->baseUnion;
520 } else if ( EnumInstType * inst = dynamic_cast< EnumInstType * >( type ) ) {
521 aggr = inst->baseEnum;
522 }
523 if ( aggr && aggr->body ) {
524 declsToAddBefore.push_front( aggr );
525 }
526 }
527
[15f5c5e]528 void HoistTypeDecls::previsit( SizeofExpr * expr ) {
[29f9e20]529 handleType( expr->type );
530 }
531
[15f5c5e]532 void HoistTypeDecls::previsit( AlignofExpr * expr ) {
[29f9e20]533 handleType( expr->type );
534 }
535
[15f5c5e]536 void HoistTypeDecls::previsit( UntypedOffsetofExpr * expr ) {
[29f9e20]537 handleType( expr->type );
538 }
539
[95d09bdb]540 void HoistTypeDecls::previsit( CompoundLiteralExpr * expr ) {
541 handleType( expr->result );
542 }
543
[29f9e20]544
[a12c81f3]545 Type * FixQualifiedTypes::postmutate( QualifiedType * qualType ) {
546 Type * parent = qualType->parent;
547 Type * child = qualType->child;
548 if ( dynamic_cast< GlobalScopeType * >( qualType->parent ) ) {
549 // .T => lookup T at global scope
[062e8df]550 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
[a12c81f3]551 auto td = indexer.globalLookupType( inst->name );
[062e8df]552 if ( ! td ) {
553 SemanticError( qualType->location, toString("Use of undefined global type ", inst->name) );
554 }
[a12c81f3]555 auto base = td->base;
[062e8df]556 assert( base );
[8a3ecb9]557 Type * ret = base->clone();
558 ret->get_qualifiers() = qualType->get_qualifiers();
559 return ret;
[a12c81f3]560 } else {
[062e8df]561 // .T => T is not a type name
562 assertf( false, "unhandled global qualified child type: %s", toCString(child) );
[a12c81f3]563 }
564 } else {
565 // S.T => S must be an aggregate type, find the declaration for T in S.
566 AggregateDecl * aggr = nullptr;
567 if ( StructInstType * inst = dynamic_cast< StructInstType * >( parent ) ) {
568 aggr = inst->baseStruct;
569 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * > ( parent ) ) {
570 aggr = inst->baseUnion;
571 } else {
[062e8df]572 SemanticError( qualType->location, toString("Qualified type requires an aggregate on the left, but has: ", parent) );
[a12c81f3]573 }
574 assert( aggr ); // TODO: need to handle forward declarations
575 for ( Declaration * member : aggr->members ) {
[7e08acf]576 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( child ) ) {
[8a3ecb9]577 // name on the right is a typedef
[a12c81f3]578 if ( NamedTypeDecl * aggr = dynamic_cast< NamedTypeDecl * > ( member ) ) {
579 if ( aggr->name == inst->name ) {
[062e8df]580 assert( aggr->base );
[8a3ecb9]581 Type * ret = aggr->base->clone();
582 ret->get_qualifiers() = qualType->get_qualifiers();
[7e08acf]583 TypeSubstitution sub = parent->genericSubstitution();
584 sub.apply(ret);
[8a3ecb9]585 return ret;
[a12c81f3]586 }
587 }
588 } else {
589 // S.T - S is not an aggregate => error
590 assertf( false, "unhandled qualified child type: %s", toCString(qualType) );
591 }
592 }
593 // failed to find a satisfying definition of type
[062e8df]594 SemanticError( qualType->location, toString("Undefined type in qualified type: ", qualType) );
[a12c81f3]595 }
596
597 // ... may want to link canonical SUE definition to each forward decl so that it becomes easier to lookup?
598 }
599
600
[a08ba92]601 void HoistStruct::hoistStruct( std::list< Declaration * > &translationUnit ) {
[a09e45b]602 PassVisitor<HoistStruct> hoister;
603 acceptAll( translationUnit, hoister );
[a08ba92]604 }
[c8ffe20b]605
[ef5b828]606 bool shouldHoist( Declaration * decl ) {
[0f40912]607 return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl ) || dynamic_cast< StaticAssertDecl * >( decl );
[a08ba92]608 }
[c0aa336]609
[d419d8e]610 namespace {
611 void qualifiedName( AggregateDecl * aggr, std::ostringstream & ss ) {
612 if ( aggr->parent ) qualifiedName( aggr->parent, ss );
613 ss << "__" << aggr->name;
614 }
615
616 // mangle nested type names using entire parent chain
617 std::string qualifiedName( AggregateDecl * aggr ) {
618 std::ostringstream ss;
619 qualifiedName( aggr, ss );
620 return ss.str();
621 }
622 }
623
[a08ba92]624 template< typename AggDecl >
[ef5b828]625 void HoistStruct::handleAggregate( AggDecl * aggregateDecl ) {
[bdad6eb7]626 if ( parentAggr ) {
[d419d8e]627 aggregateDecl->parent = parentAggr;
628 aggregateDecl->name = qualifiedName( aggregateDecl );
[0dd3a2f]629 // Add elements in stack order corresponding to nesting structure.
[a09e45b]630 declsToAddBefore.push_front( aggregateDecl );
[0dd3a2f]631 } else {
[bdad6eb7]632 GuardValue( parentAggr );
633 parentAggr = aggregateDecl;
[0dd3a2f]634 } // if
635 // Always remove the hoisted aggregate from the inner structure.
[0f40912]636 GuardAction( [aggregateDecl]() { filter( aggregateDecl->members, shouldHoist, false ); } );
[a08ba92]637 }
[c8ffe20b]638
[0f40912]639 void HoistStruct::previsit( StaticAssertDecl * assertDecl ) {
640 if ( parentAggr ) {
641 declsToAddBefore.push_back( assertDecl );
642 }
643 }
644
[a09e45b]645 void HoistStruct::previsit( StructDecl * aggregateDecl ) {
[0dd3a2f]646 handleAggregate( aggregateDecl );
[a08ba92]647 }
[c8ffe20b]648
[a09e45b]649 void HoistStruct::previsit( UnionDecl * aggregateDecl ) {
[0dd3a2f]650 handleAggregate( aggregateDecl );
[a08ba92]651 }
[c8ffe20b]652
[d419d8e]653 void HoistStruct::previsit( StructInstType * type ) {
654 // need to reset type name after expanding to qualified name
655 assert( type->baseStruct );
656 type->name = type->baseStruct->name;
657 }
658
659 void HoistStruct::previsit( UnionInstType * type ) {
660 assert( type->baseUnion );
661 type->name = type->baseUnion->name;
662 }
663
664 void HoistStruct::previsit( EnumInstType * type ) {
665 assert( type->baseEnum );
666 type->name = type->baseEnum->name;
667 }
668
669
[ef5b828]670 bool isTypedef( Declaration * decl ) {
[69918cea]671 return dynamic_cast< TypedefDecl * >( decl );
672 }
673
674 void EliminateTypedef::eliminateTypedef( std::list< Declaration * > &translationUnit ) {
675 PassVisitor<EliminateTypedef> eliminator;
676 acceptAll( translationUnit, eliminator );
677 filter( translationUnit, isTypedef, true );
678 }
679
680 template< typename AggDecl >
[ef5b828]681 void EliminateTypedef::handleAggregate( AggDecl * aggregateDecl ) {
[69918cea]682 filter( aggregateDecl->members, isTypedef, true );
683 }
684
685 void EliminateTypedef::previsit( StructDecl * aggregateDecl ) {
686 handleAggregate( aggregateDecl );
687 }
688
689 void EliminateTypedef::previsit( UnionDecl * aggregateDecl ) {
690 handleAggregate( aggregateDecl );
691 }
692
693 void EliminateTypedef::previsit( CompoundStmt * compoundStmt ) {
694 // remove and delete decl stmts
695 filter( compoundStmt->kids, [](Statement * stmt) {
[ef5b828]696 if ( DeclStmt * declStmt = dynamic_cast< DeclStmt * >( stmt ) ) {
[69918cea]697 if ( dynamic_cast< TypedefDecl * >( declStmt->decl ) ) {
698 return true;
699 } // if
700 } // if
701 return false;
702 }, true);
703 }
704
[ef5b828]705 void EnumAndPointerDecay_old::previsit( EnumDecl * enumDecl ) {
[0dd3a2f]706 // Set the type of each member of the enumeration to be EnumConstant
[0b3b2ae]707 for ( std::list< Declaration * >::iterator i = enumDecl->members.begin(); i != enumDecl->members.end(); ++i ) {
[ef5b828]708 ObjectDecl * obj = dynamic_cast< ObjectDecl * >( * i );
[0dd3a2f]709 assert( obj );
[0b3b2ae]710 obj->set_type( new EnumInstType( Type::Qualifiers( Type::Const ), enumDecl->name ) );
[0dd3a2f]711 } // for
[a08ba92]712 }
[51b73452]713
[a08ba92]714 namespace {
[83de11e]715 template< typename DWTList >
[4bda2cf]716 void fixFunctionList( DWTList & dwts, bool isVarArgs, FunctionType * func ) {
717 auto nvals = dwts.size();
718 bool containsVoid = false;
719 for ( auto & dwt : dwts ) {
720 // fix each DWT and record whether a void was found
721 containsVoid |= fixFunction( dwt );
722 }
723
724 // the only case in which "void" is valid is where it is the only one in the list
725 if ( containsVoid && ( nvals > 1 || isVarArgs ) ) {
[a16764a6]726 SemanticError( func, "invalid type void in function type " );
[4bda2cf]727 }
728
729 // one void is the only thing in the list; remove it.
730 if ( containsVoid ) {
731 delete dwts.front();
732 dwts.clear();
733 }
[0dd3a2f]734 }
[a08ba92]735 }
[c8ffe20b]736
[ef5b828]737 void EnumAndPointerDecay_old::previsit( FunctionType * func ) {
[0dd3a2f]738 // Fix up parameters and return types
[4bda2cf]739 fixFunctionList( func->parameters, func->isVarArgs, func );
740 fixFunctionList( func->returnVals, false, func );
[a08ba92]741 }
[c8ffe20b]742
[6e50a6b]743 LinkReferenceToTypes_old::LinkReferenceToTypes_old( const Indexer * other_indexer ) : WithIndexer( false ) {
[0dd3a2f]744 if ( other_indexer ) {
[522363e]745 local_indexer = other_indexer;
[0dd3a2f]746 } else {
[522363e]747 local_indexer = &indexer;
[0dd3a2f]748 } // if
[a08ba92]749 }
[c8ffe20b]750
[ef5b828]751 void LinkReferenceToTypes_old::postvisit( EnumInstType * enumInst ) {
[8fd52e90]752 const EnumDecl * st = local_indexer->lookupEnum( enumInst->name );
[c0aa336]753 // it's not a semantic error if the enum is not found, just an implicit forward declaration
754 if ( st ) {
[8fd52e90]755 enumInst->baseEnum = const_cast<EnumDecl *>(st); // Just linking in the node
[c0aa336]756 } // if
[29f9e20]757 if ( ! st || ! st->body ) {
[c0aa336]758 // use of forward declaration
[eaa6430]759 forwardEnums[ enumInst->name ].push_back( enumInst );
[c0aa336]760 } // if
761 }
762
[ef5b828]763 void LinkReferenceToTypes_old::postvisit( StructInstType * structInst ) {
[8fd52e90]764 const StructDecl * st = local_indexer->lookupStruct( structInst->name );
[0dd3a2f]765 // it's not a semantic error if the struct is not found, just an implicit forward declaration
766 if ( st ) {
[8fd52e90]767 structInst->baseStruct = const_cast<StructDecl *>(st); // Just linking in the node
[0dd3a2f]768 } // if
[29f9e20]769 if ( ! st || ! st->body ) {
[0dd3a2f]770 // use of forward declaration
[eaa6430]771 forwardStructs[ structInst->name ].push_back( structInst );
[0dd3a2f]772 } // if
[a08ba92]773 }
[c8ffe20b]774
[ef5b828]775 void LinkReferenceToTypes_old::postvisit( UnionInstType * unionInst ) {
[8fd52e90]776 const UnionDecl * un = local_indexer->lookupUnion( unionInst->name );
[0dd3a2f]777 // it's not a semantic error if the union is not found, just an implicit forward declaration
778 if ( un ) {
[8fd52e90]779 unionInst->baseUnion = const_cast<UnionDecl *>(un); // Just linking in the node
[0dd3a2f]780 } // if
[29f9e20]781 if ( ! un || ! un->body ) {
[0dd3a2f]782 // use of forward declaration
[eaa6430]783 forwardUnions[ unionInst->name ].push_back( unionInst );
[0dd3a2f]784 } // if
[a08ba92]785 }
[c8ffe20b]786
[c1ed2ee]787 void LinkReferenceToTypes_old::previsit( QualifiedType * ) {
[afcb0a3]788 visit_children = false;
789 }
790
[c1ed2ee]791 void LinkReferenceToTypes_old::postvisit( QualifiedType * qualType ) {
[afcb0a3]792 // linking only makes sense for the 'oldest ancestor' of the qualified type
[ef5b828]793 qualType->parent->accept( * visitor );
[afcb0a3]794 }
795
[be9036d]796 template< typename Decl >
797 void normalizeAssertions( std::list< Decl * > & assertions ) {
798 // ensure no duplicate trait members after the clone
799 auto pred = [](Decl * d1, Decl * d2) {
800 // only care if they're equal
801 DeclarationWithType * dwt1 = dynamic_cast<DeclarationWithType *>( d1 );
802 DeclarationWithType * dwt2 = dynamic_cast<DeclarationWithType *>( d2 );
803 if ( dwt1 && dwt2 ) {
[eaa6430]804 if ( dwt1->name == dwt2->name && ResolvExpr::typesCompatible( dwt1->get_type(), dwt2->get_type(), SymTab::Indexer() ) ) {
[be9036d]805 // std::cerr << "=========== equal:" << std::endl;
806 // std::cerr << "d1: " << d1 << std::endl;
807 // std::cerr << "d2: " << d2 << std::endl;
808 return false;
809 }
[2c57025]810 }
[be9036d]811 return d1 < d2;
812 };
813 std::set<Decl *, decltype(pred)> unique_members( assertions.begin(), assertions.end(), pred );
814 // if ( unique_members.size() != assertions.size() ) {
815 // std::cerr << "============different" << std::endl;
816 // std::cerr << unique_members.size() << " " << assertions.size() << std::endl;
817 // }
818
819 std::list< Decl * > order;
820 order.splice( order.end(), assertions );
821 std::copy_if( order.begin(), order.end(), back_inserter( assertions ), [&]( Decl * decl ) {
822 return unique_members.count( decl );
823 });
824 }
825
826 // expand assertions from trait instance, performing the appropriate type variable substitutions
827 template< typename Iterator >
828 void expandAssertions( TraitInstType * inst, Iterator out ) {
[eaa6430]829 assertf( inst->baseTrait, "Trait instance not linked to base trait: %s", toCString( inst ) );
[be9036d]830 std::list< DeclarationWithType * > asserts;
831 for ( Declaration * decl : inst->baseTrait->members ) {
[e3e16bc]832 asserts.push_back( strict_dynamic_cast<DeclarationWithType *>( decl->clone() ) );
[2c57025]833 }
[be9036d]834 // substitute trait decl parameters for instance parameters
835 applySubstitution( inst->baseTrait->parameters.begin(), inst->baseTrait->parameters.end(), inst->parameters.begin(), asserts.begin(), asserts.end(), out );
836 }
837
[c1ed2ee]838 void LinkReferenceToTypes_old::postvisit( TraitDecl * traitDecl ) {
[be9036d]839 if ( traitDecl->name == "sized" ) {
840 // "sized" is a special trait - flick the sized status on for the type variable
841 assertf( traitDecl->parameters.size() == 1, "Built-in trait 'sized' has incorrect number of parameters: %zd", traitDecl->parameters.size() );
842 TypeDecl * td = traitDecl->parameters.front();
843 td->set_sized( true );
844 }
845
846 // move assertions from type parameters into the body of the trait
847 for ( TypeDecl * td : traitDecl->parameters ) {
848 for ( DeclarationWithType * assert : td->assertions ) {
849 if ( TraitInstType * inst = dynamic_cast< TraitInstType * >( assert->get_type() ) ) {
850 expandAssertions( inst, back_inserter( traitDecl->members ) );
851 } else {
852 traitDecl->members.push_back( assert->clone() );
853 }
854 }
855 deleteAll( td->assertions );
856 td->assertions.clear();
857 } // for
858 }
[2ae171d8]859
[c1ed2ee]860 void LinkReferenceToTypes_old::postvisit( TraitInstType * traitInst ) {
[2ae171d8]861 // handle other traits
[8fd52e90]862 const TraitDecl * traitDecl = local_indexer->lookupTrait( traitInst->name );
[4a9ccc3]863 if ( ! traitDecl ) {
[a16764a6]864 SemanticError( traitInst->location, "use of undeclared trait " + traitInst->name );
[17cd4eb]865 } // if
[0b3b2ae]866 if ( traitDecl->parameters.size() != traitInst->parameters.size() ) {
[a16764a6]867 SemanticError( traitInst, "incorrect number of trait parameters: " );
[4a9ccc3]868 } // if
[8fd52e90]869 traitInst->baseTrait = const_cast<TraitDecl *>(traitDecl); // Just linking in the node
[79970ed]870
[4a9ccc3]871 // need to carry over the 'sized' status of each decl in the instance
[eaa6430]872 for ( auto p : group_iterate( traitDecl->parameters, traitInst->parameters ) ) {
[5c4d27f]873 TypeExpr * expr = dynamic_cast< TypeExpr * >( std::get<1>(p) );
874 if ( ! expr ) {
[a16764a6]875 SemanticError( std::get<1>(p), "Expression parameters for trait instances are currently unsupported: " );
[5c4d27f]876 }
[4a9ccc3]877 if ( TypeInstType * inst = dynamic_cast< TypeInstType * >( expr->get_type() ) ) {
878 TypeDecl * formalDecl = std::get<0>(p);
[eaa6430]879 TypeDecl * instDecl = inst->baseType;
[4a9ccc3]880 if ( formalDecl->get_sized() ) instDecl->set_sized( true );
881 }
882 }
[be9036d]883 // normalizeAssertions( traitInst->members );
[a08ba92]884 }
[c8ffe20b]885
[ef5b828]886 void LinkReferenceToTypes_old::postvisit( EnumDecl * enumDecl ) {
[c0aa336]887 // visit enum members first so that the types of self-referencing members are updated properly
[b16923d]888 if ( enumDecl->body ) {
[eaa6430]889 ForwardEnumsType::iterator fwds = forwardEnums.find( enumDecl->name );
[c0aa336]890 if ( fwds != forwardEnums.end() ) {
891 for ( std::list< EnumInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
[ef5b828]892 (* inst)->baseEnum = enumDecl;
[c0aa336]893 } // for
894 forwardEnums.erase( fwds );
895 } // if
896 } // if
897 }
898
[c1ed2ee]899 void LinkReferenceToTypes_old::renameGenericParams( std::list< TypeDecl * > & params ) {
[b95fe40]900 // rename generic type parameters uniquely so that they do not conflict with user-defined function forall parameters, e.g.
901 // forall(otype T)
902 // struct Box {
903 // T x;
904 // };
905 // forall(otype T)
906 // void f(Box(T) b) {
907 // ...
908 // }
909 // The T in Box and the T in f are different, so internally the naming must reflect that.
910 GuardValue( inGeneric );
911 inGeneric = ! params.empty();
912 for ( TypeDecl * td : params ) {
913 td->name = "__" + td->name + "_generic_";
914 }
915 }
916
[c1ed2ee]917 void LinkReferenceToTypes_old::previsit( StructDecl * structDecl ) {
[b95fe40]918 renameGenericParams( structDecl->parameters );
919 }
920
[c1ed2ee]921 void LinkReferenceToTypes_old::previsit( UnionDecl * unionDecl ) {
[b95fe40]922 renameGenericParams( unionDecl->parameters );
923 }
924
[ef5b828]925 void LinkReferenceToTypes_old::postvisit( StructDecl * structDecl ) {
[677c1be]926 // visit struct members first so that the types of self-referencing members are updated properly
[522363e]927 // xxx - need to ensure that type parameters match up between forward declarations and definition (most importantly, number of type parameters and their defaults)
[b16923d]928 if ( structDecl->body ) {
[eaa6430]929 ForwardStructsType::iterator fwds = forwardStructs.find( structDecl->name );
[0dd3a2f]930 if ( fwds != forwardStructs.end() ) {
931 for ( std::list< StructInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
[ef5b828]932 (* inst)->baseStruct = structDecl;
[0dd3a2f]933 } // for
934 forwardStructs.erase( fwds );
935 } // if
936 } // if
[a08ba92]937 }
[c8ffe20b]938
[ef5b828]939 void LinkReferenceToTypes_old::postvisit( UnionDecl * unionDecl ) {
[b16923d]940 if ( unionDecl->body ) {
[eaa6430]941 ForwardUnionsType::iterator fwds = forwardUnions.find( unionDecl->name );
[0dd3a2f]942 if ( fwds != forwardUnions.end() ) {
943 for ( std::list< UnionInstType * >::iterator inst = fwds->second.begin(); inst != fwds->second.end(); ++inst ) {
[ef5b828]944 (* inst)->baseUnion = unionDecl;
[0dd3a2f]945 } // for
946 forwardUnions.erase( fwds );
947 } // if
948 } // if
[a08ba92]949 }
[c8ffe20b]950
[ef5b828]951 void LinkReferenceToTypes_old::postvisit( TypeInstType * typeInst ) {
[b95fe40]952 // ensure generic parameter instances are renamed like the base type
953 if ( inGeneric && typeInst->baseType ) typeInst->name = typeInst->baseType->name;
[ef5b828]954 if ( const NamedTypeDecl * namedTypeDecl = local_indexer->lookupType( typeInst->name ) ) {
955 if ( const TypeDecl * typeDecl = dynamic_cast< const TypeDecl * >( namedTypeDecl ) ) {
956 typeInst->set_isFtype( typeDecl->kind == TypeDecl::Ftype );
[0dd3a2f]957 } // if
958 } // if
[a08ba92]959 }
[c8ffe20b]960
[6e50a6b]961 ResolveEnumInitializers::ResolveEnumInitializers( const Indexer * other_indexer ) : WithIndexer( true ) {
962 if ( other_indexer ) {
963 local_indexer = other_indexer;
964 } else {
965 local_indexer = &indexer;
966 } // if
967 }
968
969 void ResolveEnumInitializers::postvisit( EnumDecl * enumDecl ) {
970 if ( enumDecl->body ) {
971 for ( Declaration * member : enumDecl->members ) {
972 ObjectDecl * field = strict_dynamic_cast<ObjectDecl *>( member );
973 if ( field->init ) {
974 // need to resolve enumerator initializers early so that other passes that determine if an expression is constexpr have the appropriate information.
975 SingleInit * init = strict_dynamic_cast<SingleInit *>( field->init );
976 ResolvExpr::findSingleExpression( init->value, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), indexer );
977 }
978 }
979 } // if
980 }
981
[4a9ccc3]982 /// Fix up assertions - flattens assertion lists, removing all trait instances
[8b11840]983 void forallFixer( std::list< TypeDecl * > & forall, BaseSyntaxNode * node ) {
984 for ( TypeDecl * type : forall ) {
[be9036d]985 std::list< DeclarationWithType * > asserts;
986 asserts.splice( asserts.end(), type->assertions );
987 // expand trait instances into their members
988 for ( DeclarationWithType * assertion : asserts ) {
[ef5b828]989 if ( TraitInstType * traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) {
[be9036d]990 // expand trait instance into all of its members
991 expandAssertions( traitInst, back_inserter( type->assertions ) );
992 delete traitInst;
993 } else {
994 // pass other assertions through
995 type->assertions.push_back( assertion );
996 } // if
997 } // for
998 // apply FixFunction to every assertion to check for invalid void type
999 for ( DeclarationWithType *& assertion : type->assertions ) {
[4bda2cf]1000 bool isVoid = fixFunction( assertion );
1001 if ( isVoid ) {
[a16764a6]1002 SemanticError( node, "invalid type void in assertion of function " );
[be9036d]1003 } // if
1004 } // for
1005 // normalizeAssertions( type->assertions );
[0dd3a2f]1006 } // for
[a08ba92]1007 }
[c8ffe20b]1008
[9490621]1009 /// Replace all traits in assertion lists with their assertions.
1010 void expandTraits( std::list< TypeDecl * > & forall ) {
1011 for ( TypeDecl * type : forall ) {
1012 std::list< DeclarationWithType * > asserts;
1013 asserts.splice( asserts.end(), type->assertions );
1014 // expand trait instances into their members
1015 for ( DeclarationWithType * assertion : asserts ) {
1016 if ( TraitInstType * traitInst = dynamic_cast< TraitInstType * >( assertion->get_type() ) ) {
1017 // expand trait instance into all of its members
1018 expandAssertions( traitInst, back_inserter( type->assertions ) );
1019 delete traitInst;
1020 } else {
1021 // pass other assertions through
1022 type->assertions.push_back( assertion );
1023 } // if
1024 } // for
1025 }
1026 }
1027
1028 /// Fix each function in the assertion list and check for invalid void type.
1029 void fixAssertions(
1030 std::list< TypeDecl * > & forall, BaseSyntaxNode * node ) {
1031 for ( TypeDecl * type : forall ) {
1032 for ( DeclarationWithType *& assertion : type->assertions ) {
1033 bool isVoid = fixFunction( assertion );
1034 if ( isVoid ) {
1035 SemanticError( node, "invalid type void in assertion of function " );
1036 } // if
1037 } // for
1038 }
1039 }
1040
[ef5b828]1041 void ForallPointerDecay_old::previsit( ObjectDecl * object ) {
[3d2b7bc]1042 // ensure that operator names only apply to functions or function pointers
1043 if ( CodeGen::isOperator( object->name ) && ! dynamic_cast< FunctionType * >( object->type->stripDeclarator() ) ) {
1044 SemanticError( object->location, toCString( "operator ", object->name.c_str(), " is not a function or function pointer." ) );
1045 }
[0dd3a2f]1046 object->fixUniqueId();
[a08ba92]1047 }
[c8ffe20b]1048
[ef5b828]1049 void ForallPointerDecay_old::previsit( FunctionDecl * func ) {
[0dd3a2f]1050 func->fixUniqueId();
[a08ba92]1051 }
[c8ffe20b]1052
[c1ed2ee]1053 void ForallPointerDecay_old::previsit( FunctionType * ftype ) {
[bbf3fda]1054 forallFixer( ftype->forall, ftype );
1055 }
1056
[c1ed2ee]1057 void ForallPointerDecay_old::previsit( StructDecl * aggrDecl ) {
[bd7e609]1058 forallFixer( aggrDecl->parameters, aggrDecl );
1059 }
1060
[c1ed2ee]1061 void ForallPointerDecay_old::previsit( UnionDecl * aggrDecl ) {
[bd7e609]1062 forallFixer( aggrDecl->parameters, aggrDecl );
1063 }
1064
[9490621]1065 void TraitExpander_old::previsit( FunctionType * ftype ) {
1066 expandTraits( ftype->forall );
1067 }
1068
1069 void TraitExpander_old::previsit( StructDecl * aggrDecl ) {
1070 expandTraits( aggrDecl->parameters );
1071 }
1072
1073 void TraitExpander_old::previsit( UnionDecl * aggrDecl ) {
1074 expandTraits( aggrDecl->parameters );
1075 }
1076
1077 void AssertionFixer_old::previsit( FunctionType * ftype ) {
1078 fixAssertions( ftype->forall, ftype );
1079 }
1080
1081 void AssertionFixer_old::previsit( StructDecl * aggrDecl ) {
1082 fixAssertions( aggrDecl->parameters, aggrDecl );
1083 }
1084
1085 void AssertionFixer_old::previsit( UnionDecl * aggrDecl ) {
1086 fixAssertions( aggrDecl->parameters, aggrDecl );
1087 }
1088
1089 void CheckOperatorTypes_old::previsit( ObjectDecl * object ) {
1090 // ensure that operator names only apply to functions or function pointers
1091 if ( CodeGen::isOperator( object->name ) && ! dynamic_cast< FunctionType * >( object->type->stripDeclarator() ) ) {
1092 SemanticError( object->location, toCString( "operator ", object->name.c_str(), " is not a function or function pointer." ) );
1093 }
1094 }
1095
1096 void FixUniqueIds_old::previsit( DeclarationWithType * decl ) {
1097 decl->fixUniqueId();
1098 }
1099
[de91427b]1100 void ReturnChecker::checkFunctionReturns( std::list< Declaration * > & translationUnit ) {
[0db6fc0]1101 PassVisitor<ReturnChecker> checker;
[de91427b]1102 acceptAll( translationUnit, checker );
1103 }
1104
[0db6fc0]1105 void ReturnChecker::previsit( FunctionDecl * functionDecl ) {
[0508ab3]1106 GuardValue( returnVals );
[de91427b]1107 returnVals = functionDecl->get_functionType()->get_returnVals();
1108 }
1109
[0db6fc0]1110 void ReturnChecker::previsit( ReturnStmt * returnStmt ) {
[74d1804]1111 // Previously this also checked for the existence of an expr paired with no return values on
1112 // the function return type. This is incorrect, since you can have an expression attached to
1113 // a return statement in a void-returning function in C. The expression is treated as if it
1114 // were cast to void.
[30f9072]1115 if ( ! returnStmt->get_expr() && returnVals.size() != 0 ) {
[a16764a6]1116 SemanticError( returnStmt, "Non-void function returns no values: " );
[de91427b]1117 }
1118 }
1119
1120
[48ed81c]1121 void ReplaceTypedef::replaceTypedef( std::list< Declaration * > &translationUnit ) {
1122 PassVisitor<ReplaceTypedef> eliminator;
[0dd3a2f]1123 mutateAll( translationUnit, eliminator );
[a506df4]1124 if ( eliminator.pass.typedefNames.count( "size_t" ) ) {
[5f98ce5]1125 // grab and remember declaration of size_t
[2bfc6b2]1126 Validate::SizeType = eliminator.pass.typedefNames["size_t"].first->base->clone();
[5f98ce5]1127 } else {
[40e636a]1128 // xxx - missing global typedef for size_t - default to long unsigned int, even though that may be wrong
1129 // eventually should have a warning for this case.
[2bfc6b2]1130 Validate::SizeType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
[5f98ce5]1131 }
[a08ba92]1132 }
[c8ffe20b]1133
[48ed81c]1134 void ReplaceTypedef::premutate( QualifiedType * ) {
1135 visit_children = false;
1136 }
1137
1138 Type * ReplaceTypedef::postmutate( QualifiedType * qualType ) {
1139 // replacing typedefs only makes sense for the 'oldest ancestor' of the qualified type
[ef5b828]1140 qualType->parent = qualType->parent->acceptMutator( * visitor );
[48ed81c]1141 return qualType;
1142 }
1143
[a7c31e0]1144 static bool isNonParameterAttribute( Attribute * attr ) {
1145 static const std::vector<std::string> bad_names = {
1146 "aligned", "__aligned__",
1147 };
1148 for ( auto name : bad_names ) {
1149 if ( name == attr->name ) {
1150 return true;
1151 }
1152 }
1153 return false;
1154 }
1155
[48ed81c]1156 Type * ReplaceTypedef::postmutate( TypeInstType * typeInst ) {
[9cb8e88d]1157 // instances of typedef types will come here. If it is an instance
[cc79d97]1158 // of a typdef type, link the instance to its actual type.
[0b3b2ae]1159 TypedefMap::const_iterator def = typedefNames.find( typeInst->name );
[0dd3a2f]1160 if ( def != typedefNames.end() ) {
[ef5b828]1161 Type * ret = def->second.first->base->clone();
[e82ef13]1162 ret->location = typeInst->location;
[6f95000]1163 ret->get_qualifiers() |= typeInst->get_qualifiers();
[a7c31e0]1164 // GCC ignores certain attributes if they arrive by typedef, this mimics that.
1165 if ( inFunctionType ) {
1166 ret->attributes.remove_if( isNonParameterAttribute );
[1f370451]1167 }
[a7c31e0]1168 ret->attributes.splice( ret->attributes.end(), typeInst->attributes );
[0215a76f]1169 // place instance parameters on the typedef'd type
[f53836b]1170 if ( ! typeInst->parameters.empty() ) {
[ef5b828]1171 ReferenceToType * rtt = dynamic_cast<ReferenceToType *>(ret);
[0215a76f]1172 if ( ! rtt ) {
[a16764a6]1173 SemanticError( typeInst->location, "Cannot apply type parameters to base type of " + typeInst->name );
[0215a76f]1174 }
[0b3b2ae]1175 rtt->parameters.clear();
[f53836b]1176 cloneAll( typeInst->parameters, rtt->parameters );
[ef5b828]1177 mutateAll( rtt->parameters, * visitor ); // recursively fix typedefs on parameters
[1db21619]1178 } // if
[0dd3a2f]1179 delete typeInst;
1180 return ret;
[679864e1]1181 } else {
[0b3b2ae]1182 TypeDeclMap::const_iterator base = typedeclNames.find( typeInst->name );
[062e8df]1183 if ( base == typedeclNames.end() ) {
1184 SemanticError( typeInst->location, toString("Use of undefined type ", typeInst->name) );
1185 }
[1e8b02f5]1186 typeInst->set_baseType( base->second );
[062e8df]1187 return typeInst;
[0dd3a2f]1188 } // if
[062e8df]1189 assert( false );
[a08ba92]1190 }
[c8ffe20b]1191
[f53836b]1192 struct VarLenChecker : WithShortCircuiting {
1193 void previsit( FunctionType * ) { visit_children = false; }
1194 void previsit( ArrayType * at ) {
1195 isVarLen |= at->isVarLen;
1196 }
1197 bool isVarLen = false;
1198 };
1199
1200 bool isVariableLength( Type * t ) {
1201 PassVisitor<VarLenChecker> varLenChecker;
1202 maybeAccept( t, varLenChecker );
1203 return varLenChecker.pass.isVarLen;
1204 }
1205
[48ed81c]1206 Declaration * ReplaceTypedef::postmutate( TypedefDecl * tyDecl ) {
[0b3b2ae]1207 if ( typedefNames.count( tyDecl->name ) == 1 && typedefNames[ tyDecl->name ].second == scopeLevel ) {
[9cb8e88d]1208 // typedef to the same name from the same scope
[cc79d97]1209 // must be from the same type
1210
[0b3b2ae]1211 Type * t1 = tyDecl->base;
1212 Type * t2 = typedefNames[ tyDecl->name ].first->base;
[1cbca6e]1213 if ( ! ResolvExpr::typesCompatible( t1, t2, Indexer() ) ) {
[a16764a6]1214 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
[f53836b]1215 }
[4b97770]1216 // Cannot redefine VLA typedefs. Note: this is slightly incorrect, because our notion of VLAs
1217 // at this point in the translator is imprecise. In particular, this will disallow redefining typedefs
1218 // with arrays whose dimension is an enumerator or a cast of a constant/enumerator. The effort required
1219 // to fix this corner case likely outweighs the utility of allowing it.
[f53836b]1220 if ( isVariableLength( t1 ) || isVariableLength( t2 ) ) {
[a16764a6]1221 SemanticError( tyDecl->location, "Cannot redefine typedef: " + tyDecl->name );
[85c4ef0]1222 }
[cc79d97]1223 } else {
[0b3b2ae]1224 typedefNames[ tyDecl->name ] = std::make_pair( TypedefDeclPtr( tyDecl ), scopeLevel );
[cc79d97]1225 } // if
1226
[0dd3a2f]1227 // When a typedef is a forward declaration:
1228 // typedef struct screen SCREEN;
1229 // the declaration portion must be retained:
1230 // struct screen;
1231 // because the expansion of the typedef is:
[ef5b828]1232 // void rtn( SCREEN * p ) => void rtn( struct screen * p )
[0dd3a2f]1233 // hence the type-name "screen" must be defined.
1234 // Note, qualifiers on the typedef are superfluous for the forward declaration.
[6f95000]1235
[ef5b828]1236 Type * designatorType = tyDecl->base->stripDeclarator();
1237 if ( StructInstType * aggDecl = dynamic_cast< StructInstType * >( designatorType ) ) {
[312029a]1238 declsToAddBefore.push_back( new StructDecl( aggDecl->name, AggregateDecl::Struct, noAttributes, tyDecl->linkage ) );
[ef5b828]1239 } else if ( UnionInstType * aggDecl = dynamic_cast< UnionInstType * >( designatorType ) ) {
[48ed81c]1240 declsToAddBefore.push_back( new UnionDecl( aggDecl->name, noAttributes, tyDecl->linkage ) );
[ef5b828]1241 } else if ( EnumInstType * enumDecl = dynamic_cast< EnumInstType * >( designatorType ) ) {
[48ed81c]1242 declsToAddBefore.push_back( new EnumDecl( enumDecl->name, noAttributes, tyDecl->linkage ) );
[0dd3a2f]1243 } // if
[48ed81c]1244 return tyDecl->clone();
[a08ba92]1245 }
[c8ffe20b]1246
[48ed81c]1247 void ReplaceTypedef::premutate( TypeDecl * typeDecl ) {
[0b3b2ae]1248 TypedefMap::iterator i = typedefNames.find( typeDecl->name );
[0dd3a2f]1249 if ( i != typedefNames.end() ) {
1250 typedefNames.erase( i ) ;
1251 } // if
[679864e1]1252
[0bcc2b7]1253 typedeclNames.insert( typeDecl->name, typeDecl );
[a08ba92]1254 }
[c8ffe20b]1255
[48ed81c]1256 void ReplaceTypedef::premutate( FunctionDecl * ) {
[a506df4]1257 GuardScope( typedefNames );
[0bcc2b7]1258 GuardScope( typedeclNames );
[a08ba92]1259 }
[c8ffe20b]1260
[48ed81c]1261 void ReplaceTypedef::premutate( ObjectDecl * ) {
[a506df4]1262 GuardScope( typedefNames );
[0bcc2b7]1263 GuardScope( typedeclNames );
[a506df4]1264 }
[dd020c0]1265
[48ed81c]1266 DeclarationWithType * ReplaceTypedef::postmutate( ObjectDecl * objDecl ) {
[ef5b828]1267 if ( FunctionType * funtype = dynamic_cast<FunctionType *>( objDecl->type ) ) { // function type?
[02e5ab6]1268 // replace the current object declaration with a function declaration
[0b3b2ae]1269 FunctionDecl * newDecl = new FunctionDecl( objDecl->name, objDecl->get_storageClasses(), objDecl->linkage, funtype, 0, objDecl->attributes, objDecl->get_funcSpec() );
1270 objDecl->attributes.clear();
[dbe8f244]1271 objDecl->set_type( nullptr );
[0a86a30]1272 delete objDecl;
1273 return newDecl;
[1db21619]1274 } // if
[a506df4]1275 return objDecl;
[a08ba92]1276 }
[c8ffe20b]1277
[48ed81c]1278 void ReplaceTypedef::premutate( CastExpr * ) {
[a506df4]1279 GuardScope( typedefNames );
[0bcc2b7]1280 GuardScope( typedeclNames );
[a08ba92]1281 }
[c8ffe20b]1282
[48ed81c]1283 void ReplaceTypedef::premutate( CompoundStmt * ) {
[a506df4]1284 GuardScope( typedefNames );
[0bcc2b7]1285 GuardScope( typedeclNames );
[cc79d97]1286 scopeLevel += 1;
[a506df4]1287 GuardAction( [this](){ scopeLevel -= 1; } );
1288 }
1289
[45161b4d]1290 template<typename AggDecl>
[48ed81c]1291 void ReplaceTypedef::addImplicitTypedef( AggDecl * aggDecl ) {
[45161b4d]1292 if ( typedefNames.count( aggDecl->get_name() ) == 0 ) {
[ef5b828]1293 Type * type = nullptr;
[45161b4d]1294 if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( aggDecl ) ) {
1295 type = new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() );
1296 } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( aggDecl ) ) {
1297 type = new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() );
1298 } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( aggDecl ) ) {
1299 type = new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() );
1300 } // if
[0b0f1dd]1301 TypedefDeclPtr tyDecl( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type, aggDecl->get_linkage() ) );
[46f6134]1302 typedefNames[ aggDecl->get_name() ] = std::make_pair( std::move( tyDecl ), scopeLevel );
[48ed81c]1303 // add the implicit typedef to the AST
1304 declsToAddBefore.push_back( new TypedefDecl( aggDecl->get_name(), aggDecl->location, Type::StorageClasses(), type->clone(), aggDecl->get_linkage() ) );
[45161b4d]1305 } // if
1306 }
[4e06c1e]1307
[48ed81c]1308 template< typename AggDecl >
1309 void ReplaceTypedef::handleAggregate( AggDecl * aggr ) {
1310 SemanticErrorException errors;
[a506df4]1311
[48ed81c]1312 ValueGuard< std::list<Declaration * > > oldBeforeDecls( declsToAddBefore );
1313 ValueGuard< std::list<Declaration * > > oldAfterDecls ( declsToAddAfter );
1314 declsToAddBefore.clear();
1315 declsToAddAfter.clear();
[a506df4]1316
[48ed81c]1317 GuardScope( typedefNames );
[0bcc2b7]1318 GuardScope( typedeclNames );
[ef5b828]1319 mutateAll( aggr->parameters, * visitor );
[798a8b3]1320 mutateAll( aggr->attributes, * visitor );
[85c4ef0]1321
[48ed81c]1322 // unroll mutateAll for aggr->members so that implicit typedefs for nested types are added to the aggregate body.
1323 for ( std::list< Declaration * >::iterator i = aggr->members.begin(); i != aggr->members.end(); ++i ) {
1324 if ( !declsToAddAfter.empty() ) { aggr->members.splice( i, declsToAddAfter ); }
[a506df4]1325
[48ed81c]1326 try {
[ef5b828]1327 * i = maybeMutate( * i, * visitor );
[48ed81c]1328 } catch ( SemanticErrorException &e ) {
1329 errors.append( e );
1330 }
1331
1332 if ( !declsToAddBefore.empty() ) { aggr->members.splice( i, declsToAddBefore ); }
1333 }
1334
1335 if ( !declsToAddAfter.empty() ) { aggr->members.splice( aggr->members.end(), declsToAddAfter ); }
1336 if ( !errors.isEmpty() ) { throw errors; }
[85c4ef0]1337 }
1338
[48ed81c]1339 void ReplaceTypedef::premutate( StructDecl * structDecl ) {
1340 visit_children = false;
1341 addImplicitTypedef( structDecl );
1342 handleAggregate( structDecl );
[a506df4]1343 }
1344
[48ed81c]1345 void ReplaceTypedef::premutate( UnionDecl * unionDecl ) {
1346 visit_children = false;
1347 addImplicitTypedef( unionDecl );
1348 handleAggregate( unionDecl );
[85c4ef0]1349 }
1350
[48ed81c]1351 void ReplaceTypedef::premutate( EnumDecl * enumDecl ) {
1352 addImplicitTypedef( enumDecl );
[85c4ef0]1353 }
1354
[48ed81c]1355 void ReplaceTypedef::premutate( FunctionType * ) {
[1f370451]1356 GuardValue( inFunctionType );
1357 inFunctionType = true;
1358 }
1359
[0bcc2b7]1360 void ReplaceTypedef::premutate( TraitDecl * ) {
1361 GuardScope( typedefNames );
1362 GuardScope( typedeclNames);
1363 }
1364
[d1969a6]1365 void VerifyCtorDtorAssign::verify( std::list< Declaration * > & translationUnit ) {
[0db6fc0]1366 PassVisitor<VerifyCtorDtorAssign> verifier;
[9cb8e88d]1367 acceptAll( translationUnit, verifier );
1368 }
1369
[0db6fc0]1370 void VerifyCtorDtorAssign::previsit( FunctionDecl * funcDecl ) {
[9cb8e88d]1371 FunctionType * funcType = funcDecl->get_functionType();
1372 std::list< DeclarationWithType * > &returnVals = funcType->get_returnVals();
1373 std::list< DeclarationWithType * > &params = funcType->get_parameters();
1374
[bff227f]1375 if ( CodeGen::isCtorDtorAssign( funcDecl->get_name() ) ) { // TODO: also check /=, etc.
[9cb8e88d]1376 if ( params.size() == 0 ) {
[98538288]1377 SemanticError( funcDecl->location, "Constructors, destructors, and assignment functions require at least one parameter." );
[9cb8e88d]1378 }
[ce8c12f]1379 ReferenceType * refType = dynamic_cast< ReferenceType * >( params.front()->get_type() );
[084fecc]1380 if ( ! refType ) {
[98538288]1381 SemanticError( funcDecl->location, "First parameter of a constructor, destructor, or assignment function must be a reference." );
[9cb8e88d]1382 }
[bff227f]1383 if ( CodeGen::isCtorDtor( funcDecl->get_name() ) && returnVals.size() != 0 ) {
[98538288]1384 if(!returnVals.front()->get_type()->isVoid()) {
1385 SemanticError( funcDecl->location, "Constructors and destructors cannot have explicit return values." );
1386 }
[9cb8e88d]1387 }
1388 }
1389 }
[70a06f6]1390
[6e50a6b]1391 // Test for special name on a generic parameter. Special treatment for the
1392 // special name is a bootstrapping hack. In most cases, the worlds of T's
1393 // and of N's don't overlap (normal treamtemt). The foundations in
1394 // array.hfa use tagging for both types and dimensions. Tagging treats
1395 // its subject parameter even more opaquely than T&, which assumes it is
1396 // possible to have a pointer/reference to such an object. Tagging only
1397 // seeks to identify the type-system resident at compile time. Both N's
1398 // and T's can make tags. The tag definition uses the special name, which
1399 // is treated as "an N or a T." This feature is not inteded to be used
1400 // outside of the definition and immediate uses of a tag.
1401 static inline bool isReservedTysysIdOnlyName( const std::string & name ) {
1402 // name's prefix was __CFA_tysys_id_only, before it got wrapped in __..._generic
1403 int foundAt = name.find("__CFA_tysys_id_only");
1404 if (foundAt == 0) return true;
1405 if (foundAt == 2 && name[0] == '_' && name[1] == '_') return true;
1406 return false;
1407 }
1408
[11ab8ea8]1409 template< typename Aggr >
1410 void validateGeneric( Aggr * inst ) {
1411 std::list< TypeDecl * > * params = inst->get_baseParameters();
[30f9072]1412 if ( params ) {
[11ab8ea8]1413 std::list< Expression * > & args = inst->get_parameters();
[67cf18c]1414
1415 // insert defaults arguments when a type argument is missing (currently only supports missing arguments at the end of the list).
1416 // A substitution is used to ensure that defaults are replaced correctly, e.g.,
1417 // forall(otype T, otype alloc = heap_allocator(T)) struct vector;
1418 // vector(int) v;
1419 // after insertion of default values becomes
1420 // vector(int, heap_allocator(T))
1421 // and the substitution is built with T=int so that after substitution, the result is
1422 // vector(int, heap_allocator(int))
1423 TypeSubstitution sub;
1424 auto paramIter = params->begin();
[6e50a6b]1425 auto argIter = args.begin();
1426 for ( ; paramIter != params->end(); ++paramIter, ++argIter ) {
1427 if ( argIter != args.end() ) {
1428 TypeExpr * expr = dynamic_cast< TypeExpr * >( * argIter );
1429 if ( expr ) {
1430 sub.add( (* paramIter)->get_name(), expr->get_type()->clone() );
1431 }
1432 } else {
[ef5b828]1433 Type * defaultType = (* paramIter)->get_init();
[67cf18c]1434 if ( defaultType ) {
1435 args.push_back( new TypeExpr( defaultType->clone() ) );
[ef5b828]1436 sub.add( (* paramIter)->get_name(), defaultType->clone() );
[6e50a6b]1437 argIter = std::prev(args.end());
1438 } else {
1439 SemanticError( inst, "Too few type arguments in generic type " );
[67cf18c]1440 }
1441 }
[6e50a6b]1442 assert( argIter != args.end() );
1443 bool typeParamDeclared = (*paramIter)->kind != TypeDecl::Kind::Dimension;
1444 bool typeArgGiven;
1445 if ( isReservedTysysIdOnlyName( (*paramIter)->name ) ) {
1446 // coerce a match when declaration is reserved name, which means "either"
1447 typeArgGiven = typeParamDeclared;
1448 } else {
1449 typeArgGiven = dynamic_cast< TypeExpr * >( * argIter );
1450 }
1451 if ( ! typeParamDeclared && typeArgGiven ) SemanticError( inst, "Type argument given for value parameter: " );
1452 if ( typeParamDeclared && ! typeArgGiven ) SemanticError( inst, "Expression argument given for type parameter: " );
[67cf18c]1453 }
1454
1455 sub.apply( inst );
[a16764a6]1456 if ( args.size() > params->size() ) SemanticError( inst, "Too many type arguments in generic type " );
[11ab8ea8]1457 }
1458 }
1459
[0db6fc0]1460 void ValidateGenericParameters::previsit( StructInstType * inst ) {
[11ab8ea8]1461 validateGeneric( inst );
1462 }
[9cb8e88d]1463
[0db6fc0]1464 void ValidateGenericParameters::previsit( UnionInstType * inst ) {
[11ab8ea8]1465 validateGeneric( inst );
[9cb8e88d]1466 }
[70a06f6]1467
[6e50a6b]1468 void TranslateDimensionGenericParameters::translateDimensions( std::list< Declaration * > &translationUnit ) {
1469 PassVisitor<TranslateDimensionGenericParameters> translator;
1470 mutateAll( translationUnit, translator );
1471 }
1472
1473 TranslateDimensionGenericParameters::TranslateDimensionGenericParameters() : WithIndexer( false ) {}
1474
1475 // Declaration of type variable: forall( [N] ) -> forall( N & | sized( N ) )
1476 TypeDecl * TranslateDimensionGenericParameters::postmutate( TypeDecl * td ) {
1477 if ( td->kind == TypeDecl::Dimension ) {
1478 td->kind = TypeDecl::Dtype;
1479 if ( ! isReservedTysysIdOnlyName( td->name ) ) {
1480 td->sized = true;
1481 }
1482 }
1483 return td;
1484 }
1485
1486 // Situational awareness:
1487 // array( float, [[currentExpr]] ) has visitingChildOfSUIT == true
1488 // array( float, [[currentExpr]] - 1 ) has visitingChildOfSUIT == false
1489 // size_t x = [[currentExpr]] has visitingChildOfSUIT == false
1490 void TranslateDimensionGenericParameters::changeState_ChildOfSUIT( bool newVal ) {
1491 GuardValue( nextVisitedNodeIsChildOfSUIT );
1492 GuardValue( visitingChildOfSUIT );
1493 visitingChildOfSUIT = nextVisitedNodeIsChildOfSUIT;
1494 nextVisitedNodeIsChildOfSUIT = newVal;
1495 }
1496 void TranslateDimensionGenericParameters::premutate( StructInstType * sit ) {
1497 (void) sit;
1498 changeState_ChildOfSUIT(true);
1499 }
1500 void TranslateDimensionGenericParameters::premutate( UnionInstType * uit ) {
1501 (void) uit;
1502 changeState_ChildOfSUIT(true);
1503 }
1504 void TranslateDimensionGenericParameters::premutate( BaseSyntaxNode * node ) {
1505 (void) node;
1506 changeState_ChildOfSUIT(false);
1507 }
1508
1509 // Passing values as dimension arguments: array( float, 7 ) -> array( float, char[ 7 ] )
1510 // Consuming dimension parameters: size_t x = N - 1 ; -> size_t x = sizeof(N) - 1 ;
1511 // Intertwined reality: array( float, N ) -> array( float, N )
1512 // array( float, N - 1 ) -> array( float, char[ sizeof(N) - 1 ] )
1513 // Intertwined case 1 is not just an optimization.
1514 // Avoiding char[sizeof(-)] is necessary to enable the call of f to bind the value of N, in:
1515 // forall([N]) void f( array(float, N) & );
1516 // array(float, 7) a;
1517 // f(a);
1518
1519 Expression * TranslateDimensionGenericParameters::postmutate( DimensionExpr * de ) {
1520 // Expression de is an occurrence of N in LHS of above examples.
1521 // Look up the name that de references.
1522 // If we are in a struct body, then this reference can be to an entry of the stuct's forall list.
1523 // Whether or not we are in a struct body, this reference can be to an entry of a containing function's forall list.
1524 // If we are in a struct body, then the stuct's forall declarations are innermost (functions don't occur in structs).
1525 // Thus, a potential struct's declaration is highest priority.
1526 // A struct's forall declarations are already renamed with _generic_ suffix. Try that name variant first.
1527
1528 std::string useName = "__" + de->name + "_generic_";
1529 TypeDecl * namedParamDecl = const_cast<TypeDecl *>( strict_dynamic_cast<const TypeDecl *, nullptr >( indexer.lookupType( useName ) ) );
1530
1531 if ( ! namedParamDecl ) {
1532 useName = de->name;
1533 namedParamDecl = const_cast<TypeDecl *>( strict_dynamic_cast<const TypeDecl *, nullptr >( indexer.lookupType( useName ) ) );
1534 }
1535
1536 // Expect to find it always. A misspelled name would have been parsed as an identifier.
1537 assert( namedParamDecl && "Type-system-managed value name not found in symbol table" );
1538
1539 delete de;
1540
1541 TypeInstType * refToDecl = new TypeInstType( 0, useName, namedParamDecl );
1542
1543 if ( visitingChildOfSUIT ) {
1544 // As in postmutate( Expression * ), topmost expression needs a TypeExpr wrapper
1545 // But avoid ArrayType-Sizeof
1546 return new TypeExpr( refToDecl );
1547 } else {
1548 // the N occurrence is being used directly as a runtime value,
1549 // if we are in a type instantiation, then the N is within a bigger value computation
1550 return new SizeofExpr( refToDecl );
1551 }
1552 }
1553
1554 Expression * TranslateDimensionGenericParameters::postmutate( Expression * e ) {
1555 if ( visitingChildOfSUIT ) {
1556 // e is an expression used as an argument to instantiate a type
1557 if (! dynamic_cast< TypeExpr * >( e ) ) {
1558 // e is a value expression
1559 // but not a DimensionExpr, which has a distinct postmutate
1560 Type * typeExprContent = new ArrayType( 0, new BasicType( 0, BasicType::Char ), e, true, false );
1561 TypeExpr * result = new TypeExpr( typeExprContent );
1562 return result;
1563 }
1564 }
1565 return e;
1566 }
1567
[ef5b828]1568 void CompoundLiteral::premutate( ObjectDecl * objectDecl ) {
[a7c90d4]1569 storageClasses = objectDecl->get_storageClasses();
[630a82a]1570 }
1571
[ef5b828]1572 Expression * CompoundLiteral::postmutate( CompoundLiteralExpr * compLitExpr ) {
[630a82a]1573 // transform [storage_class] ... (struct S){ 3, ... };
1574 // into [storage_class] struct S temp = { 3, ... };
1575 static UniqueName indexName( "_compLit" );
1576
[ef5b828]1577 ObjectDecl * tempvar = new ObjectDecl( indexName.newName(), storageClasses, LinkageSpec::C, nullptr, compLitExpr->get_result(), compLitExpr->get_initializer() );
[d24d4e1]1578 compLitExpr->set_result( nullptr );
1579 compLitExpr->set_initializer( nullptr );
[630a82a]1580 delete compLitExpr;
[d24d4e1]1581 declsToAddBefore.push_back( tempvar ); // add modified temporary to current block
1582 return new VariableExpr( tempvar );
[630a82a]1583 }
[cce9429]1584
1585 void ReturnTypeFixer::fix( std::list< Declaration * > &translationUnit ) {
[0db6fc0]1586 PassVisitor<ReturnTypeFixer> fixer;
[cce9429]1587 acceptAll( translationUnit, fixer );
1588 }
1589
[0db6fc0]1590 void ReturnTypeFixer::postvisit( FunctionDecl * functionDecl ) {
[9facf3b]1591 FunctionType * ftype = functionDecl->get_functionType();
1592 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
[56e49b0]1593 assertf( retVals.size() == 0 || retVals.size() == 1, "Function %s has too many return values: %zu", functionDecl->get_name().c_str(), retVals.size() );
[9facf3b]1594 if ( retVals.size() == 1 ) {
[861799c7]1595 // ensure all function return values have a name - use the name of the function to disambiguate (this also provides a nice bit of help for debugging).
1596 // ensure other return values have a name.
[9facf3b]1597 DeclarationWithType * ret = retVals.front();
1598 if ( ret->get_name() == "" ) {
1599 ret->set_name( toString( "_retval_", CodeGen::genName( functionDecl ) ) );
1600 }
[c6d2e93]1601 ret->get_attributes().push_back( new Attribute( "unused" ) );
[9facf3b]1602 }
1603 }
[cce9429]1604
[0db6fc0]1605 void ReturnTypeFixer::postvisit( FunctionType * ftype ) {
[cce9429]1606 // xxx - need to handle named return values - this information needs to be saved somehow
1607 // so that resolution has access to the names.
1608 // Note that this pass needs to happen early so that other passes which look for tuple types
1609 // find them in all of the right places, including function return types.
1610 std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
1611 if ( retVals.size() > 1 ) {
1612 // generate a single return parameter which is the tuple of all of the return values
[e3e16bc]1613 TupleType * tupleType = strict_dynamic_cast< TupleType * >( ResolvExpr::extractResultType( ftype ) );
[cce9429]1614 // ensure return value is not destructed by explicitly creating an empty ListInit node wherein maybeConstruct is false.
[ef5b828]1615 ObjectDecl * newRet = new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, tupleType, new ListInit( std::list<Initializer *>(), noDesignators, false ) );
[cce9429]1616 deleteAll( retVals );
1617 retVals.clear();
1618 retVals.push_back( newRet );
1619 }
1620 }
[fbd7ad6]1621
[2b79a70]1622 void FixObjectType::fix( std::list< Declaration * > & translationUnit ) {
1623 PassVisitor<FixObjectType> fixer;
1624 acceptAll( translationUnit, fixer );
1625 }
1626
1627 void FixObjectType::previsit( ObjectDecl * objDecl ) {
[ef5b828]1628 Type * new_type = ResolvExpr::resolveTypeof( objDecl->get_type(), indexer );
[2b79a70]1629 objDecl->set_type( new_type );
1630 }
1631
1632 void FixObjectType::previsit( FunctionDecl * funcDecl ) {
[ef5b828]1633 Type * new_type = ResolvExpr::resolveTypeof( funcDecl->type, indexer );
[2b79a70]1634 funcDecl->set_type( new_type );
1635 }
1636
[ef5b828]1637 void FixObjectType::previsit( TypeDecl * typeDecl ) {
[2b79a70]1638 if ( typeDecl->get_base() ) {
[ef5b828]1639 Type * new_type = ResolvExpr::resolveTypeof( typeDecl->get_base(), indexer );
[2b79a70]1640 typeDecl->set_base( new_type );
1641 } // if
1642 }
1643
[09867ec]1644 void InitializerLength::computeLength( std::list< Declaration * > & translationUnit ) {
1645 PassVisitor<InitializerLength> len;
1646 acceptAll( translationUnit, len );
1647 }
1648
[fbd7ad6]1649 void ArrayLength::computeLength( std::list< Declaration * > & translationUnit ) {
[0db6fc0]1650 PassVisitor<ArrayLength> len;
[fbd7ad6]1651 acceptAll( translationUnit, len );
1652 }
1653
[09867ec]1654 void InitializerLength::previsit( ObjectDecl * objDecl ) {
[0b3b2ae]1655 if ( ArrayType * at = dynamic_cast< ArrayType * >( objDecl->type ) ) {
[f072892]1656 if ( at->dimension ) return;
[0b3b2ae]1657 if ( ListInit * init = dynamic_cast< ListInit * >( objDecl->init ) ) {
[f072892]1658 at->dimension = new ConstantExpr( Constant::from_ulong( init->initializers.size() ) );
[fbd7ad6]1659 }
1660 }
1661 }
[4fbdfae0]1662
[4934ea3]1663 void ArrayLength::previsit( ArrayType * type ) {
[09867ec]1664 if ( type->dimension ) {
1665 // need to resolve array dimensions early so that constructor code can correctly determine
1666 // if a type is a VLA (and hence whether its elements need to be constructed)
1667 ResolvExpr::findSingleExpression( type->dimension, Validate::SizeType->clone(), indexer );
1668
1669 // must re-evaluate whether a type is a VLA, now that more information is available
1670 // (e.g. the dimension may have been an enumerator, which was unknown prior to this step)
1671 type->isVarLen = ! InitTweak::isConstExpr( type->dimension );
[4934ea3]1672 }
1673 }
1674
[5809461]1675 struct LabelFinder {
1676 std::set< Label > & labels;
1677 LabelFinder( std::set< Label > & labels ) : labels( labels ) {}
1678 void previsit( Statement * stmt ) {
1679 for ( Label & l : stmt->labels ) {
1680 labels.insert( l );
1681 }
1682 }
1683 };
1684
1685 void LabelAddressFixer::premutate( FunctionDecl * funcDecl ) {
1686 GuardValue( labels );
1687 PassVisitor<LabelFinder> finder( labels );
1688 funcDecl->accept( finder );
1689 }
1690
1691 Expression * LabelAddressFixer::postmutate( AddressExpr * addrExpr ) {
1692 // convert &&label into label address
1693 if ( AddressExpr * inner = dynamic_cast< AddressExpr * >( addrExpr->arg ) ) {
1694 if ( NameExpr * nameExpr = dynamic_cast< NameExpr * >( inner->arg ) ) {
1695 if ( labels.count( nameExpr->name ) ) {
1696 Label name = nameExpr->name;
1697 delete addrExpr;
1698 return new LabelAddressExpr( name );
1699 }
1700 }
1701 }
1702 return addrExpr;
1703 }
[c8e4d2f8]1704
[c1ed2ee]1705namespace {
[ef5b828]1706 /// Replaces enum types by int, and function/array types in function parameter and return
[c1ed2ee]1707 /// lists by appropriate pointers
[954c954]1708 /*
[c1ed2ee]1709 struct EnumAndPointerDecay_new {
1710 const ast::EnumDecl * previsit( const ast::EnumDecl * enumDecl ) {
1711 // set the type of each member of the enumeration to be EnumConstant
1712 for ( unsigned i = 0; i < enumDecl->members.size(); ++i ) {
1713 // build new version of object with EnumConstant
[ef5b828]1714 ast::ptr< ast::ObjectDecl > obj =
[c1ed2ee]1715 enumDecl->members[i].strict_as< ast::ObjectDecl >();
[ef5b828]1716 obj.get_and_mutate()->type =
[c1ed2ee]1717 new ast::EnumInstType{ enumDecl->name, ast::CV::Const };
[ef5b828]1718
[c1ed2ee]1719 // set into decl
1720 ast::EnumDecl * mut = mutate( enumDecl );
1721 mut->members[i] = obj.get();
1722 enumDecl = mut;
1723 }
1724 return enumDecl;
1725 }
1726
1727 static const ast::FunctionType * fixFunctionList(
[ef5b828]1728 const ast::FunctionType * func,
[c1ed2ee]1729 std::vector< ast::ptr< ast::DeclWithType > > ast::FunctionType::* field,
1730 ast::ArgumentFlag isVarArgs = ast::FixedArgs
1731 ) {
[ef5b828]1732 const auto & dwts = func->* field;
[c1ed2ee]1733 unsigned nvals = dwts.size();
1734 bool hasVoid = false;
1735 for ( unsigned i = 0; i < nvals; ++i ) {
1736 func = ast::mutate_field_index( func, field, i, fixFunction( dwts[i], hasVoid ) );
1737 }
[ef5b828]1738
[c1ed2ee]1739 // the only case in which "void" is valid is where it is the only one in the list
1740 if ( hasVoid && ( nvals > 1 || isVarArgs ) ) {
[ef5b828]1741 SemanticError(
[c1ed2ee]1742 dwts.front()->location, func, "invalid type void in function type" );
1743 }
1744
1745 // one void is the only thing in the list, remove it
1746 if ( hasVoid ) {
[ef5b828]1747 func = ast::mutate_field(
[c1ed2ee]1748 func, field, std::vector< ast::ptr< ast::DeclWithType > >{} );
1749 }
1750
1751 return func;
1752 }
1753
1754 const ast::FunctionType * previsit( const ast::FunctionType * func ) {
1755 func = fixFunctionList( func, &ast::FunctionType::params, func->isVarArgs );
1756 return fixFunctionList( func, &ast::FunctionType::returns );
1757 }
1758 };
1759
[c1398e4]1760 /// expand assertions from a trait instance, performing appropriate type variable substitutions
[ef5b828]1761 void expandAssertions(
1762 const ast::TraitInstType * inst, std::vector< ast::ptr< ast::DeclWithType > > & out
[c1398e4]1763 ) {
1764 assertf( inst->base, "Trait instance not linked to base trait: %s", toCString( inst ) );
1765
1766 // build list of trait members, substituting trait decl parameters for instance parameters
[ef5b828]1767 ast::TypeSubstitution sub{
[c1398e4]1768 inst->base->params.begin(), inst->base->params.end(), inst->params.begin() };
1769 // deliberately take ast::ptr by-value to ensure this does not mutate inst->base
1770 for ( ast::ptr< ast::Decl > decl : inst->base->members ) {
1771 auto member = decl.strict_as< ast::DeclWithType >();
1772 sub.apply( member );
1773 out.emplace_back( member );
1774 }
1775 }
1776
[c1ed2ee]1777 /// Associates forward declarations of aggregates with their definitions
[ef5b828]1778 class LinkReferenceToTypes_new final
1779 : public ast::WithSymbolTable, public ast::WithGuards, public
[c1ed2ee]1780 ast::WithVisitorRef<LinkReferenceToTypes_new>, public ast::WithShortCircuiting {
[ef5b828]1781
1782 // these maps of uses of forward declarations of types need to have the actual type
1783 // declaration switched in * after * they have been traversed. To enable this in the
1784 // ast::Pass framework, any node that needs to be so mutated has mutate() called on it
1785 // before it is placed in the map, properly updating its parents in the usual traversal,
[18e683b]1786 // then can have the actual mutation applied later
1787 using ForwardEnumsType = std::unordered_multimap< std::string, ast::EnumInstType * >;
1788 using ForwardStructsType = std::unordered_multimap< std::string, ast::StructInstType * >;
1789 using ForwardUnionsType = std::unordered_multimap< std::string, ast::UnionInstType * >;
[ef5b828]1790
[18e683b]1791 const CodeLocation & location;
1792 const ast::SymbolTable * localSymtab;
[ef5b828]1793
[18e683b]1794 ForwardEnumsType forwardEnums;
1795 ForwardStructsType forwardStructs;
1796 ForwardUnionsType forwardUnions;
[c1ed2ee]1797
[ef5b828]1798 /// true if currently in a generic type body, so that type parameter instances can be
[18e683b]1799 /// renamed appropriately
1800 bool inGeneric = false;
[c1ed2ee]1801
[18e683b]1802 public:
1803 /// contstruct using running symbol table
[ef5b828]1804 LinkReferenceToTypes_new( const CodeLocation & loc )
[18e683b]1805 : location( loc ), localSymtab( &symtab ) {}
[ef5b828]1806
[18e683b]1807 /// construct using provided symbol table
[ef5b828]1808 LinkReferenceToTypes_new( const CodeLocation & loc, const ast::SymbolTable & syms )
[18e683b]1809 : location( loc ), localSymtab( &syms ) {}
1810
1811 const ast::Type * postvisit( const ast::TypeInstType * typeInst ) {
1812 // ensure generic parameter instances are renamed like the base type
1813 if ( inGeneric && typeInst->base ) {
[ef5b828]1814 typeInst = ast::mutate_field(
[18e683b]1815 typeInst, &ast::TypeInstType::name, typeInst->base->name );
1816 }
1817
[ef5b828]1818 if (
1819 auto typeDecl = dynamic_cast< const ast::TypeDecl * >(
1820 localSymtab->lookupType( typeInst->name ) )
[18e683b]1821 ) {
1822 typeInst = ast::mutate_field( typeInst, &ast::TypeInstType::kind, typeDecl->kind );
1823 }
1824
1825 return typeInst;
1826 }
1827
1828 const ast::Type * postvisit( const ast::EnumInstType * inst ) {
1829 const ast::EnumDecl * decl = localSymtab->lookupEnum( inst->name );
1830 // not a semantic error if the enum is not found, just an implicit forward declaration
1831 if ( decl ) {
1832 inst = ast::mutate_field( inst, &ast::EnumInstType::base, decl );
1833 }
1834 if ( ! decl || ! decl->body ) {
1835 // forward declaration
1836 auto mut = mutate( inst );
1837 forwardEnums.emplace( inst->name, mut );
1838 inst = mut;
1839 }
1840 return inst;
1841 }
1842
[98e8b3b]1843 void checkGenericParameters( const ast::BaseInstType * inst ) {
[18e683b]1844 for ( const ast::Expr * param : inst->params ) {
1845 if ( ! dynamic_cast< const ast::TypeExpr * >( param ) ) {
[ef5b828]1846 SemanticError(
[18e683b]1847 location, inst, "Expression parameters for generic types are currently "
1848 "unsupported: " );
1849 }
1850 }
1851 }
1852
1853 const ast::StructInstType * postvisit( const ast::StructInstType * inst ) {
1854 const ast::StructDecl * decl = localSymtab->lookupStruct( inst->name );
1855 // not a semantic error if the struct is not found, just an implicit forward declaration
1856 if ( decl ) {
1857 inst = ast::mutate_field( inst, &ast::StructInstType::base, decl );
1858 }
1859 if ( ! decl || ! decl->body ) {
1860 // forward declaration
1861 auto mut = mutate( inst );
1862 forwardStructs.emplace( inst->name, mut );
1863 inst = mut;
1864 }
1865 checkGenericParameters( inst );
1866 return inst;
1867 }
1868
1869 const ast::UnionInstType * postvisit( const ast::UnionInstType * inst ) {
1870 const ast::UnionDecl * decl = localSymtab->lookupUnion( inst->name );
1871 // not a semantic error if the struct is not found, just an implicit forward declaration
1872 if ( decl ) {
1873 inst = ast::mutate_field( inst, &ast::UnionInstType::base, decl );
1874 }
1875 if ( ! decl || ! decl->body ) {
1876 // forward declaration
1877 auto mut = mutate( inst );
1878 forwardUnions.emplace( inst->name, mut );
1879 inst = mut;
1880 }
1881 checkGenericParameters( inst );
1882 return inst;
1883 }
1884
1885 const ast::Type * postvisit( const ast::TraitInstType * traitInst ) {
1886 // handle other traits
1887 const ast::TraitDecl * traitDecl = localSymtab->lookupTrait( traitInst->name );
1888 if ( ! traitDecl ) {
1889 SemanticError( location, "use of undeclared trait " + traitInst->name );
1890 }
1891 if ( traitDecl->params.size() != traitInst->params.size() ) {
1892 SemanticError( location, traitInst, "incorrect number of trait parameters: " );
1893 }
1894 traitInst = ast::mutate_field( traitInst, &ast::TraitInstType::base, traitDecl );
1895
1896 // need to carry over the "sized" status of each decl in the instance
1897 for ( unsigned i = 0; i < traitDecl->params.size(); ++i ) {
1898 auto expr = traitInst->params[i].as< ast::TypeExpr >();
1899 if ( ! expr ) {
[ef5b828]1900 SemanticError(
[18e683b]1901 traitInst->params[i].get(), "Expression parameters for trait instances "
1902 "are currently unsupported: " );
1903 }
1904
1905 if ( auto inst = expr->type.as< ast::TypeInstType >() ) {
1906 if ( traitDecl->params[i]->sized && ! inst->base->sized ) {
1907 // traitInst = ast::mutate_field_index(
1908 // traitInst, &ast::TraitInstType::params, i,
1909 // ...
1910 // );
1911 ast::TraitInstType * mut = ast::mutate( traitInst );
1912 ast::chain_mutate( mut->params[i] )
1913 ( &ast::TypeExpr::type )
1914 ( &ast::TypeInstType::base )->sized = true;
1915 traitInst = mut;
1916 }
1917 }
1918 }
1919
1920 return traitInst;
1921 }
[ef5b828]1922
[18e683b]1923 void previsit( const ast::QualifiedType * ) { visit_children = false; }
[ef5b828]1924
[18e683b]1925 const ast::Type * postvisit( const ast::QualifiedType * qualType ) {
1926 // linking only makes sense for the "oldest ancestor" of the qualified type
[ef5b828]1927 return ast::mutate_field(
1928 qualType, &ast::QualifiedType::parent, qualType->parent->accept( * visitor ) );
[18e683b]1929 }
1930
1931 const ast::Decl * postvisit( const ast::EnumDecl * enumDecl ) {
[ef5b828]1932 // visit enum members first so that the types of self-referencing members are updated
[18e683b]1933 // properly
1934 if ( ! enumDecl->body ) return enumDecl;
1935
1936 // update forward declarations to point here
1937 auto fwds = forwardEnums.equal_range( enumDecl->name );
1938 if ( fwds.first != fwds.second ) {
1939 auto inst = fwds.first;
1940 do {
[ef5b828]1941 // forward decl is stored * mutably * in map, can thus be updated
[18e683b]1942 inst->second->base = enumDecl;
1943 } while ( ++inst != fwds.second );
1944 forwardEnums.erase( fwds.first, fwds.second );
1945 }
[ef5b828]1946
[18e683b]1947 // ensure that enumerator initializers are properly set
1948 for ( unsigned i = 0; i < enumDecl->members.size(); ++i ) {
1949 auto field = enumDecl->members[i].strict_as< ast::ObjectDecl >();
1950 if ( field->init ) {
[ef5b828]1951 // need to resolve enumerator initializers early so that other passes that
[18e683b]1952 // determine if an expression is constexpr have appropriate information
1953 auto init = field->init.strict_as< ast::SingleInit >();
[ef5b828]1954
1955 enumDecl = ast::mutate_field_index(
1956 enumDecl, &ast::EnumDecl::members, i,
1957 ast::mutate_field( field, &ast::ObjectDecl::init,
[18e683b]1958 ast::mutate_field( init, &ast::SingleInit::value,
[ef5b828]1959 ResolvExpr::findSingleExpression(
[18e683b]1960 init->value, new ast::BasicType{ ast::BasicType::SignedInt },
1961 symtab ) ) ) );
1962 }
1963 }
1964
1965 return enumDecl;
1966 }
1967
[ef5b828]1968 /// rename generic type parameters uniquely so that they do not conflict with user defined
[18e683b]1969 /// function forall parameters, e.g. the T in Box and the T in f, below
1970 /// forall(otype T)
1971 /// struct Box {
1972 /// T x;
1973 /// };
1974 /// forall(otype T)
1975 /// void f(Box(T) b) {
1976 /// ...
1977 /// }
1978 template< typename AggrDecl >
1979 const AggrDecl * renameGenericParams( const AggrDecl * aggr ) {
1980 GuardValue( inGeneric );
1981 inGeneric = ! aggr->params.empty();
1982
1983 for ( unsigned i = 0; i < aggr->params.size(); ++i ) {
1984 const ast::TypeDecl * td = aggr->params[i];
1985
[ef5b828]1986 aggr = ast::mutate_field_index(
1987 aggr, &AggrDecl::params, i,
[18e683b]1988 ast::mutate_field( td, &ast::TypeDecl::name, "__" + td->name + "_generic_" ) );
1989 }
1990 return aggr;
1991 }
1992
1993 const ast::StructDecl * previsit( const ast::StructDecl * structDecl ) {
1994 return renameGenericParams( structDecl );
1995 }
1996
1997 void postvisit( const ast::StructDecl * structDecl ) {
[ef5b828]1998 // visit struct members first so that the types of self-referencing members are
[18e683b]1999 // updated properly
2000 if ( ! structDecl->body ) return;
2001
2002 // update forward declarations to point here
2003 auto fwds = forwardStructs.equal_range( structDecl->name );
2004 if ( fwds.first != fwds.second ) {
2005 auto inst = fwds.first;
2006 do {
[ef5b828]2007 // forward decl is stored * mutably * in map, can thus be updated
[18e683b]2008 inst->second->base = structDecl;
2009 } while ( ++inst != fwds.second );
2010 forwardStructs.erase( fwds.first, fwds.second );
2011 }
2012 }
2013
2014 const ast::UnionDecl * previsit( const ast::UnionDecl * unionDecl ) {
2015 return renameGenericParams( unionDecl );
2016 }
2017
2018 void postvisit( const ast::UnionDecl * unionDecl ) {
[ef5b828]2019 // visit union members first so that the types of self-referencing members are updated
[18e683b]2020 // properly
2021 if ( ! unionDecl->body ) return;
2022
2023 // update forward declarations to point here
2024 auto fwds = forwardUnions.equal_range( unionDecl->name );
2025 if ( fwds.first != fwds.second ) {
2026 auto inst = fwds.first;
2027 do {
[ef5b828]2028 // forward decl is stored * mutably * in map, can thus be updated
[18e683b]2029 inst->second->base = unionDecl;
2030 } while ( ++inst != fwds.second );
2031 forwardUnions.erase( fwds.first, fwds.second );
2032 }
2033 }
2034
2035 const ast::Decl * postvisit( const ast::TraitDecl * traitDecl ) {
2036 // set the "sized" status for the special "sized" trait
[c1398e4]2037 if ( traitDecl->name == "sized" ) {
2038 assertf( traitDecl->params.size() == 1, "Built-in trait 'sized' has incorrect "
2039 "number of parameters: %zd", traitDecl->params.size() );
2040
[ef5b828]2041 traitDecl = ast::mutate_field_index(
2042 traitDecl, &ast::TraitDecl::params, 0,
2043 ast::mutate_field(
[c1398e4]2044 traitDecl->params.front().get(), &ast::TypeDecl::sized, true ) );
2045 }
[18e683b]2046
[c1398e4]2047 // move assertions from type parameters into the body of the trait
2048 std::vector< ast::ptr< ast::DeclWithType > > added;
2049 for ( const ast::TypeDecl * td : traitDecl->params ) {
2050 for ( const ast::DeclWithType * assn : td->assertions ) {
2051 auto inst = dynamic_cast< const ast::TraitInstType * >( assn->get_type() );
2052 if ( inst ) {
2053 expandAssertions( inst, added );
2054 } else {
2055 added.emplace_back( assn );
2056 }
2057 }
2058 }
2059 if ( ! added.empty() ) {
2060 auto mut = mutate( traitDecl );
2061 for ( const ast::DeclWithType * decl : added ) {
2062 mut->members.emplace_back( decl );
2063 }
2064 traitDecl = mut;
2065 }
[ef5b828]2066
[c1398e4]2067 return traitDecl;
[18e683b]2068 }
[c1ed2ee]2069 };
2070
[ef5b828]2071 /// Replaces array and function types in forall lists by appropriate pointer type and assigns
[c1ed2ee]2072 /// each object and function declaration a unique ID
[c1398e4]2073 class ForallPointerDecay_new {
2074 const CodeLocation & location;
2075 public:
2076 ForallPointerDecay_new( const CodeLocation & loc ) : location( loc ) {}
2077
2078 const ast::ObjectDecl * previsit( const ast::ObjectDecl * obj ) {
2079 // ensure that operator names only apply to functions or function pointers
[ef5b828]2080 if (
2081 CodeGen::isOperator( obj->name )
[c1398e4]2082 && ! dynamic_cast< const ast::FunctionType * >( obj->type->stripDeclarator() )
2083 ) {
2084 SemanticError( obj->location, toCString( "operator ", obj->name.c_str(), " is not "
2085 "a function or function pointer." ) );
2086 }
2087
2088 // ensure object has unique ID
2089 if ( obj->uniqueId ) return obj;
2090 auto mut = mutate( obj );
2091 mut->fixUniqueId();
2092 return mut;
2093 }
2094
2095 const ast::FunctionDecl * previsit( const ast::FunctionDecl * func ) {
2096 // ensure function has unique ID
2097 if ( func->uniqueId ) return func;
2098 auto mut = mutate( func );
2099 mut->fixUniqueId();
2100 return mut;
2101 }
2102
2103 /// Fix up assertions -- flattens assertion lists, removing all trait instances
2104 template< typename node_t, typename parent_t >
[ef5b828]2105 static const node_t * forallFixer(
2106 const CodeLocation & loc, const node_t * node,
[361bf01]2107 ast::FunctionType::ForallList parent_t::* forallField
[c1398e4]2108 ) {
[ef5b828]2109 for ( unsigned i = 0; i < (node->* forallField).size(); ++i ) {
2110 const ast::TypeDecl * type = (node->* forallField)[i];
[c1398e4]2111 if ( type->assertions.empty() ) continue;
2112
2113 std::vector< ast::ptr< ast::DeclWithType > > asserts;
2114 asserts.reserve( type->assertions.size() );
2115
2116 // expand trait instances into their members
2117 for ( const ast::DeclWithType * assn : type->assertions ) {
[ef5b828]2118 auto traitInst =
2119 dynamic_cast< const ast::TraitInstType * >( assn->get_type() );
[c1398e4]2120 if ( traitInst ) {
2121 // expand trait instance to all its members
2122 expandAssertions( traitInst, asserts );
2123 } else {
2124 // pass other assertions through
2125 asserts.emplace_back( assn );
2126 }
2127 }
2128
2129 // apply FixFunction to every assertion to check for invalid void type
2130 for ( ast::ptr< ast::DeclWithType > & assn : asserts ) {
2131 bool isVoid = false;
2132 assn = fixFunction( assn, isVoid );
2133 if ( isVoid ) {
2134 SemanticError( loc, node, "invalid type void in assertion of function " );
2135 }
2136 }
2137
2138 // place mutated assertion list in node
2139 auto mut = mutate( type );
2140 mut->assertions = move( asserts );
2141 node = ast::mutate_field_index( node, forallField, i, mut );
2142 }
2143 return node;
2144 }
2145
2146 const ast::FunctionType * previsit( const ast::FunctionType * ftype ) {
2147 return forallFixer( location, ftype, &ast::FunctionType::forall );
2148 }
2149
2150 const ast::StructDecl * previsit( const ast::StructDecl * aggrDecl ) {
2151 return forallFixer( aggrDecl->location, aggrDecl, &ast::StructDecl::params );
2152 }
2153
2154 const ast::UnionDecl * previsit( const ast::UnionDecl * aggrDecl ) {
2155 return forallFixer( aggrDecl->location, aggrDecl, &ast::UnionDecl::params );
2156 }
[c1ed2ee]2157 };
[3e5dd913]2158 */
[c1ed2ee]2159} // anonymous namespace
2160
[3e5dd913]2161/*
[ef5b828]2162const ast::Type * validateType(
[18e683b]2163 const CodeLocation & loc, const ast::Type * type, const ast::SymbolTable & symtab ) {
[954c954]2164 // ast::Pass< EnumAndPointerDecay_new > epc;
[18e683b]2165 ast::Pass< LinkReferenceToTypes_new > lrt{ loc, symtab };
[c1398e4]2166 ast::Pass< ForallPointerDecay_new > fpd{ loc };
[c1ed2ee]2167
[954c954]2168 return type->accept( lrt )->accept( fpd );
[c1ed2ee]2169}
[3e5dd913]2170*/
[c1ed2ee]2171
[51b73452]2172} // namespace SymTab
[0dd3a2f]2173
2174// Local Variables: //
2175// tab-width: 4 //
2176// mode: c++ //
2177// compile-command: "make install" //
2178// End: //
Note: See TracBrowser for help on using the repository browser.