source: src/SymTab/Mangler.cc@ bc4bea8

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since bc4bea8 was d76c588, checked in by Aaron Moss <a3moss@…>, 6 years ago

Stubs for new resolver, implementation of new indexer, type environment

  • Property mode set to 100644
File size: 16.1 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Mangler.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 21:40:29 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon Sep 25 15:49:26 2017
13// Update Count : 23
14//
15#include "Mangler.h"
16
17#include <algorithm> // for copy, transform
18#include <cassert> // for assert, assertf
19#include <functional> // for const_mem_fun_t, mem_fun
20#include <iterator> // for ostream_iterator, back_insert_ite...
21#include <list> // for _List_iterator, list, _List_const...
22#include <string> // for string, char_traits, operator<<
23
24#include "CodeGen/OperatorTable.h" // for OperatorInfo, operatorLookup
25#include "Common/PassVisitor.h"
26#include "Common/SemanticError.h" // for SemanticError
27#include "Common/utility.h" // for toString
28#include "Parser/LinkageSpec.h" // for Spec, isOverridable, AutoGen, Int...
29#include "ResolvExpr/TypeEnvironment.h" // for TypeEnvironment
30#include "SynTree/Declaration.h" // for TypeDecl, DeclarationWithType
31#include "SynTree/Expression.h" // for TypeExpr, Expression, operator<<
32#include "SynTree/Type.h" // for Type, ReferenceToType, Type::Fora...
33
34namespace SymTab {
35 namespace Mangler {
36 namespace {
37 /// Mangles names to a unique C identifier
38 struct Mangler : public WithShortCircuiting, public WithVisitorRef<Mangler>, public WithGuards {
39 Mangler( bool mangleOverridable, bool typeMode, bool mangleGenericParams );
40 Mangler( const Mangler & ) = delete;
41
42 void previsit( BaseSyntaxNode * ) { visit_children = false; }
43
44 void postvisit( ObjectDecl * declaration );
45 void postvisit( FunctionDecl * declaration );
46 void postvisit( TypeDecl * declaration );
47
48 void postvisit( VoidType * voidType );
49 void postvisit( BasicType * basicType );
50 void postvisit( PointerType * pointerType );
51 void postvisit( ArrayType * arrayType );
52 void postvisit( ReferenceType * refType );
53 void postvisit( FunctionType * functionType );
54 void postvisit( StructInstType * aggregateUseType );
55 void postvisit( UnionInstType * aggregateUseType );
56 void postvisit( EnumInstType * aggregateUseType );
57 void postvisit( TypeInstType * aggregateUseType );
58 void postvisit( TraitInstType * inst );
59 void postvisit( TupleType * tupleType );
60 void postvisit( VarArgsType * varArgsType );
61 void postvisit( ZeroType * zeroType );
62 void postvisit( OneType * oneType );
63 void postvisit( QualifiedType * qualType );
64
65 std::string get_mangleName() { return mangleName.str(); }
66 private:
67 std::ostringstream mangleName; ///< Mangled name being constructed
68 typedef std::map< std::string, std::pair< int, int > > VarMapType;
69 VarMapType varNums; ///< Map of type variables to indices
70 int nextVarNum; ///< Next type variable index
71 bool isTopLevel; ///< Is the Mangler at the top level
72 bool mangleOverridable; ///< Specially mangle overridable built-in methods
73 bool typeMode; ///< Produce a unique mangled name for a type
74 bool mangleGenericParams; ///< Include generic parameters in name mangling if true
75 bool inFunctionType = false; ///< Include type qualifiers if false.
76 bool inQualifiedType = false; ///< Add start/end delimiters around qualified type
77
78 public:
79 Mangler( bool mangleOverridable, bool typeMode, bool mangleGenericParams,
80 int nextVarNum, const VarMapType& varNums );
81
82 private:
83 void mangleDecl( DeclarationWithType *declaration );
84 void mangleRef( ReferenceToType *refType, std::string prefix );
85
86 void printQualifiers( Type *type );
87 }; // Mangler
88 } // namespace
89
90 std::string mangle( BaseSyntaxNode * decl, bool mangleOverridable, bool typeMode, bool mangleGenericParams ) {
91 PassVisitor<Mangler> mangler( mangleOverridable, typeMode, mangleGenericParams );
92 maybeAccept( decl, mangler );
93 return mangler.pass.get_mangleName();
94 }
95
96 std::string mangleType( Type * ty ) {
97 PassVisitor<Mangler> mangler( false, true, true );
98 maybeAccept( ty, mangler );
99 return mangler.pass.get_mangleName();
100 }
101
102 std::string mangleConcrete( Type * ty ) {
103 PassVisitor<Mangler> mangler( false, false, false );
104 maybeAccept( ty, mangler );
105 return mangler.pass.get_mangleName();
106 }
107
108 namespace {
109 Mangler::Mangler( bool mangleOverridable, bool typeMode, bool mangleGenericParams )
110 : nextVarNum( 0 ), isTopLevel( true ),
111 mangleOverridable( mangleOverridable ), typeMode( typeMode ),
112 mangleGenericParams( mangleGenericParams ) {}
113
114 Mangler::Mangler( bool mangleOverridable, bool typeMode, bool mangleGenericParams,
115 int nextVarNum, const VarMapType& varNums )
116 : varNums( varNums ), nextVarNum( nextVarNum ), isTopLevel( false ),
117 mangleOverridable( mangleOverridable ), typeMode( typeMode ),
118 mangleGenericParams( mangleGenericParams ) {}
119
120 void Mangler::mangleDecl( DeclarationWithType * declaration ) {
121 bool wasTopLevel = isTopLevel;
122 if ( isTopLevel ) {
123 varNums.clear();
124 nextVarNum = 0;
125 isTopLevel = false;
126 } // if
127 mangleName << Encoding::manglePrefix;
128 CodeGen::OperatorInfo opInfo;
129 if ( operatorLookup( declaration->get_name(), opInfo ) ) {
130 mangleName << opInfo.outputName.size() << opInfo.outputName;
131 } else {
132 mangleName << declaration->name.size() << declaration->name;
133 } // if
134 maybeAccept( declaration->get_type(), *visitor );
135 if ( mangleOverridable && LinkageSpec::isOverridable( declaration->get_linkage() ) ) {
136 // want to be able to override autogenerated and intrinsic routines,
137 // so they need a different name mangling
138 if ( declaration->get_linkage() == LinkageSpec::AutoGen ) {
139 mangleName << Encoding::autogen;
140 } else if ( declaration->get_linkage() == LinkageSpec::Intrinsic ) {
141 mangleName << Encoding::intrinsic;
142 } else {
143 // if we add another kind of overridable function, this has to change
144 assert( false && "unknown overrideable linkage" );
145 } // if
146 }
147 isTopLevel = wasTopLevel;
148 }
149
150 void Mangler::postvisit( ObjectDecl * declaration ) {
151 mangleDecl( declaration );
152 }
153
154 void Mangler::postvisit( FunctionDecl * declaration ) {
155 mangleDecl( declaration );
156 }
157
158 void Mangler::postvisit( VoidType * voidType ) {
159 printQualifiers( voidType );
160 mangleName << Encoding::void_t;
161 }
162
163 void Mangler::postvisit( BasicType * basicType ) {
164 printQualifiers( basicType );
165 assertf( basicType->get_kind() < BasicType::NUMBER_OF_BASIC_TYPES, "Unhandled basic type: %d", basicType->get_kind() );
166 mangleName << Encoding::basicTypes[ basicType->get_kind() ];
167 }
168
169 void Mangler::postvisit( PointerType * pointerType ) {
170 printQualifiers( pointerType );
171 // mangle void (*f)() and void f() to the same name to prevent overloading on functions and function pointers
172 if ( ! dynamic_cast<FunctionType *>( pointerType->base ) ) mangleName << Encoding::pointer;
173 maybeAccept( pointerType->base, *visitor );
174 }
175
176 void Mangler::postvisit( ArrayType * arrayType ) {
177 // TODO: encode dimension
178 printQualifiers( arrayType );
179 mangleName << Encoding::array << "0";
180 maybeAccept( arrayType->base, *visitor );
181 }
182
183 void Mangler::postvisit( ReferenceType * refType ) {
184 // don't print prefix (e.g. 'R') for reference types so that references and non-references do not overload.
185 // Further, do not print the qualifiers for a reference type (but do run printQualifers because of TypeDecls, etc.),
186 // by pretending every reference type is a function parameter.
187 GuardValue( inFunctionType );
188 inFunctionType = true;
189 printQualifiers( refType );
190 maybeAccept( refType->base, *visitor );
191 }
192
193 namespace {
194 inline std::list< Type* > getTypes( const std::list< DeclarationWithType* > decls ) {
195 std::list< Type* > ret;
196 std::transform( decls.begin(), decls.end(), std::back_inserter( ret ),
197 std::mem_fun( &DeclarationWithType::get_type ) );
198 return ret;
199 }
200 }
201
202 void Mangler::postvisit( FunctionType * functionType ) {
203 printQualifiers( functionType );
204 mangleName << Encoding::function;
205 // turn on inFunctionType so that printQualifiers does not print most qualifiers for function parameters,
206 // since qualifiers on outermost parameter type do not differentiate function types, e.g.,
207 // void (*)(const int) and void (*)(int) are the same type, but void (*)(const int *) and void (*)(int *) are different
208 GuardValue( inFunctionType );
209 inFunctionType = true;
210 std::list< Type* > returnTypes = getTypes( functionType->returnVals );
211 if (returnTypes.empty()) mangleName << Encoding::void_t;
212 else acceptAll( returnTypes, *visitor );
213 mangleName << "_";
214 std::list< Type* > paramTypes = getTypes( functionType->parameters );
215 acceptAll( paramTypes, *visitor );
216 mangleName << "_";
217 }
218
219 void Mangler::mangleRef( ReferenceToType * refType, std::string prefix ) {
220 printQualifiers( refType );
221
222 mangleName << prefix << refType->name.length() << refType->name;
223
224 if ( mangleGenericParams ) {
225 std::list< Expression* >& params = refType->parameters;
226 if ( ! params.empty() ) {
227 mangleName << "_";
228 for ( std::list< Expression* >::const_iterator param = params.begin(); param != params.end(); ++param ) {
229 TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param );
230 assertf(paramType, "Aggregate parameters should be type expressions: %s", toCString(*param));
231 maybeAccept( paramType->type, *visitor );
232 }
233 mangleName << "_";
234 }
235 }
236 }
237
238 void Mangler::postvisit( StructInstType * aggregateUseType ) {
239 mangleRef( aggregateUseType, Encoding::struct_t );
240 }
241
242 void Mangler::postvisit( UnionInstType * aggregateUseType ) {
243 mangleRef( aggregateUseType, Encoding::union_t );
244 }
245
246 void Mangler::postvisit( EnumInstType * aggregateUseType ) {
247 mangleRef( aggregateUseType, Encoding::enum_t );
248 }
249
250 void Mangler::postvisit( TypeInstType * typeInst ) {
251 VarMapType::iterator varNum = varNums.find( typeInst->get_name() );
252 if ( varNum == varNums.end() ) {
253 mangleRef( typeInst, Encoding::type );
254 } else {
255 printQualifiers( typeInst );
256 // Note: Can't use name here, since type variable names do not actually disambiguate a function, e.g.
257 // forall(dtype T) void f(T);
258 // forall(dtype S) void f(S);
259 // are equivalent and should mangle the same way. This is accomplished by numbering the type variables when they
260 // are first found and prefixing with the appropriate encoding for the type class.
261 assertf( varNum->second.second < TypeDecl::NUMBER_OF_KINDS, "Unhandled type variable kind: %d", varNum->second.second );
262 mangleName << Encoding::typeVariables[varNum->second.second] << varNum->second.first;
263 } // if
264 }
265
266 void Mangler::postvisit( TraitInstType * inst ) {
267 printQualifiers( inst );
268 mangleName << inst->name.size() << inst->name;
269 }
270
271 void Mangler::postvisit( TupleType * tupleType ) {
272 printQualifiers( tupleType );
273 mangleName << Encoding::tuple << tupleType->types.size();
274 acceptAll( tupleType->types, *visitor );
275 }
276
277 void Mangler::postvisit( VarArgsType * varArgsType ) {
278 printQualifiers( varArgsType );
279 static const std::string vargs = "__builtin_va_list";
280 mangleName << Encoding::type << vargs.size() << vargs;
281 }
282
283 void Mangler::postvisit( ZeroType * ) {
284 mangleName << Encoding::zero;
285 }
286
287 void Mangler::postvisit( OneType * ) {
288 mangleName << Encoding::one;
289 }
290
291 void Mangler::postvisit( QualifiedType * qualType ) {
292 bool inqual = inQualifiedType;
293 if (! inqual ) {
294 // N marks the start of a qualified type
295 inQualifiedType = true;
296 mangleName << Encoding::qualifiedTypeStart;
297 }
298 maybeAccept( qualType->parent, *visitor );
299 maybeAccept( qualType->child, *visitor );
300 if ( ! inqual ) {
301 // E marks the end of a qualified type
302 inQualifiedType = false;
303 mangleName << Encoding::qualifiedTypeEnd;
304 }
305 }
306
307 void Mangler::postvisit( TypeDecl * decl ) {
308 // TODO: is there any case where mangling a TypeDecl makes sense? If so, this code needs to be
309 // fixed to ensure that two TypeDecls mangle to the same name when they are the same type and vice versa.
310 // Note: The current scheme may already work correctly for this case, I have not thought about this deeply
311 // and the case has not yet come up in practice. Alternatively, if not then this code can be removed
312 // aside from the assert false.
313 assertf(false, "Mangler should not visit typedecl: %s", toCString(decl));
314 assertf( decl->get_kind() < TypeDecl::NUMBER_OF_KINDS, "Unhandled type variable kind: %d", decl->get_kind() );
315 mangleName << Encoding::typeVariables[ decl->get_kind() ] << ( decl->name.length() ) << decl->name;
316 }
317
318 __attribute__((unused)) void printVarMap( const std::map< std::string, std::pair< int, int > > &varMap, std::ostream &os ) {
319 for ( std::map< std::string, std::pair< int, int > >::const_iterator i = varMap.begin(); i != varMap.end(); ++i ) {
320 os << i->first << "(" << i->second.first << "/" << i->second.second << ")" << std::endl;
321 } // for
322 }
323
324 void Mangler::printQualifiers( Type * type ) {
325 // skip if not including qualifiers
326 if ( typeMode ) return;
327 if ( ! type->get_forall().empty() ) {
328 std::list< std::string > assertionNames;
329 int dcount = 0, fcount = 0, vcount = 0, acount = 0;
330 mangleName << Encoding::forall;
331 for ( Type::ForallList::iterator i = type->forall.begin(); i != type->forall.end(); ++i ) {
332 switch ( (*i)->get_kind() ) {
333 case TypeDecl::Dtype:
334 dcount++;
335 break;
336 case TypeDecl::Ftype:
337 fcount++;
338 break;
339 case TypeDecl::Ttype:
340 vcount++;
341 break;
342 default:
343 assert( false );
344 } // switch
345 varNums[ (*i)->name ] = std::make_pair( nextVarNum, (int)(*i)->get_kind() );
346 for ( std::list< DeclarationWithType* >::iterator assert = (*i)->assertions.begin(); assert != (*i)->assertions.end(); ++assert ) {
347 PassVisitor<Mangler> sub_mangler(
348 mangleOverridable, typeMode, mangleGenericParams, nextVarNum, varNums );
349 (*assert)->accept( sub_mangler );
350 assertionNames.push_back( sub_mangler.pass.get_mangleName() );
351 acount++;
352 } // for
353 } // for
354 mangleName << dcount << "_" << fcount << "_" << vcount << "_" << acount << "_";
355 std::copy( assertionNames.begin(), assertionNames.end(), std::ostream_iterator< std::string >( mangleName, "" ) );
356 mangleName << "_";
357 } // if
358 if ( ! inFunctionType ) {
359 // these qualifiers do not distinguish the outermost type of a function parameter
360 if ( type->get_const() ) {
361 mangleName << Encoding::qualifiers.at(Type::Const);
362 } // if
363 if ( type->get_volatile() ) {
364 mangleName << Encoding::qualifiers.at(Type::Volatile);
365 } // if
366 // Removed due to restrict not affecting function compatibility in GCC
367 // if ( type->get_isRestrict() ) {
368 // mangleName << "E";
369 // } // if
370 if ( type->get_atomic() ) {
371 mangleName << Encoding::qualifiers.at(Type::Atomic);
372 } // if
373 }
374 if ( type->get_mutex() ) {
375 mangleName << Encoding::qualifiers.at(Type::Mutex);
376 } // if
377 if ( type->get_lvalue() ) {
378 // mangle based on whether the type is lvalue, so that the resolver can differentiate lvalues and rvalues
379 mangleName << Encoding::qualifiers.at(Type::Lvalue);
380 }
381
382 if ( inFunctionType ) {
383 // turn off inFunctionType so that types can be differentiated for nested qualifiers
384 GuardValue( inFunctionType );
385 inFunctionType = false;
386 }
387 }
388 } // namespace
389 } // namespace Mangler
390} // namespace SymTab
391
392namespace Mangle {
393 std::string mangle( const ast::Node * decl, Mangle::Mode mode ) {
394 #warning unimplemented
395 assert( decl && mode.val && false );
396 return "";
397 }
398} // namespace Mangle
399
400// Local Variables: //
401// tab-width: 4 //
402// mode: c++ //
403// compile-command: "make install" //
404// End: //
Note: See TracBrowser for help on using the repository browser.