source: src/SymTab/Mangler.cc@ 9519aba

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 9519aba was 1867c96, checked in by Michael Brooks <mlbrooks@…>, 6 years ago

name mangler AST conversion implemented

  • Property mode set to 100644
File size: 30.2 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Mangler.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 21:40:29 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon Sep 25 15:49:26 2017
13// Update Count : 23
14//
15#include "Mangler.h"
16
17#include <algorithm> // for copy, transform
18#include <cassert> // for assert, assertf
19#include <functional> // for const_mem_fun_t, mem_fun
20#include <iterator> // for ostream_iterator, back_insert_ite...
21#include <list> // for _List_iterator, list, _List_const...
22#include <string> // for string, char_traits, operator<<
23
24#include "CodeGen/OperatorTable.h" // for OperatorInfo, operatorLookup
25#include "Common/PassVisitor.h"
26#include "Common/SemanticError.h" // for SemanticError
27#include "Common/utility.h" // for toString
28#include "Parser/LinkageSpec.h" // for Spec, isOverridable, AutoGen, Int...
29#include "ResolvExpr/TypeEnvironment.h" // for TypeEnvironment
30#include "SynTree/Declaration.h" // for TypeDecl, DeclarationWithType
31#include "SynTree/Expression.h" // for TypeExpr, Expression, operator<<
32#include "SynTree/Type.h" // for Type, ReferenceToType, Type::Fora...
33
34#include "AST/Pass.hpp"
35
36namespace SymTab {
37 namespace Mangler {
38 namespace {
39 /// Mangles names to a unique C identifier
40 struct Mangler_old : public WithShortCircuiting, public WithVisitorRef<Mangler_old>, public WithGuards {
41 Mangler_old( bool mangleOverridable, bool typeMode, bool mangleGenericParams );
42 Mangler_old( const Mangler_old & ) = delete;
43
44 void previsit( BaseSyntaxNode * ) { visit_children = false; }
45
46 void postvisit( ObjectDecl * declaration );
47 void postvisit( FunctionDecl * declaration );
48 void postvisit( TypeDecl * declaration );
49
50 void postvisit( VoidType * voidType );
51 void postvisit( BasicType * basicType );
52 void postvisit( PointerType * pointerType );
53 void postvisit( ArrayType * arrayType );
54 void postvisit( ReferenceType * refType );
55 void postvisit( FunctionType * functionType );
56 void postvisit( StructInstType * aggregateUseType );
57 void postvisit( UnionInstType * aggregateUseType );
58 void postvisit( EnumInstType * aggregateUseType );
59 void postvisit( TypeInstType * aggregateUseType );
60 void postvisit( TraitInstType * inst );
61 void postvisit( TupleType * tupleType );
62 void postvisit( VarArgsType * varArgsType );
63 void postvisit( ZeroType * zeroType );
64 void postvisit( OneType * oneType );
65 void postvisit( QualifiedType * qualType );
66
67 std::string get_mangleName() { return mangleName.str(); }
68 private:
69 std::ostringstream mangleName; ///< Mangled name being constructed
70 typedef std::map< std::string, std::pair< int, int > > VarMapType;
71 VarMapType varNums; ///< Map of type variables to indices
72 int nextVarNum; ///< Next type variable index
73 bool isTopLevel; ///< Is the Mangler at the top level
74 bool mangleOverridable; ///< Specially mangle overridable built-in methods
75 bool typeMode; ///< Produce a unique mangled name for a type
76 bool mangleGenericParams; ///< Include generic parameters in name mangling if true
77 bool inFunctionType = false; ///< Include type qualifiers if false.
78 bool inQualifiedType = false; ///< Add start/end delimiters around qualified type
79
80 public:
81 Mangler_old( bool mangleOverridable, bool typeMode, bool mangleGenericParams,
82 int nextVarNum, const VarMapType& varNums );
83
84 private:
85 void mangleDecl( DeclarationWithType *declaration );
86 void mangleRef( ReferenceToType *refType, std::string prefix );
87
88 void printQualifiers( Type *type );
89 }; // Mangler_old
90 } // namespace
91
92 std::string mangle( BaseSyntaxNode * decl, bool mangleOverridable, bool typeMode, bool mangleGenericParams ) {
93 PassVisitor<Mangler_old> mangler( mangleOverridable, typeMode, mangleGenericParams );
94 maybeAccept( decl, mangler );
95 return mangler.pass.get_mangleName();
96 }
97
98 std::string mangleType( Type * ty ) {
99 PassVisitor<Mangler_old> mangler( false, true, true );
100 maybeAccept( ty, mangler );
101 return mangler.pass.get_mangleName();
102 }
103
104 std::string mangleConcrete( Type * ty ) {
105 PassVisitor<Mangler_old> mangler( false, false, false );
106 maybeAccept( ty, mangler );
107 return mangler.pass.get_mangleName();
108 }
109
110 namespace {
111 Mangler_old::Mangler_old( bool mangleOverridable, bool typeMode, bool mangleGenericParams )
112 : nextVarNum( 0 ), isTopLevel( true ),
113 mangleOverridable( mangleOverridable ), typeMode( typeMode ),
114 mangleGenericParams( mangleGenericParams ) {}
115
116 Mangler_old::Mangler_old( bool mangleOverridable, bool typeMode, bool mangleGenericParams,
117 int nextVarNum, const VarMapType& varNums )
118 : varNums( varNums ), nextVarNum( nextVarNum ), isTopLevel( false ),
119 mangleOverridable( mangleOverridable ), typeMode( typeMode ),
120 mangleGenericParams( mangleGenericParams ) {}
121
122 void Mangler_old::mangleDecl( DeclarationWithType * declaration ) {
123 bool wasTopLevel = isTopLevel;
124 if ( isTopLevel ) {
125 varNums.clear();
126 nextVarNum = 0;
127 isTopLevel = false;
128 } // if
129 mangleName << Encoding::manglePrefix;
130 CodeGen::OperatorInfo opInfo;
131 if ( operatorLookup( declaration->get_name(), opInfo ) ) {
132 mangleName << opInfo.outputName.size() << opInfo.outputName;
133 } else {
134 mangleName << declaration->name.size() << declaration->name;
135 } // if
136 maybeAccept( declaration->get_type(), *visitor );
137 if ( mangleOverridable && LinkageSpec::isOverridable( declaration->get_linkage() ) ) {
138 // want to be able to override autogenerated and intrinsic routines,
139 // so they need a different name mangling
140 if ( declaration->get_linkage() == LinkageSpec::AutoGen ) {
141 mangleName << Encoding::autogen;
142 } else if ( declaration->get_linkage() == LinkageSpec::Intrinsic ) {
143 mangleName << Encoding::intrinsic;
144 } else {
145 // if we add another kind of overridable function, this has to change
146 assert( false && "unknown overrideable linkage" );
147 } // if
148 }
149 isTopLevel = wasTopLevel;
150 }
151
152 void Mangler_old::postvisit( ObjectDecl * declaration ) {
153 mangleDecl( declaration );
154 }
155
156 void Mangler_old::postvisit( FunctionDecl * declaration ) {
157 mangleDecl( declaration );
158 }
159
160 void Mangler_old::postvisit( VoidType * voidType ) {
161 printQualifiers( voidType );
162 mangleName << Encoding::void_t;
163 }
164
165 void Mangler_old::postvisit( BasicType * basicType ) {
166 printQualifiers( basicType );
167 assertf( basicType->get_kind() < BasicType::NUMBER_OF_BASIC_TYPES, "Unhandled basic type: %d", basicType->get_kind() );
168 mangleName << Encoding::basicTypes[ basicType->get_kind() ];
169 }
170
171 void Mangler_old::postvisit( PointerType * pointerType ) {
172 printQualifiers( pointerType );
173 // mangle void (*f)() and void f() to the same name to prevent overloading on functions and function pointers
174 if ( ! dynamic_cast<FunctionType *>( pointerType->base ) ) mangleName << Encoding::pointer;
175 maybeAccept( pointerType->base, *visitor );
176 }
177
178 void Mangler_old::postvisit( ArrayType * arrayType ) {
179 // TODO: encode dimension
180 printQualifiers( arrayType );
181 mangleName << Encoding::array << "0";
182 maybeAccept( arrayType->base, *visitor );
183 }
184
185 void Mangler_old::postvisit( ReferenceType * refType ) {
186 // don't print prefix (e.g. 'R') for reference types so that references and non-references do not overload.
187 // Further, do not print the qualifiers for a reference type (but do run printQualifers because of TypeDecls, etc.),
188 // by pretending every reference type is a function parameter.
189 GuardValue( inFunctionType );
190 inFunctionType = true;
191 printQualifiers( refType );
192 maybeAccept( refType->base, *visitor );
193 }
194
195 namespace {
196 inline std::list< Type* > getTypes( const std::list< DeclarationWithType* > decls ) {
197 std::list< Type* > ret;
198 std::transform( decls.begin(), decls.end(), std::back_inserter( ret ),
199 std::mem_fun( &DeclarationWithType::get_type ) );
200 return ret;
201 }
202 }
203
204 void Mangler_old::postvisit( FunctionType * functionType ) {
205 printQualifiers( functionType );
206 mangleName << Encoding::function;
207 // turn on inFunctionType so that printQualifiers does not print most qualifiers for function parameters,
208 // since qualifiers on outermost parameter type do not differentiate function types, e.g.,
209 // void (*)(const int) and void (*)(int) are the same type, but void (*)(const int *) and void (*)(int *) are different
210 GuardValue( inFunctionType );
211 inFunctionType = true;
212 std::list< Type* > returnTypes = getTypes( functionType->returnVals );
213 if (returnTypes.empty()) mangleName << Encoding::void_t;
214 else acceptAll( returnTypes, *visitor );
215 mangleName << "_";
216 std::list< Type* > paramTypes = getTypes( functionType->parameters );
217 acceptAll( paramTypes, *visitor );
218 mangleName << "_";
219 }
220
221 void Mangler_old::mangleRef( ReferenceToType * refType, std::string prefix ) {
222 printQualifiers( refType );
223
224 mangleName << prefix << refType->name.length() << refType->name;
225
226 if ( mangleGenericParams ) {
227 std::list< Expression* >& params = refType->parameters;
228 if ( ! params.empty() ) {
229 mangleName << "_";
230 for ( std::list< Expression* >::const_iterator param = params.begin(); param != params.end(); ++param ) {
231 TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param );
232 assertf(paramType, "Aggregate parameters should be type expressions: %s", toCString(*param));
233 maybeAccept( paramType->type, *visitor );
234 }
235 mangleName << "_";
236 }
237 }
238 }
239
240 void Mangler_old::postvisit( StructInstType * aggregateUseType ) {
241 mangleRef( aggregateUseType, Encoding::struct_t );
242 }
243
244 void Mangler_old::postvisit( UnionInstType * aggregateUseType ) {
245 mangleRef( aggregateUseType, Encoding::union_t );
246 }
247
248 void Mangler_old::postvisit( EnumInstType * aggregateUseType ) {
249 mangleRef( aggregateUseType, Encoding::enum_t );
250 }
251
252 void Mangler_old::postvisit( TypeInstType * typeInst ) {
253 VarMapType::iterator varNum = varNums.find( typeInst->get_name() );
254 if ( varNum == varNums.end() ) {
255 mangleRef( typeInst, Encoding::type );
256 } else {
257 printQualifiers( typeInst );
258 // Note: Can't use name here, since type variable names do not actually disambiguate a function, e.g.
259 // forall(dtype T) void f(T);
260 // forall(dtype S) void f(S);
261 // are equivalent and should mangle the same way. This is accomplished by numbering the type variables when they
262 // are first found and prefixing with the appropriate encoding for the type class.
263 assertf( varNum->second.second < TypeDecl::NUMBER_OF_KINDS, "Unhandled type variable kind: %d", varNum->second.second );
264 mangleName << Encoding::typeVariables[varNum->second.second] << varNum->second.first;
265 } // if
266 }
267
268 void Mangler_old::postvisit( TraitInstType * inst ) {
269 printQualifiers( inst );
270 mangleName << inst->name.size() << inst->name;
271 }
272
273 void Mangler_old::postvisit( TupleType * tupleType ) {
274 printQualifiers( tupleType );
275 mangleName << Encoding::tuple << tupleType->types.size();
276 acceptAll( tupleType->types, *visitor );
277 }
278
279 void Mangler_old::postvisit( VarArgsType * varArgsType ) {
280 printQualifiers( varArgsType );
281 static const std::string vargs = "__builtin_va_list";
282 mangleName << Encoding::type << vargs.size() << vargs;
283 }
284
285 void Mangler_old::postvisit( ZeroType * ) {
286 mangleName << Encoding::zero;
287 }
288
289 void Mangler_old::postvisit( OneType * ) {
290 mangleName << Encoding::one;
291 }
292
293 void Mangler_old::postvisit( QualifiedType * qualType ) {
294 bool inqual = inQualifiedType;
295 if (! inqual ) {
296 // N marks the start of a qualified type
297 inQualifiedType = true;
298 mangleName << Encoding::qualifiedTypeStart;
299 }
300 maybeAccept( qualType->parent, *visitor );
301 maybeAccept( qualType->child, *visitor );
302 if ( ! inqual ) {
303 // E marks the end of a qualified type
304 inQualifiedType = false;
305 mangleName << Encoding::qualifiedTypeEnd;
306 }
307 }
308
309 void Mangler_old::postvisit( TypeDecl * decl ) {
310 // TODO: is there any case where mangling a TypeDecl makes sense? If so, this code needs to be
311 // fixed to ensure that two TypeDecls mangle to the same name when they are the same type and vice versa.
312 // Note: The current scheme may already work correctly for this case, I have not thought about this deeply
313 // and the case has not yet come up in practice. Alternatively, if not then this code can be removed
314 // aside from the assert false.
315 assertf(false, "Mangler_old should not visit typedecl: %s", toCString(decl));
316 assertf( decl->get_kind() < TypeDecl::NUMBER_OF_KINDS, "Unhandled type variable kind: %d", decl->get_kind() );
317 mangleName << Encoding::typeVariables[ decl->get_kind() ] << ( decl->name.length() ) << decl->name;
318 }
319
320 __attribute__((unused)) void printVarMap( const std::map< std::string, std::pair< int, int > > &varMap, std::ostream &os ) {
321 for ( std::map< std::string, std::pair< int, int > >::const_iterator i = varMap.begin(); i != varMap.end(); ++i ) {
322 os << i->first << "(" << i->second.first << "/" << i->second.second << ")" << std::endl;
323 } // for
324 }
325
326 void Mangler_old::printQualifiers( Type * type ) {
327 // skip if not including qualifiers
328 if ( typeMode ) return;
329 if ( ! type->get_forall().empty() ) {
330 std::list< std::string > assertionNames;
331 int dcount = 0, fcount = 0, vcount = 0, acount = 0;
332 mangleName << Encoding::forall;
333 for ( Type::ForallList::iterator i = type->forall.begin(); i != type->forall.end(); ++i ) {
334 switch ( (*i)->get_kind() ) {
335 case TypeDecl::Dtype:
336 dcount++;
337 break;
338 case TypeDecl::Ftype:
339 fcount++;
340 break;
341 case TypeDecl::Ttype:
342 vcount++;
343 break;
344 default:
345 assert( false );
346 } // switch
347 varNums[ (*i)->name ] = std::make_pair( nextVarNum, (int)(*i)->get_kind() );
348 for ( std::list< DeclarationWithType* >::iterator assert = (*i)->assertions.begin(); assert != (*i)->assertions.end(); ++assert ) {
349 PassVisitor<Mangler_old> sub_mangler(
350 mangleOverridable, typeMode, mangleGenericParams, nextVarNum, varNums );
351 (*assert)->accept( sub_mangler );
352 assertionNames.push_back( sub_mangler.pass.get_mangleName() );
353 acount++;
354 } // for
355 } // for
356 mangleName << dcount << "_" << fcount << "_" << vcount << "_" << acount << "_";
357 std::copy( assertionNames.begin(), assertionNames.end(), std::ostream_iterator< std::string >( mangleName, "" ) );
358 mangleName << "_";
359 } // if
360 if ( ! inFunctionType ) {
361 // these qualifiers do not distinguish the outermost type of a function parameter
362 if ( type->get_const() ) {
363 mangleName << Encoding::qualifiers.at(Type::Const);
364 } // if
365 if ( type->get_volatile() ) {
366 mangleName << Encoding::qualifiers.at(Type::Volatile);
367 } // if
368 // Removed due to restrict not affecting function compatibility in GCC
369 // if ( type->get_isRestrict() ) {
370 // mangleName << "E";
371 // } // if
372 if ( type->get_atomic() ) {
373 mangleName << Encoding::qualifiers.at(Type::Atomic);
374 } // if
375 }
376 if ( type->get_mutex() ) {
377 mangleName << Encoding::qualifiers.at(Type::Mutex);
378 } // if
379 if ( type->get_lvalue() ) {
380 // mangle based on whether the type is lvalue, so that the resolver can differentiate lvalues and rvalues
381 mangleName << Encoding::qualifiers.at(Type::Lvalue);
382 }
383
384 if ( inFunctionType ) {
385 // turn off inFunctionType so that types can be differentiated for nested qualifiers
386 GuardValue( inFunctionType );
387 inFunctionType = false;
388 }
389 }
390 } // namespace
391 } // namespace Mangler
392} // namespace SymTab
393
394namespace Mangle {
395 namespace {
396 /// Mangles names to a unique C identifier
397 struct Mangler_new : public ast::WithShortCircuiting, public ast::WithVisitorRef<Mangler_new>, public ast::WithGuards {
398 Mangler_new( Mangle::Mode mode );
399 Mangler_new( const Mangler_new & ) = delete;
400
401 void previsit( ast::Node * ) { visit_children = false; }
402
403 void postvisit( ast::ObjectDecl * declaration );
404 void postvisit( ast::FunctionDecl * declaration );
405 void postvisit( ast::TypeDecl * declaration );
406
407 void postvisit( ast::VoidType * voidType );
408 void postvisit( ast::BasicType * basicType );
409 void postvisit( ast::PointerType * pointerType );
410 void postvisit( ast::ArrayType * arrayType );
411 void postvisit( ast::ReferenceType * refType );
412 void postvisit( ast::FunctionType * functionType );
413 void postvisit( ast::StructInstType * aggregateUseType );
414 void postvisit( ast::UnionInstType * aggregateUseType );
415 void postvisit( ast::EnumInstType * aggregateUseType );
416 void postvisit( ast::TypeInstType * aggregateUseType );
417 void postvisit( ast::TraitInstType * inst );
418 void postvisit( ast::TupleType * tupleType );
419 void postvisit( ast::VarArgsType * varArgsType );
420 void postvisit( ast::ZeroType * zeroType );
421 void postvisit( ast::OneType * oneType );
422 void postvisit( ast::QualifiedType * qualType );
423
424 std::string get_mangleName() { return mangleName.str(); }
425 private:
426 std::ostringstream mangleName; ///< Mangled name being constructed
427 typedef std::map< std::string, std::pair< int, int > > VarMapType;
428 VarMapType varNums; ///< Map of type variables to indices
429 int nextVarNum; ///< Next type variable index
430 bool isTopLevel; ///< Is the Mangler at the top level
431 bool mangleOverridable; ///< Specially mangle overridable built-in methods
432 bool typeMode; ///< Produce a unique mangled name for a type
433 bool mangleGenericParams; ///< Include generic parameters in name mangling if true
434 bool inFunctionType = false; ///< Include type qualifiers if false.
435 bool inQualifiedType = false; ///< Add start/end delimiters around qualified type
436
437 private:
438 Mangler_new( bool mangleOverridable, bool typeMode, bool mangleGenericParams,
439 int nextVarNum, const VarMapType& varNums );
440 friend class ast::Pass<Mangler_new>;
441
442 private:
443 void mangleDecl( ast::DeclWithType *declaration );
444 void mangleRef( ast::ReferenceToType *refType, std::string prefix );
445
446 void printQualifiers( ast::Type *type );
447 }; // Mangler_new
448 } // namespace
449
450
451 std::string mangle( const ast::Node * decl, Mangle::Mode mode ) {
452 ast::Pass<Mangler_new> mangler( mode );
453 maybeAccept( decl, mangler );
454 return mangler.pass.get_mangleName();
455 }
456
457 namespace {
458 Mangler_new::Mangler_new( Mangle::Mode mode )
459 : nextVarNum( 0 ), isTopLevel( true ),
460 mangleOverridable ( ! mode.no_overrideable ),
461 typeMode ( mode.type ),
462 mangleGenericParams( ! mode.no_generic_params ) {}
463
464 Mangler_new::Mangler_new( bool mangleOverridable, bool typeMode, bool mangleGenericParams,
465 int nextVarNum, const VarMapType& varNums )
466 : varNums( varNums ), nextVarNum( nextVarNum ), isTopLevel( false ),
467 mangleOverridable( mangleOverridable ), typeMode( typeMode ),
468 mangleGenericParams( mangleGenericParams ) {}
469
470 void Mangler_new::mangleDecl( ast::DeclWithType * decl ) {
471 bool wasTopLevel = isTopLevel;
472 if ( isTopLevel ) {
473 varNums.clear();
474 nextVarNum = 0;
475 isTopLevel = false;
476 } // if
477 mangleName << Encoding::manglePrefix;
478 CodeGen::OperatorInfo opInfo;
479 if ( operatorLookup( decl->name, opInfo ) ) {
480 mangleName << opInfo.outputName.size() << opInfo.outputName;
481 } else {
482 mangleName << decl->name.size() << decl->name;
483 } // if
484 maybeAccept( decl->get_type(), *visitor );
485 if ( mangleOverridable && decl->linkage.is_overrideable ) {
486 // want to be able to override autogenerated and intrinsic routines,
487 // so they need a different name mangling
488 if ( decl->linkage == ast::Linkage::AutoGen ) {
489 mangleName << Encoding::autogen;
490 } else if ( decl->linkage == ast::Linkage::Intrinsic ) {
491 mangleName << Encoding::intrinsic;
492 } else {
493 // if we add another kind of overridable function, this has to change
494 assert( false && "unknown overrideable linkage" );
495 } // if
496 }
497 isTopLevel = wasTopLevel;
498 }
499
500 void Mangler_new::postvisit( ast::ObjectDecl * decl ) {
501 mangleDecl( decl );
502 }
503
504 void Mangler_new::postvisit( ast::FunctionDecl * decl ) {
505 mangleDecl( decl );
506 }
507
508 void Mangler_new::postvisit( ast::VoidType * voidType ) {
509 printQualifiers( voidType );
510 mangleName << Encoding::void_t;
511 }
512
513 void Mangler_new::postvisit( ast::BasicType * basicType ) {
514 printQualifiers( basicType );
515 assertf( basicType->kind < ast::BasicType::NUMBER_OF_BASIC_TYPES, "Unhandled basic type: %d", basicType->kind );
516 mangleName << Encoding::basicTypes[ basicType->kind ];
517 }
518
519 void Mangler_new::postvisit( ast::PointerType * pointerType ) {
520 printQualifiers( pointerType );
521 // mangle void (*f)() and void f() to the same name to prevent overloading on functions and function pointers
522 if ( ! pointerType->base.as<ast::FunctionType>() ) mangleName << Encoding::pointer;
523 maybe_accept( pointerType->base.get(), *visitor );
524 }
525
526 void Mangler_new::postvisit( ast::ArrayType * arrayType ) {
527 // TODO: encode dimension
528 printQualifiers( arrayType );
529 mangleName << Encoding::array << "0";
530 maybeAccept( arrayType->base.get(), *visitor );
531 }
532
533 void Mangler_new::postvisit( ast::ReferenceType * refType ) {
534 // don't print prefix (e.g. 'R') for reference types so that references and non-references do not overload.
535 // Further, do not print the qualifiers for a reference type (but do run printQualifers because of TypeDecls, etc.),
536 // by pretending every reference type is a function parameter.
537 GuardValue( inFunctionType );
538 inFunctionType = true;
539 printQualifiers( refType );
540 maybeAccept( refType->base.get(), *visitor );
541 }
542
543 namespace {
544 inline std::vector< ast::ptr< ast::Type > > getTypes( const std::vector< ast::ptr< ast::DeclWithType > > & decls ) {
545 std::vector< ast::ptr< ast::Type > > ret;
546 std::transform( decls.begin(), decls.end(), std::back_inserter( ret ),
547 std::mem_fun( &ast::DeclWithType::get_type ) );
548 return ret;
549 }
550 }
551
552 void Mangler_new::postvisit( ast::FunctionType * functionType ) {
553 printQualifiers( functionType );
554 mangleName << Encoding::function;
555 // turn on inFunctionType so that printQualifiers does not print most qualifiers for function parameters,
556 // since qualifiers on outermost parameter type do not differentiate function types, e.g.,
557 // void (*)(const int) and void (*)(int) are the same type, but void (*)(const int *) and void (*)(int *) are different
558 GuardValue( inFunctionType );
559 inFunctionType = true;
560 std::vector< ast::ptr< ast::Type > > returnTypes = getTypes( functionType->returns );
561 if (returnTypes.empty()) mangleName << Encoding::void_t;
562 else acceptAll( returnTypes, *visitor );
563 mangleName << "_";
564 std::vector< ast::ptr< ast::Type > > paramTypes = getTypes( functionType->params );
565 acceptAll( paramTypes, *visitor );
566 mangleName << "_";
567 }
568
569 void Mangler_new::mangleRef( ast::ReferenceToType * refType, std::string prefix ) {
570 printQualifiers( refType );
571
572 mangleName << prefix << refType->name.length() << refType->name;
573
574 if ( mangleGenericParams ) {
575 std::vector< ast::ptr< ast::Expr > >& params = refType->params;
576 if ( ! params.empty() ) {
577 mangleName << "_";
578 for ( std::vector< ast::ptr< ast::Expr > >::const_iterator param = params.begin(); param != params.end(); ++param ) {
579 const ast::TypeExpr *paramType = param->as< ast::TypeExpr >();
580 assertf(paramType, "Aggregate parameters should be type expressions: %s", toCString(*param));
581 maybeAccept( paramType->type.get(), *visitor );
582 }
583 mangleName << "_";
584 }
585 }
586 }
587
588 void Mangler_new::postvisit( ast::StructInstType * aggregateUseType ) {
589 mangleRef( aggregateUseType, Encoding::struct_t );
590 }
591
592 void Mangler_new::postvisit( ast::UnionInstType * aggregateUseType ) {
593 mangleRef( aggregateUseType, Encoding::union_t );
594 }
595
596 void Mangler_new::postvisit( ast::EnumInstType * aggregateUseType ) {
597 mangleRef( aggregateUseType, Encoding::enum_t );
598 }
599
600 void Mangler_new::postvisit( ast::TypeInstType * typeInst ) {
601 VarMapType::iterator varNum = varNums.find( typeInst->name );
602 if ( varNum == varNums.end() ) {
603 mangleRef( typeInst, Encoding::type );
604 } else {
605 printQualifiers( typeInst );
606 // Note: Can't use name here, since type variable names do not actually disambiguate a function, e.g.
607 // forall(dtype T) void f(T);
608 // forall(dtype S) void f(S);
609 // are equivalent and should mangle the same way. This is accomplished by numbering the type variables when they
610 // are first found and prefixing with the appropriate encoding for the type class.
611 assertf( varNum->second.second < TypeDecl::NUMBER_OF_KINDS, "Unhandled type variable kind: %d", varNum->second.second );
612 mangleName << Encoding::typeVariables[varNum->second.second] << varNum->second.first;
613 } // if
614 }
615
616 void Mangler_new::postvisit( ast::TraitInstType * inst ) {
617 printQualifiers( inst );
618 mangleName << inst->name.size() << inst->name;
619 }
620
621 void Mangler_new::postvisit( ast::TupleType * tupleType ) {
622 printQualifiers( tupleType );
623 mangleName << Encoding::tuple << tupleType->types.size();
624 acceptAll( tupleType->types, *visitor );
625 }
626
627 void Mangler_new::postvisit( ast::VarArgsType * varArgsType ) {
628 printQualifiers( varArgsType );
629 static const std::string vargs = "__builtin_va_list";
630 mangleName << Encoding::type << vargs.size() << vargs;
631 }
632
633 void Mangler_new::postvisit( ast::ZeroType * ) {
634 mangleName << Encoding::zero;
635 }
636
637 void Mangler_new::postvisit( ast::OneType * ) {
638 mangleName << Encoding::one;
639 }
640
641 void Mangler_new::postvisit( ast::QualifiedType * qualType ) {
642 bool inqual = inQualifiedType;
643 if (! inqual ) {
644 // N marks the start of a qualified type
645 inQualifiedType = true;
646 mangleName << Encoding::qualifiedTypeStart;
647 }
648 maybeAccept( qualType->parent.get(), *visitor );
649 maybeAccept( qualType->child.get(), *visitor );
650 if ( ! inqual ) {
651 // E marks the end of a qualified type
652 inQualifiedType = false;
653 mangleName << Encoding::qualifiedTypeEnd;
654 }
655 }
656
657 void Mangler_new::postvisit( ast::TypeDecl * decl ) {
658 // TODO: is there any case where mangling a TypeDecl makes sense? If so, this code needs to be
659 // fixed to ensure that two TypeDecls mangle to the same name when they are the same type and vice versa.
660 // Note: The current scheme may already work correctly for this case, I have not thought about this deeply
661 // and the case has not yet come up in practice. Alternatively, if not then this code can be removed
662 // aside from the assert false.
663 assertf(false, "Mangler_new should not visit typedecl: %s", toCString(decl));
664 assertf( decl->kind < ast::TypeVar::Kind::NUMBER_OF_KINDS, "Unhandled type variable kind: %d", decl->kind );
665 mangleName << Encoding::typeVariables[ decl->kind ] << ( decl->name.length() ) << decl->name;
666 }
667
668 __attribute__((unused)) void printVarMap( const std::map< std::string, std::pair< int, int > > &varMap, std::ostream &os ) {
669 for ( std::map< std::string, std::pair< int, int > >::const_iterator i = varMap.begin(); i != varMap.end(); ++i ) {
670 os << i->first << "(" << i->second.first << "/" << i->second.second << ")" << std::endl;
671 } // for
672 }
673
674 void Mangler_new::printQualifiers( ast::Type * type ) {
675 // skip if not including qualifiers
676 if ( typeMode ) return;
677 if ( ast::ParameterizedType * ptype = dynamic_cast< ast::ParameterizedType * >(type) ) {
678 if ( ! ptype->forall.empty() ) {
679 std::list< std::string > assertionNames;
680 int dcount = 0, fcount = 0, vcount = 0, acount = 0;
681 mangleName << Encoding::forall;
682 for ( ast::ParameterizedType::ForallList::iterator i = ptype->forall.begin(); i != ptype->forall.end(); ++i ) {
683 switch ( (*i)->kind ) {
684 case ast::TypeVar::Kind::Dtype:
685 dcount++;
686 break;
687 case ast::TypeVar::Kind::Ftype:
688 fcount++;
689 break;
690 case ast::TypeVar::Kind::Ttype:
691 vcount++;
692 break;
693 default:
694 assert( false );
695 } // switch
696 varNums[ (*i)->name ] = std::make_pair( nextVarNum, (int)(*i)->kind );
697 for ( std::vector< ast::ptr< ast::DeclWithType > >::const_iterator assert = (*i)->assertions.begin(); assert != (*i)->assertions.end(); ++assert ) {
698 ast::Pass<Mangler_new> sub_mangler(
699 mangleOverridable, typeMode, mangleGenericParams, nextVarNum, varNums );
700 (*assert)->accept( sub_mangler );
701 assertionNames.push_back( sub_mangler.pass.get_mangleName() );
702 acount++;
703 } // for
704 } // for
705 mangleName << dcount << "_" << fcount << "_" << vcount << "_" << acount << "_";
706 std::copy( assertionNames.begin(), assertionNames.end(), std::ostream_iterator< std::string >( mangleName, "" ) );
707 mangleName << "_";
708 } // if
709 } // if
710 if ( ! inFunctionType ) {
711 // these qualifiers do not distinguish the outermost type of a function parameter
712 if ( type->is_const() ) {
713 mangleName << Encoding::qualifiers.at(Type::Const);
714 } // if
715 if ( type->is_volatile() ) {
716 mangleName << Encoding::qualifiers.at(Type::Volatile);
717 } // if
718 // Removed due to restrict not affecting function compatibility in GCC
719 // if ( type->get_isRestrict() ) {
720 // mangleName << "E";
721 // } // if
722 if ( type->is_atomic() ) {
723 mangleName << Encoding::qualifiers.at(Type::Atomic);
724 } // if
725 }
726 if ( type->is_mutex() ) {
727 mangleName << Encoding::qualifiers.at(Type::Mutex);
728 } // if
729 if ( type->is_lvalue() ) {
730 // mangle based on whether the type is lvalue, so that the resolver can differentiate lvalues and rvalues
731 mangleName << Encoding::qualifiers.at(Type::Lvalue);
732 }
733
734 if ( inFunctionType ) {
735 // turn off inFunctionType so that types can be differentiated for nested qualifiers
736 GuardValue( inFunctionType );
737 inFunctionType = false;
738 }
739 }
740 } // namespace
741} // namespace Mangle
742
743// Local Variables: //
744// tab-width: 4 //
745// mode: c++ //
746// compile-command: "make install" //
747// End: //
Note: See TracBrowser for help on using the repository browser.