source: src/SymTab/Autogen.cc@ 9f10c4b8

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 9f10c4b8 was 74b007ba, checked in by Rob Schluntz <rschlunt@…>, 8 years ago

Remove unused isDynamicLayout parameter from autogen, add some more debug information

  • Property mode set to 100644
File size: 36.8 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Autogen.cc --
8//
9// Author : Rob Schluntz
10// Created On : Thu Mar 03 15:45:56 2016
11// Last Modified By : Andrew Beach
12// Last Modified On : Fri Jul 14 16:41:00 2017
13// Update Count : 62
14//
15
16#include "Autogen.h"
17
18#include <algorithm> // for count_if
19#include <cassert> // for safe_dynamic_cast, assert, assertf
20#include <iterator> // for back_insert_iterator, back_inserter
21#include <list> // for list, _List_iterator, list<>::iter...
22#include <set> // for set, _Rb_tree_const_iterator
23#include <vector> // for vector
24
25#include "AddVisit.h" // for addVisit
26#include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign
27#include "Common/ScopedMap.h" // for ScopedMap<>::const_iterator, Scope...
28#include "Common/utility.h" // for cloneAll, operator+
29#include "GenPoly/DeclMutator.h" // for DeclMutator
30#include "GenPoly/ScopedSet.h" // for ScopedSet, ScopedSet<>::iterator
31#include "SymTab/Mangler.h" // for Mangler
32#include "SynTree/Attribute.h" // For Attribute
33#include "SynTree/Mutator.h" // for maybeMutate
34#include "SynTree/Statement.h" // for CompoundStmt, ReturnStmt, ExprStmt
35#include "SynTree/Type.h" // for FunctionType, Type, TypeInstType
36#include "SynTree/Visitor.h" // for maybeAccept, Visitor, acceptAll
37
38class Attribute;
39
40namespace SymTab {
41 Type * SizeType = 0;
42 typedef ScopedMap< std::string, bool > TypeMap;
43
44 /// Data used to generate functions generically. Specifically, the name of the generated function, a function which generates the routine protoype, and a map which contains data to determine whether a function should be generated.
45 struct FuncData {
46 typedef FunctionType * (*TypeGen)( Type * );
47 FuncData( const std::string & fname, const TypeGen & genType, TypeMap & map ) : fname( fname ), genType( genType ), map( map ) {}
48 std::string fname;
49 TypeGen genType;
50 TypeMap & map;
51 };
52
53 class AutogenerateRoutines final : public Visitor {
54 template< typename Visitor >
55 friend void acceptAndAdd( std::list< Declaration * > &translationUnit, Visitor &visitor );
56 template< typename Visitor >
57 friend void addVisitStatementList( std::list< Statement* > &stmts, Visitor &visitor );
58 public:
59 std::list< Declaration * > &get_declsToAdd() { return declsToAdd; }
60
61 typedef Visitor Parent;
62 using Parent::visit;
63
64 AutogenerateRoutines();
65
66 virtual void visit( EnumDecl *enumDecl );
67 virtual void visit( StructDecl *structDecl );
68 virtual void visit( UnionDecl *structDecl );
69 virtual void visit( TypeDecl *typeDecl );
70 virtual void visit( TraitDecl *ctxDecl );
71 virtual void visit( FunctionDecl *functionDecl );
72
73 virtual void visit( FunctionType *ftype );
74 virtual void visit( PointerType *ftype );
75
76 virtual void visit( CompoundStmt *compoundStmt );
77 virtual void visit( SwitchStmt *switchStmt );
78
79 private:
80 template< typename StmtClass > void visitStatement( StmtClass *stmt );
81
82 std::list< Declaration * > declsToAdd, declsToAddAfter;
83 std::set< std::string > structsDone;
84 unsigned int functionNesting = 0; // current level of nested functions
85 /// Note: the following maps could be ScopedSets, but it should be easier to work
86 /// deleted functions in if they are maps, since the value false can be inserted
87 /// at the current scope without affecting outer scopes or requiring copies.
88 TypeMap copyable, assignable, constructable, destructable;
89 std::vector< FuncData > data;
90 };
91
92 /// generates routines for tuple types.
93 /// Doesn't really need to be a mutator, but it's easier to reuse DeclMutator than it is to use AddVisit
94 /// or anything we currently have that supports adding new declarations for visitors
95 class AutogenTupleRoutines : public GenPoly::DeclMutator {
96 public:
97 typedef GenPoly::DeclMutator Parent;
98 using Parent::mutate;
99
100 virtual DeclarationWithType * mutate( FunctionDecl *functionDecl );
101
102 virtual Type * mutate( TupleType *tupleType );
103
104 virtual CompoundStmt * mutate( CompoundStmt *compoundStmt );
105
106 private:
107 unsigned int functionNesting = 0; // current level of nested functions
108 GenPoly::ScopedSet< std::string > seenTuples;
109 };
110
111 void autogenerateRoutines( std::list< Declaration * > &translationUnit ) {
112 AutogenerateRoutines generator;
113 acceptAndAdd( translationUnit, generator );
114
115 // needs to be done separately because AutogenerateRoutines skips types that appear as function arguments, etc.
116 // AutogenTupleRoutines tupleGenerator;
117 // tupleGenerator.mutateDeclarationList( translationUnit );
118 }
119
120 bool isUnnamedBitfield( ObjectDecl * obj ) {
121 return obj != NULL && obj->get_name() == "" && obj->get_bitfieldWidth() != NULL;
122 }
123
124 /// inserts a forward declaration for functionDecl into declsToAdd
125 void addForwardDecl( FunctionDecl * functionDecl, std::list< Declaration * > & declsToAdd ) {
126 FunctionDecl * decl = functionDecl->clone();
127 delete decl->get_statements();
128 decl->set_statements( NULL );
129 declsToAdd.push_back( decl );
130 decl->fixUniqueId();
131 }
132
133 /// given type T, generate type of default ctor/dtor, i.e. function type void (*) (T *)
134 FunctionType * genDefaultType( Type * paramType ) {
135 FunctionType *ftype = new FunctionType( Type::Qualifiers(), false );
136 ObjectDecl *dstParam = new ObjectDecl( "_dst", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new ReferenceType( Type::Qualifiers(), paramType->clone() ), nullptr );
137 ftype->get_parameters().push_back( dstParam );
138
139 return ftype;
140 }
141
142 /// given type T, generate type of copy ctor, i.e. function type void (*) (T *, T)
143 FunctionType * genCopyType( Type * paramType ) {
144 FunctionType *ftype = genDefaultType( paramType );
145 ObjectDecl *srcParam = new ObjectDecl( "_src", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, paramType->clone(), nullptr );
146 ftype->get_parameters().push_back( srcParam );
147 return ftype;
148 }
149
150 /// given type T, generate type of assignment, i.e. function type T (*) (T *, T)
151 FunctionType * genAssignType( Type * paramType ) {
152 FunctionType *ftype = genCopyType( paramType );
153 ObjectDecl *returnVal = new ObjectDecl( "_ret", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, paramType->clone(), nullptr );
154 ftype->get_returnVals().push_back( returnVal );
155 return ftype;
156 }
157
158 /// generate a function decl from a name and type. Nesting depth determines whether
159 /// the declaration is static or not; optional paramter determines if declaration is intrinsic
160 FunctionDecl * genFunc( const std::string & fname, FunctionType * ftype, unsigned int functionNesting, bool isIntrinsic = false ) {
161 // Routines at global scope marked "static" to prevent multiple definitions in separate translation units
162 // because each unit generates copies of the default routines for each aggregate.
163// DeclarationNode::StorageClass sc = functionNesting > 0 ? DeclarationNode::NoStorageClass : DeclarationNode::Static;
164 Type::StorageClasses scs = functionNesting > 0 ? Type::StorageClasses() : Type::StorageClasses( Type::Static );
165 LinkageSpec::Spec spec = isIntrinsic ? LinkageSpec::Intrinsic : LinkageSpec::AutoGen;
166 FunctionDecl * decl = new FunctionDecl( fname, scs, spec, ftype, new CompoundStmt( noLabels ),
167 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) );
168 decl->fixUniqueId();
169 return decl;
170 }
171
172 /// inserts base type of first argument into map if pred(funcDecl) is true
173 void insert( FunctionDecl *funcDecl, TypeMap & map, FunctionDecl * (*pred)(Declaration *) ) {
174 // insert type into constructable, etc. map if appropriate
175 if ( pred( funcDecl ) ) {
176 FunctionType * ftype = funcDecl->get_functionType();
177 assert( ! ftype->get_parameters().empty() );
178 Type * t = InitTweak::getPointerBase( ftype->get_parameters().front()->get_type() );
179 assert( t );
180 map.insert( Mangler::mangleType( t ), true );
181 }
182 }
183
184 /// using map and t, determines if is constructable, etc.
185 bool lookup( const TypeMap & map, Type * t ) {
186 if ( dynamic_cast< PointerType * >( t ) ) {
187 // will need more complicated checking if we want this to work with pointer types, since currently
188 return true;
189 } else if ( ArrayType * at = dynamic_cast< ArrayType * >( t ) ) {
190 // an array's constructor, etc. is generated on the fly based on the base type's constructor, etc.
191 return lookup( map, at->get_base() );
192 }
193 TypeMap::const_iterator it = map.find( Mangler::mangleType( t ) );
194 if ( it != map.end() ) return it->second;
195 // something that does not appear in the map is by default not constructable, etc.
196 return false;
197 }
198
199 /// using map and aggr, examines each member to determine if constructor, etc. should be generated
200 template<typename AggrDecl>
201 bool shouldGenerate( const TypeMap & map, AggrDecl * aggr ) {
202 for ( Declaration * dcl : aggr->get_members() ) {
203 if ( DeclarationWithType * dwt = dynamic_cast< DeclarationWithType * >( dcl ) ) {
204 if ( ! lookup( map, dwt->get_type() ) ) return false;
205 }
206 }
207 return true;
208 }
209
210 /// data structure for abstracting the generation of special functions
211 template< typename OutputIterator >
212 struct FuncGenerator {
213 StructDecl *aggregateDecl;
214 StructInstType *refType;
215 unsigned int functionNesting;
216 const std::list< TypeDecl* > & typeParams;
217 OutputIterator out;
218 FuncGenerator( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, const std::list< TypeDecl* > & typeParams, OutputIterator out ) : aggregateDecl( aggregateDecl ), refType( refType ), functionNesting( functionNesting ), typeParams( typeParams ), out( out ) {}
219
220 /// generates a function (?{}, ?=?, ^?{}) based on the data argument and members. If function is generated, inserts the type into the map.
221 void gen( const FuncData & data, bool concurrent_type ) {
222 if ( ! shouldGenerate( data.map, aggregateDecl ) ) return;
223 FunctionType * ftype = data.genType( refType );
224
225 if(concurrent_type && CodeGen::isDestructor( data.fname )) {
226 ftype->get_parameters().front()->get_type()->set_mutex( true );
227 }
228
229 cloneAll( typeParams, ftype->get_forall() );
230 *out++ = genFunc( data.fname, ftype, functionNesting );
231 data.map.insert( Mangler::mangleType( refType ), true );
232 }
233 };
234
235 template< typename OutputIterator >
236 FuncGenerator<OutputIterator> makeFuncGenerator( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, const std::list< TypeDecl* > & typeParams, OutputIterator out ) {
237 return FuncGenerator<OutputIterator>( aggregateDecl, refType, functionNesting, typeParams, out );
238 }
239
240 /// generates a single enumeration assignment expression
241 ApplicationExpr * genEnumAssign( FunctionType * ftype, FunctionDecl * assignDecl ) {
242 // enum copy construct and assignment is just C-style assignment.
243 // this looks like a bad recursive call, but code gen will turn it into
244 // a C-style assignment.
245 // This happens before function pointer type conversion, so need to do it manually here
246 // NOTE: ftype is not necessarily the functionType belonging to assignDecl - ftype is the
247 // type of the function that this expression is being generated for (so that the correct
248 // parameters) are using in the variable exprs
249 assert( ftype->get_parameters().size() == 2 );
250 ObjectDecl * dstParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().front() );
251 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().back() );
252
253 VariableExpr * assignVarExpr = new VariableExpr( assignDecl );
254 Type * assignVarExprType = assignVarExpr->get_result();
255 assignVarExprType = new PointerType( Type::Qualifiers(), assignVarExprType );
256 assignVarExpr->set_result( assignVarExprType );
257 ApplicationExpr * assignExpr = new ApplicationExpr( assignVarExpr );
258 assignExpr->get_args().push_back( new VariableExpr( dstParam ) );
259 assignExpr->get_args().push_back( new VariableExpr( srcParam ) );
260 return assignExpr;
261 }
262
263 // E ?=?(E volatile*, int),
264 // ?=?(E _Atomic volatile*, int);
265 void makeEnumFunctions( EnumInstType *refType, unsigned int functionNesting, std::list< Declaration * > &declsToAdd ) {
266
267 // T ?=?(E *, E);
268 FunctionType *assignType = genAssignType( refType );
269
270 // void ?{}(E *); void ^?{}(E *);
271 FunctionType * ctorType = genDefaultType( refType->clone() );
272 FunctionType * dtorType = genDefaultType( refType->clone() );
273
274 // void ?{}(E *, E);
275 FunctionType *copyCtorType = genCopyType( refType->clone() );
276
277 // add unused attribute to parameters of default constructor and destructor
278 ctorType->get_parameters().front()->get_attributes().push_back( new Attribute( "unused" ) );
279 dtorType->get_parameters().front()->get_attributes().push_back( new Attribute( "unused" ) );
280
281 // xxx - should we also generate void ?{}(E *, int) and E ?{}(E *, E)?
282 // right now these cases work, but that might change.
283
284 // xxx - Temporary: make these functions intrinsic so they codegen as C assignment.
285 // Really they're something of a cross between instrinsic and autogen, so should
286 // probably make a new linkage type
287 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting, true );
288 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting, true );
289 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting, true );
290 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting, true );
291
292 // body is either return stmt or expr stmt
293 assignDecl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, genEnumAssign( assignType, assignDecl ) ) );
294 copyCtorDecl->get_statements()->get_kids().push_back( new ExprStmt( noLabels, genEnumAssign( copyCtorType, assignDecl ) ) );
295
296 declsToAdd.push_back( ctorDecl );
297 declsToAdd.push_back( copyCtorDecl );
298 declsToAdd.push_back( dtorDecl );
299 declsToAdd.push_back( assignDecl ); // assignment should come last since it uses copy constructor in return
300 }
301
302 /// generates a single struct member operation (constructor call, destructor call, assignment call)
303 void makeStructMemberOp( ObjectDecl * dstParam, Expression * src, DeclarationWithType * field, FunctionDecl * func, bool forward = true ) {
304 InitTweak::InitExpander srcParam( src );
305
306 // assign to destination
307 Expression *dstselect = new MemberExpr( field, new CastExpr( new VariableExpr( dstParam ), safe_dynamic_cast< ReferenceType* >( dstParam->get_type() )->get_base()->clone() ) );
308 genImplicitCall( srcParam, dstselect, func->get_name(), back_inserter( func->get_statements()->get_kids() ), field, forward );
309 }
310
311 /// generates the body of a struct function by iterating the struct members (via parameters) - generates default ctor, copy ctor, assignment, and dtor bodies, but NOT field ctor bodies
312 template<typename Iterator>
313 void makeStructFunctionBody( Iterator member, Iterator end, FunctionDecl * func, bool forward = true ) {
314 for ( ; member != end; ++member ) {
315 if ( DeclarationWithType *field = dynamic_cast< DeclarationWithType * >( *member ) ) { // otherwise some form of type declaration, e.g. Aggregate
316 // query the type qualifiers of this field and skip assigning it if it is marked const.
317 // If it is an array type, we need to strip off the array layers to find its qualifiers.
318 Type * type = field->get_type();
319 while ( ArrayType * at = dynamic_cast< ArrayType * >( type ) ) {
320 type = at->get_base();
321 }
322
323 if ( type->get_const() && func->get_name() == "?=?" ) {
324 // don't assign const members, but do construct/destruct
325 continue;
326 }
327
328 if ( field->get_name() == "" ) {
329 // don't assign to anonymous members
330 // xxx - this is a temporary fix. Anonymous members tie into
331 // our inheritance model. I think the correct way to handle this is to
332 // cast the structure to the type of the member and let the resolver
333 // figure out whether it's valid and have a pass afterwards that fixes
334 // the assignment to use pointer arithmetic with the offset of the
335 // member, much like how generic type members are handled.
336 continue;
337 }
338
339 assert( ! func->get_functionType()->get_parameters().empty() );
340 ObjectDecl * dstParam = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_parameters().front() );
341 ObjectDecl * srcParam = NULL;
342 if ( func->get_functionType()->get_parameters().size() == 2 ) {
343 srcParam = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_parameters().back() );
344 }
345 // srcParam may be NULL, in which case we have default ctor/dtor
346 assert( dstParam );
347
348 Expression *srcselect = srcParam ? new MemberExpr( field, new VariableExpr( srcParam ) ) : NULL;
349 makeStructMemberOp( dstParam, srcselect, field, func, forward );
350 } // if
351 } // for
352 } // makeStructFunctionBody
353
354 /// generate the body of a constructor which takes parameters that match fields, e.g.
355 /// void ?{}(A *, int) and void?{}(A *, int, int) for a struct A which has two int fields.
356 template<typename Iterator>
357 void makeStructFieldCtorBody( Iterator member, Iterator end, FunctionDecl * func ) {
358 FunctionType * ftype = func->get_functionType();
359 std::list<DeclarationWithType*> & params = ftype->get_parameters();
360 assert( params.size() >= 2 ); // should not call this function for default ctor, etc.
361
362 // skip 'this' parameter
363 ObjectDecl * dstParam = dynamic_cast<ObjectDecl*>( params.front() );
364 assert( dstParam );
365 std::list<DeclarationWithType*>::iterator parameter = params.begin()+1;
366 for ( ; member != end; ++member ) {
367 if ( DeclarationWithType * field = dynamic_cast<DeclarationWithType*>( *member ) ) {
368 if ( isUnnamedBitfield( dynamic_cast< ObjectDecl * > ( field ) ) ) {
369 // don't make a function whose parameter is an unnamed bitfield
370 continue;
371 } else if ( field->get_name() == "" ) {
372 // don't assign to anonymous members
373 // xxx - this is a temporary fix. Anonymous members tie into
374 // our inheritance model. I think the correct way to handle this is to
375 // cast the structure to the type of the member and let the resolver
376 // figure out whether it's valid and have a pass afterwards that fixes
377 // the assignment to use pointer arithmetic with the offset of the
378 // member, much like how generic type members are handled.
379 continue;
380 } else if ( parameter != params.end() ) {
381 // matching parameter, initialize field with copy ctor
382 Expression *srcselect = new VariableExpr(*parameter);
383 makeStructMemberOp( dstParam, srcselect, field, func );
384 ++parameter;
385 } else {
386 // no matching parameter, initialize field with default ctor
387 makeStructMemberOp( dstParam, NULL, field, func );
388 }
389 }
390 }
391 }
392
393 /// generates struct constructors, destructor, and assignment functions
394 void makeStructFunctions( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, std::list< Declaration * > & declsToAdd, const std::vector< FuncData > & data ) {
395 // Builtins do not use autogeneration.
396 if ( aggregateDecl->get_linkage() == LinkageSpec::BuiltinCFA ||
397 aggregateDecl->get_linkage() == LinkageSpec::BuiltinC ) {
398 return;
399 }
400
401 // Make function polymorphic in same parameters as generic struct, if applicable
402 const std::list< TypeDecl* > & typeParams = aggregateDecl->get_parameters(); // List of type variables to be placed on the generated functions
403
404 // generate each of the functions based on the supplied FuncData objects
405 std::list< FunctionDecl * > newFuncs;
406 auto generator = makeFuncGenerator( aggregateDecl, refType, functionNesting, typeParams, back_inserter( newFuncs ) );
407 for ( const FuncData & d : data ) {
408 generator.gen( d, aggregateDecl->is_thread() || aggregateDecl->is_monitor() );
409 }
410
411 // field ctors are only generated if default constructor and copy constructor are both generated
412 unsigned numCtors = std::count_if( newFuncs.begin(), newFuncs.end(), [](FunctionDecl * dcl) { return CodeGen::isConstructor( dcl->get_name() ); } );
413
414 if ( functionNesting == 0 ) {
415 // forward declare if top-level struct, so that
416 // type is complete as soon as its body ends
417 // Note: this is necessary if we want structs which contain
418 // generic (otype) structs as members.
419 for ( FunctionDecl * dcl : newFuncs ) {
420 addForwardDecl( dcl, declsToAdd );
421 }
422 }
423
424 for ( FunctionDecl * dcl : newFuncs ) {
425 // generate appropriate calls to member ctor, assignment
426 // destructor needs to do everything in reverse, so pass "forward" based on whether the function is a destructor
427 if ( ! CodeGen::isDestructor( dcl->get_name() ) ) {
428 makeStructFunctionBody( aggregateDecl->get_members().begin(), aggregateDecl->get_members().end(), dcl );
429 } else {
430 makeStructFunctionBody( aggregateDecl->get_members().rbegin(), aggregateDecl->get_members().rend(), dcl, false );
431 }
432 if ( CodeGen::isAssignment( dcl->get_name() ) ) {
433 // assignment needs to return a value
434 FunctionType * assignType = dcl->get_functionType();
435 assert( assignType->get_parameters().size() == 2 );
436 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( assignType->get_parameters().back() );
437 dcl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, new VariableExpr( srcParam ) ) );
438 }
439 declsToAdd.push_back( dcl );
440 }
441
442 // create constructors which take each member type as a parameter.
443 // for example, for struct A { int x, y; }; generate
444 // void ?{}(A *, int) and void ?{}(A *, int, int)
445 // Field constructors are only generated if default and copy constructor
446 // are generated, since they need access to both
447 if ( numCtors == 2 ) {
448 FunctionType * memCtorType = genDefaultType( refType );
449 cloneAll( typeParams, memCtorType->get_forall() );
450 for ( std::list<Declaration *>::iterator i = aggregateDecl->get_members().begin(); i != aggregateDecl->get_members().end(); ++i ) {
451 DeclarationWithType * member = dynamic_cast<DeclarationWithType *>( *i );
452 assert( member );
453 if ( isUnnamedBitfield( dynamic_cast< ObjectDecl * > ( member ) ) ) {
454 // don't make a function whose parameter is an unnamed bitfield
455 continue;
456 } else if ( member->get_name() == "" ) {
457 // don't assign to anonymous members
458 // xxx - this is a temporary fix. Anonymous members tie into
459 // our inheritance model. I think the correct way to handle this is to
460 // cast the structure to the type of the member and let the resolver
461 // figure out whether it's valid/choose the correct unnamed member
462 continue;
463 }
464 memCtorType->get_parameters().push_back( new ObjectDecl( member->get_name(), Type::StorageClasses(), LinkageSpec::Cforall, 0, member->get_type()->clone(), 0 ) );
465 FunctionDecl * ctor = genFunc( "?{}", memCtorType->clone(), functionNesting );
466 makeStructFieldCtorBody( aggregateDecl->get_members().begin(), aggregateDecl->get_members().end(), ctor );
467 declsToAdd.push_back( ctor );
468 }
469 delete memCtorType;
470 }
471 }
472
473 /// generate a single union assignment expression (using memcpy)
474 template< typename OutputIterator >
475 void makeUnionFieldsAssignment( ObjectDecl * srcParam, ObjectDecl * dstParam, OutputIterator out ) {
476 UntypedExpr *copy = new UntypedExpr( new NameExpr( "__builtin_memcpy" ) );
477 copy->get_args().push_back( new AddressExpr( new VariableExpr( dstParam ) ) );
478 copy->get_args().push_back( new AddressExpr( new VariableExpr( srcParam ) ) );
479 copy->get_args().push_back( new SizeofExpr( srcParam->get_type()->clone() ) );
480 *out++ = new ExprStmt( noLabels, copy );
481 }
482
483 /// generates the body of a union assignment/copy constructor/field constructor
484 void makeUnionAssignBody( FunctionDecl * funcDecl ) {
485 FunctionType * ftype = funcDecl->get_functionType();
486 assert( ftype->get_parameters().size() == 2 );
487 ObjectDecl * dstParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().front() );
488 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().back() );
489
490 makeUnionFieldsAssignment( srcParam, dstParam, back_inserter( funcDecl->get_statements()->get_kids() ) );
491 if ( CodeGen::isAssignment( funcDecl->get_name() ) ) {
492 // also generate return statement in assignment
493 funcDecl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, new VariableExpr( srcParam ) ) );
494 }
495 }
496
497 /// generates union constructors, destructors, and assignment operator
498 void makeUnionFunctions( UnionDecl *aggregateDecl, UnionInstType *refType, unsigned int functionNesting, std::list< Declaration * > & declsToAdd ) {
499 // Make function polymorphic in same parameters as generic union, if applicable
500 const std::list< TypeDecl* > & typeParams = aggregateDecl->get_parameters(); // List of type variables to be placed on the generated functions
501
502 // default ctor/dtor need only first parameter
503 // void ?{}(T *); void ^?{}(T *);
504 FunctionType *ctorType = genDefaultType( refType );
505 FunctionType *dtorType = genDefaultType( refType );
506
507 // copy ctor needs both parameters
508 // void ?{}(T *, T);
509 FunctionType *copyCtorType = genCopyType( refType );
510
511 // assignment needs both and return value
512 // T ?=?(T *, T);
513 FunctionType *assignType = genAssignType( refType );
514
515 cloneAll( typeParams, ctorType->get_forall() );
516 cloneAll( typeParams, dtorType->get_forall() );
517 cloneAll( typeParams, copyCtorType->get_forall() );
518 cloneAll( typeParams, assignType->get_forall() );
519
520 // add unused attribute to parameters of default constructor and destructor
521 ctorType->get_parameters().front()->get_attributes().push_back( new Attribute( "unused" ) );
522 dtorType->get_parameters().front()->get_attributes().push_back( new Attribute( "unused" ) );
523
524 // Routines at global scope marked "static" to prevent multiple definitions is separate translation units
525 // because each unit generates copies of the default routines for each aggregate.
526 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting );
527 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting );
528 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting );
529 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting );
530
531 makeUnionAssignBody( assignDecl );
532
533 // body of assignment and copy ctor is the same
534 makeUnionAssignBody( copyCtorDecl );
535
536 // create a constructor which takes the first member type as a parameter.
537 // for example, for Union A { int x; double y; }; generate
538 // void ?{}(A *, int)
539 // This is to mimic C's behaviour which initializes the first member of the union.
540 std::list<Declaration *> memCtors;
541 for ( Declaration * member : aggregateDecl->get_members() ) {
542 if ( DeclarationWithType * field = dynamic_cast< DeclarationWithType * >( member ) ) {
543 ObjectDecl * srcParam = new ObjectDecl( "src", Type::StorageClasses(), LinkageSpec::Cforall, 0, field->get_type()->clone(), 0 );
544
545 FunctionType * memCtorType = ctorType->clone();
546 memCtorType->get_parameters().push_back( srcParam );
547 FunctionDecl * ctor = genFunc( "?{}", memCtorType, functionNesting );
548
549 makeUnionAssignBody( ctor );
550 memCtors.push_back( ctor );
551 // only generate a ctor for the first field
552 break;
553 }
554 }
555
556 declsToAdd.push_back( ctorDecl );
557 declsToAdd.push_back( copyCtorDecl );
558 declsToAdd.push_back( dtorDecl );
559 declsToAdd.push_back( assignDecl ); // assignment should come last since it uses copy constructor in return
560 declsToAdd.splice( declsToAdd.end(), memCtors );
561 }
562
563 AutogenerateRoutines::AutogenerateRoutines() {
564 // the order here determines the order that these functions are generated.
565 // assignment should come last since it uses copy constructor in return.
566 data.push_back( FuncData( "?{}", genDefaultType, constructable ) );
567 data.push_back( FuncData( "?{}", genCopyType, copyable ) );
568 data.push_back( FuncData( "^?{}", genDefaultType, destructable ) );
569 data.push_back( FuncData( "?=?", genAssignType, assignable ) );
570 }
571
572 void AutogenerateRoutines::visit( EnumDecl *enumDecl ) {
573 if ( ! enumDecl->get_members().empty() ) {
574 EnumInstType *enumInst = new EnumInstType( Type::Qualifiers(), enumDecl->get_name() );
575 // enumInst->set_baseEnum( enumDecl );
576 makeEnumFunctions( enumInst, functionNesting, declsToAddAfter );
577 }
578 }
579
580 void AutogenerateRoutines::visit( StructDecl *structDecl ) {
581 if ( structDecl->has_body() && structsDone.find( structDecl->get_name() ) == structsDone.end() ) {
582 StructInstType structInst( Type::Qualifiers(), structDecl->get_name() );
583 for ( TypeDecl * typeDecl : structDecl->get_parameters() ) {
584 // need to visit assertions so that they are added to the appropriate maps
585 acceptAll( typeDecl->get_assertions(), *this );
586 structInst.get_parameters().push_back( new TypeExpr( new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), typeDecl ) ) );
587 }
588 structInst.set_baseStruct( structDecl );
589 makeStructFunctions( structDecl, &structInst, functionNesting, declsToAddAfter, data );
590 structsDone.insert( structDecl->get_name() );
591 } // if
592 }
593
594 void AutogenerateRoutines::visit( UnionDecl *unionDecl ) {
595 if ( ! unionDecl->get_members().empty() ) {
596 UnionInstType unionInst( Type::Qualifiers(), unionDecl->get_name() );
597 unionInst.set_baseUnion( unionDecl );
598 for ( TypeDecl * typeDecl : unionDecl->get_parameters() ) {
599 unionInst.get_parameters().push_back( new TypeExpr( new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), typeDecl ) ) );
600 }
601 makeUnionFunctions( unionDecl, &unionInst, functionNesting, declsToAddAfter );
602 } // if
603 }
604
605 void AutogenerateRoutines::visit( TypeDecl *typeDecl ) {
606 TypeInstType *typeInst = new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), false );
607 typeInst->set_baseType( typeDecl );
608 ObjectDecl *src = new ObjectDecl( "_src", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, typeInst->clone(), nullptr );
609 ObjectDecl *dst = new ObjectDecl( "_dst", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new PointerType( Type::Qualifiers(), typeInst->clone() ), nullptr );
610
611 std::list< Statement * > stmts;
612 if ( typeDecl->get_base() ) {
613 // xxx - generate ctor/dtors for typedecls, e.g.
614 // otype T = int *;
615 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
616 assign->get_args().push_back( new CastExpr( new VariableExpr( dst ), new PointerType( Type::Qualifiers(), typeDecl->get_base()->clone() ) ) );
617 assign->get_args().push_back( new CastExpr( new VariableExpr( src ), typeDecl->get_base()->clone() ) );
618 stmts.push_back( new ReturnStmt( std::list< Label >(), assign ) );
619 } // if
620 FunctionType *type = new FunctionType( Type::Qualifiers(), false );
621 type->get_returnVals().push_back( new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, typeInst, 0 ) );
622 type->get_parameters().push_back( dst );
623 type->get_parameters().push_back( src );
624 FunctionDecl *func = genFunc( "?=?", type, functionNesting );
625 func->get_statements()->get_kids() = stmts;
626 declsToAddAfter.push_back( func );
627 }
628
629 void addDecls( std::list< Declaration * > &declsToAdd, std::list< Statement * > &statements, std::list< Statement * >::iterator i ) {
630 for ( std::list< Declaration * >::iterator decl = declsToAdd.begin(); decl != declsToAdd.end(); ++decl ) {
631 statements.insert( i, new DeclStmt( noLabels, *decl ) );
632 } // for
633 declsToAdd.clear();
634 }
635
636 void AutogenerateRoutines::visit( FunctionType *) {
637 // ensure that we don't add assignment ops for types defined as part of the function
638 }
639
640 void AutogenerateRoutines::visit( PointerType *) {
641 // ensure that we don't add assignment ops for types defined as part of the pointer
642 }
643
644 void AutogenerateRoutines::visit( TraitDecl *) {
645 // ensure that we don't add assignment ops for types defined as part of the trait
646 }
647
648 template< typename StmtClass >
649 inline void AutogenerateRoutines::visitStatement( StmtClass *stmt ) {
650 std::set< std::string > oldStructs = structsDone;
651 addVisit( stmt, *this );
652 structsDone = oldStructs;
653 }
654
655 void AutogenerateRoutines::visit( FunctionDecl *functionDecl ) {
656 // record the existence of this function as appropriate
657 insert( functionDecl, constructable, InitTweak::isDefaultConstructor );
658 insert( functionDecl, assignable, InitTweak::isAssignment );
659 insert( functionDecl, copyable, InitTweak::isCopyConstructor );
660 insert( functionDecl, destructable, InitTweak::isDestructor );
661
662 maybeAccept( functionDecl->get_functionType(), *this );
663 functionNesting += 1;
664 maybeAccept( functionDecl->get_statements(), *this );
665 functionNesting -= 1;
666 }
667
668 void AutogenerateRoutines::visit( CompoundStmt *compoundStmt ) {
669 constructable.beginScope();
670 assignable.beginScope();
671 copyable.beginScope();
672 destructable.beginScope();
673 visitStatement( compoundStmt );
674 constructable.endScope();
675 assignable.endScope();
676 copyable.endScope();
677 destructable.endScope();
678 }
679
680 void AutogenerateRoutines::visit( SwitchStmt *switchStmt ) {
681 visitStatement( switchStmt );
682 }
683
684 void makeTupleFunctionBody( FunctionDecl * function ) {
685 FunctionType * ftype = function->get_functionType();
686 assertf( ftype->get_parameters().size() == 1 || ftype->get_parameters().size() == 2, "too many parameters in generated tuple function" );
687
688 UntypedExpr * untyped = new UntypedExpr( new NameExpr( function->get_name() ) );
689
690 /// xxx - &* is used to make this easier for later passes to handle
691 untyped->get_args().push_back( new AddressExpr( UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) );
692 if ( ftype->get_parameters().size() == 2 ) {
693 untyped->get_args().push_back( new VariableExpr( ftype->get_parameters().back() ) );
694 }
695 function->get_statements()->get_kids().push_back( new ExprStmt( noLabels, untyped ) );
696 function->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) );
697 }
698
699 Type * AutogenTupleRoutines::mutate( TupleType * tupleType ) {
700 tupleType = safe_dynamic_cast< TupleType * >( Parent::mutate( tupleType ) );
701 std::string mangleName = SymTab::Mangler::mangleType( tupleType );
702 if ( seenTuples.find( mangleName ) != seenTuples.end() ) return tupleType;
703 seenTuples.insert( mangleName );
704
705 // T ?=?(T *, T);
706 FunctionType *assignType = genAssignType( tupleType );
707
708 // void ?{}(T *); void ^?{}(T *);
709 FunctionType *ctorType = genDefaultType( tupleType );
710 FunctionType *dtorType = genDefaultType( tupleType );
711
712 // void ?{}(T *, T);
713 FunctionType *copyCtorType = genCopyType( tupleType );
714
715 std::set< TypeDecl* > done;
716 std::list< TypeDecl * > typeParams;
717 for ( Type * t : *tupleType ) {
718 if ( TypeInstType * ty = dynamic_cast< TypeInstType * >( t ) ) {
719 if ( ! done.count( ty->get_baseType() ) ) {
720 TypeDecl * newDecl = new TypeDecl( ty->get_baseType()->get_name(), Type::StorageClasses(), nullptr, TypeDecl::Any );
721 TypeInstType * inst = new TypeInstType( Type::Qualifiers(), newDecl->get_name(), newDecl );
722 newDecl->get_assertions().push_back( new FunctionDecl( "?=?", Type::StorageClasses(), LinkageSpec::Cforall, genAssignType( inst ), nullptr,
723 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
724 newDecl->get_assertions().push_back( new FunctionDecl( "?{}", Type::StorageClasses(), LinkageSpec::Cforall, genDefaultType( inst ), nullptr,
725 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
726 newDecl->get_assertions().push_back( new FunctionDecl( "?{}", Type::StorageClasses(), LinkageSpec::Cforall, genCopyType( inst ), nullptr,
727 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
728 newDecl->get_assertions().push_back( new FunctionDecl( "^?{}", Type::StorageClasses(), LinkageSpec::Cforall, genDefaultType( inst ), nullptr,
729 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
730 typeParams.push_back( newDecl );
731 done.insert( ty->get_baseType() );
732 }
733 }
734 }
735 cloneAll( typeParams, ctorType->get_forall() );
736 cloneAll( typeParams, dtorType->get_forall() );
737 cloneAll( typeParams, copyCtorType->get_forall() );
738 cloneAll( typeParams, assignType->get_forall() );
739
740 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting );
741 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting );
742 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting );
743 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting );
744
745 makeTupleFunctionBody( assignDecl );
746 makeTupleFunctionBody( ctorDecl );
747 makeTupleFunctionBody( copyCtorDecl );
748 makeTupleFunctionBody( dtorDecl );
749
750 addDeclaration( ctorDecl );
751 addDeclaration( copyCtorDecl );
752 addDeclaration( dtorDecl );
753 addDeclaration( assignDecl ); // assignment should come last since it uses copy constructor in return
754
755 return tupleType;
756 }
757
758 DeclarationWithType * AutogenTupleRoutines::mutate( FunctionDecl *functionDecl ) {
759 functionDecl->set_functionType( maybeMutate( functionDecl->get_functionType(), *this ) );
760 functionNesting += 1;
761 functionDecl->set_statements( maybeMutate( functionDecl->get_statements(), *this ) );
762 functionNesting -= 1;
763 return functionDecl;
764 }
765
766 CompoundStmt * AutogenTupleRoutines::mutate( CompoundStmt *compoundStmt ) {
767 seenTuples.beginScope();
768 compoundStmt = safe_dynamic_cast< CompoundStmt * >( Parent::mutate( compoundStmt ) );
769 seenTuples.endScope();
770 return compoundStmt;
771 }
772} // SymTab
773
774// Local Variables: //
775// tab-width: 4 //
776// mode: c++ //
777// compile-command: "make install" //
778// End: //
Note: See TracBrowser for help on using the repository browser.