source: src/SymTab/Autogen.cc@ 6ac5223

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 6ac5223 was be9288a, checked in by Thierry Delisle <tdelisle@…>, 8 years ago

Fixed errors made by the clean-up tool

  • Property mode set to 100644
File size: 37.5 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Autogen.cc --
8//
9// Author : Rob Schluntz
10// Created On : Thu Mar 03 15:45:56 2016
11// Last Modified By : Andrew Beach
12// Last Modified On : Fri Jul 14 16:41:00 2017
13// Update Count : 62
14//
15#include "Autogen.h"
16
17#include <cstddef> // for NULL
18#include <algorithm> // for count_if
19#include <cassert> // for safe_dynamic_cast, assert, assertf
20#include <iterator> // for back_insert_iterator, back_inserter
21#include <list> // for list, _List_iterator, list<>::iter...
22#include <set> // for set, _Rb_tree_const_iterator
23#include <utility> // for pair
24#include <vector> // for vector
25
26#include "AddVisit.h" // for addVisit
27#include "Common/ScopedMap.h" // for ScopedMap
28#include "GenPoly/DeclMutator.h" // for DeclMutator
29#include "GenPoly/ScopedSet.h" // for ScopedSet
30#include "Parser/LinkageSpec.h" // for AutoGen, Intrinsic, Spec
31#include "SymTab/Mangler.h" // for mangleType
32#include "SynTree/Statement.h" // for SwitchStmt (ptr only), CompoundStmt
33#include "SynTree/Type.h" // for Type, ArrayType, Type::StorageClasses
34#include "SynTree/Visitor.h" // for Visitor
35
36namespace SymTab {
37 Type * SizeType = 0;
38 typedef ScopedMap< std::string, bool > TypeMap;
39
40 /// Data used to generate functions generically. Specifically, the name of the generated function, a function which generates the routine protoype, and a map which contains data to determine whether a function should be generated.
41 struct FuncData {
42 typedef FunctionType * (*TypeGen)( Type * );
43 FuncData( const std::string & fname, const TypeGen & genType, TypeMap & map ) : fname( fname ), genType( genType ), map( map ) {}
44 std::string fname;
45 TypeGen genType;
46 TypeMap & map;
47 };
48
49 class AutogenerateRoutines final : public Visitor {
50 template< typename Visitor >
51 friend void acceptAndAdd( std::list< Declaration * > &translationUnit, Visitor &visitor );
52 template< typename Visitor >
53 friend void addVisitStatementList( std::list< Statement* > &stmts, Visitor &visitor );
54 public:
55 std::list< Declaration * > &get_declsToAdd() { return declsToAdd; }
56
57 typedef Visitor Parent;
58 using Parent::visit;
59
60 AutogenerateRoutines();
61
62 virtual void visit( EnumDecl *enumDecl );
63 virtual void visit( StructDecl *structDecl );
64 virtual void visit( UnionDecl *structDecl );
65 virtual void visit( TypeDecl *typeDecl );
66 virtual void visit( TraitDecl *ctxDecl );
67 virtual void visit( FunctionDecl *functionDecl );
68
69 virtual void visit( FunctionType *ftype );
70 virtual void visit( PointerType *ftype );
71
72 virtual void visit( CompoundStmt *compoundStmt );
73 virtual void visit( SwitchStmt *switchStmt );
74
75 private:
76 template< typename StmtClass > void visitStatement( StmtClass *stmt );
77
78 std::list< Declaration * > declsToAdd, declsToAddAfter;
79 std::set< std::string > structsDone;
80 unsigned int functionNesting = 0; // current level of nested functions
81 /// Note: the following maps could be ScopedSets, but it should be easier to work
82 /// deleted functions in if they are maps, since the value false can be inserted
83 /// at the current scope without affecting outer scopes or requiring copies.
84 TypeMap copyable, assignable, constructable, destructable;
85 std::vector< FuncData > data;
86 };
87
88 /// generates routines for tuple types.
89 /// Doesn't really need to be a mutator, but it's easier to reuse DeclMutator than it is to use AddVisit
90 /// or anything we currently have that supports adding new declarations for visitors
91 class AutogenTupleRoutines : public GenPoly::DeclMutator {
92 public:
93 typedef GenPoly::DeclMutator Parent;
94 using Parent::mutate;
95
96 virtual DeclarationWithType * mutate( FunctionDecl *functionDecl );
97
98 virtual Type * mutate( TupleType *tupleType );
99
100 virtual CompoundStmt * mutate( CompoundStmt *compoundStmt );
101
102 private:
103 unsigned int functionNesting = 0; // current level of nested functions
104 GenPoly::ScopedSet< std::string > seenTuples;
105 };
106
107 void autogenerateRoutines( std::list< Declaration * > &translationUnit ) {
108 AutogenerateRoutines generator;
109 acceptAndAdd( translationUnit, generator );
110
111 // needs to be done separately because AutogenerateRoutines skips types that appear as function arguments, etc.
112 // AutogenTupleRoutines tupleGenerator;
113 // tupleGenerator.mutateDeclarationList( translationUnit );
114 }
115
116 bool isUnnamedBitfield( ObjectDecl * obj ) {
117 return obj != NULL && obj->get_name() == "" && obj->get_bitfieldWidth() != NULL;
118 }
119
120 /// inserts a forward declaration for functionDecl into declsToAdd
121 void addForwardDecl( FunctionDecl * functionDecl, std::list< Declaration * > & declsToAdd ) {
122 FunctionDecl * decl = functionDecl->clone();
123 delete decl->get_statements();
124 decl->set_statements( NULL );
125 declsToAdd.push_back( decl );
126 decl->fixUniqueId();
127 }
128
129 /// given type T, generate type of default ctor/dtor, i.e. function type void (*) (T *)
130 FunctionType * genDefaultType( Type * paramType ) {
131 FunctionType *ftype = new FunctionType( Type::Qualifiers(), false );
132 ObjectDecl *dstParam = new ObjectDecl( "_dst", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new PointerType( Type::Qualifiers(), paramType->clone() ), nullptr );
133 ftype->get_parameters().push_back( dstParam );
134
135 return ftype;
136 }
137
138 /// given type T, generate type of copy ctor, i.e. function type void (*) (T *, T)
139 FunctionType * genCopyType( Type * paramType ) {
140 FunctionType *ftype = genDefaultType( paramType );
141 ObjectDecl *srcParam = new ObjectDecl( "_src", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, paramType->clone(), nullptr );
142 ftype->get_parameters().push_back( srcParam );
143 return ftype;
144 }
145
146 /// given type T, generate type of assignment, i.e. function type T (*) (T *, T)
147 FunctionType * genAssignType( Type * paramType ) {
148 FunctionType *ftype = genCopyType( paramType );
149 ObjectDecl *returnVal = new ObjectDecl( "_ret", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, paramType->clone(), nullptr );
150 ftype->get_returnVals().push_back( returnVal );
151 return ftype;
152 }
153
154 /// true if the aggregate's layout is dynamic
155 template< typename AggrDecl >
156 bool hasDynamicLayout( AggrDecl * aggregateDecl ) {
157 for ( TypeDecl * param : aggregateDecl->get_parameters() ) {
158 if ( param->isComplete() ) return true;
159 }
160 return false;
161 }
162
163 /// generate a function decl from a name and type. Nesting depth determines whether
164 /// the declaration is static or not; optional paramter determines if declaration is intrinsic
165 FunctionDecl * genFunc( const std::string & fname, FunctionType * ftype, unsigned int functionNesting, bool isIntrinsic = false ) {
166 // Routines at global scope marked "static" to prevent multiple definitions in separate translation units
167 // because each unit generates copies of the default routines for each aggregate.
168// DeclarationNode::StorageClass sc = functionNesting > 0 ? DeclarationNode::NoStorageClass : DeclarationNode::Static;
169 Type::StorageClasses scs = functionNesting > 0 ? Type::StorageClasses() : Type::StorageClasses( Type::Static );
170 LinkageSpec::Spec spec = isIntrinsic ? LinkageSpec::Intrinsic : LinkageSpec::AutoGen;
171 FunctionDecl * decl = new FunctionDecl( fname, scs, spec, ftype, new CompoundStmt( noLabels ),
172 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) );
173 decl->fixUniqueId();
174 return decl;
175 }
176
177 /// inserts base type of first argument into map if pred(funcDecl) is true
178 void insert( FunctionDecl *funcDecl, TypeMap & map, FunctionDecl * (*pred)(Declaration *) ) {
179 // insert type into constructable, etc. map if appropriate
180 if ( pred( funcDecl ) ) {
181 FunctionType * ftype = funcDecl->get_functionType();
182 assert( ! ftype->get_parameters().empty() );
183 Type * t = safe_dynamic_cast< PointerType * >( ftype->get_parameters().front()->get_type() )->get_base();
184 map.insert( Mangler::mangleType( t ), true );
185 }
186 }
187
188 /// using map and t, determines if is constructable, etc.
189 bool lookup( const TypeMap & map, Type * t ) {
190 if ( dynamic_cast< PointerType * >( t ) ) {
191 // will need more complicated checking if we want this to work with pointer types, since currently
192 return true;
193 } else if ( ArrayType * at = dynamic_cast< ArrayType * >( t ) ) {
194 // an array's constructor, etc. is generated on the fly based on the base type's constructor, etc.
195 return lookup( map, at->get_base() );
196 }
197 TypeMap::const_iterator it = map.find( Mangler::mangleType( t ) );
198 if ( it != map.end() ) return it->second;
199 // something that does not appear in the map is by default not constructable, etc.
200 return false;
201 }
202
203 /// using map and aggr, examines each member to determine if constructor, etc. should be generated
204 template<typename AggrDecl>
205 bool shouldGenerate( const TypeMap & map, AggrDecl * aggr ) {
206 for ( Declaration * dcl : aggr->get_members() ) {
207 if ( DeclarationWithType * dwt = dynamic_cast< DeclarationWithType * >( dcl ) ) {
208 if ( ! lookup( map, dwt->get_type() ) ) return false;
209 }
210 }
211 return true;
212 }
213
214 /// data structure for abstracting the generation of special functions
215 template< typename OutputIterator >
216 struct FuncGenerator {
217 StructDecl *aggregateDecl;
218 StructInstType *refType;
219 unsigned int functionNesting;
220 const std::list< TypeDecl* > & typeParams;
221 OutputIterator out;
222 FuncGenerator( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, const std::list< TypeDecl* > & typeParams, OutputIterator out ) : aggregateDecl( aggregateDecl ), refType( refType ), functionNesting( functionNesting ), typeParams( typeParams ), out( out ) {}
223
224 /// generates a function (?{}, ?=?, ^?{}) based on the data argument and members. If function is generated, inserts the type into the map.
225 void gen( const FuncData & data, bool concurrent_type ) {
226 if ( ! shouldGenerate( data.map, aggregateDecl ) ) return;
227 FunctionType * ftype = data.genType( refType );
228
229 if(concurrent_type && InitTweak::isDestructor( data.fname )) {
230 ftype->get_parameters().front()->get_type()->set_mutex( true );
231 }
232
233 cloneAll( typeParams, ftype->get_forall() );
234 *out++ = genFunc( data.fname, ftype, functionNesting );
235 data.map.insert( Mangler::mangleType( refType ), true );
236 }
237 };
238
239 template< typename OutputIterator >
240 FuncGenerator<OutputIterator> makeFuncGenerator( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, const std::list< TypeDecl* > & typeParams, OutputIterator out ) {
241 return FuncGenerator<OutputIterator>( aggregateDecl, refType, functionNesting, typeParams, out );
242 }
243
244 /// generates a single enumeration assignment expression
245 ApplicationExpr * genEnumAssign( FunctionType * ftype, FunctionDecl * assignDecl ) {
246 // enum copy construct and assignment is just C-style assignment.
247 // this looks like a bad recursive call, but code gen will turn it into
248 // a C-style assignment.
249 // This happens before function pointer type conversion, so need to do it manually here
250 // NOTE: ftype is not necessarily the functionType belonging to assignDecl - ftype is the
251 // type of the function that this expression is being generated for (so that the correct
252 // parameters) are using in the variable exprs
253 assert( ftype->get_parameters().size() == 2 );
254 ObjectDecl * dstParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().front() );
255 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().back() );
256
257 VariableExpr * assignVarExpr = new VariableExpr( assignDecl );
258 Type * assignVarExprType = assignVarExpr->get_result();
259 assignVarExprType = new PointerType( Type::Qualifiers(), assignVarExprType );
260 assignVarExpr->set_result( assignVarExprType );
261 ApplicationExpr * assignExpr = new ApplicationExpr( assignVarExpr );
262 assignExpr->get_args().push_back( new VariableExpr( dstParam ) );
263 assignExpr->get_args().push_back( new VariableExpr( srcParam ) );
264 return assignExpr;
265 }
266
267 // E ?=?(E volatile*, int),
268 // ?=?(E _Atomic volatile*, int);
269 void makeEnumFunctions( EnumInstType *refType, unsigned int functionNesting, std::list< Declaration * > &declsToAdd ) {
270
271 // T ?=?(E *, E);
272 FunctionType *assignType = genAssignType( refType );
273
274 // void ?{}(E *); void ^?{}(E *);
275 FunctionType * ctorType = genDefaultType( refType->clone() );
276 FunctionType * dtorType = genDefaultType( refType->clone() );
277
278 // void ?{}(E *, E);
279 FunctionType *copyCtorType = genCopyType( refType->clone() );
280
281 // xxx - should we also generate void ?{}(E *, int) and E ?{}(E *, E)?
282 // right now these cases work, but that might change.
283
284 // xxx - Temporary: make these functions intrinsic so they codegen as C assignment.
285 // Really they're something of a cross between instrinsic and autogen, so should
286 // probably make a new linkage type
287 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting, true );
288 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting, true );
289 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting, true );
290 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting, true );
291
292 // body is either return stmt or expr stmt
293 assignDecl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, genEnumAssign( assignType, assignDecl ) ) );
294 copyCtorDecl->get_statements()->get_kids().push_back( new ExprStmt( noLabels, genEnumAssign( copyCtorType, assignDecl ) ) );
295
296 declsToAdd.push_back( ctorDecl );
297 declsToAdd.push_back( copyCtorDecl );
298 declsToAdd.push_back( dtorDecl );
299 declsToAdd.push_back( assignDecl ); // assignment should come last since it uses copy constructor in return
300 }
301
302 /// generates a single struct member operation (constructor call, destructor call, assignment call)
303 void makeStructMemberOp( ObjectDecl * dstParam, Expression * src, DeclarationWithType * field, FunctionDecl * func, bool isDynamicLayout, bool forward = true ) {
304 ObjectDecl * returnVal = NULL;
305 if ( ! func->get_functionType()->get_returnVals().empty() ) {
306 returnVal = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_returnVals().front() );
307 }
308
309 InitTweak::InitExpander srcParam( src );
310
311 // assign to destination (and return value if generic)
312 UntypedExpr *derefExpr = UntypedExpr::createDeref( new VariableExpr( dstParam ) );
313 Expression *dstselect = new MemberExpr( field, derefExpr );
314 genImplicitCall( srcParam, dstselect, func->get_name(), back_inserter( func->get_statements()->get_kids() ), field, forward );
315
316 if ( isDynamicLayout && returnVal ) {
317 // xxx - there used to be a dereference on returnVal, but this seems to have been wrong?
318 Expression *retselect = new MemberExpr( field, new VariableExpr( returnVal ) );
319 genImplicitCall( srcParam, retselect, func->get_name(), back_inserter( func->get_statements()->get_kids() ), field, forward );
320 } // if
321 }
322
323 /// generates the body of a struct function by iterating the struct members (via parameters) - generates default ctor, copy ctor, assignment, and dtor bodies, but NOT field ctor bodies
324 template<typename Iterator>
325 void makeStructFunctionBody( Iterator member, Iterator end, FunctionDecl * func, bool isDynamicLayout, bool forward = true ) {
326 for ( ; member != end; ++member ) {
327 if ( DeclarationWithType *field = dynamic_cast< DeclarationWithType * >( *member ) ) { // otherwise some form of type declaration, e.g. Aggregate
328 // query the type qualifiers of this field and skip assigning it if it is marked const.
329 // If it is an array type, we need to strip off the array layers to find its qualifiers.
330 Type * type = field->get_type();
331 while ( ArrayType * at = dynamic_cast< ArrayType * >( type ) ) {
332 type = at->get_base();
333 }
334
335 if ( type->get_const() && func->get_name() == "?=?" ) {
336 // don't assign const members, but do construct/destruct
337 continue;
338 }
339
340 if ( field->get_name() == "" ) {
341 // don't assign to anonymous members
342 // xxx - this is a temporary fix. Anonymous members tie into
343 // our inheritance model. I think the correct way to handle this is to
344 // cast the structure to the type of the member and let the resolver
345 // figure out whether it's valid and have a pass afterwards that fixes
346 // the assignment to use pointer arithmetic with the offset of the
347 // member, much like how generic type members are handled.
348 continue;
349 }
350
351 assert( ! func->get_functionType()->get_parameters().empty() );
352 ObjectDecl * dstParam = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_parameters().front() );
353 ObjectDecl * srcParam = NULL;
354 if ( func->get_functionType()->get_parameters().size() == 2 ) {
355 srcParam = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_parameters().back() );
356 }
357 // srcParam may be NULL, in which case we have default ctor/dtor
358 assert( dstParam );
359
360 Expression *srcselect = srcParam ? new MemberExpr( field, new VariableExpr( srcParam ) ) : NULL;
361 makeStructMemberOp( dstParam, srcselect, field, func, isDynamicLayout, forward );
362 } // if
363 } // for
364 } // makeStructFunctionBody
365
366 /// generate the body of a constructor which takes parameters that match fields, e.g.
367 /// void ?{}(A *, int) and void?{}(A *, int, int) for a struct A which has two int fields.
368 template<typename Iterator>
369 void makeStructFieldCtorBody( Iterator member, Iterator end, FunctionDecl * func, bool isDynamicLayout ) {
370 FunctionType * ftype = func->get_functionType();
371 std::list<DeclarationWithType*> & params = ftype->get_parameters();
372 assert( params.size() >= 2 ); // should not call this function for default ctor, etc.
373
374 // skip 'this' parameter
375 ObjectDecl * dstParam = dynamic_cast<ObjectDecl*>( params.front() );
376 assert( dstParam );
377 std::list<DeclarationWithType*>::iterator parameter = params.begin()+1;
378 for ( ; member != end; ++member ) {
379 if ( DeclarationWithType * field = dynamic_cast<DeclarationWithType*>( *member ) ) {
380 if ( isUnnamedBitfield( dynamic_cast< ObjectDecl * > ( field ) ) ) {
381 // don't make a function whose parameter is an unnamed bitfield
382 continue;
383 } else if ( field->get_name() == "" ) {
384 // don't assign to anonymous members
385 // xxx - this is a temporary fix. Anonymous members tie into
386 // our inheritance model. I think the correct way to handle this is to
387 // cast the structure to the type of the member and let the resolver
388 // figure out whether it's valid and have a pass afterwards that fixes
389 // the assignment to use pointer arithmetic with the offset of the
390 // member, much like how generic type members are handled.
391 continue;
392 } else if ( parameter != params.end() ) {
393 // matching parameter, initialize field with copy ctor
394 Expression *srcselect = new VariableExpr(*parameter);
395 makeStructMemberOp( dstParam, srcselect, field, func, isDynamicLayout );
396 ++parameter;
397 } else {
398 // no matching parameter, initialize field with default ctor
399 makeStructMemberOp( dstParam, NULL, field, func, isDynamicLayout );
400 }
401 }
402 }
403 }
404
405 /// generates struct constructors, destructor, and assignment functions
406 void makeStructFunctions( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, std::list< Declaration * > & declsToAdd, const std::vector< FuncData > & data ) {
407 // Builtins do not use autogeneration.
408 if ( aggregateDecl->get_linkage() == LinkageSpec::BuiltinCFA ||
409 aggregateDecl->get_linkage() == LinkageSpec::BuiltinC ) {
410 return;
411 }
412
413 // Make function polymorphic in same parameters as generic struct, if applicable
414 const std::list< TypeDecl* > & typeParams = aggregateDecl->get_parameters(); // List of type variables to be placed on the generated functions
415 bool isDynamicLayout = hasDynamicLayout( aggregateDecl ); // NOTE this flag is an incredibly ugly kludge; we should fix the assignment signature instead (ditto for union)
416
417 // generate each of the functions based on the supplied FuncData objects
418 std::list< FunctionDecl * > newFuncs;
419 auto generator = makeFuncGenerator( aggregateDecl, refType, functionNesting, typeParams, back_inserter( newFuncs ) );
420 for ( const FuncData & d : data ) {
421 generator.gen( d, aggregateDecl->is_thread() || aggregateDecl->is_monitor() );
422 }
423
424 // field ctors are only generated if default constructor and copy constructor are both generated
425 unsigned numCtors = std::count_if( newFuncs.begin(), newFuncs.end(), [](FunctionDecl * dcl) { return InitTweak::isConstructor( dcl->get_name() ); } );
426
427 if ( functionNesting == 0 ) {
428 // forward declare if top-level struct, so that
429 // type is complete as soon as its body ends
430 // Note: this is necessary if we want structs which contain
431 // generic (otype) structs as members.
432 for ( FunctionDecl * dcl : newFuncs ) {
433 addForwardDecl( dcl, declsToAdd );
434 }
435 }
436
437 for ( FunctionDecl * dcl : newFuncs ) {
438 // generate appropriate calls to member ctor, assignment
439 // destructor needs to do everything in reverse, so pass "forward" based on whether the function is a destructor
440 if ( ! InitTweak::isDestructor( dcl->get_name() ) ) {
441 makeStructFunctionBody( aggregateDecl->get_members().begin(), aggregateDecl->get_members().end(), dcl, isDynamicLayout );
442 } else {
443 makeStructFunctionBody( aggregateDecl->get_members().rbegin(), aggregateDecl->get_members().rend(), dcl, isDynamicLayout, false );
444 }
445 if ( InitTweak::isAssignment( dcl->get_name() ) ) {
446 // assignment needs to return a value
447 FunctionType * assignType = dcl->get_functionType();
448 assert( assignType->get_parameters().size() == 2 );
449 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( assignType->get_parameters().back() );
450 dcl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, new VariableExpr( srcParam ) ) );
451 }
452 declsToAdd.push_back( dcl );
453 }
454
455 // create constructors which take each member type as a parameter.
456 // for example, for struct A { int x, y; }; generate
457 // void ?{}(A *, int) and void ?{}(A *, int, int)
458 // Field constructors are only generated if default and copy constructor
459 // are generated, since they need access to both
460 if ( numCtors == 2 ) {
461 FunctionType * memCtorType = genDefaultType( refType );
462 cloneAll( typeParams, memCtorType->get_forall() );
463 for ( std::list<Declaration *>::iterator i = aggregateDecl->get_members().begin(); i != aggregateDecl->get_members().end(); ++i ) {
464 DeclarationWithType * member = dynamic_cast<DeclarationWithType *>( *i );
465 assert( member );
466 if ( isUnnamedBitfield( dynamic_cast< ObjectDecl * > ( member ) ) ) {
467 // don't make a function whose parameter is an unnamed bitfield
468 continue;
469 } else if ( member->get_name() == "" ) {
470 // don't assign to anonymous members
471 // xxx - this is a temporary fix. Anonymous members tie into
472 // our inheritance model. I think the correct way to handle this is to
473 // cast the structure to the type of the member and let the resolver
474 // figure out whether it's valid and have a pass afterwards that fixes
475 // the assignment to use pointer arithmetic with the offset of the
476 // member, much like how generic type members are handled.
477 continue;
478 }
479 memCtorType->get_parameters().push_back( new ObjectDecl( member->get_name(), Type::StorageClasses(), LinkageSpec::Cforall, 0, member->get_type()->clone(), 0 ) );
480 FunctionDecl * ctor = genFunc( "?{}", memCtorType->clone(), functionNesting );
481 makeStructFieldCtorBody( aggregateDecl->get_members().begin(), aggregateDecl->get_members().end(), ctor, isDynamicLayout );
482 declsToAdd.push_back( ctor );
483 }
484 delete memCtorType;
485 }
486 }
487
488 /// generate a single union assignment expression (using memcpy)
489 template< typename OutputIterator >
490 void makeUnionFieldsAssignment( ObjectDecl * srcParam, ObjectDecl * dstParam, OutputIterator out ) {
491 UntypedExpr *copy = new UntypedExpr( new NameExpr( "__builtin_memcpy" ) );
492 copy->get_args().push_back( new VariableExpr( dstParam ) );
493 copy->get_args().push_back( new AddressExpr( new VariableExpr( srcParam ) ) );
494 copy->get_args().push_back( new SizeofExpr( srcParam->get_type()->clone() ) );
495 *out++ = new ExprStmt( noLabels, copy );
496 }
497
498 /// generates the body of a union assignment/copy constructor/field constructor
499 void makeUnionAssignBody( FunctionDecl * funcDecl ) {
500 FunctionType * ftype = funcDecl->get_functionType();
501 assert( ftype->get_parameters().size() == 2 );
502 ObjectDecl * dstParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().front() );
503 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().back() );
504 ObjectDecl * returnVal = nullptr;
505 if ( ! ftype->get_returnVals().empty() ) {
506 returnVal = safe_dynamic_cast< ObjectDecl * >( ftype->get_returnVals().front() );
507 }
508
509 makeUnionFieldsAssignment( srcParam, dstParam, back_inserter( funcDecl->get_statements()->get_kids() ) );
510 if ( returnVal ) {
511 funcDecl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, new VariableExpr( srcParam ) ) );
512 }
513 }
514
515 /// generates union constructors, destructors, and assignment operator
516 void makeUnionFunctions( UnionDecl *aggregateDecl, UnionInstType *refType, unsigned int functionNesting, std::list< Declaration * > & declsToAdd ) {
517 // Make function polymorphic in same parameters as generic union, if applicable
518 const std::list< TypeDecl* > & typeParams = aggregateDecl->get_parameters(); // List of type variables to be placed on the generated functions
519
520 // default ctor/dtor need only first parameter
521 // void ?{}(T *); void ^?{}(T *);
522 FunctionType *ctorType = genDefaultType( refType );
523 FunctionType *dtorType = genDefaultType( refType );
524
525 // copy ctor needs both parameters
526 // void ?{}(T *, T);
527 FunctionType *copyCtorType = genCopyType( refType );
528
529 // assignment needs both and return value
530 // T ?=?(T *, T);
531 FunctionType *assignType = genAssignType( refType );
532
533 cloneAll( typeParams, ctorType->get_forall() );
534 cloneAll( typeParams, dtorType->get_forall() );
535 cloneAll( typeParams, copyCtorType->get_forall() );
536 cloneAll( typeParams, assignType->get_forall() );
537
538 // Routines at global scope marked "static" to prevent multiple definitions is separate translation units
539 // because each unit generates copies of the default routines for each aggregate.
540 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting );
541 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting );
542 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting );
543 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting );
544
545 makeUnionAssignBody( assignDecl );
546
547 // body of assignment and copy ctor is the same
548 makeUnionAssignBody( copyCtorDecl );
549
550 // create a constructor which takes the first member type as a parameter.
551 // for example, for Union A { int x; double y; }; generate
552 // void ?{}(A *, int)
553 // This is to mimic C's behaviour which initializes the first member of the union.
554 std::list<Declaration *> memCtors;
555 for ( Declaration * member : aggregateDecl->get_members() ) {
556 if ( DeclarationWithType * field = dynamic_cast< DeclarationWithType * >( member ) ) {
557 ObjectDecl * srcParam = new ObjectDecl( "src", Type::StorageClasses(), LinkageSpec::Cforall, 0, field->get_type()->clone(), 0 );
558
559 FunctionType * memCtorType = ctorType->clone();
560 memCtorType->get_parameters().push_back( srcParam );
561 FunctionDecl * ctor = genFunc( "?{}", memCtorType, functionNesting );
562
563 makeUnionAssignBody( ctor );
564 memCtors.push_back( ctor );
565 // only generate a ctor for the first field
566 break;
567 }
568 }
569
570 declsToAdd.push_back( ctorDecl );
571 declsToAdd.push_back( copyCtorDecl );
572 declsToAdd.push_back( dtorDecl );
573 declsToAdd.push_back( assignDecl ); // assignment should come last since it uses copy constructor in return
574 declsToAdd.splice( declsToAdd.end(), memCtors );
575 }
576
577 AutogenerateRoutines::AutogenerateRoutines() {
578 // the order here determines the order that these functions are generated.
579 // assignment should come last since it uses copy constructor in return.
580 data.push_back( FuncData( "?{}", genDefaultType, constructable ) );
581 data.push_back( FuncData( "?{}", genCopyType, copyable ) );
582 data.push_back( FuncData( "^?{}", genDefaultType, destructable ) );
583 data.push_back( FuncData( "?=?", genAssignType, assignable ) );
584 }
585
586 void AutogenerateRoutines::visit( EnumDecl *enumDecl ) {
587 if ( ! enumDecl->get_members().empty() ) {
588 EnumInstType *enumInst = new EnumInstType( Type::Qualifiers(), enumDecl->get_name() );
589 // enumInst->set_baseEnum( enumDecl );
590 makeEnumFunctions( enumInst, functionNesting, declsToAddAfter );
591 }
592 }
593
594 void AutogenerateRoutines::visit( StructDecl *structDecl ) {
595 if ( structDecl->has_body() && structsDone.find( structDecl->get_name() ) == structsDone.end() ) {
596 StructInstType structInst( Type::Qualifiers(), structDecl->get_name() );
597 for ( TypeDecl * typeDecl : structDecl->get_parameters() ) {
598 // need to visit assertions so that they are added to the appropriate maps
599 acceptAll( typeDecl->get_assertions(), *this );
600 structInst.get_parameters().push_back( new TypeExpr( new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), typeDecl ) ) );
601 }
602 structInst.set_baseStruct( structDecl );
603 makeStructFunctions( structDecl, &structInst, functionNesting, declsToAddAfter, data );
604 structsDone.insert( structDecl->get_name() );
605 } // if
606 }
607
608 void AutogenerateRoutines::visit( UnionDecl *unionDecl ) {
609 if ( ! unionDecl->get_members().empty() ) {
610 UnionInstType unionInst( Type::Qualifiers(), unionDecl->get_name() );
611 unionInst.set_baseUnion( unionDecl );
612 for ( TypeDecl * typeDecl : unionDecl->get_parameters() ) {
613 unionInst.get_parameters().push_back( new TypeExpr( new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), typeDecl ) ) );
614 }
615 makeUnionFunctions( unionDecl, &unionInst, functionNesting, declsToAddAfter );
616 } // if
617 }
618
619 void AutogenerateRoutines::visit( TypeDecl *typeDecl ) {
620 TypeInstType *typeInst = new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), false );
621 typeInst->set_baseType( typeDecl );
622 ObjectDecl *src = new ObjectDecl( "_src", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, typeInst->clone(), nullptr );
623 ObjectDecl *dst = new ObjectDecl( "_dst", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new PointerType( Type::Qualifiers(), typeInst->clone() ), nullptr );
624
625 std::list< Statement * > stmts;
626 if ( typeDecl->get_base() ) {
627 // xxx - generate ctor/dtors for typedecls, e.g.
628 // otype T = int *;
629 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
630 assign->get_args().push_back( new CastExpr( new VariableExpr( dst ), new PointerType( Type::Qualifiers(), typeDecl->get_base()->clone() ) ) );
631 assign->get_args().push_back( new CastExpr( new VariableExpr( src ), typeDecl->get_base()->clone() ) );
632 stmts.push_back( new ReturnStmt( std::list< Label >(), assign ) );
633 } // if
634 FunctionType *type = new FunctionType( Type::Qualifiers(), false );
635 type->get_returnVals().push_back( new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, typeInst, 0 ) );
636 type->get_parameters().push_back( dst );
637 type->get_parameters().push_back( src );
638 FunctionDecl *func = genFunc( "?=?", type, functionNesting );
639 func->get_statements()->get_kids() = stmts;
640 declsToAddAfter.push_back( func );
641 }
642
643 void addDecls( std::list< Declaration * > &declsToAdd, std::list< Statement * > &statements, std::list< Statement * >::iterator i ) {
644 for ( std::list< Declaration * >::iterator decl = declsToAdd.begin(); decl != declsToAdd.end(); ++decl ) {
645 statements.insert( i, new DeclStmt( noLabels, *decl ) );
646 } // for
647 declsToAdd.clear();
648 }
649
650 void AutogenerateRoutines::visit( FunctionType *) {
651 // ensure that we don't add assignment ops for types defined as part of the function
652 }
653
654 void AutogenerateRoutines::visit( PointerType *) {
655 // ensure that we don't add assignment ops for types defined as part of the pointer
656 }
657
658 void AutogenerateRoutines::visit( TraitDecl *) {
659 // ensure that we don't add assignment ops for types defined as part of the trait
660 }
661
662 template< typename StmtClass >
663 inline void AutogenerateRoutines::visitStatement( StmtClass *stmt ) {
664 std::set< std::string > oldStructs = structsDone;
665 addVisit( stmt, *this );
666 structsDone = oldStructs;
667 }
668
669 void AutogenerateRoutines::visit( FunctionDecl *functionDecl ) {
670 // record the existence of this function as appropriate
671 insert( functionDecl, constructable, InitTweak::isDefaultConstructor );
672 insert( functionDecl, assignable, InitTweak::isAssignment );
673 insert( functionDecl, copyable, InitTweak::isCopyConstructor );
674 insert( functionDecl, destructable, InitTweak::isDestructor );
675
676 maybeAccept( functionDecl->get_functionType(), *this );
677 functionNesting += 1;
678 maybeAccept( functionDecl->get_statements(), *this );
679 functionNesting -= 1;
680 }
681
682 void AutogenerateRoutines::visit( CompoundStmt *compoundStmt ) {
683 constructable.beginScope();
684 assignable.beginScope();
685 copyable.beginScope();
686 destructable.beginScope();
687 visitStatement( compoundStmt );
688 constructable.endScope();
689 assignable.endScope();
690 copyable.endScope();
691 destructable.endScope();
692 }
693
694 void AutogenerateRoutines::visit( SwitchStmt *switchStmt ) {
695 visitStatement( switchStmt );
696 }
697
698 void makeTupleFunctionBody( FunctionDecl * function ) {
699 FunctionType * ftype = function->get_functionType();
700 assertf( ftype->get_parameters().size() == 1 || ftype->get_parameters().size() == 2, "too many parameters in generated tuple function" );
701
702 UntypedExpr * untyped = new UntypedExpr( new NameExpr( function->get_name() ) );
703
704 /// xxx - &* is used to make this easier for later passes to handle
705 untyped->get_args().push_back( new AddressExpr( UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) );
706 if ( ftype->get_parameters().size() == 2 ) {
707 untyped->get_args().push_back( new VariableExpr( ftype->get_parameters().back() ) );
708 }
709 function->get_statements()->get_kids().push_back( new ExprStmt( noLabels, untyped ) );
710 function->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) );
711 }
712
713 Type * AutogenTupleRoutines::mutate( TupleType * tupleType ) {
714 tupleType = safe_dynamic_cast< TupleType * >( Parent::mutate( tupleType ) );
715 std::string mangleName = SymTab::Mangler::mangleType( tupleType );
716 if ( seenTuples.find( mangleName ) != seenTuples.end() ) return tupleType;
717 seenTuples.insert( mangleName );
718
719 // T ?=?(T *, T);
720 FunctionType *assignType = genAssignType( tupleType );
721
722 // void ?{}(T *); void ^?{}(T *);
723 FunctionType *ctorType = genDefaultType( tupleType );
724 FunctionType *dtorType = genDefaultType( tupleType );
725
726 // void ?{}(T *, T);
727 FunctionType *copyCtorType = genCopyType( tupleType );
728
729 std::set< TypeDecl* > done;
730 std::list< TypeDecl * > typeParams;
731 for ( Type * t : *tupleType ) {
732 if ( TypeInstType * ty = dynamic_cast< TypeInstType * >( t ) ) {
733 if ( ! done.count( ty->get_baseType() ) ) {
734 TypeDecl * newDecl = new TypeDecl( ty->get_baseType()->get_name(), Type::StorageClasses(), nullptr, TypeDecl::Any );
735 TypeInstType * inst = new TypeInstType( Type::Qualifiers(), newDecl->get_name(), newDecl );
736 newDecl->get_assertions().push_back( new FunctionDecl( "?=?", Type::StorageClasses(), LinkageSpec::Cforall, genAssignType( inst ), nullptr,
737 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
738 newDecl->get_assertions().push_back( new FunctionDecl( "?{}", Type::StorageClasses(), LinkageSpec::Cforall, genDefaultType( inst ), nullptr,
739 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
740 newDecl->get_assertions().push_back( new FunctionDecl( "?{}", Type::StorageClasses(), LinkageSpec::Cforall, genCopyType( inst ), nullptr,
741 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
742 newDecl->get_assertions().push_back( new FunctionDecl( "^?{}", Type::StorageClasses(), LinkageSpec::Cforall, genDefaultType( inst ), nullptr,
743 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
744 typeParams.push_back( newDecl );
745 done.insert( ty->get_baseType() );
746 }
747 }
748 }
749 cloneAll( typeParams, ctorType->get_forall() );
750 cloneAll( typeParams, dtorType->get_forall() );
751 cloneAll( typeParams, copyCtorType->get_forall() );
752 cloneAll( typeParams, assignType->get_forall() );
753
754 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting );
755 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting );
756 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting );
757 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting );
758
759 makeTupleFunctionBody( assignDecl );
760 makeTupleFunctionBody( ctorDecl );
761 makeTupleFunctionBody( copyCtorDecl );
762 makeTupleFunctionBody( dtorDecl );
763
764 addDeclaration( ctorDecl );
765 addDeclaration( copyCtorDecl );
766 addDeclaration( dtorDecl );
767 addDeclaration( assignDecl ); // assignment should come last since it uses copy constructor in return
768
769 return tupleType;
770 }
771
772 DeclarationWithType * AutogenTupleRoutines::mutate( FunctionDecl *functionDecl ) {
773 functionDecl->set_functionType( maybeMutate( functionDecl->get_functionType(), *this ) );
774 functionNesting += 1;
775 functionDecl->set_statements( maybeMutate( functionDecl->get_statements(), *this ) );
776 functionNesting -= 1;
777 return functionDecl;
778 }
779
780 CompoundStmt * AutogenTupleRoutines::mutate( CompoundStmt *compoundStmt ) {
781 seenTuples.beginScope();
782 compoundStmt = safe_dynamic_cast< CompoundStmt * >( Parent::mutate( compoundStmt ) );
783 seenTuples.endScope();
784 return compoundStmt;
785 }
786} // SymTab
787
788// Local Variables: //
789// tab-width: 4 //
790// mode: c++ //
791// compile-command: "make install" //
792// End: //
Note: See TracBrowser for help on using the repository browser.