source: src/SymTab/Autogen.cc@ 55a68c3

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 55a68c3 was fa4805f, checked in by Andrew Beach <ajbeach@…>, 8 years ago

The builtins.cf now includes exception handling functions.

  • Property mode set to 100644
File size: 36.8 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Autogen.cc --
8//
9// Author : Rob Schluntz
10// Created On : Thu Mar 03 15:45:56 2016
11// Last Modified By : Andrew Beach
12// Last Modified On : Wed Jun 28 15:30:00 2017
13// Update Count : 61
14//
15
16#include <list>
17#include <iterator>
18#include "SynTree/Visitor.h"
19#include "SynTree/Type.h"
20#include "SynTree/Statement.h"
21#include "SynTree/TypeSubstitution.h"
22#include "Common/utility.h"
23#include "AddVisit.h"
24#include "MakeLibCfa.h"
25#include "Autogen.h"
26#include "GenPoly/ScopedSet.h"
27#include "Common/ScopedMap.h"
28#include "SymTab/Mangler.h"
29#include "GenPoly/DeclMutator.h"
30
31namespace SymTab {
32 Type * SizeType = 0;
33 typedef ScopedMap< std::string, bool > TypeMap;
34
35 /// Data used to generate functions generically. Specifically, the name of the generated function, a function which generates the routine protoype, and a map which contains data to determine whether a function should be generated.
36 struct FuncData {
37 typedef FunctionType * (*TypeGen)( Type * );
38 FuncData( const std::string & fname, const TypeGen & genType, TypeMap & map ) : fname( fname ), genType( genType ), map( map ) {}
39 std::string fname;
40 TypeGen genType;
41 TypeMap & map;
42 };
43
44 class AutogenerateRoutines final : public Visitor {
45 template< typename Visitor >
46 friend void acceptAndAdd( std::list< Declaration * > &translationUnit, Visitor &visitor );
47 template< typename Visitor >
48 friend void addVisitStatementList( std::list< Statement* > &stmts, Visitor &visitor );
49 public:
50 std::list< Declaration * > &get_declsToAdd() { return declsToAdd; }
51
52 typedef Visitor Parent;
53 using Parent::visit;
54
55 AutogenerateRoutines();
56
57 virtual void visit( EnumDecl *enumDecl );
58 virtual void visit( StructDecl *structDecl );
59 virtual void visit( UnionDecl *structDecl );
60 virtual void visit( TypeDecl *typeDecl );
61 virtual void visit( TraitDecl *ctxDecl );
62 virtual void visit( FunctionDecl *functionDecl );
63
64 virtual void visit( FunctionType *ftype );
65 virtual void visit( PointerType *ftype );
66
67 virtual void visit( CompoundStmt *compoundStmt );
68 virtual void visit( SwitchStmt *switchStmt );
69
70 private:
71 template< typename StmtClass > void visitStatement( StmtClass *stmt );
72
73 std::list< Declaration * > declsToAdd, declsToAddAfter;
74 std::set< std::string > structsDone;
75 unsigned int functionNesting = 0; // current level of nested functions
76 /// Note: the following maps could be ScopedSets, but it should be easier to work
77 /// deleted functions in if they are maps, since the value false can be inserted
78 /// at the current scope without affecting outer scopes or requiring copies.
79 TypeMap copyable, assignable, constructable, destructable;
80 std::vector< FuncData > data;
81 };
82
83 /// generates routines for tuple types.
84 /// Doesn't really need to be a mutator, but it's easier to reuse DeclMutator than it is to use AddVisit
85 /// or anything we currently have that supports adding new declarations for visitors
86 class AutogenTupleRoutines : public GenPoly::DeclMutator {
87 public:
88 typedef GenPoly::DeclMutator Parent;
89 using Parent::mutate;
90
91 virtual DeclarationWithType * mutate( FunctionDecl *functionDecl );
92
93 virtual Type * mutate( TupleType *tupleType );
94
95 virtual CompoundStmt * mutate( CompoundStmt *compoundStmt );
96
97 private:
98 unsigned int functionNesting = 0; // current level of nested functions
99 GenPoly::ScopedSet< std::string > seenTuples;
100 };
101
102 void autogenerateRoutines( std::list< Declaration * > &translationUnit ) {
103 AutogenerateRoutines generator;
104 acceptAndAdd( translationUnit, generator );
105
106 // needs to be done separately because AutogenerateRoutines skips types that appear as function arguments, etc.
107 // AutogenTupleRoutines tupleGenerator;
108 // tupleGenerator.mutateDeclarationList( translationUnit );
109 }
110
111 bool isUnnamedBitfield( ObjectDecl * obj ) {
112 return obj != NULL && obj->get_name() == "" && obj->get_bitfieldWidth() != NULL;
113 }
114
115 /// inserts a forward declaration for functionDecl into declsToAdd
116 void addForwardDecl( FunctionDecl * functionDecl, std::list< Declaration * > & declsToAdd ) {
117 FunctionDecl * decl = functionDecl->clone();
118 delete decl->get_statements();
119 decl->set_statements( NULL );
120 declsToAdd.push_back( decl );
121 decl->fixUniqueId();
122 }
123
124 /// given type T, generate type of default ctor/dtor, i.e. function type void (*) (T *)
125 FunctionType * genDefaultType( Type * paramType ) {
126 FunctionType *ftype = new FunctionType( Type::Qualifiers(), false );
127 ObjectDecl *dstParam = new ObjectDecl( "_dst", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new PointerType( Type::Qualifiers(), paramType->clone() ), nullptr );
128 ftype->get_parameters().push_back( dstParam );
129
130 return ftype;
131 }
132
133 /// given type T, generate type of copy ctor, i.e. function type void (*) (T *, T)
134 FunctionType * genCopyType( Type * paramType ) {
135 FunctionType *ftype = genDefaultType( paramType );
136 ObjectDecl *srcParam = new ObjectDecl( "_src", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, paramType->clone(), nullptr );
137 ftype->get_parameters().push_back( srcParam );
138 return ftype;
139 }
140
141 /// given type T, generate type of assignment, i.e. function type T (*) (T *, T)
142 FunctionType * genAssignType( Type * paramType ) {
143 FunctionType *ftype = genCopyType( paramType );
144 ObjectDecl *returnVal = new ObjectDecl( "_ret", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, paramType->clone(), nullptr );
145 ftype->get_returnVals().push_back( returnVal );
146 return ftype;
147 }
148
149 /// true if the aggregate's layout is dynamic
150 template< typename AggrDecl >
151 bool hasDynamicLayout( AggrDecl * aggregateDecl ) {
152 for ( TypeDecl * param : aggregateDecl->get_parameters() ) {
153 if ( param->isComplete() ) return true;
154 }
155 return false;
156 }
157
158 /// generate a function decl from a name and type. Nesting depth determines whether
159 /// the declaration is static or not; optional paramter determines if declaration is intrinsic
160 FunctionDecl * genFunc( const std::string & fname, FunctionType * ftype, unsigned int functionNesting, bool isIntrinsic = false ) {
161 // Routines at global scope marked "static" to prevent multiple definitions in separate translation units
162 // because each unit generates copies of the default routines for each aggregate.
163// DeclarationNode::StorageClass sc = functionNesting > 0 ? DeclarationNode::NoStorageClass : DeclarationNode::Static;
164 Type::StorageClasses scs = functionNesting > 0 ? Type::StorageClasses() : Type::StorageClasses( Type::Static );
165 LinkageSpec::Spec spec = isIntrinsic ? LinkageSpec::Intrinsic : LinkageSpec::AutoGen;
166 FunctionDecl * decl = new FunctionDecl( fname, scs, spec, ftype, new CompoundStmt( noLabels ),
167 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) );
168 decl->fixUniqueId();
169 return decl;
170 }
171
172 /// inserts base type of first argument into map if pred(funcDecl) is true
173 void insert( FunctionDecl *funcDecl, TypeMap & map, FunctionDecl * (*pred)(Declaration *) ) {
174 // insert type into constructable, etc. map if appropriate
175 if ( pred( funcDecl ) ) {
176 FunctionType * ftype = funcDecl->get_functionType();
177 assert( ! ftype->get_parameters().empty() );
178 Type * t = safe_dynamic_cast< PointerType * >( ftype->get_parameters().front()->get_type() )->get_base();
179 map.insert( Mangler::mangleType( t ), true );
180 }
181 }
182
183 /// using map and t, determines if is constructable, etc.
184 bool lookup( const TypeMap & map, Type * t ) {
185 if ( dynamic_cast< PointerType * >( t ) ) {
186 // will need more complicated checking if we want this to work with pointer types, since currently
187 return true;
188 } else if ( ArrayType * at = dynamic_cast< ArrayType * >( t ) ) {
189 // an array's constructor, etc. is generated on the fly based on the base type's constructor, etc.
190 return lookup( map, at->get_base() );
191 }
192 TypeMap::const_iterator it = map.find( Mangler::mangleType( t ) );
193 if ( it != map.end() ) return it->second;
194 // something that does not appear in the map is by default not constructable, etc.
195 return false;
196 }
197
198 /// using map and aggr, examines each member to determine if constructor, etc. should be generated
199 template<typename AggrDecl>
200 bool shouldGenerate( const TypeMap & map, AggrDecl * aggr ) {
201 for ( Declaration * dcl : aggr->get_members() ) {
202 if ( DeclarationWithType * dwt = dynamic_cast< DeclarationWithType * >( dcl ) ) {
203 if ( ! lookup( map, dwt->get_type() ) ) return false;
204 }
205 }
206 return true;
207 }
208
209 /// data structure for abstracting the generation of special functions
210 template< typename OutputIterator >
211 struct FuncGenerator {
212 StructDecl *aggregateDecl;
213 StructInstType *refType;
214 unsigned int functionNesting;
215 const std::list< TypeDecl* > & typeParams;
216 OutputIterator out;
217 FuncGenerator( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, const std::list< TypeDecl* > & typeParams, OutputIterator out ) : aggregateDecl( aggregateDecl ), refType( refType ), functionNesting( functionNesting ), typeParams( typeParams ), out( out ) {}
218
219 /// generates a function (?{}, ?=?, ^?{}) based on the data argument and members. If function is generated, inserts the type into the map.
220 void gen( const FuncData & data, bool concurrent_type ) {
221 if ( ! shouldGenerate( data.map, aggregateDecl ) ) return;
222 FunctionType * ftype = data.genType( refType );
223
224 if(concurrent_type && InitTweak::isDestructor( data.fname )) {
225 ftype->get_parameters().front()->get_type()->set_mutex( true );
226 }
227
228 cloneAll( typeParams, ftype->get_forall() );
229 *out++ = genFunc( data.fname, ftype, functionNesting );
230 data.map.insert( Mangler::mangleType( refType ), true );
231 }
232 };
233
234 template< typename OutputIterator >
235 FuncGenerator<OutputIterator> makeFuncGenerator( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, const std::list< TypeDecl* > & typeParams, OutputIterator out ) {
236 return FuncGenerator<OutputIterator>( aggregateDecl, refType, functionNesting, typeParams, out );
237 }
238
239 /// generates a single enumeration assignment expression
240 ApplicationExpr * genEnumAssign( FunctionType * ftype, FunctionDecl * assignDecl ) {
241 // enum copy construct and assignment is just C-style assignment.
242 // this looks like a bad recursive call, but code gen will turn it into
243 // a C-style assignment.
244 // This happens before function pointer type conversion, so need to do it manually here
245 // NOTE: ftype is not necessarily the functionType belonging to assignDecl - ftype is the
246 // type of the function that this expression is being generated for (so that the correct
247 // parameters) are using in the variable exprs
248 assert( ftype->get_parameters().size() == 2 );
249 ObjectDecl * dstParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().front() );
250 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().back() );
251
252 VariableExpr * assignVarExpr = new VariableExpr( assignDecl );
253 Type * assignVarExprType = assignVarExpr->get_result();
254 assignVarExprType = new PointerType( Type::Qualifiers(), assignVarExprType );
255 assignVarExpr->set_result( assignVarExprType );
256 ApplicationExpr * assignExpr = new ApplicationExpr( assignVarExpr );
257 assignExpr->get_args().push_back( new VariableExpr( dstParam ) );
258 assignExpr->get_args().push_back( new VariableExpr( srcParam ) );
259 return assignExpr;
260 }
261
262 // E ?=?(E volatile*, int),
263 // ?=?(E _Atomic volatile*, int);
264 void makeEnumFunctions( EnumInstType *refType, unsigned int functionNesting, std::list< Declaration * > &declsToAdd ) {
265
266 // T ?=?(E *, E);
267 FunctionType *assignType = genAssignType( refType );
268
269 // void ?{}(E *); void ^?{}(E *);
270 FunctionType * ctorType = genDefaultType( refType->clone() );
271 FunctionType * dtorType = genDefaultType( refType->clone() );
272
273 // void ?{}(E *, E);
274 FunctionType *copyCtorType = genCopyType( refType->clone() );
275
276 // xxx - should we also generate void ?{}(E *, int) and E ?{}(E *, E)?
277 // right now these cases work, but that might change.
278
279 // xxx - Temporary: make these functions intrinsic so they codegen as C assignment.
280 // Really they're something of a cross between instrinsic and autogen, so should
281 // probably make a new linkage type
282 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting, true );
283 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting, true );
284 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting, true );
285 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting, true );
286
287 // body is either return stmt or expr stmt
288 assignDecl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, genEnumAssign( assignType, assignDecl ) ) );
289 copyCtorDecl->get_statements()->get_kids().push_back( new ExprStmt( noLabels, genEnumAssign( copyCtorType, assignDecl ) ) );
290
291 declsToAdd.push_back( ctorDecl );
292 declsToAdd.push_back( copyCtorDecl );
293 declsToAdd.push_back( dtorDecl );
294 declsToAdd.push_back( assignDecl ); // assignment should come last since it uses copy constructor in return
295 }
296
297 /// generates a single struct member operation (constructor call, destructor call, assignment call)
298 void makeStructMemberOp( ObjectDecl * dstParam, Expression * src, DeclarationWithType * field, FunctionDecl * func, bool isDynamicLayout, bool forward = true ) {
299 ObjectDecl * returnVal = NULL;
300 if ( ! func->get_functionType()->get_returnVals().empty() ) {
301 returnVal = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_returnVals().front() );
302 }
303
304 InitTweak::InitExpander srcParam( src );
305
306 // assign to destination (and return value if generic)
307 UntypedExpr *derefExpr = UntypedExpr::createDeref( new VariableExpr( dstParam ) );
308 Expression *dstselect = new MemberExpr( field, derefExpr );
309 genImplicitCall( srcParam, dstselect, func->get_name(), back_inserter( func->get_statements()->get_kids() ), field, forward );
310
311 if ( isDynamicLayout && returnVal ) {
312 // xxx - there used to be a dereference on returnVal, but this seems to have been wrong?
313 Expression *retselect = new MemberExpr( field, new VariableExpr( returnVal ) );
314 genImplicitCall( srcParam, retselect, func->get_name(), back_inserter( func->get_statements()->get_kids() ), field, forward );
315 } // if
316 }
317
318 /// generates the body of a struct function by iterating the struct members (via parameters) - generates default ctor, copy ctor, assignment, and dtor bodies, but NOT field ctor bodies
319 template<typename Iterator>
320 void makeStructFunctionBody( Iterator member, Iterator end, FunctionDecl * func, bool isDynamicLayout, bool forward = true ) {
321 for ( ; member != end; ++member ) {
322 if ( DeclarationWithType *field = dynamic_cast< DeclarationWithType * >( *member ) ) { // otherwise some form of type declaration, e.g. Aggregate
323 // query the type qualifiers of this field and skip assigning it if it is marked const.
324 // If it is an array type, we need to strip off the array layers to find its qualifiers.
325 Type * type = field->get_type();
326 while ( ArrayType * at = dynamic_cast< ArrayType * >( type ) ) {
327 type = at->get_base();
328 }
329
330 if ( type->get_const() && func->get_name() == "?=?" ) {
331 // don't assign const members, but do construct/destruct
332 continue;
333 }
334
335 if ( field->get_name() == "" ) {
336 // don't assign to anonymous members
337 // xxx - this is a temporary fix. Anonymous members tie into
338 // our inheritance model. I think the correct way to handle this is to
339 // cast the structure to the type of the member and let the resolver
340 // figure out whether it's valid and have a pass afterwards that fixes
341 // the assignment to use pointer arithmetic with the offset of the
342 // member, much like how generic type members are handled.
343 continue;
344 }
345
346 assert( ! func->get_functionType()->get_parameters().empty() );
347 ObjectDecl * dstParam = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_parameters().front() );
348 ObjectDecl * srcParam = NULL;
349 if ( func->get_functionType()->get_parameters().size() == 2 ) {
350 srcParam = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_parameters().back() );
351 }
352 // srcParam may be NULL, in which case we have default ctor/dtor
353 assert( dstParam );
354
355 Expression *srcselect = srcParam ? new MemberExpr( field, new VariableExpr( srcParam ) ) : NULL;
356 makeStructMemberOp( dstParam, srcselect, field, func, isDynamicLayout, forward );
357 } // if
358 } // for
359 } // makeStructFunctionBody
360
361 /// generate the body of a constructor which takes parameters that match fields, e.g.
362 /// void ?{}(A *, int) and void?{}(A *, int, int) for a struct A which has two int fields.
363 template<typename Iterator>
364 void makeStructFieldCtorBody( Iterator member, Iterator end, FunctionDecl * func, bool isDynamicLayout ) {
365 FunctionType * ftype = func->get_functionType();
366 std::list<DeclarationWithType*> & params = ftype->get_parameters();
367 assert( params.size() >= 2 ); // should not call this function for default ctor, etc.
368
369 // skip 'this' parameter
370 ObjectDecl * dstParam = dynamic_cast<ObjectDecl*>( params.front() );
371 assert( dstParam );
372 std::list<DeclarationWithType*>::iterator parameter = params.begin()+1;
373 for ( ; member != end; ++member ) {
374 if ( DeclarationWithType * field = dynamic_cast<DeclarationWithType*>( *member ) ) {
375 if ( isUnnamedBitfield( dynamic_cast< ObjectDecl * > ( field ) ) ) {
376 // don't make a function whose parameter is an unnamed bitfield
377 continue;
378 } else if ( field->get_name() == "" ) {
379 // don't assign to anonymous members
380 // xxx - this is a temporary fix. Anonymous members tie into
381 // our inheritance model. I think the correct way to handle this is to
382 // cast the structure to the type of the member and let the resolver
383 // figure out whether it's valid and have a pass afterwards that fixes
384 // the assignment to use pointer arithmetic with the offset of the
385 // member, much like how generic type members are handled.
386 continue;
387 } else if ( parameter != params.end() ) {
388 // matching parameter, initialize field with copy ctor
389 Expression *srcselect = new VariableExpr(*parameter);
390 makeStructMemberOp( dstParam, srcselect, field, func, isDynamicLayout );
391 ++parameter;
392 } else {
393 // no matching parameter, initialize field with default ctor
394 makeStructMemberOp( dstParam, NULL, field, func, isDynamicLayout );
395 }
396 }
397 }
398 }
399
400 /// generates struct constructors, destructor, and assignment functions
401 void makeStructFunctions( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, std::list< Declaration * > & declsToAdd, const std::vector< FuncData > & data ) {
402 // Builtins do not use autogeneration.
403 if ( aggregateDecl->get_linkage() == LinkageSpec::Builtin ||
404 aggregateDecl->get_linkage() == LinkageSpec::BuiltinC ) {
405 return;
406 }
407
408 // Make function polymorphic in same parameters as generic struct, if applicable
409 const std::list< TypeDecl* > & typeParams = aggregateDecl->get_parameters(); // List of type variables to be placed on the generated functions
410 bool isDynamicLayout = hasDynamicLayout( aggregateDecl ); // NOTE this flag is an incredibly ugly kludge; we should fix the assignment signature instead (ditto for union)
411
412 // generate each of the functions based on the supplied FuncData objects
413 std::list< FunctionDecl * > newFuncs;
414 auto generator = makeFuncGenerator( aggregateDecl, refType, functionNesting, typeParams, back_inserter( newFuncs ) );
415 for ( const FuncData & d : data ) {
416 generator.gen( d, aggregateDecl->is_thread() || aggregateDecl->is_monitor() );
417 }
418
419 // field ctors are only generated if default constructor and copy constructor are both generated
420 unsigned numCtors = std::count_if( newFuncs.begin(), newFuncs.end(), [](FunctionDecl * dcl) { return InitTweak::isConstructor( dcl->get_name() ); } );
421
422 if ( functionNesting == 0 ) {
423 // forward declare if top-level struct, so that
424 // type is complete as soon as its body ends
425 // Note: this is necessary if we want structs which contain
426 // generic (otype) structs as members.
427 for ( FunctionDecl * dcl : newFuncs ) {
428 addForwardDecl( dcl, declsToAdd );
429 }
430 }
431
432 for ( FunctionDecl * dcl : newFuncs ) {
433 // generate appropriate calls to member ctor, assignment
434 // destructor needs to do everything in reverse, so pass "forward" based on whether the function is a destructor
435 if ( ! InitTweak::isDestructor( dcl->get_name() ) ) {
436 makeStructFunctionBody( aggregateDecl->get_members().begin(), aggregateDecl->get_members().end(), dcl, isDynamicLayout );
437 } else {
438 makeStructFunctionBody( aggregateDecl->get_members().rbegin(), aggregateDecl->get_members().rend(), dcl, isDynamicLayout, false );
439 }
440 if ( InitTweak::isAssignment( dcl->get_name() ) ) {
441 // assignment needs to return a value
442 FunctionType * assignType = dcl->get_functionType();
443 assert( assignType->get_parameters().size() == 2 );
444 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( assignType->get_parameters().back() );
445 dcl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, new VariableExpr( srcParam ) ) );
446 }
447 declsToAdd.push_back( dcl );
448 }
449
450 // create constructors which take each member type as a parameter.
451 // for example, for struct A { int x, y; }; generate
452 // void ?{}(A *, int) and void ?{}(A *, int, int)
453 // Field constructors are only generated if default and copy constructor
454 // are generated, since they need access to both
455 if ( numCtors == 2 ) {
456 FunctionType * memCtorType = genDefaultType( refType );
457 cloneAll( typeParams, memCtorType->get_forall() );
458 for ( std::list<Declaration *>::iterator i = aggregateDecl->get_members().begin(); i != aggregateDecl->get_members().end(); ++i ) {
459 DeclarationWithType * member = dynamic_cast<DeclarationWithType *>( *i );
460 assert( member );
461 if ( isUnnamedBitfield( dynamic_cast< ObjectDecl * > ( member ) ) ) {
462 // don't make a function whose parameter is an unnamed bitfield
463 continue;
464 } else if ( member->get_name() == "" ) {
465 // don't assign to anonymous members
466 // xxx - this is a temporary fix. Anonymous members tie into
467 // our inheritance model. I think the correct way to handle this is to
468 // cast the structure to the type of the member and let the resolver
469 // figure out whether it's valid and have a pass afterwards that fixes
470 // the assignment to use pointer arithmetic with the offset of the
471 // member, much like how generic type members are handled.
472 continue;
473 }
474 memCtorType->get_parameters().push_back( new ObjectDecl( member->get_name(), Type::StorageClasses(), LinkageSpec::Cforall, 0, member->get_type()->clone(), 0 ) );
475 FunctionDecl * ctor = genFunc( "?{}", memCtorType->clone(), functionNesting );
476 makeStructFieldCtorBody( aggregateDecl->get_members().begin(), aggregateDecl->get_members().end(), ctor, isDynamicLayout );
477 declsToAdd.push_back( ctor );
478 }
479 delete memCtorType;
480 }
481 }
482
483 /// generate a single union assignment expression (using memcpy)
484 template< typename OutputIterator >
485 void makeUnionFieldsAssignment( ObjectDecl * srcParam, ObjectDecl * dstParam, OutputIterator out ) {
486 UntypedExpr *copy = new UntypedExpr( new NameExpr( "__builtin_memcpy" ) );
487 copy->get_args().push_back( new VariableExpr( dstParam ) );
488 copy->get_args().push_back( new AddressExpr( new VariableExpr( srcParam ) ) );
489 copy->get_args().push_back( new SizeofExpr( srcParam->get_type()->clone() ) );
490 *out++ = new ExprStmt( noLabels, copy );
491 }
492
493 /// generates the body of a union assignment/copy constructor/field constructor
494 void makeUnionAssignBody( FunctionDecl * funcDecl ) {
495 FunctionType * ftype = funcDecl->get_functionType();
496 assert( ftype->get_parameters().size() == 2 );
497 ObjectDecl * dstParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().front() );
498 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().back() );
499 ObjectDecl * returnVal = nullptr;
500 if ( ! ftype->get_returnVals().empty() ) {
501 returnVal = safe_dynamic_cast< ObjectDecl * >( ftype->get_returnVals().front() );
502 }
503
504 makeUnionFieldsAssignment( srcParam, dstParam, back_inserter( funcDecl->get_statements()->get_kids() ) );
505 if ( returnVal ) {
506 funcDecl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, new VariableExpr( srcParam ) ) );
507 }
508 }
509
510 /// generates union constructors, destructors, and assignment operator
511 void makeUnionFunctions( UnionDecl *aggregateDecl, UnionInstType *refType, unsigned int functionNesting, std::list< Declaration * > & declsToAdd ) {
512 // Make function polymorphic in same parameters as generic union, if applicable
513 const std::list< TypeDecl* > & typeParams = aggregateDecl->get_parameters(); // List of type variables to be placed on the generated functions
514
515 // default ctor/dtor need only first parameter
516 // void ?{}(T *); void ^?{}(T *);
517 FunctionType *ctorType = genDefaultType( refType );
518 FunctionType *dtorType = genDefaultType( refType );
519
520 // copy ctor needs both parameters
521 // void ?{}(T *, T);
522 FunctionType *copyCtorType = genCopyType( refType );
523
524 // assignment needs both and return value
525 // T ?=?(T *, T);
526 FunctionType *assignType = genAssignType( refType );
527
528 cloneAll( typeParams, ctorType->get_forall() );
529 cloneAll( typeParams, dtorType->get_forall() );
530 cloneAll( typeParams, copyCtorType->get_forall() );
531 cloneAll( typeParams, assignType->get_forall() );
532
533 // Routines at global scope marked "static" to prevent multiple definitions is separate translation units
534 // because each unit generates copies of the default routines for each aggregate.
535 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting );
536 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting );
537 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting );
538 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting );
539
540 makeUnionAssignBody( assignDecl );
541
542 // body of assignment and copy ctor is the same
543 makeUnionAssignBody( copyCtorDecl );
544
545 // create a constructor which takes the first member type as a parameter.
546 // for example, for Union A { int x; double y; }; generate
547 // void ?{}(A *, int)
548 // This is to mimic C's behaviour which initializes the first member of the union.
549 std::list<Declaration *> memCtors;
550 for ( Declaration * member : aggregateDecl->get_members() ) {
551 if ( DeclarationWithType * field = dynamic_cast< DeclarationWithType * >( member ) ) {
552 ObjectDecl * srcParam = new ObjectDecl( "src", Type::StorageClasses(), LinkageSpec::Cforall, 0, field->get_type()->clone(), 0 );
553
554 FunctionType * memCtorType = ctorType->clone();
555 memCtorType->get_parameters().push_back( srcParam );
556 FunctionDecl * ctor = genFunc( "?{}", memCtorType, functionNesting );
557
558 makeUnionAssignBody( ctor );
559 memCtors.push_back( ctor );
560 // only generate a ctor for the first field
561 break;
562 }
563 }
564
565 declsToAdd.push_back( ctorDecl );
566 declsToAdd.push_back( copyCtorDecl );
567 declsToAdd.push_back( dtorDecl );
568 declsToAdd.push_back( assignDecl ); // assignment should come last since it uses copy constructor in return
569 declsToAdd.splice( declsToAdd.end(), memCtors );
570 }
571
572 AutogenerateRoutines::AutogenerateRoutines() {
573 // the order here determines the order that these functions are generated.
574 // assignment should come last since it uses copy constructor in return.
575 data.push_back( FuncData( "?{}", genDefaultType, constructable ) );
576 data.push_back( FuncData( "?{}", genCopyType, copyable ) );
577 data.push_back( FuncData( "^?{}", genDefaultType, destructable ) );
578 data.push_back( FuncData( "?=?", genAssignType, assignable ) );
579 }
580
581 void AutogenerateRoutines::visit( EnumDecl *enumDecl ) {
582 if ( ! enumDecl->get_members().empty() ) {
583 EnumInstType *enumInst = new EnumInstType( Type::Qualifiers(), enumDecl->get_name() );
584 // enumInst->set_baseEnum( enumDecl );
585 makeEnumFunctions( enumInst, functionNesting, declsToAddAfter );
586 }
587 }
588
589 void AutogenerateRoutines::visit( StructDecl *structDecl ) {
590 if ( structDecl->has_body() && structsDone.find( structDecl->get_name() ) == structsDone.end() ) {
591 StructInstType structInst( Type::Qualifiers(), structDecl->get_name() );
592 for ( TypeDecl * typeDecl : structDecl->get_parameters() ) {
593 // need to visit assertions so that they are added to the appropriate maps
594 acceptAll( typeDecl->get_assertions(), *this );
595 structInst.get_parameters().push_back( new TypeExpr( new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), typeDecl ) ) );
596 }
597 structInst.set_baseStruct( structDecl );
598 makeStructFunctions( structDecl, &structInst, functionNesting, declsToAddAfter, data );
599 structsDone.insert( structDecl->get_name() );
600 } // if
601 }
602
603 void AutogenerateRoutines::visit( UnionDecl *unionDecl ) {
604 if ( ! unionDecl->get_members().empty() ) {
605 UnionInstType unionInst( Type::Qualifiers(), unionDecl->get_name() );
606 unionInst.set_baseUnion( unionDecl );
607 for ( TypeDecl * typeDecl : unionDecl->get_parameters() ) {
608 unionInst.get_parameters().push_back( new TypeExpr( new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), typeDecl ) ) );
609 }
610 makeUnionFunctions( unionDecl, &unionInst, functionNesting, declsToAddAfter );
611 } // if
612 }
613
614 void AutogenerateRoutines::visit( TypeDecl *typeDecl ) {
615 TypeInstType *typeInst = new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), false );
616 typeInst->set_baseType( typeDecl );
617 ObjectDecl *src = new ObjectDecl( "_src", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, typeInst->clone(), nullptr );
618 ObjectDecl *dst = new ObjectDecl( "_dst", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new PointerType( Type::Qualifiers(), typeInst->clone() ), nullptr );
619
620 std::list< Statement * > stmts;
621 if ( typeDecl->get_base() ) {
622 // xxx - generate ctor/dtors for typedecls, e.g.
623 // otype T = int *;
624 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
625 assign->get_args().push_back( new CastExpr( new VariableExpr( dst ), new PointerType( Type::Qualifiers(), typeDecl->get_base()->clone() ) ) );
626 assign->get_args().push_back( new CastExpr( new VariableExpr( src ), typeDecl->get_base()->clone() ) );
627 stmts.push_back( new ReturnStmt( std::list< Label >(), assign ) );
628 } // if
629 FunctionType *type = new FunctionType( Type::Qualifiers(), false );
630 type->get_returnVals().push_back( new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, typeInst, 0 ) );
631 type->get_parameters().push_back( dst );
632 type->get_parameters().push_back( src );
633 FunctionDecl *func = genFunc( "?=?", type, functionNesting );
634 func->get_statements()->get_kids() = stmts;
635 declsToAddAfter.push_back( func );
636 }
637
638 void addDecls( std::list< Declaration * > &declsToAdd, std::list< Statement * > &statements, std::list< Statement * >::iterator i ) {
639 for ( std::list< Declaration * >::iterator decl = declsToAdd.begin(); decl != declsToAdd.end(); ++decl ) {
640 statements.insert( i, new DeclStmt( noLabels, *decl ) );
641 } // for
642 declsToAdd.clear();
643 }
644
645 void AutogenerateRoutines::visit( FunctionType *) {
646 // ensure that we don't add assignment ops for types defined as part of the function
647 }
648
649 void AutogenerateRoutines::visit( PointerType *) {
650 // ensure that we don't add assignment ops for types defined as part of the pointer
651 }
652
653 void AutogenerateRoutines::visit( TraitDecl *) {
654 // ensure that we don't add assignment ops for types defined as part of the trait
655 }
656
657 template< typename StmtClass >
658 inline void AutogenerateRoutines::visitStatement( StmtClass *stmt ) {
659 std::set< std::string > oldStructs = structsDone;
660 addVisit( stmt, *this );
661 structsDone = oldStructs;
662 }
663
664 void AutogenerateRoutines::visit( FunctionDecl *functionDecl ) {
665 // record the existence of this function as appropriate
666 insert( functionDecl, constructable, InitTweak::isDefaultConstructor );
667 insert( functionDecl, assignable, InitTweak::isAssignment );
668 insert( functionDecl, copyable, InitTweak::isCopyConstructor );
669 insert( functionDecl, destructable, InitTweak::isDestructor );
670
671 maybeAccept( functionDecl->get_functionType(), *this );
672 functionNesting += 1;
673 maybeAccept( functionDecl->get_statements(), *this );
674 functionNesting -= 1;
675 }
676
677 void AutogenerateRoutines::visit( CompoundStmt *compoundStmt ) {
678 constructable.beginScope();
679 assignable.beginScope();
680 copyable.beginScope();
681 destructable.beginScope();
682 visitStatement( compoundStmt );
683 constructable.endScope();
684 assignable.endScope();
685 copyable.endScope();
686 destructable.endScope();
687 }
688
689 void AutogenerateRoutines::visit( SwitchStmt *switchStmt ) {
690 visitStatement( switchStmt );
691 }
692
693 void makeTupleFunctionBody( FunctionDecl * function ) {
694 FunctionType * ftype = function->get_functionType();
695 assertf( ftype->get_parameters().size() == 1 || ftype->get_parameters().size() == 2, "too many parameters in generated tuple function" );
696
697 UntypedExpr * untyped = new UntypedExpr( new NameExpr( function->get_name() ) );
698
699 /// xxx - &* is used to make this easier for later passes to handle
700 untyped->get_args().push_back( new AddressExpr( UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) );
701 if ( ftype->get_parameters().size() == 2 ) {
702 untyped->get_args().push_back( new VariableExpr( ftype->get_parameters().back() ) );
703 }
704 function->get_statements()->get_kids().push_back( new ExprStmt( noLabels, untyped ) );
705 function->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) );
706 }
707
708 Type * AutogenTupleRoutines::mutate( TupleType * tupleType ) {
709 tupleType = safe_dynamic_cast< TupleType * >( Parent::mutate( tupleType ) );
710 std::string mangleName = SymTab::Mangler::mangleType( tupleType );
711 if ( seenTuples.find( mangleName ) != seenTuples.end() ) return tupleType;
712 seenTuples.insert( mangleName );
713
714 // T ?=?(T *, T);
715 FunctionType *assignType = genAssignType( tupleType );
716
717 // void ?{}(T *); void ^?{}(T *);
718 FunctionType *ctorType = genDefaultType( tupleType );
719 FunctionType *dtorType = genDefaultType( tupleType );
720
721 // void ?{}(T *, T);
722 FunctionType *copyCtorType = genCopyType( tupleType );
723
724 std::set< TypeDecl* > done;
725 std::list< TypeDecl * > typeParams;
726 for ( Type * t : *tupleType ) {
727 if ( TypeInstType * ty = dynamic_cast< TypeInstType * >( t ) ) {
728 if ( ! done.count( ty->get_baseType() ) ) {
729 TypeDecl * newDecl = new TypeDecl( ty->get_baseType()->get_name(), Type::StorageClasses(), nullptr, TypeDecl::Any );
730 TypeInstType * inst = new TypeInstType( Type::Qualifiers(), newDecl->get_name(), newDecl );
731 newDecl->get_assertions().push_back( new FunctionDecl( "?=?", Type::StorageClasses(), LinkageSpec::Cforall, genAssignType( inst ), nullptr,
732 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
733 newDecl->get_assertions().push_back( new FunctionDecl( "?{}", Type::StorageClasses(), LinkageSpec::Cforall, genDefaultType( inst ), nullptr,
734 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
735 newDecl->get_assertions().push_back( new FunctionDecl( "?{}", Type::StorageClasses(), LinkageSpec::Cforall, genCopyType( inst ), nullptr,
736 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
737 newDecl->get_assertions().push_back( new FunctionDecl( "^?{}", Type::StorageClasses(), LinkageSpec::Cforall, genDefaultType( inst ), nullptr,
738 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
739 typeParams.push_back( newDecl );
740 done.insert( ty->get_baseType() );
741 }
742 }
743 }
744 cloneAll( typeParams, ctorType->get_forall() );
745 cloneAll( typeParams, dtorType->get_forall() );
746 cloneAll( typeParams, copyCtorType->get_forall() );
747 cloneAll( typeParams, assignType->get_forall() );
748
749 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting );
750 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting );
751 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting );
752 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting );
753
754 makeTupleFunctionBody( assignDecl );
755 makeTupleFunctionBody( ctorDecl );
756 makeTupleFunctionBody( copyCtorDecl );
757 makeTupleFunctionBody( dtorDecl );
758
759 addDeclaration( ctorDecl );
760 addDeclaration( copyCtorDecl );
761 addDeclaration( dtorDecl );
762 addDeclaration( assignDecl ); // assignment should come last since it uses copy constructor in return
763
764 return tupleType;
765 }
766
767 DeclarationWithType * AutogenTupleRoutines::mutate( FunctionDecl *functionDecl ) {
768 functionDecl->set_functionType( maybeMutate( functionDecl->get_functionType(), *this ) );
769 functionNesting += 1;
770 functionDecl->set_statements( maybeMutate( functionDecl->get_statements(), *this ) );
771 functionNesting -= 1;
772 return functionDecl;
773 }
774
775 CompoundStmt * AutogenTupleRoutines::mutate( CompoundStmt *compoundStmt ) {
776 seenTuples.beginScope();
777 compoundStmt = safe_dynamic_cast< CompoundStmt * >( Parent::mutate( compoundStmt ) );
778 seenTuples.endScope();
779 return compoundStmt;
780 }
781} // SymTab
782
783// Local Variables: //
784// tab-width: 4 //
785// mode: c++ //
786// compile-command: "make install" //
787// End: //
Note: See TracBrowser for help on using the repository browser.