source: src/SymTab/Autogen.cc@ 4dfa562

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 4dfa562 was 4e8949f, checked in by Rob Schluntz <rschlunt@…>, 8 years ago

Handle ConstructorExpr in CodeGenerator

  • Property mode set to 100644
File size: 38.1 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Autogen.cc --
8//
9// Author : Rob Schluntz
10// Created On : Thu Mar 03 15:45:56 2016
11// Last Modified By : Andrew Beach
12// Last Modified On : Fri Jul 14 16:41:00 2017
13// Update Count : 62
14//
15
16#include "Autogen.h"
17
18#include <cstddef> // for NULL
19#include <algorithm> // for count_if
20#include <cassert> // for strict_dynamic_cast, assert, assertf
21#include <iterator> // for back_insert_iterator, back_inserter
22#include <list> // for list, _List_iterator, list<>::iter...
23#include <set> // for set, _Rb_tree_const_iterator
24#include <utility> // for pair
25#include <vector> // for vector
26
27#include "AddVisit.h" // for addVisit
28#include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign
29#include "Common/ScopedMap.h" // for ScopedMap<>::const_iterator, Scope...
30#include "Common/utility.h" // for cloneAll, operator+
31#include "GenPoly/DeclMutator.h" // for DeclMutator
32#include "GenPoly/ScopedSet.h" // for ScopedSet, ScopedSet<>::iterator
33#include "SymTab/Mangler.h" // for Mangler
34#include "SynTree/Attribute.h" // For Attribute
35#include "SynTree/Mutator.h" // for maybeMutate
36#include "SynTree/Statement.h" // for CompoundStmt, ReturnStmt, ExprStmt
37#include "SynTree/Type.h" // for FunctionType, Type, TypeInstType
38#include "SynTree/Visitor.h" // for maybeAccept, Visitor, acceptAll
39
40class Attribute;
41
42namespace SymTab {
43 Type * SizeType = 0;
44 typedef ScopedMap< std::string, bool > TypeMap;
45
46 /// Data used to generate functions generically. Specifically, the name of the generated function, a function which generates the routine protoype, and a map which contains data to determine whether a function should be generated.
47 struct FuncData {
48 typedef FunctionType * (*TypeGen)( Type * );
49 FuncData( const std::string & fname, const TypeGen & genType, TypeMap & map ) : fname( fname ), genType( genType ), map( map ) {}
50 std::string fname;
51 TypeGen genType;
52 TypeMap & map;
53 };
54
55 class AutogenerateRoutines final : public Visitor {
56 template< typename Visitor >
57 friend void acceptAndAdd( std::list< Declaration * > &translationUnit, Visitor &visitor );
58 template< typename Visitor >
59 friend void addVisitStatementList( std::list< Statement* > &stmts, Visitor &visitor );
60 public:
61 std::list< Declaration * > &get_declsToAdd() { return declsToAdd; }
62
63 typedef Visitor Parent;
64 using Parent::visit;
65
66 AutogenerateRoutines();
67
68 virtual void visit( EnumDecl *enumDecl );
69 virtual void visit( StructDecl *structDecl );
70 virtual void visit( UnionDecl *structDecl );
71 virtual void visit( TypeDecl *typeDecl );
72 virtual void visit( TraitDecl *ctxDecl );
73 virtual void visit( FunctionDecl *functionDecl );
74
75 virtual void visit( FunctionType *ftype );
76 virtual void visit( PointerType *ftype );
77
78 virtual void visit( CompoundStmt *compoundStmt );
79 virtual void visit( SwitchStmt *switchStmt );
80
81 private:
82 template< typename StmtClass > void visitStatement( StmtClass *stmt );
83
84 std::list< Declaration * > declsToAdd, declsToAddAfter;
85 std::set< std::string > structsDone;
86 unsigned int functionNesting = 0; // current level of nested functions
87 /// Note: the following maps could be ScopedSets, but it should be easier to work
88 /// deleted functions in if they are maps, since the value false can be inserted
89 /// at the current scope without affecting outer scopes or requiring copies.
90 TypeMap copyable, assignable, constructable, destructable;
91 std::vector< FuncData > data;
92 };
93
94 /// generates routines for tuple types.
95 /// Doesn't really need to be a mutator, but it's easier to reuse DeclMutator than it is to use AddVisit
96 /// or anything we currently have that supports adding new declarations for visitors
97 class AutogenTupleRoutines : public GenPoly::DeclMutator {
98 public:
99 typedef GenPoly::DeclMutator Parent;
100 using Parent::mutate;
101
102 virtual DeclarationWithType * mutate( FunctionDecl *functionDecl );
103
104 virtual Type * mutate( TupleType *tupleType );
105
106 virtual CompoundStmt * mutate( CompoundStmt *compoundStmt );
107
108 private:
109 unsigned int functionNesting = 0; // current level of nested functions
110 GenPoly::ScopedSet< std::string > seenTuples;
111 };
112
113 void autogenerateRoutines( std::list< Declaration * > &translationUnit ) {
114 AutogenerateRoutines generator;
115 acceptAndAdd( translationUnit, generator );
116
117 // needs to be done separately because AutogenerateRoutines skips types that appear as function arguments, etc.
118 // AutogenTupleRoutines tupleGenerator;
119 // tupleGenerator.mutateDeclarationList( translationUnit );
120 }
121
122 bool isUnnamedBitfield( ObjectDecl * obj ) {
123 return obj != NULL && obj->get_name() == "" && obj->get_bitfieldWidth() != NULL;
124 }
125
126 /// inserts a forward declaration for functionDecl into declsToAdd
127 void addForwardDecl( FunctionDecl * functionDecl, std::list< Declaration * > & declsToAdd ) {
128 FunctionDecl * decl = functionDecl->clone();
129 delete decl->get_statements();
130 decl->set_statements( NULL );
131 declsToAdd.push_back( decl );
132 decl->fixUniqueId();
133 }
134
135 /// given type T, generate type of default ctor/dtor, i.e. function type void (*) (T *)
136 FunctionType * genDefaultType( Type * paramType ) {
137 FunctionType *ftype = new FunctionType( Type::Qualifiers(), false );
138 ObjectDecl *dstParam = new ObjectDecl( "_dst", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new ReferenceType( Type::Qualifiers(), paramType->clone() ), nullptr );
139 ftype->get_parameters().push_back( dstParam );
140
141 return ftype;
142 }
143
144 /// given type T, generate type of copy ctor, i.e. function type void (*) (T *, T)
145 FunctionType * genCopyType( Type * paramType ) {
146 FunctionType *ftype = genDefaultType( paramType );
147 ObjectDecl *srcParam = new ObjectDecl( "_src", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, paramType->clone(), nullptr );
148 ftype->get_parameters().push_back( srcParam );
149 return ftype;
150 }
151
152 /// given type T, generate type of assignment, i.e. function type T (*) (T *, T)
153 FunctionType * genAssignType( Type * paramType ) {
154 FunctionType *ftype = genCopyType( paramType );
155 ObjectDecl *returnVal = new ObjectDecl( "_ret", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, paramType->clone(), nullptr );
156 ftype->get_returnVals().push_back( returnVal );
157 return ftype;
158 }
159
160 /// generate a function decl from a name and type. Nesting depth determines whether
161 /// the declaration is static or not; optional paramter determines if declaration is intrinsic
162 FunctionDecl * genFunc( const std::string & fname, FunctionType * ftype, unsigned int functionNesting, bool isIntrinsic = false ) {
163 // Routines at global scope marked "static" to prevent multiple definitions in separate translation units
164 // because each unit generates copies of the default routines for each aggregate.
165 Type::StorageClasses scs = functionNesting > 0 ? Type::StorageClasses() : Type::StorageClasses( Type::Static );
166 LinkageSpec::Spec spec = isIntrinsic ? LinkageSpec::Intrinsic : LinkageSpec::AutoGen;
167 FunctionDecl * decl = new FunctionDecl( fname, scs, spec, ftype, new CompoundStmt( noLabels ),
168 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) );
169 decl->fixUniqueId();
170 return decl;
171 }
172
173 /// inserts base type of first argument into map if pred(funcDecl) is true
174 void insert( FunctionDecl *funcDecl, TypeMap & map, FunctionDecl * (*pred)(Declaration *) ) {
175 // insert type into constructable, etc. map if appropriate
176 if ( pred( funcDecl ) ) {
177 FunctionType * ftype = funcDecl->get_functionType();
178 assert( ! ftype->get_parameters().empty() );
179 Type * t = InitTweak::getPointerBase( ftype->get_parameters().front()->get_type() );
180 assert( t );
181 map.insert( Mangler::mangleType( t ), true );
182 }
183 }
184
185 /// using map and t, determines if is constructable, etc.
186 bool lookup( const TypeMap & map, Type * t ) {
187 assertf( t, "Autogenerate lookup was given non-type: %s", toString( t ).c_str() );
188 if ( dynamic_cast< PointerType * >( t ) ) {
189 // will need more complicated checking if we want this to work with pointer types, since currently
190 return true;
191 } else if ( ArrayType * at = dynamic_cast< ArrayType * >( t ) ) {
192 // an array's constructor, etc. is generated on the fly based on the base type's constructor, etc.
193 return lookup( map, at->get_base() );
194 }
195 TypeMap::const_iterator it = map.find( Mangler::mangleType( t ) );
196 if ( it != map.end() ) return it->second;
197 // something that does not appear in the map is by default not constructable, etc.
198 return false;
199 }
200
201 /// using map and aggr, examines each member to determine if constructor, etc. should be generated
202 template<typename Container>
203 bool shouldGenerate( const TypeMap & map, const Container & container ) {
204 for ( Type * t : container ) {
205 if ( ! lookup( map, t ) ) return false;
206 }
207 return true;
208 }
209
210 /// data structure for abstracting the generation of special functions
211 template< typename OutputIterator, typename Container >
212 struct FuncGenerator {
213 const Container & container;
214 Type *refType;
215 unsigned int functionNesting;
216 const std::list< TypeDecl* > & typeParams;
217 OutputIterator out;
218 FuncGenerator( const Container & container, Type *refType, unsigned int functionNesting, const std::list< TypeDecl* > & typeParams, OutputIterator out ) : container( container ), refType( refType ), functionNesting( functionNesting ), typeParams( typeParams ), out( out ) {}
219
220 /// generates a function (?{}, ?=?, ^?{}) based on the data argument and members. If function is generated, inserts the type into the map.
221 void gen( const FuncData & data, bool concurrent_type ) {
222 if ( ! shouldGenerate( data.map, container ) ) return;
223 FunctionType * ftype = data.genType( refType );
224
225 if ( concurrent_type && CodeGen::isDestructor( data.fname ) ) {
226 ftype->parameters.front()->get_type()->set_mutex( true );
227 }
228
229 cloneAll( typeParams, ftype->forall );
230 *out++ = genFunc( data.fname, ftype, functionNesting );
231 data.map.insert( Mangler::mangleType( refType ), true );
232 }
233 };
234
235 template< typename OutputIterator, typename Container >
236 FuncGenerator<OutputIterator, Container> makeFuncGenerator( const Container & container, Type *refType, unsigned int functionNesting, const std::list< TypeDecl* > & typeParams, OutputIterator out ) {
237 return FuncGenerator<OutputIterator, Container>( container, refType, functionNesting, typeParams, out );
238 }
239
240 /// generates a single enumeration assignment expression
241 ApplicationExpr * genEnumAssign( FunctionType * ftype, FunctionDecl * assignDecl ) {
242 // enum copy construct and assignment is just C-style assignment.
243 // this looks like a bad recursive call, but code gen will turn it into
244 // a C-style assignment.
245 // This happens before function pointer type conversion, so need to do it manually here
246 // NOTE: ftype is not necessarily the functionType belonging to assignDecl - ftype is the
247 // type of the function that this expression is being generated for (so that the correct
248 // parameters) are using in the variable exprs
249 assert( ftype->get_parameters().size() == 2 );
250 ObjectDecl * dstParam = strict_dynamic_cast< ObjectDecl * >( ftype->get_parameters().front() );
251 ObjectDecl * srcParam = strict_dynamic_cast< ObjectDecl * >( ftype->get_parameters().back() );
252
253 VariableExpr * assignVarExpr = new VariableExpr( assignDecl );
254 Type * assignVarExprType = assignVarExpr->get_result();
255 assignVarExprType = new PointerType( Type::Qualifiers(), assignVarExprType );
256 assignVarExpr->set_result( assignVarExprType );
257 ApplicationExpr * assignExpr = new ApplicationExpr( assignVarExpr );
258 assignExpr->get_args().push_back( new VariableExpr( dstParam ) );
259 assignExpr->get_args().push_back( new VariableExpr( srcParam ) );
260 return assignExpr;
261 }
262
263 // E ?=?(E volatile*, int),
264 // ?=?(E _Atomic volatile*, int);
265 void makeEnumFunctions( EnumInstType *refType, unsigned int functionNesting, std::list< Declaration * > &declsToAdd ) {
266
267 // T ?=?(E *, E);
268 FunctionType *assignType = genAssignType( refType );
269
270 // void ?{}(E *); void ^?{}(E *);
271 FunctionType * ctorType = genDefaultType( refType->clone() );
272 FunctionType * dtorType = genDefaultType( refType->clone() );
273
274 // void ?{}(E *, E);
275 FunctionType *copyCtorType = genCopyType( refType->clone() );
276
277 // add unused attribute to parameters of default constructor and destructor
278 ctorType->get_parameters().front()->get_attributes().push_back( new Attribute( "unused" ) );
279 dtorType->get_parameters().front()->get_attributes().push_back( new Attribute( "unused" ) );
280
281 // xxx - should we also generate void ?{}(E *, int) and E ?{}(E *, E)?
282 // right now these cases work, but that might change.
283
284 // xxx - Temporary: make these functions intrinsic so they codegen as C assignment.
285 // Really they're something of a cross between instrinsic and autogen, so should
286 // probably make a new linkage type
287 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting, true );
288 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting, true );
289 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting, true );
290 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting, true );
291
292 // body is either return stmt or expr stmt
293 assignDecl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, genEnumAssign( assignType, assignDecl ) ) );
294 copyCtorDecl->get_statements()->get_kids().push_back( new ExprStmt( noLabels, genEnumAssign( copyCtorType, assignDecl ) ) );
295
296 declsToAdd.push_back( ctorDecl );
297 declsToAdd.push_back( copyCtorDecl );
298 declsToAdd.push_back( dtorDecl );
299 declsToAdd.push_back( assignDecl ); // assignment should come last since it uses copy constructor in return
300 }
301
302 /// generates a single struct member operation (constructor call, destructor call, assignment call)
303 void makeStructMemberOp( ObjectDecl * dstParam, Expression * src, DeclarationWithType * field, FunctionDecl * func, bool forward = true ) {
304 InitTweak::InitExpander srcParam( src );
305
306 // assign to destination
307 Expression *dstselect = new MemberExpr( field, new CastExpr( new VariableExpr( dstParam ), strict_dynamic_cast< ReferenceType* >( dstParam->get_type() )->get_base()->clone() ) );
308 genImplicitCall( srcParam, dstselect, func->get_name(), back_inserter( func->get_statements()->get_kids() ), field, forward );
309 }
310
311 /// generates the body of a struct function by iterating the struct members (via parameters) - generates default ctor, copy ctor, assignment, and dtor bodies, but NOT field ctor bodies
312 template<typename Iterator>
313 void makeStructFunctionBody( Iterator member, Iterator end, FunctionDecl * func, bool forward = true ) {
314 for ( ; member != end; ++member ) {
315 if ( DeclarationWithType *field = dynamic_cast< DeclarationWithType * >( *member ) ) { // otherwise some form of type declaration, e.g. Aggregate
316 // query the type qualifiers of this field and skip assigning it if it is marked const.
317 // If it is an array type, we need to strip off the array layers to find its qualifiers.
318 Type * type = field->get_type();
319 while ( ArrayType * at = dynamic_cast< ArrayType * >( type ) ) {
320 type = at->get_base();
321 }
322
323 if ( type->get_const() && func->get_name() == "?=?" ) {
324 // don't assign const members, but do construct/destruct
325 continue;
326 }
327
328 if ( field->get_name() == "" ) {
329 // don't assign to anonymous members
330 // xxx - this is a temporary fix. Anonymous members tie into
331 // our inheritance model. I think the correct way to handle this is to
332 // cast the structure to the type of the member and let the resolver
333 // figure out whether it's valid and have a pass afterwards that fixes
334 // the assignment to use pointer arithmetic with the offset of the
335 // member, much like how generic type members are handled.
336 continue;
337 }
338
339 assert( ! func->get_functionType()->get_parameters().empty() );
340 ObjectDecl * dstParam = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_parameters().front() );
341 ObjectDecl * srcParam = NULL;
342 if ( func->get_functionType()->get_parameters().size() == 2 ) {
343 srcParam = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_parameters().back() );
344 }
345 // srcParam may be NULL, in which case we have default ctor/dtor
346 assert( dstParam );
347
348 Expression *srcselect = srcParam ? new MemberExpr( field, new VariableExpr( srcParam ) ) : NULL;
349 makeStructMemberOp( dstParam, srcselect, field, func, forward );
350 } // if
351 } // for
352 } // makeStructFunctionBody
353
354 /// generate the body of a constructor which takes parameters that match fields, e.g.
355 /// void ?{}(A *, int) and void?{}(A *, int, int) for a struct A which has two int fields.
356 template<typename Iterator>
357 void makeStructFieldCtorBody( Iterator member, Iterator end, FunctionDecl * func ) {
358 FunctionType * ftype = func->get_functionType();
359 std::list<DeclarationWithType*> & params = ftype->get_parameters();
360 assert( params.size() >= 2 ); // should not call this function for default ctor, etc.
361
362 // skip 'this' parameter
363 ObjectDecl * dstParam = dynamic_cast<ObjectDecl*>( params.front() );
364 assert( dstParam );
365 std::list<DeclarationWithType*>::iterator parameter = params.begin()+1;
366 for ( ; member != end; ++member ) {
367 if ( DeclarationWithType * field = dynamic_cast<DeclarationWithType*>( *member ) ) {
368 if ( isUnnamedBitfield( dynamic_cast< ObjectDecl * > ( field ) ) ) {
369 // don't make a function whose parameter is an unnamed bitfield
370 continue;
371 } else if ( field->get_name() == "" ) {
372 // don't assign to anonymous members
373 // xxx - this is a temporary fix. Anonymous members tie into
374 // our inheritance model. I think the correct way to handle this is to
375 // cast the structure to the type of the member and let the resolver
376 // figure out whether it's valid and have a pass afterwards that fixes
377 // the assignment to use pointer arithmetic with the offset of the
378 // member, much like how generic type members are handled.
379 continue;
380 } else if ( parameter != params.end() ) {
381 // matching parameter, initialize field with copy ctor
382 Expression *srcselect = new VariableExpr(*parameter);
383 makeStructMemberOp( dstParam, srcselect, field, func );
384 ++parameter;
385 } else {
386 // no matching parameter, initialize field with default ctor
387 makeStructMemberOp( dstParam, NULL, field, func );
388 }
389 }
390 }
391 }
392
393 Type * declToType( Declaration * decl ) {
394 if ( DeclarationWithType * dwt = dynamic_cast< DeclarationWithType * >( decl ) ) {
395 return dwt->get_type();
396 }
397 return nullptr;
398 }
399
400 /// generates struct constructors, destructor, and assignment functions
401 void makeStructFunctions( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, std::list< Declaration * > & declsToAdd, const std::vector< FuncData > & data ) {
402 // Builtins do not use autogeneration.
403 if ( aggregateDecl->get_linkage() == LinkageSpec::BuiltinCFA ||
404 aggregateDecl->get_linkage() == LinkageSpec::BuiltinC ) {
405 return;
406 }
407
408 // Make function polymorphic in same parameters as generic struct, if applicable
409 const std::list< TypeDecl* > & typeParams = aggregateDecl->get_parameters(); // List of type variables to be placed on the generated functions
410
411 // generate each of the functions based on the supplied FuncData objects
412 std::list< FunctionDecl * > newFuncs;
413 // structure that iterates aggregate decl members, returning their types
414 auto generator = makeFuncGenerator( lazy_map( aggregateDecl->members, declToType ), refType, functionNesting, typeParams, back_inserter( newFuncs ) );
415 for ( const FuncData & d : data ) {
416 generator.gen( d, aggregateDecl->is_thread() || aggregateDecl->is_monitor() );
417 }
418
419 // field ctors are only generated if default constructor and copy constructor are both generated
420 unsigned numCtors = std::count_if( newFuncs.begin(), newFuncs.end(), [](FunctionDecl * dcl) { return CodeGen::isConstructor( dcl->get_name() ); } );
421
422 if ( functionNesting == 0 ) {
423 // forward declare if top-level struct, so that
424 // type is complete as soon as its body ends
425 // Note: this is necessary if we want structs which contain
426 // generic (otype) structs as members.
427 for ( FunctionDecl * dcl : newFuncs ) {
428 addForwardDecl( dcl, declsToAdd );
429 }
430 }
431
432 for ( FunctionDecl * dcl : newFuncs ) {
433 // generate appropriate calls to member ctor, assignment
434 // destructor needs to do everything in reverse, so pass "forward" based on whether the function is a destructor
435 if ( ! CodeGen::isDestructor( dcl->get_name() ) ) {
436 makeStructFunctionBody( aggregateDecl->get_members().begin(), aggregateDecl->get_members().end(), dcl );
437 } else {
438 makeStructFunctionBody( aggregateDecl->get_members().rbegin(), aggregateDecl->get_members().rend(), dcl, false );
439 }
440 if ( CodeGen::isAssignment( dcl->get_name() ) ) {
441 // assignment needs to return a value
442 FunctionType * assignType = dcl->get_functionType();
443 assert( assignType->get_parameters().size() == 2 );
444 ObjectDecl * srcParam = strict_dynamic_cast< ObjectDecl * >( assignType->get_parameters().back() );
445 dcl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, new VariableExpr( srcParam ) ) );
446 }
447 declsToAdd.push_back( dcl );
448 }
449
450 // create constructors which take each member type as a parameter.
451 // for example, for struct A { int x, y; }; generate
452 // void ?{}(A *, int) and void ?{}(A *, int, int)
453 // Field constructors are only generated if default and copy constructor
454 // are generated, since they need access to both
455 if ( numCtors == 2 ) {
456 FunctionType * memCtorType = genDefaultType( refType );
457 cloneAll( typeParams, memCtorType->get_forall() );
458 for ( std::list<Declaration *>::iterator i = aggregateDecl->get_members().begin(); i != aggregateDecl->get_members().end(); ++i ) {
459 DeclarationWithType * member = dynamic_cast<DeclarationWithType *>( *i );
460 assert( member );
461 if ( isUnnamedBitfield( dynamic_cast< ObjectDecl * > ( member ) ) ) {
462 // don't make a function whose parameter is an unnamed bitfield
463 continue;
464 } else if ( member->get_name() == "" ) {
465 // don't assign to anonymous members
466 // xxx - this is a temporary fix. Anonymous members tie into
467 // our inheritance model. I think the correct way to handle this is to
468 // cast the structure to the type of the member and let the resolver
469 // figure out whether it's valid/choose the correct unnamed member
470 continue;
471 }
472 memCtorType->get_parameters().push_back( new ObjectDecl( member->get_name(), Type::StorageClasses(), LinkageSpec::Cforall, 0, member->get_type()->clone(), 0 ) );
473 FunctionDecl * ctor = genFunc( "?{}", memCtorType->clone(), functionNesting );
474 makeStructFieldCtorBody( aggregateDecl->get_members().begin(), aggregateDecl->get_members().end(), ctor );
475 declsToAdd.push_back( ctor );
476 }
477 delete memCtorType;
478 }
479 }
480
481 /// generate a single union assignment expression (using memcpy)
482 template< typename OutputIterator >
483 void makeUnionFieldsAssignment( ObjectDecl * srcParam, ObjectDecl * dstParam, OutputIterator out ) {
484 UntypedExpr *copy = new UntypedExpr( new NameExpr( "__builtin_memcpy" ) );
485 copy->get_args().push_back( new AddressExpr( new VariableExpr( dstParam ) ) );
486 copy->get_args().push_back( new AddressExpr( new VariableExpr( srcParam ) ) );
487 copy->get_args().push_back( new SizeofExpr( srcParam->get_type()->clone() ) );
488 *out++ = new ExprStmt( noLabels, copy );
489 }
490
491 /// generates the body of a union assignment/copy constructor/field constructor
492 void makeUnionAssignBody( FunctionDecl * funcDecl ) {
493 FunctionType * ftype = funcDecl->get_functionType();
494 assert( ftype->get_parameters().size() == 2 );
495 ObjectDecl * dstParam = strict_dynamic_cast< ObjectDecl * >( ftype->get_parameters().front() );
496 ObjectDecl * srcParam = strict_dynamic_cast< ObjectDecl * >( ftype->get_parameters().back() );
497
498 makeUnionFieldsAssignment( srcParam, dstParam, back_inserter( funcDecl->get_statements()->get_kids() ) );
499 if ( CodeGen::isAssignment( funcDecl->get_name() ) ) {
500 // also generate return statement in assignment
501 funcDecl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, new VariableExpr( srcParam ) ) );
502 }
503 }
504
505 /// generates union constructors, destructors, and assignment operator
506 void makeUnionFunctions( UnionDecl *aggregateDecl, UnionInstType *refType, unsigned int functionNesting, std::list< Declaration * > & declsToAdd ) {
507 // Make function polymorphic in same parameters as generic union, if applicable
508 const std::list< TypeDecl* > & typeParams = aggregateDecl->get_parameters(); // List of type variables to be placed on the generated functions
509
510 // default ctor/dtor need only first parameter
511 // void ?{}(T *); void ^?{}(T *);
512 FunctionType *ctorType = genDefaultType( refType );
513 FunctionType *dtorType = genDefaultType( refType );
514
515 // copy ctor needs both parameters
516 // void ?{}(T *, T);
517 FunctionType *copyCtorType = genCopyType( refType );
518
519 // assignment needs both and return value
520 // T ?=?(T *, T);
521 FunctionType *assignType = genAssignType( refType );
522
523 cloneAll( typeParams, ctorType->get_forall() );
524 cloneAll( typeParams, dtorType->get_forall() );
525 cloneAll( typeParams, copyCtorType->get_forall() );
526 cloneAll( typeParams, assignType->get_forall() );
527
528 // add unused attribute to parameters of default constructor and destructor
529 ctorType->get_parameters().front()->get_attributes().push_back( new Attribute( "unused" ) );
530 dtorType->get_parameters().front()->get_attributes().push_back( new Attribute( "unused" ) );
531
532 // Routines at global scope marked "static" to prevent multiple definitions is separate translation units
533 // because each unit generates copies of the default routines for each aggregate.
534 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting );
535 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting );
536 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting );
537 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting );
538
539 makeUnionAssignBody( assignDecl );
540
541 // body of assignment and copy ctor is the same
542 makeUnionAssignBody( copyCtorDecl );
543
544 // create a constructor which takes the first member type as a parameter.
545 // for example, for Union A { int x; double y; }; generate
546 // void ?{}(A *, int)
547 // This is to mimic C's behaviour which initializes the first member of the union.
548 std::list<Declaration *> memCtors;
549 for ( Declaration * member : aggregateDecl->get_members() ) {
550 if ( DeclarationWithType * field = dynamic_cast< DeclarationWithType * >( member ) ) {
551 ObjectDecl * srcParam = new ObjectDecl( "src", Type::StorageClasses(), LinkageSpec::Cforall, 0, field->get_type()->clone(), 0 );
552
553 FunctionType * memCtorType = ctorType->clone();
554 memCtorType->get_parameters().push_back( srcParam );
555 FunctionDecl * ctor = genFunc( "?{}", memCtorType, functionNesting );
556
557 makeUnionAssignBody( ctor );
558 memCtors.push_back( ctor );
559 // only generate a ctor for the first field
560 break;
561 }
562 }
563
564 declsToAdd.push_back( ctorDecl );
565 declsToAdd.push_back( copyCtorDecl );
566 declsToAdd.push_back( dtorDecl );
567 declsToAdd.push_back( assignDecl ); // assignment should come last since it uses copy constructor in return
568 declsToAdd.splice( declsToAdd.end(), memCtors );
569 }
570
571 AutogenerateRoutines::AutogenerateRoutines() {
572 // the order here determines the order that these functions are generated.
573 // assignment should come last since it uses copy constructor in return.
574 data.push_back( FuncData( "?{}", genDefaultType, constructable ) );
575 data.push_back( FuncData( "?{}", genCopyType, copyable ) );
576 data.push_back( FuncData( "^?{}", genDefaultType, destructable ) );
577 data.push_back( FuncData( "?=?", genAssignType, assignable ) );
578 }
579
580 void AutogenerateRoutines::visit( EnumDecl *enumDecl ) {
581 if ( ! enumDecl->get_members().empty() ) {
582 EnumInstType *enumInst = new EnumInstType( Type::Qualifiers(), enumDecl->get_name() );
583 // enumInst->set_baseEnum( enumDecl );
584 makeEnumFunctions( enumInst, functionNesting, declsToAddAfter );
585 }
586 }
587
588 void AutogenerateRoutines::visit( StructDecl *structDecl ) {
589 if ( structDecl->has_body() && structsDone.find( structDecl->get_name() ) == structsDone.end() ) {
590 StructInstType structInst( Type::Qualifiers(), structDecl->get_name() );
591 for ( TypeDecl * typeDecl : structDecl->get_parameters() ) {
592 // need to visit assertions so that they are added to the appropriate maps
593 acceptAll( typeDecl->get_assertions(), *this );
594 structInst.get_parameters().push_back( new TypeExpr( new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), typeDecl ) ) );
595 }
596 structInst.set_baseStruct( structDecl );
597 makeStructFunctions( structDecl, &structInst, functionNesting, declsToAddAfter, data );
598 structsDone.insert( structDecl->get_name() );
599 } // if
600 }
601
602 void AutogenerateRoutines::visit( UnionDecl *unionDecl ) {
603 if ( ! unionDecl->get_members().empty() ) {
604 UnionInstType unionInst( Type::Qualifiers(), unionDecl->get_name() );
605 unionInst.set_baseUnion( unionDecl );
606 for ( TypeDecl * typeDecl : unionDecl->get_parameters() ) {
607 unionInst.get_parameters().push_back( new TypeExpr( new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), typeDecl ) ) );
608 }
609 makeUnionFunctions( unionDecl, &unionInst, functionNesting, declsToAddAfter );
610 } // if
611 }
612
613 Type * declToTypeDeclBase( Declaration * decl ) {
614 if ( TypeDecl * td = dynamic_cast< TypeDecl * >( decl ) ) {
615 return td->base;
616 }
617 return nullptr;
618 }
619
620 // generate ctor/dtors/assign for typedecls, e.g., otype T = int *;
621 void AutogenerateRoutines::visit( TypeDecl *typeDecl ) {
622 if ( ! typeDecl->base ) return;
623
624 // generate each of the functions based on the supplied FuncData objects
625 std::list< FunctionDecl * > newFuncs;
626 std::list< Declaration * > tds { typeDecl };
627 std::list< TypeDecl * > typeParams;
628 TypeInstType refType( Type::Qualifiers(), typeDecl->name, typeDecl );
629 auto generator = makeFuncGenerator( lazy_map( tds, declToTypeDeclBase ), &refType, functionNesting, typeParams, back_inserter( newFuncs ) );
630 for ( const FuncData & d : data ) {
631 generator.gen( d, false );
632 }
633
634 if ( functionNesting == 0 ) {
635 // forward declare if top-level struct, so that
636 // type is complete as soon as its body ends
637 // Note: this is necessary if we want structs which contain
638 // generic (otype) structs as members.
639 for ( FunctionDecl * dcl : newFuncs ) {
640 addForwardDecl( dcl, declsToAddAfter );
641 }
642 }
643
644 for ( FunctionDecl * dcl : newFuncs ) {
645 FunctionType * ftype = dcl->type;
646 assertf( ftype->parameters.size() == 1 || ftype->parameters.size() == 2, "Incorrect number of parameters in autogenerated typedecl function: %zd", ftype->parameters.size() );
647 DeclarationWithType * dst = ftype->parameters.front();
648 DeclarationWithType * src = ftype->parameters.size() == 2 ? ftype->parameters.back() : nullptr;
649 // generate appropriate calls to member ctor, assignment
650 // destructor needs to do everything in reverse, so pass "forward" based on whether the function is a destructor
651 UntypedExpr * expr = new UntypedExpr( new NameExpr( dcl->name ) );
652 expr->args.push_back( new CastExpr( new VariableExpr( dst ), new ReferenceType( Type::Qualifiers(), typeDecl->base->clone() ) ) );
653 if ( src ) expr->args.push_back( new CastExpr( new VariableExpr( src ), typeDecl->base->clone() ) );
654 dcl->statements->kids.push_back( new ExprStmt( noLabels, expr ) );
655 if ( CodeGen::isAssignment( dcl->get_name() ) ) {
656 // assignment needs to return a value
657 FunctionType * assignType = dcl->type;
658 assert( assignType->parameters.size() == 2 );
659 ObjectDecl * srcParam = strict_dynamic_cast< ObjectDecl * >( assignType->parameters.back() );
660 dcl->statements->kids.push_back( new ReturnStmt( noLabels, new VariableExpr( srcParam ) ) );
661 }
662 declsToAddAfter.push_back( dcl );
663 }
664 }
665
666 void addDecls( std::list< Declaration * > &declsToAdd, std::list< Statement * > &statements, std::list< Statement * >::iterator i ) {
667 for ( std::list< Declaration * >::iterator decl = declsToAdd.begin(); decl != declsToAdd.end(); ++decl ) {
668 statements.insert( i, new DeclStmt( noLabels, *decl ) );
669 } // for
670 declsToAdd.clear();
671 }
672
673 void AutogenerateRoutines::visit( FunctionType *) {
674 // ensure that we don't add assignment ops for types defined as part of the function
675 }
676
677 void AutogenerateRoutines::visit( PointerType *) {
678 // ensure that we don't add assignment ops for types defined as part of the pointer
679 }
680
681 void AutogenerateRoutines::visit( TraitDecl *) {
682 // ensure that we don't add assignment ops for types defined as part of the trait
683 }
684
685 template< typename StmtClass >
686 inline void AutogenerateRoutines::visitStatement( StmtClass *stmt ) {
687 std::set< std::string > oldStructs = structsDone;
688 addVisit( stmt, *this );
689 structsDone = oldStructs;
690 }
691
692 void AutogenerateRoutines::visit( FunctionDecl *functionDecl ) {
693 // record the existence of this function as appropriate
694 insert( functionDecl, constructable, InitTweak::isDefaultConstructor );
695 insert( functionDecl, assignable, InitTweak::isAssignment );
696 insert( functionDecl, copyable, InitTweak::isCopyConstructor );
697 insert( functionDecl, destructable, InitTweak::isDestructor );
698
699 maybeAccept( functionDecl->get_functionType(), *this );
700 functionNesting += 1;
701 maybeAccept( functionDecl->get_statements(), *this );
702 functionNesting -= 1;
703 }
704
705 void AutogenerateRoutines::visit( CompoundStmt *compoundStmt ) {
706 constructable.beginScope();
707 assignable.beginScope();
708 copyable.beginScope();
709 destructable.beginScope();
710 visitStatement( compoundStmt );
711 constructable.endScope();
712 assignable.endScope();
713 copyable.endScope();
714 destructable.endScope();
715 }
716
717 void AutogenerateRoutines::visit( SwitchStmt *switchStmt ) {
718 visitStatement( switchStmt );
719 }
720
721 void makeTupleFunctionBody( FunctionDecl * function ) {
722 FunctionType * ftype = function->get_functionType();
723 assertf( ftype->get_parameters().size() == 1 || ftype->get_parameters().size() == 2, "too many parameters in generated tuple function" );
724
725 UntypedExpr * untyped = new UntypedExpr( new NameExpr( function->get_name() ) );
726
727 /// xxx - &* is used to make this easier for later passes to handle
728 untyped->get_args().push_back( new AddressExpr( UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) );
729 if ( ftype->get_parameters().size() == 2 ) {
730 untyped->get_args().push_back( new VariableExpr( ftype->get_parameters().back() ) );
731 }
732 function->get_statements()->get_kids().push_back( new ExprStmt( noLabels, untyped ) );
733 function->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) );
734 }
735
736 Type * AutogenTupleRoutines::mutate( TupleType * tupleType ) {
737 tupleType = strict_dynamic_cast< TupleType * >( Parent::mutate( tupleType ) );
738 std::string mangleName = SymTab::Mangler::mangleType( tupleType );
739 if ( seenTuples.find( mangleName ) != seenTuples.end() ) return tupleType;
740 seenTuples.insert( mangleName );
741
742 // T ?=?(T *, T);
743 FunctionType *assignType = genAssignType( tupleType );
744
745 // void ?{}(T *); void ^?{}(T *);
746 FunctionType *ctorType = genDefaultType( tupleType );
747 FunctionType *dtorType = genDefaultType( tupleType );
748
749 // void ?{}(T *, T);
750 FunctionType *copyCtorType = genCopyType( tupleType );
751
752 std::set< TypeDecl* > done;
753 std::list< TypeDecl * > typeParams;
754 for ( Type * t : *tupleType ) {
755 if ( TypeInstType * ty = dynamic_cast< TypeInstType * >( t ) ) {
756 if ( ! done.count( ty->get_baseType() ) ) {
757 TypeDecl * newDecl = new TypeDecl( ty->get_baseType()->get_name(), Type::StorageClasses(), nullptr, TypeDecl::Any );
758 TypeInstType * inst = new TypeInstType( Type::Qualifiers(), newDecl->get_name(), newDecl );
759 newDecl->get_assertions().push_back( new FunctionDecl( "?=?", Type::StorageClasses(), LinkageSpec::Cforall, genAssignType( inst ), nullptr,
760 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
761 newDecl->get_assertions().push_back( new FunctionDecl( "?{}", Type::StorageClasses(), LinkageSpec::Cforall, genDefaultType( inst ), nullptr,
762 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
763 newDecl->get_assertions().push_back( new FunctionDecl( "?{}", Type::StorageClasses(), LinkageSpec::Cforall, genCopyType( inst ), nullptr,
764 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
765 newDecl->get_assertions().push_back( new FunctionDecl( "^?{}", Type::StorageClasses(), LinkageSpec::Cforall, genDefaultType( inst ), nullptr,
766 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
767 typeParams.push_back( newDecl );
768 done.insert( ty->get_baseType() );
769 }
770 }
771 }
772 cloneAll( typeParams, ctorType->get_forall() );
773 cloneAll( typeParams, dtorType->get_forall() );
774 cloneAll( typeParams, copyCtorType->get_forall() );
775 cloneAll( typeParams, assignType->get_forall() );
776
777 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting );
778 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting );
779 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting );
780 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting );
781
782 makeTupleFunctionBody( assignDecl );
783 makeTupleFunctionBody( ctorDecl );
784 makeTupleFunctionBody( copyCtorDecl );
785 makeTupleFunctionBody( dtorDecl );
786
787 addDeclaration( ctorDecl );
788 addDeclaration( copyCtorDecl );
789 addDeclaration( dtorDecl );
790 addDeclaration( assignDecl ); // assignment should come last since it uses copy constructor in return
791
792 return tupleType;
793 }
794
795 DeclarationWithType * AutogenTupleRoutines::mutate( FunctionDecl *functionDecl ) {
796 functionDecl->set_functionType( maybeMutate( functionDecl->get_functionType(), *this ) );
797 functionNesting += 1;
798 functionDecl->set_statements( maybeMutate( functionDecl->get_statements(), *this ) );
799 functionNesting -= 1;
800 return functionDecl;
801 }
802
803 CompoundStmt * AutogenTupleRoutines::mutate( CompoundStmt *compoundStmt ) {
804 seenTuples.beginScope();
805 compoundStmt = strict_dynamic_cast< CompoundStmt * >( Parent::mutate( compoundStmt ) );
806 seenTuples.endScope();
807 return compoundStmt;
808 }
809} // SymTab
810
811// Local Variables: //
812// tab-width: 4 //
813// mode: c++ //
814// compile-command: "make install" //
815// End: //
Note: See TracBrowser for help on using the repository browser.