source: src/SymTab/Autogen.cc@ 3f414ef

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 3f414ef was a7c90d4, checked in by Peter A. Buhr <pabuhr@…>, 9 years ago

change StorageClass to bitset, support _Thread_local as separate storage-class

  • Property mode set to 100644
File size: 37.2 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Autogen.cc --
8//
9// Author : Rob Schluntz
10// Created On : Thu Mar 03 15:45:56 2016
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Tue Mar 7 07:42:44 2017
13// Update Count : 51
14//
15
16#include <list>
17#include <iterator>
18#include "SynTree/Visitor.h"
19#include "SynTree/Type.h"
20#include "SynTree/Statement.h"
21#include "SynTree/TypeSubstitution.h"
22#include "Common/utility.h"
23#include "AddVisit.h"
24#include "MakeLibCfa.h"
25#include "Autogen.h"
26#include "GenPoly/ScopedSet.h"
27#include "Common/ScopedMap.h"
28#include "SymTab/Mangler.h"
29#include "GenPoly/DeclMutator.h"
30
31namespace SymTab {
32 Type * SizeType = 0;
33 typedef ScopedMap< std::string, bool > TypeMap;
34
35 /// Data used to generate functions generically. Specifically, the name of the generated function, a function which generates the routine protoype, and a map which contains data to determine whether a function should be generated.
36 struct FuncData {
37 typedef FunctionType * (*TypeGen)( Type * );
38 FuncData( const std::string & fname, const TypeGen & genType, TypeMap & map ) : fname( fname ), genType( genType ), map( map ) {}
39 std::string fname;
40 TypeGen genType;
41 TypeMap & map;
42 };
43
44 class AutogenerateRoutines final : public Visitor {
45 template< typename Visitor >
46 friend void acceptAndAdd( std::list< Declaration * > &translationUnit, Visitor &visitor );
47 template< typename Visitor >
48 friend void addVisitStatementList( std::list< Statement* > &stmts, Visitor &visitor );
49 public:
50 std::list< Declaration * > &get_declsToAdd() { return declsToAdd; }
51
52 typedef Visitor Parent;
53 using Parent::visit;
54
55 AutogenerateRoutines();
56
57 virtual void visit( EnumDecl *enumDecl );
58 virtual void visit( StructDecl *structDecl );
59 virtual void visit( UnionDecl *structDecl );
60 virtual void visit( TypeDecl *typeDecl );
61 virtual void visit( TraitDecl *ctxDecl );
62 virtual void visit( FunctionDecl *functionDecl );
63
64 virtual void visit( FunctionType *ftype );
65 virtual void visit( PointerType *ftype );
66
67 virtual void visit( CompoundStmt *compoundStmt );
68 virtual void visit( SwitchStmt *switchStmt );
69
70 private:
71 template< typename StmtClass > void visitStatement( StmtClass *stmt );
72
73 std::list< Declaration * > declsToAdd, declsToAddAfter;
74 std::set< std::string > structsDone;
75 unsigned int functionNesting = 0; // current level of nested functions
76 /// Note: the following maps could be ScopedSets, but it should be easier to work
77 /// deleted functions in if they are maps, since the value false can be inserted
78 /// at the current scope without affecting outer scopes or requiring copies.
79 TypeMap copyable, assignable, constructable, destructable;
80 std::vector< FuncData > data;
81 };
82
83 /// generates routines for tuple types.
84 /// Doesn't really need to be a mutator, but it's easier to reuse DeclMutator than it is to use AddVisit
85 /// or anything we currently have that supports adding new declarations for visitors
86 class AutogenTupleRoutines : public GenPoly::DeclMutator {
87 public:
88 typedef GenPoly::DeclMutator Parent;
89 using Parent::mutate;
90
91 virtual DeclarationWithType * mutate( FunctionDecl *functionDecl );
92
93 virtual Type * mutate( TupleType *tupleType );
94
95 virtual CompoundStmt * mutate( CompoundStmt *compoundStmt );
96
97 private:
98 unsigned int functionNesting = 0; // current level of nested functions
99 GenPoly::ScopedSet< std::string > seenTuples;
100 };
101
102 void autogenerateRoutines( std::list< Declaration * > &translationUnit ) {
103 AutogenerateRoutines generator;
104 acceptAndAdd( translationUnit, generator );
105
106 // needs to be done separately because AutogenerateRoutines skips types that appear as function arguments, etc.
107 // AutogenTupleRoutines tupleGenerator;
108 // tupleGenerator.mutateDeclarationList( translationUnit );
109 }
110
111 bool isUnnamedBitfield( ObjectDecl * obj ) {
112 return obj != NULL && obj->get_name() == "" && obj->get_bitfieldWidth() != NULL;
113 }
114
115 /// inserts a forward declaration for functionDecl into declsToAdd
116 void addForwardDecl( FunctionDecl * functionDecl, std::list< Declaration * > & declsToAdd ) {
117 FunctionDecl * decl = functionDecl->clone();
118 delete decl->get_statements();
119 decl->set_statements( NULL );
120 declsToAdd.push_back( decl );
121 decl->fixUniqueId();
122 }
123
124 /// given type T, generate type of default ctor/dtor, i.e. function type void (*) (T *)
125 FunctionType * genDefaultType( Type * paramType ) {
126 FunctionType *ftype = new FunctionType( Type::Qualifiers(), false );
127 ObjectDecl *dstParam = new ObjectDecl( "_dst", DeclarationNode::StorageClasses(), LinkageSpec::Cforall, nullptr, new PointerType( Type::Qualifiers(), paramType->clone() ), nullptr );
128 ftype->get_parameters().push_back( dstParam );
129
130 return ftype;
131 }
132
133 /// given type T, generate type of copy ctor, i.e. function type void (*) (T *, T)
134 FunctionType * genCopyType( Type * paramType ) {
135 FunctionType *ftype = genDefaultType( paramType );
136 ObjectDecl *srcParam = new ObjectDecl( "_src", DeclarationNode::StorageClasses(), LinkageSpec::Cforall, nullptr, paramType->clone(), nullptr );
137 ftype->get_parameters().push_back( srcParam );
138 return ftype;
139 }
140
141 /// given type T, generate type of assignment, i.e. function type T (*) (T *, T)
142 FunctionType * genAssignType( Type * paramType ) {
143 FunctionType *ftype = genCopyType( paramType );
144 ObjectDecl *returnVal = new ObjectDecl( "_ret", DeclarationNode::StorageClasses(), LinkageSpec::Cforall, nullptr, paramType->clone(), nullptr );
145 ftype->get_returnVals().push_back( returnVal );
146 return ftype;
147 }
148
149 /// true if the aggregate's layout is dynamic
150 template< typename AggrDecl >
151 bool hasDynamicLayout( AggrDecl * aggregateDecl ) {
152 for ( TypeDecl * param : aggregateDecl->get_parameters() ) {
153 if ( param->get_kind() == TypeDecl::Any ) return true;
154 }
155 return false;
156 }
157
158 /// generate a function decl from a name and type. Nesting depth determines whether
159 /// the declaration is static or not; optional paramter determines if declaration is intrinsic
160 FunctionDecl * genFunc( const std::string & fname, FunctionType * ftype, unsigned int functionNesting, bool isIntrinsic = false ) {
161 // Routines at global scope marked "static" to prevent multiple definitions in separate translation units
162 // because each unit generates copies of the default routines for each aggregate.
163// DeclarationNode::StorageClass sc = functionNesting > 0 ? DeclarationNode::NoStorageClass : DeclarationNode::Static;
164 DeclarationNode::StorageClasses scs = functionNesting > 0 ? DeclarationNode::StorageClasses() : DeclarationNode::StorageClasses( DeclarationNode::StaticClass );
165 LinkageSpec::Spec spec = isIntrinsic ? LinkageSpec::Intrinsic : LinkageSpec::AutoGen;
166 FunctionDecl * decl = new FunctionDecl( fname, scs, spec, ftype, new CompoundStmt( noLabels ),
167 std::list< Attribute * >(), DeclarationNode::FuncSpecifiers( DeclarationNode::InlineSpec ) );
168 decl->fixUniqueId();
169 return decl;
170 }
171
172 /// inserts base type of first argument into map if pred(funcDecl) is true
173 void insert( FunctionDecl *funcDecl, TypeMap & map, FunctionDecl * (*pred)(Declaration *) ) {
174 // insert type into constructable, etc. map if appropriate
175 if ( pred( funcDecl ) ) {
176 FunctionType * ftype = funcDecl->get_functionType();
177 assert( ! ftype->get_parameters().empty() );
178 Type * t = safe_dynamic_cast< PointerType * >( ftype->get_parameters().front()->get_type() )->get_base();
179 map.insert( Mangler::mangleType( t ), true );
180 }
181 }
182
183 /// using map and t, determines if is constructable, etc.
184 bool lookup( const TypeMap & map, Type * t ) {
185 if ( dynamic_cast< PointerType * >( t ) ) {
186 // will need more complicated checking if we want this to work with pointer types, since currently
187 return true;
188 } else if ( ArrayType * at = dynamic_cast< ArrayType * >( t ) ) {
189 // an array's constructor, etc. is generated on the fly based on the base type's constructor, etc.
190 return lookup( map, at->get_base() );
191 }
192 TypeMap::const_iterator it = map.find( Mangler::mangleType( t ) );
193 if ( it != map.end() ) return it->second;
194 // something that does not appear in the map is by default not constructable, etc.
195 return false;
196 }
197
198 /// using map and aggr, examines each member to determine if constructor, etc. should be generated
199 template<typename AggrDecl>
200 bool shouldGenerate( const TypeMap & map, AggrDecl * aggr ) {
201 for ( Declaration * dcl : aggr->get_members() ) {
202 if ( DeclarationWithType * dwt = dynamic_cast< DeclarationWithType * >( dcl ) ) {
203 if ( ! lookup( map, dwt->get_type() ) ) return false;
204 }
205 }
206 return true;
207 }
208
209 /// data structure for abstracting the generation of special functions
210 template< typename OutputIterator >
211 struct FuncGenerator {
212 StructDecl *aggregateDecl;
213 StructInstType *refType;
214 unsigned int functionNesting;
215 const std::list< TypeDecl* > & typeParams;
216 OutputIterator out;
217 FuncGenerator( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, const std::list< TypeDecl* > & typeParams, OutputIterator out ) : aggregateDecl( aggregateDecl ), refType( refType ), functionNesting( functionNesting ), typeParams( typeParams ), out( out ) {}
218
219 /// generates a function (?{}, ?=?, ^?{}) based on the data argument and members. If function is generated, inserts the type into the map.
220 void gen( const FuncData & data ) {
221 if ( ! shouldGenerate( data.map, aggregateDecl ) ) return;
222 FunctionType * ftype = data.genType( refType );
223 cloneAll( typeParams, ftype->get_forall() );
224 *out++ = genFunc( data.fname, ftype, functionNesting );
225 data.map.insert( Mangler::mangleType( refType ), true );
226 }
227 };
228
229 template< typename OutputIterator >
230 FuncGenerator<OutputIterator> makeFuncGenerator( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, const std::list< TypeDecl* > & typeParams, OutputIterator out ) {
231 return FuncGenerator<OutputIterator>( aggregateDecl, refType, functionNesting, typeParams, out );
232 }
233
234 /// generates a single enumeration assignment expression
235 ApplicationExpr * genEnumAssign( FunctionType * ftype, FunctionDecl * assignDecl ) {
236 // enum copy construct and assignment is just C-style assignment.
237 // this looks like a bad recursive call, but code gen will turn it into
238 // a C-style assignment.
239 // This happens before function pointer type conversion, so need to do it manually here
240 // NOTE: ftype is not necessarily the functionType belonging to assignDecl - ftype is the
241 // type of the function that this expression is being generated for (so that the correct
242 // parameters) are using in the variable exprs
243 assert( ftype->get_parameters().size() == 2 );
244 ObjectDecl * dstParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().front() );
245 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().back() );
246
247 VariableExpr * assignVarExpr = new VariableExpr( assignDecl );
248 Type * assignVarExprType = assignVarExpr->get_result();
249 assignVarExprType = new PointerType( Type::Qualifiers(), assignVarExprType );
250 assignVarExpr->set_result( assignVarExprType );
251 ApplicationExpr * assignExpr = new ApplicationExpr( assignVarExpr );
252 assignExpr->get_args().push_back( new VariableExpr( dstParam ) );
253 assignExpr->get_args().push_back( new VariableExpr( srcParam ) );
254 return assignExpr;
255 }
256
257 // E ?=?(E volatile*, int),
258 // ?=?(E _Atomic volatile*, int);
259 void makeEnumFunctions( EnumDecl *enumDecl, EnumInstType *refType, unsigned int functionNesting, std::list< Declaration * > &declsToAdd ) {
260
261 // T ?=?(E *, E);
262 FunctionType *assignType = genAssignType( refType );
263
264 // void ?{}(E *); void ^?{}(E *);
265 FunctionType * ctorType = genDefaultType( refType->clone() );
266 FunctionType * dtorType = genDefaultType( refType->clone() );
267
268 // void ?{}(E *, E);
269 FunctionType *copyCtorType = genCopyType( refType->clone() );
270
271 // xxx - should we also generate void ?{}(E *, int) and E ?{}(E *, E)?
272 // right now these cases work, but that might change.
273
274 // xxx - Temporary: make these functions intrinsic so they codegen as C assignment.
275 // Really they're something of a cross between instrinsic and autogen, so should
276 // probably make a new linkage type
277 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting, true );
278 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting, true );
279 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting, true );
280 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting, true );
281
282 // body is either return stmt or expr stmt
283 assignDecl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, genEnumAssign( assignType, assignDecl ) ) );
284 copyCtorDecl->get_statements()->get_kids().push_back( new ExprStmt( noLabels, genEnumAssign( copyCtorType, assignDecl ) ) );
285
286 declsToAdd.push_back( ctorDecl );
287 declsToAdd.push_back( copyCtorDecl );
288 declsToAdd.push_back( dtorDecl );
289 declsToAdd.push_back( assignDecl ); // assignment should come last since it uses copy constructor in return
290 }
291
292 /// generates a single struct member operation (constructor call, destructor call, assignment call)
293 void makeStructMemberOp( ObjectDecl * dstParam, Expression * src, DeclarationWithType * field, FunctionDecl * func, bool isDynamicLayout, bool forward = true ) {
294 ObjectDecl * returnVal = NULL;
295 if ( ! func->get_functionType()->get_returnVals().empty() ) {
296 returnVal = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_returnVals().front() );
297 }
298
299 InitTweak::InitExpander srcParam( src );
300
301 // assign to destination (and return value if generic)
302 UntypedExpr *derefExpr = UntypedExpr::createDeref( new VariableExpr( dstParam ) );
303 Expression *dstselect = new MemberExpr( field, derefExpr );
304 genImplicitCall( srcParam, dstselect, func->get_name(), back_inserter( func->get_statements()->get_kids() ), field, forward );
305
306 if ( isDynamicLayout && returnVal ) {
307 // xxx - there used to be a dereference on returnVal, but this seems to have been wrong?
308 Expression *retselect = new MemberExpr( field, new VariableExpr( returnVal ) );
309 genImplicitCall( srcParam, retselect, func->get_name(), back_inserter( func->get_statements()->get_kids() ), field, forward );
310 } // if
311 }
312
313 /// generates the body of a struct function by iterating the struct members (via parameters) - generates default ctor, copy ctor, assignment, and dtor bodies, but NOT field ctor bodies
314 template<typename Iterator>
315 void makeStructFunctionBody( Iterator member, Iterator end, FunctionDecl * func, bool isDynamicLayout, bool forward = true ) {
316 for ( ; member != end; ++member ) {
317 if ( DeclarationWithType *field = dynamic_cast< DeclarationWithType * >( *member ) ) { // otherwise some form of type declaration, e.g. Aggregate
318 // query the type qualifiers of this field and skip assigning it if it is marked const.
319 // If it is an array type, we need to strip off the array layers to find its qualifiers.
320 Type * type = field->get_type();
321 while ( ArrayType * at = dynamic_cast< ArrayType * >( type ) ) {
322 type = at->get_base();
323 }
324
325 if ( type->get_qualifiers().isConst && func->get_name() == "?=?" ) {
326 // don't assign const members, but do construct/destruct
327 continue;
328 }
329
330 if ( field->get_name() == "" ) {
331 // don't assign to anonymous members
332 // xxx - this is a temporary fix. Anonymous members tie into
333 // our inheritance model. I think the correct way to handle this is to
334 // cast the structure to the type of the member and let the resolver
335 // figure out whether it's valid and have a pass afterwards that fixes
336 // the assignment to use pointer arithmetic with the offset of the
337 // member, much like how generic type members are handled.
338 continue;
339 }
340
341 assert( ! func->get_functionType()->get_parameters().empty() );
342 ObjectDecl * dstParam = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_parameters().front() );
343 ObjectDecl * srcParam = NULL;
344 if ( func->get_functionType()->get_parameters().size() == 2 ) {
345 srcParam = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_parameters().back() );
346 }
347 // srcParam may be NULL, in which case we have default ctor/dtor
348 assert( dstParam );
349
350 Expression *srcselect = srcParam ? new MemberExpr( field, new VariableExpr( srcParam ) ) : NULL;
351 makeStructMemberOp( dstParam, srcselect, field, func, isDynamicLayout, forward );
352 } // if
353 } // for
354 } // makeStructFunctionBody
355
356 /// generate the body of a constructor which takes parameters that match fields, e.g.
357 /// void ?{}(A *, int) and void?{}(A *, int, int) for a struct A which has two int fields.
358 template<typename Iterator>
359 void makeStructFieldCtorBody( Iterator member, Iterator end, FunctionDecl * func, bool isDynamicLayout ) {
360 FunctionType * ftype = func->get_functionType();
361 std::list<DeclarationWithType*> & params = ftype->get_parameters();
362 assert( params.size() >= 2 ); // should not call this function for default ctor, etc.
363
364 // skip 'this' parameter
365 ObjectDecl * dstParam = dynamic_cast<ObjectDecl*>( params.front() );
366 assert( dstParam );
367 std::list<DeclarationWithType*>::iterator parameter = params.begin()+1;
368 for ( ; member != end; ++member ) {
369 if ( DeclarationWithType * field = dynamic_cast<DeclarationWithType*>( *member ) ) {
370 if ( isUnnamedBitfield( dynamic_cast< ObjectDecl * > ( field ) ) ) {
371 // don't make a function whose parameter is an unnamed bitfield
372 continue;
373 } else if ( field->get_name() == "" ) {
374 // don't assign to anonymous members
375 // xxx - this is a temporary fix. Anonymous members tie into
376 // our inheritance model. I think the correct way to handle this is to
377 // cast the structure to the type of the member and let the resolver
378 // figure out whether it's valid and have a pass afterwards that fixes
379 // the assignment to use pointer arithmetic with the offset of the
380 // member, much like how generic type members are handled.
381 continue;
382 } else if ( parameter != params.end() ) {
383 // matching parameter, initialize field with copy ctor
384 Expression *srcselect = new VariableExpr(*parameter);
385 makeStructMemberOp( dstParam, srcselect, field, func, isDynamicLayout );
386 ++parameter;
387 } else {
388 // no matching parameter, initialize field with default ctor
389 makeStructMemberOp( dstParam, NULL, field, func, isDynamicLayout );
390 }
391 }
392 }
393 }
394
395 /// generates struct constructors, destructor, and assignment functions
396 void makeStructFunctions( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, std::list< Declaration * > & declsToAdd, const std::vector< FuncData > & data ) {
397 // Make function polymorphic in same parameters as generic struct, if applicable
398 const std::list< TypeDecl* > & typeParams = aggregateDecl->get_parameters(); // List of type variables to be placed on the generated functions
399 bool isDynamicLayout = hasDynamicLayout( aggregateDecl ); // NOTE this flag is an incredibly ugly kludge; we should fix the assignment signature instead (ditto for union)
400
401 // generate each of the functions based on the supplied FuncData objects
402 std::list< FunctionDecl * > newFuncs;
403 auto generator = makeFuncGenerator( aggregateDecl, refType, functionNesting, typeParams, back_inserter( newFuncs ) );
404 for ( const FuncData & d : data ) {
405 generator.gen( d );
406 }
407 // field ctors are only generated if default constructor and copy constructor are both generated
408 unsigned numCtors = std::count_if( newFuncs.begin(), newFuncs.end(), [](FunctionDecl * dcl) { return InitTweak::isConstructor( dcl->get_name() ); } );
409
410 if ( functionNesting == 0 ) {
411 // forward declare if top-level struct, so that
412 // type is complete as soon as its body ends
413 // Note: this is necessary if we want structs which contain
414 // generic (otype) structs as members.
415 for ( FunctionDecl * dcl : newFuncs ) {
416 addForwardDecl( dcl, declsToAdd );
417 }
418 }
419
420 for ( FunctionDecl * dcl : newFuncs ) {
421 // generate appropriate calls to member ctor, assignment
422 // destructor needs to do everything in reverse, so pass "forward" based on whether the function is a destructor
423 if ( ! InitTweak::isDestructor( dcl->get_name() ) ) {
424 makeStructFunctionBody( aggregateDecl->get_members().begin(), aggregateDecl->get_members().end(), dcl, isDynamicLayout );
425 } else {
426 makeStructFunctionBody( aggregateDecl->get_members().rbegin(), aggregateDecl->get_members().rend(), dcl, isDynamicLayout, false );
427 }
428 if ( InitTweak::isAssignment( dcl->get_name() ) ) {
429 // assignment needs to return a value
430 FunctionType * assignType = dcl->get_functionType();
431 assert( assignType->get_parameters().size() == 2 );
432 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( assignType->get_parameters().back() );
433 dcl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, new VariableExpr( srcParam ) ) );
434 }
435 declsToAdd.push_back( dcl );
436 }
437
438 // create constructors which take each member type as a parameter.
439 // for example, for struct A { int x, y; }; generate
440 // void ?{}(A *, int) and void ?{}(A *, int, int)
441 // Field constructors are only generated if default and copy constructor
442 // are generated, since they need access to both
443 if ( numCtors == 2 ) {
444 FunctionType * memCtorType = genDefaultType( refType );
445 cloneAll( typeParams, memCtorType->get_forall() );
446 for ( std::list<Declaration *>::iterator i = aggregateDecl->get_members().begin(); i != aggregateDecl->get_members().end(); ++i ) {
447 DeclarationWithType * member = dynamic_cast<DeclarationWithType *>( *i );
448 assert( member );
449 if ( isUnnamedBitfield( dynamic_cast< ObjectDecl * > ( member ) ) ) {
450 // don't make a function whose parameter is an unnamed bitfield
451 continue;
452 } else if ( member->get_name() == "" ) {
453 // don't assign to anonymous members
454 // xxx - this is a temporary fix. Anonymous members tie into
455 // our inheritance model. I think the correct way to handle this is to
456 // cast the structure to the type of the member and let the resolver
457 // figure out whether it's valid and have a pass afterwards that fixes
458 // the assignment to use pointer arithmetic with the offset of the
459 // member, much like how generic type members are handled.
460 continue;
461 }
462 memCtorType->get_parameters().push_back( new ObjectDecl( member->get_name(), DeclarationNode::StorageClasses(), LinkageSpec::Cforall, 0, member->get_type()->clone(), 0 ) );
463 FunctionDecl * ctor = genFunc( "?{}", memCtorType->clone(), functionNesting );
464 makeStructFieldCtorBody( aggregateDecl->get_members().begin(), aggregateDecl->get_members().end(), ctor, isDynamicLayout );
465 declsToAdd.push_back( ctor );
466 }
467 delete memCtorType;
468 }
469 }
470
471 /// generate a single union assignment expression (using memcpy)
472 template< typename OutputIterator >
473 void makeUnionFieldsAssignment( ObjectDecl * srcParam, ObjectDecl * dstParam, OutputIterator out ) {
474 UntypedExpr *copy = new UntypedExpr( new NameExpr( "__builtin_memcpy" ) );
475 copy->get_args().push_back( new VariableExpr( dstParam ) );
476 copy->get_args().push_back( new AddressExpr( new VariableExpr( srcParam ) ) );
477 copy->get_args().push_back( new SizeofExpr( srcParam->get_type()->clone() ) );
478 *out++ = new ExprStmt( noLabels, copy );
479 }
480
481 /// generates the body of a union assignment/copy constructor/field constructor
482 void makeUnionAssignBody( FunctionDecl * funcDecl, bool isDynamicLayout ) {
483 FunctionType * ftype = funcDecl->get_functionType();
484 assert( ftype->get_parameters().size() == 2 );
485 ObjectDecl * dstParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().front() );
486 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().back() );
487 ObjectDecl * returnVal = nullptr;
488 if ( ! ftype->get_returnVals().empty() ) {
489 returnVal = safe_dynamic_cast< ObjectDecl * >( ftype->get_returnVals().front() );
490 }
491
492 makeUnionFieldsAssignment( srcParam, dstParam, back_inserter( funcDecl->get_statements()->get_kids() ) );
493 if ( returnVal ) {
494 if ( isDynamicLayout ) makeUnionFieldsAssignment( srcParam, returnVal, back_inserter( funcDecl->get_statements()->get_kids() ) );
495 else funcDecl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, new VariableExpr( srcParam ) ) );
496 }
497 }
498
499 /// generates union constructors, destructors, and assignment operator
500 void makeUnionFunctions( UnionDecl *aggregateDecl, UnionInstType *refType, unsigned int functionNesting, std::list< Declaration * > & declsToAdd ) {
501 // Make function polymorphic in same parameters as generic union, if applicable
502 const std::list< TypeDecl* > & typeParams = aggregateDecl->get_parameters(); // List of type variables to be placed on the generated functions
503 bool isDynamicLayout = hasDynamicLayout( aggregateDecl ); // NOTE this flag is an incredibly ugly kludge; we should fix the assignment signature instead (ditto for struct)
504
505 // default ctor/dtor need only first parameter
506 // void ?{}(T *); void ^?{}(T *);
507 FunctionType *ctorType = genDefaultType( refType );
508 FunctionType *dtorType = genDefaultType( refType );
509
510 // copy ctor needs both parameters
511 // void ?{}(T *, T);
512 FunctionType *copyCtorType = genCopyType( refType );
513
514 // assignment needs both and return value
515 // T ?=?(T *, T);
516 FunctionType *assignType = genAssignType( refType );
517
518 cloneAll( typeParams, ctorType->get_forall() );
519 cloneAll( typeParams, dtorType->get_forall() );
520 cloneAll( typeParams, copyCtorType->get_forall() );
521 cloneAll( typeParams, assignType->get_forall() );
522
523 // Routines at global scope marked "static" to prevent multiple definitions is separate translation units
524 // because each unit generates copies of the default routines for each aggregate.
525 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting );
526 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting );
527 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting );
528 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting );
529
530 makeUnionAssignBody( assignDecl, isDynamicLayout );
531
532 // body of assignment and copy ctor is the same
533 makeUnionAssignBody( copyCtorDecl, isDynamicLayout );
534
535 // create a constructor which takes the first member type as a parameter.
536 // for example, for Union A { int x; double y; }; generate
537 // void ?{}(A *, int)
538 // This is to mimic C's behaviour which initializes the first member of the union.
539 std::list<Declaration *> memCtors;
540 for ( Declaration * member : aggregateDecl->get_members() ) {
541 if ( DeclarationWithType * field = dynamic_cast< DeclarationWithType * >( member ) ) {
542 ObjectDecl * srcParam = new ObjectDecl( "src", DeclarationNode::StorageClasses(), LinkageSpec::Cforall, 0, field->get_type()->clone(), 0 );
543
544 FunctionType * memCtorType = ctorType->clone();
545 memCtorType->get_parameters().push_back( srcParam );
546 FunctionDecl * ctor = genFunc( "?{}", memCtorType, functionNesting );
547
548 makeUnionAssignBody( ctor, isDynamicLayout );
549 memCtors.push_back( ctor );
550 // only generate a ctor for the first field
551 break;
552 }
553 }
554
555 declsToAdd.push_back( ctorDecl );
556 declsToAdd.push_back( copyCtorDecl );
557 declsToAdd.push_back( dtorDecl );
558 declsToAdd.push_back( assignDecl ); // assignment should come last since it uses copy constructor in return
559 declsToAdd.splice( declsToAdd.end(), memCtors );
560 }
561
562 AutogenerateRoutines::AutogenerateRoutines() {
563 // the order here determines the order that these functions are generated.
564 // assignment should come last since it uses copy constructor in return.
565 data.push_back( FuncData( "?{}", genDefaultType, constructable ) );
566 data.push_back( FuncData( "?{}", genCopyType, copyable ) );
567 data.push_back( FuncData( "^?{}", genDefaultType, destructable ) );
568 data.push_back( FuncData( "?=?", genAssignType, assignable ) );
569 }
570
571 void AutogenerateRoutines::visit( EnumDecl *enumDecl ) {
572 if ( ! enumDecl->get_members().empty() ) {
573 EnumInstType *enumInst = new EnumInstType( Type::Qualifiers(), enumDecl->get_name() );
574 // enumInst->set_baseEnum( enumDecl );
575 makeEnumFunctions( enumDecl, enumInst, functionNesting, declsToAddAfter );
576 }
577 }
578
579 void AutogenerateRoutines::visit( StructDecl *structDecl ) {
580 if ( structDecl->has_body() && structsDone.find( structDecl->get_name() ) == structsDone.end() ) {
581 StructInstType structInst( Type::Qualifiers(), structDecl->get_name() );
582 for ( TypeDecl * typeDecl : structDecl->get_parameters() ) {
583 // need to visit assertions so that they are added to the appropriate maps
584 acceptAll( typeDecl->get_assertions(), *this );
585 structInst.get_parameters().push_back( new TypeExpr( new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), typeDecl ) ) );
586 }
587 structInst.set_baseStruct( structDecl );
588 makeStructFunctions( structDecl, &structInst, functionNesting, declsToAddAfter, data );
589 structsDone.insert( structDecl->get_name() );
590 } // if
591 }
592
593 void AutogenerateRoutines::visit( UnionDecl *unionDecl ) {
594 if ( ! unionDecl->get_members().empty() ) {
595 UnionInstType unionInst( Type::Qualifiers(), unionDecl->get_name() );
596 unionInst.set_baseUnion( unionDecl );
597 for ( TypeDecl * typeDecl : unionDecl->get_parameters() ) {
598 unionInst.get_parameters().push_back( new TypeExpr( new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), typeDecl ) ) );
599 }
600 makeUnionFunctions( unionDecl, &unionInst, functionNesting, declsToAddAfter );
601 } // if
602 }
603
604 void AutogenerateRoutines::visit( TypeDecl *typeDecl ) {
605 TypeInstType *typeInst = new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), false );
606 typeInst->set_baseType( typeDecl );
607 ObjectDecl *src = new ObjectDecl( "_src", DeclarationNode::StorageClasses(), LinkageSpec::Cforall, nullptr, typeInst->clone(), nullptr );
608 ObjectDecl *dst = new ObjectDecl( "_dst", DeclarationNode::StorageClasses(), LinkageSpec::Cforall, nullptr, new PointerType( Type::Qualifiers(), typeInst->clone() ), nullptr );
609
610 std::list< Statement * > stmts;
611 if ( typeDecl->get_base() ) {
612 // xxx - generate ctor/dtors for typedecls, e.g.
613 // otype T = int *;
614 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
615 assign->get_args().push_back( new CastExpr( new VariableExpr( dst ), new PointerType( Type::Qualifiers(), typeDecl->get_base()->clone() ) ) );
616 assign->get_args().push_back( new CastExpr( new VariableExpr( src ), typeDecl->get_base()->clone() ) );
617 stmts.push_back( new ReturnStmt( std::list< Label >(), assign ) );
618 } // if
619 FunctionType *type = new FunctionType( Type::Qualifiers(), false );
620 type->get_returnVals().push_back( new ObjectDecl( "", DeclarationNode::StorageClasses(), LinkageSpec::Cforall, 0, typeInst, 0 ) );
621 type->get_parameters().push_back( dst );
622 type->get_parameters().push_back( src );
623 FunctionDecl *func = genFunc( "?=?", type, functionNesting );
624 func->get_statements()->get_kids() = stmts;
625 declsToAddAfter.push_back( func );
626 }
627
628 void addDecls( std::list< Declaration * > &declsToAdd, std::list< Statement * > &statements, std::list< Statement * >::iterator i ) {
629 for ( std::list< Declaration * >::iterator decl = declsToAdd.begin(); decl != declsToAdd.end(); ++decl ) {
630 statements.insert( i, new DeclStmt( noLabels, *decl ) );
631 } // for
632 declsToAdd.clear();
633 }
634
635 void AutogenerateRoutines::visit( FunctionType *) {
636 // ensure that we don't add assignment ops for types defined as part of the function
637 }
638
639 void AutogenerateRoutines::visit( PointerType *) {
640 // ensure that we don't add assignment ops for types defined as part of the pointer
641 }
642
643 void AutogenerateRoutines::visit( TraitDecl *) {
644 // ensure that we don't add assignment ops for types defined as part of the trait
645 }
646
647 template< typename StmtClass >
648 inline void AutogenerateRoutines::visitStatement( StmtClass *stmt ) {
649 std::set< std::string > oldStructs = structsDone;
650 addVisit( stmt, *this );
651 structsDone = oldStructs;
652 }
653
654 void AutogenerateRoutines::visit( FunctionDecl *functionDecl ) {
655 // record the existence of this function as appropriate
656 insert( functionDecl, constructable, InitTweak::isDefaultConstructor );
657 insert( functionDecl, assignable, InitTweak::isAssignment );
658 insert( functionDecl, copyable, InitTweak::isCopyConstructor );
659 insert( functionDecl, destructable, InitTweak::isDestructor );
660
661 maybeAccept( functionDecl->get_functionType(), *this );
662 functionNesting += 1;
663 maybeAccept( functionDecl->get_statements(), *this );
664 functionNesting -= 1;
665 }
666
667 void AutogenerateRoutines::visit( CompoundStmt *compoundStmt ) {
668 constructable.beginScope();
669 assignable.beginScope();
670 copyable.beginScope();
671 destructable.beginScope();
672 visitStatement( compoundStmt );
673 constructable.endScope();
674 assignable.endScope();
675 copyable.endScope();
676 destructable.endScope();
677 }
678
679 void AutogenerateRoutines::visit( SwitchStmt *switchStmt ) {
680 visitStatement( switchStmt );
681 }
682
683 void makeTupleFunctionBody( FunctionDecl * function ) {
684 FunctionType * ftype = function->get_functionType();
685 assertf( ftype->get_parameters().size() == 1 || ftype->get_parameters().size() == 2, "too many parameters in generated tuple function" );
686
687 UntypedExpr * untyped = new UntypedExpr( new NameExpr( function->get_name() ) );
688
689 /// xxx - &* is used to make this easier for later passes to handle
690 untyped->get_args().push_back( new AddressExpr( UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) );
691 if ( ftype->get_parameters().size() == 2 ) {
692 untyped->get_args().push_back( new VariableExpr( ftype->get_parameters().back() ) );
693 }
694 function->get_statements()->get_kids().push_back( new ExprStmt( noLabels, untyped ) );
695 function->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) );
696 }
697
698 Type * AutogenTupleRoutines::mutate( TupleType * tupleType ) {
699 tupleType = safe_dynamic_cast< TupleType * >( Parent::mutate( tupleType ) );
700 std::string mangleName = SymTab::Mangler::mangleType( tupleType );
701 if ( seenTuples.find( mangleName ) != seenTuples.end() ) return tupleType;
702 seenTuples.insert( mangleName );
703
704 // T ?=?(T *, T);
705 FunctionType *assignType = genAssignType( tupleType );
706
707 // void ?{}(T *); void ^?{}(T *);
708 FunctionType *ctorType = genDefaultType( tupleType );
709 FunctionType *dtorType = genDefaultType( tupleType );
710
711 // void ?{}(T *, T);
712 FunctionType *copyCtorType = genCopyType( tupleType );
713
714 std::set< TypeDecl* > done;
715 std::list< TypeDecl * > typeParams;
716 for ( Type * t : *tupleType ) {
717 if ( TypeInstType * ty = dynamic_cast< TypeInstType * >( t ) ) {
718 if ( ! done.count( ty->get_baseType() ) ) {
719 TypeDecl * newDecl = new TypeDecl( ty->get_baseType()->get_name(), DeclarationNode::StorageClasses(), nullptr, TypeDecl::Any );
720 TypeInstType * inst = new TypeInstType( Type::Qualifiers(), newDecl->get_name(), newDecl );
721 newDecl->get_assertions().push_back( new FunctionDecl( "?=?", DeclarationNode::StorageClasses(), LinkageSpec::Cforall, genAssignType( inst ), nullptr,
722 std::list< Attribute * >(), DeclarationNode::FuncSpecifiers( DeclarationNode::InlineSpec ) ) );
723 newDecl->get_assertions().push_back( new FunctionDecl( "?{}", DeclarationNode::StorageClasses(), LinkageSpec::Cforall, genDefaultType( inst ), nullptr,
724 std::list< Attribute * >(), DeclarationNode::FuncSpecifiers( DeclarationNode::InlineSpec ) ) );
725 newDecl->get_assertions().push_back( new FunctionDecl( "?{}", DeclarationNode::StorageClasses(), LinkageSpec::Cforall, genCopyType( inst ), nullptr,
726 std::list< Attribute * >(), DeclarationNode::FuncSpecifiers( DeclarationNode::InlineSpec ) ) );
727 newDecl->get_assertions().push_back( new FunctionDecl( "^?{}", DeclarationNode::StorageClasses(), LinkageSpec::Cforall, genDefaultType( inst ), nullptr,
728 std::list< Attribute * >(), DeclarationNode::FuncSpecifiers( DeclarationNode::InlineSpec ) ) );
729 typeParams.push_back( newDecl );
730 done.insert( ty->get_baseType() );
731 }
732 }
733 }
734 cloneAll( typeParams, ctorType->get_forall() );
735 cloneAll( typeParams, dtorType->get_forall() );
736 cloneAll( typeParams, copyCtorType->get_forall() );
737 cloneAll( typeParams, assignType->get_forall() );
738
739 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting );
740 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting );
741 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting );
742 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting );
743
744 makeTupleFunctionBody( assignDecl );
745 makeTupleFunctionBody( ctorDecl );
746 makeTupleFunctionBody( copyCtorDecl );
747 makeTupleFunctionBody( dtorDecl );
748
749 addDeclaration( ctorDecl );
750 addDeclaration( copyCtorDecl );
751 addDeclaration( dtorDecl );
752 addDeclaration( assignDecl ); // assignment should come last since it uses copy constructor in return
753
754 return tupleType;
755 }
756
757 DeclarationWithType * AutogenTupleRoutines::mutate( FunctionDecl *functionDecl ) {
758 functionDecl->set_functionType( maybeMutate( functionDecl->get_functionType(), *this ) );
759 functionNesting += 1;
760 functionDecl->set_statements( maybeMutate( functionDecl->get_statements(), *this ) );
761 functionNesting -= 1;
762 return functionDecl;
763 }
764
765 CompoundStmt * AutogenTupleRoutines::mutate( CompoundStmt *compoundStmt ) {
766 seenTuples.beginScope();
767 compoundStmt = safe_dynamic_cast< CompoundStmt * >( Parent::mutate( compoundStmt ) );
768 seenTuples.endScope();
769 return compoundStmt;
770 }
771} // SymTab
772
773// Local Variables: //
774// tab-width: 4 //
775// mode: c++ //
776// compile-command: "make install" //
777// End: //
Note: See TracBrowser for help on using the repository browser.