source: src/SymTab/Autogen.cc@ 064cb18

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 064cb18 was 207c7e1d, checked in by Rob Schluntz <rschlunt@…>, 9 years ago

disable autogeneration of ctor/dtor/assign when a member's corresponding operation is missing

  • Property mode set to 100644
File size: 36.2 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Autogen.cc --
8//
9// Author : Rob Schluntz
10// Created On : Thu Mar 03 15:45:56 2016
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Tue Jul 12 17:47:17 2016
13// Update Count : 2
14//
15
16#include <list>
17#include <iterator>
18#include "SynTree/Visitor.h"
19#include "SynTree/Type.h"
20#include "SynTree/Statement.h"
21#include "SynTree/TypeSubstitution.h"
22#include "Common/utility.h"
23#include "AddVisit.h"
24#include "MakeLibCfa.h"
25#include "Autogen.h"
26#include "GenPoly/ScopedSet.h"
27#include "Common/ScopedMap.h"
28#include "SymTab/Mangler.h"
29#include "GenPoly/DeclMutator.h"
30
31namespace SymTab {
32 Type * SizeType = 0;
33 typedef ScopedMap< std::string, bool > TypeMap;
34
35 /// Data used to generate functions generically. Specifically, the name of the generated function, a function which generates the routine protoype, and a map which contains data to determine whether a function should be generated.
36 struct FuncData {
37 typedef FunctionType * (*TypeGen)( Type * );
38 FuncData( const std::string & fname, const TypeGen & genType, TypeMap & map ) : fname( fname ), genType( genType ), map( map ) {}
39 std::string fname;
40 TypeGen genType;
41 TypeMap & map;
42 };
43
44 class AutogenerateRoutines final : public Visitor {
45 public:
46 std::list< Declaration * > &get_declsToAdd() { return declsToAdd; }
47
48 typedef Visitor Parent;
49 using Parent::visit;
50
51 AutogenerateRoutines();
52
53 virtual void visit( EnumDecl *enumDecl );
54 virtual void visit( StructDecl *structDecl );
55 virtual void visit( UnionDecl *structDecl );
56 virtual void visit( TypeDecl *typeDecl );
57 virtual void visit( TraitDecl *ctxDecl );
58 virtual void visit( FunctionDecl *functionDecl );
59
60 virtual void visit( FunctionType *ftype );
61 virtual void visit( PointerType *ftype );
62
63 virtual void visit( CompoundStmt *compoundStmt );
64 virtual void visit( SwitchStmt *switchStmt );
65
66 private:
67 template< typename StmtClass > void visitStatement( StmtClass *stmt );
68
69 std::list< Declaration * > declsToAdd;
70 std::set< std::string > structsDone;
71 unsigned int functionNesting = 0; // current level of nested functions
72 /// Note: the following maps could be ScopedSets, but it should be easier to work
73 /// deleted functions in if they are maps, since the value false can be inserted
74 /// at the current scope without affecting outer scopes or requiring copies.
75 TypeMap copyable, assignable, constructable, destructable;
76 std::vector< FuncData > data;
77 };
78
79 /// generates routines for tuple types.
80 /// Doesn't really need to be a mutator, but it's easier to reuse DeclMutator than it is to use AddVisit
81 /// or anything we currently have that supports adding new declarations for visitors
82 class AutogenTupleRoutines : public GenPoly::DeclMutator {
83 public:
84 typedef GenPoly::DeclMutator Parent;
85 using Parent::mutate;
86
87 virtual DeclarationWithType * mutate( FunctionDecl *functionDecl );
88
89 virtual Type * mutate( TupleType *tupleType );
90
91 virtual CompoundStmt * mutate( CompoundStmt *compoundStmt );
92
93 private:
94 unsigned int functionNesting = 0; // current level of nested functions
95 GenPoly::ScopedSet< std::string > seenTuples;
96 };
97
98 void autogenerateRoutines( std::list< Declaration * > &translationUnit ) {
99 AutogenerateRoutines generator;
100 acceptAndAdd( translationUnit, generator, false );
101
102 // needs to be done separately because AutogenerateRoutines skips types that appear as function arguments, etc.
103 // AutogenTupleRoutines tupleGenerator;
104 // tupleGenerator.mutateDeclarationList( translationUnit );
105 }
106
107 bool isUnnamedBitfield( ObjectDecl * obj ) {
108 return obj != NULL && obj->get_name() == "" && obj->get_bitfieldWidth() != NULL;
109 }
110
111 /// inserts a forward declaration for functionDecl into declsToAdd
112 void addForwardDecl( FunctionDecl * functionDecl, std::list< Declaration * > & declsToAdd ) {
113 FunctionDecl * decl = functionDecl->clone();
114 delete decl->get_statements();
115 decl->set_statements( NULL );
116 declsToAdd.push_back( decl );
117 decl->fixUniqueId();
118 }
119
120 /// given type T, generate type of default ctor/dtor, i.e. function type void (*) (T *)
121 FunctionType * genDefaultType( Type * paramType ) {
122 FunctionType *ftype = new FunctionType( Type::Qualifiers(), false );
123 ObjectDecl *dstParam = new ObjectDecl( "_dst", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, nullptr, new PointerType( Type::Qualifiers(), paramType->clone() ), nullptr );
124 ftype->get_parameters().push_back( dstParam );
125
126 return ftype;
127 }
128
129 /// given type T, generate type of copy ctor, i.e. function type void (*) (T *, T)
130 FunctionType * genCopyType( Type * paramType ) {
131 FunctionType *ftype = genDefaultType( paramType );
132 ObjectDecl *srcParam = new ObjectDecl( "_src", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, nullptr, paramType->clone(), nullptr );
133 ftype->get_parameters().push_back( srcParam );
134 return ftype;
135 }
136
137 /// given type T, generate type of assignment, i.e. function type T (*) (T *, T)
138 FunctionType * genAssignType( Type * paramType ) {
139 FunctionType *ftype = genCopyType( paramType );
140 ObjectDecl *returnVal = new ObjectDecl( "_ret", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, nullptr, paramType->clone(), nullptr );
141 ftype->get_returnVals().push_back( returnVal );
142 return ftype;
143 }
144
145 /// true if the aggregate's layout is dynamic
146 template< typename AggrDecl >
147 bool hasDynamicLayout( AggrDecl * aggregateDecl ) {
148 for ( TypeDecl * param : aggregateDecl->get_parameters() ) {
149 if ( param->get_kind() == TypeDecl::Any ) return true;
150 }
151 return false;
152 }
153
154 /// generate a function decl from a name and type. Nesting depth determines whether
155 /// the declaration is static or not; optional paramter determines if declaration is intrinsic
156 FunctionDecl * genFunc( const std::string & fname, FunctionType * ftype, unsigned int functionNesting, bool isIntrinsic = false ) {
157 // Routines at global scope marked "static" to prevent multiple definitions in separate translation units
158 // because each unit generates copies of the default routines for each aggregate.
159 DeclarationNode::StorageClass sc = functionNesting > 0 ? DeclarationNode::NoStorageClass : DeclarationNode::Static;
160 LinkageSpec::Spec spec = isIntrinsic ? LinkageSpec::Intrinsic : LinkageSpec::AutoGen;
161 FunctionDecl * decl = new FunctionDecl( fname, sc, spec, ftype, new CompoundStmt( noLabels ), true, false );
162 decl->fixUniqueId();
163 return decl;
164 }
165
166 /// inserts base type of first argument into map if pred(funcDecl) is true
167 void insert( FunctionDecl *funcDecl, TypeMap & map, FunctionDecl * (*pred)(Declaration *) ) {
168 // insert type into constructable, etc. map if appropriate
169 if ( pred( funcDecl ) ) {
170 FunctionType * ftype = funcDecl->get_functionType();
171 assert( ! ftype->get_parameters().empty() );
172 Type * t = safe_dynamic_cast< PointerType * >( ftype->get_parameters().front()->get_type() )->get_base();
173 map.insert( Mangler::mangleType( t ), true );
174 }
175 }
176
177 /// using map and t, determines if is constructable, etc.
178 bool lookup( const TypeMap & map, Type * t ) {
179 if ( dynamic_cast< PointerType * >( t ) ) {
180 // will need more complicated checking if we want this to work with pointer types, since currently
181 return true;
182 } else if ( ArrayType * at = dynamic_cast< ArrayType * >( t ) ) {
183 // an array's constructor, etc. is generated on the fly based on the base type's constructor, etc.
184 return lookup( map, at->get_base() );
185 }
186 TypeMap::const_iterator it = map.find( Mangler::mangleType( t ) );
187 if ( it != map.end() ) return it->second;
188 // something that does not appear in the map is by default not constructable, etc.
189 return false;
190 }
191
192 /// using map and aggr, examines each member to determine if constructor, etc. should be generated
193 template<typename AggrDecl>
194 bool shouldGenerate( const TypeMap & map, AggrDecl * aggr ) {
195 for ( Declaration * dcl : aggr->get_members() ) {
196 if ( DeclarationWithType * dwt = dynamic_cast< DeclarationWithType * >( dcl ) ) {
197 if ( ! lookup( map, dwt->get_type() ) ) return false;
198 }
199 }
200 return true;
201 }
202
203 /// data structure for abstracting the generation of special functions
204 template< typename OutputIterator >
205 struct FuncGenerator {
206 StructDecl *aggregateDecl;
207 StructInstType *refType;
208 unsigned int functionNesting;
209 const std::list< TypeDecl* > & typeParams;
210 OutputIterator out;
211 FuncGenerator( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, const std::list< TypeDecl* > & typeParams, OutputIterator out ) : aggregateDecl( aggregateDecl ), refType( refType ), functionNesting( functionNesting ), typeParams( typeParams ), out( out ) {}
212
213 /// generates a function (?{}, ?=?, ^?{}) based on the data argument and members. If function is generated, inserts the type into the map.
214 void gen( const FuncData & data ) {
215 if ( ! shouldGenerate( data.map, aggregateDecl ) ) return;
216 FunctionType * ftype = data.genType( refType );
217 cloneAll( typeParams, ftype->get_forall() );
218 *out++ = genFunc( data.fname, ftype, functionNesting );
219 data.map.insert( Mangler::mangleType( refType ), true );
220 }
221 };
222
223 template< typename OutputIterator >
224 FuncGenerator<OutputIterator> makeFuncGenerator( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, const std::list< TypeDecl* > & typeParams, OutputIterator out ) {
225 return FuncGenerator<OutputIterator>( aggregateDecl, refType, functionNesting, typeParams, out );
226 }
227
228 /// generates a single enumeration assignment expression
229 ApplicationExpr * genEnumAssign( FunctionType * ftype, FunctionDecl * assignDecl ) {
230 // enum copy construct and assignment is just C-style assignment.
231 // this looks like a bad recursive call, but code gen will turn it into
232 // a C-style assignment.
233 // This happens before function pointer type conversion, so need to do it manually here
234 // NOTE: ftype is not necessarily the functionType belonging to assignDecl - ftype is the
235 // type of the function that this expression is being generated for (so that the correct
236 // parameters) are using in the variable exprs
237 assert( ftype->get_parameters().size() == 2 );
238 ObjectDecl * dstParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().front() );
239 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().back() );
240
241 VariableExpr * assignVarExpr = new VariableExpr( assignDecl );
242 Type * assignVarExprType = assignVarExpr->get_result();
243 assignVarExprType = new PointerType( Type::Qualifiers(), assignVarExprType );
244 assignVarExpr->set_result( assignVarExprType );
245 ApplicationExpr * assignExpr = new ApplicationExpr( assignVarExpr );
246 assignExpr->get_args().push_back( new VariableExpr( dstParam ) );
247 assignExpr->get_args().push_back( new VariableExpr( srcParam ) );
248 return assignExpr;
249 }
250
251 // E ?=?(E volatile*, int),
252 // ?=?(E _Atomic volatile*, int);
253 void makeEnumFunctions( EnumDecl *enumDecl, EnumInstType *refType, unsigned int functionNesting, std::list< Declaration * > &declsToAdd ) {
254
255 // T ?=?(E *, E);
256 FunctionType *assignType = genAssignType( refType );
257
258 // void ?{}(E *); void ^?{}(E *);
259 FunctionType * ctorType = genDefaultType( refType->clone() );
260 FunctionType * dtorType = genDefaultType( refType->clone() );
261
262 // void ?{}(E *, E);
263 FunctionType *copyCtorType = genCopyType( refType->clone() );
264
265 // xxx - should we also generate void ?{}(E *, int) and E ?{}(E *, E)?
266 // right now these cases work, but that might change.
267
268 // xxx - Temporary: make these functions intrinsic so they codegen as C assignment.
269 // Really they're something of a cross between instrinsic and autogen, so should
270 // probably make a new linkage type
271 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting, true );
272 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting, true );
273 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting, true );
274 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting, true );
275
276 // body is either return stmt or expr stmt
277 assignDecl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, genEnumAssign( assignType, assignDecl ) ) );
278 copyCtorDecl->get_statements()->get_kids().push_back( new ExprStmt( noLabels, genEnumAssign( copyCtorType, assignDecl ) ) );
279
280 declsToAdd.push_back( ctorDecl );
281 declsToAdd.push_back( copyCtorDecl );
282 declsToAdd.push_back( dtorDecl );
283 declsToAdd.push_back( assignDecl ); // assignment should come last since it uses copy constructor in return
284 }
285
286 /// generates a single struct member operation (constructor call, destructor call, assignment call)
287 void makeStructMemberOp( ObjectDecl * dstParam, Expression * src, DeclarationWithType * field, FunctionDecl * func, bool isDynamicLayout, bool forward = true ) {
288 ObjectDecl * returnVal = NULL;
289 if ( ! func->get_functionType()->get_returnVals().empty() ) {
290 returnVal = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_returnVals().front() );
291 }
292
293 InitTweak::InitExpander srcParam( src );
294
295 // assign to destination (and return value if generic)
296 UntypedExpr *derefExpr = UntypedExpr::createDeref( new VariableExpr( dstParam ) );
297 Expression *dstselect = new MemberExpr( field, derefExpr );
298 genImplicitCall( srcParam, dstselect, func->get_name(), back_inserter( func->get_statements()->get_kids() ), field, forward );
299
300 if ( isDynamicLayout && returnVal ) {
301 // xxx - there used to be a dereference on returnVal, but this seems to have been wrong?
302 Expression *retselect = new MemberExpr( field, new VariableExpr( returnVal ) );
303 genImplicitCall( srcParam, retselect, func->get_name(), back_inserter( func->get_statements()->get_kids() ), field, forward );
304 } // if
305 }
306
307 /// generates the body of a struct function by iterating the struct members (via parameters) - generates default ctor, copy ctor, assignment, and dtor bodies, but NOT field ctor bodies
308 template<typename Iterator>
309 void makeStructFunctionBody( Iterator member, Iterator end, FunctionDecl * func, bool isDynamicLayout, bool forward = true ) {
310 for ( ; member != end; ++member ) {
311 if ( DeclarationWithType *field = dynamic_cast< DeclarationWithType * >( *member ) ) { // otherwise some form of type declaration, e.g. Aggregate
312 // query the type qualifiers of this field and skip assigning it if it is marked const.
313 // If it is an array type, we need to strip off the array layers to find its qualifiers.
314 Type * type = field->get_type();
315 while ( ArrayType * at = dynamic_cast< ArrayType * >( type ) ) {
316 type = at->get_base();
317 }
318
319 if ( type->get_qualifiers().isConst && func->get_name() == "?=?" ) {
320 // don't assign const members, but do construct/destruct
321 continue;
322 }
323
324 if ( field->get_name() == "" ) {
325 // don't assign to anonymous members
326 // xxx - this is a temporary fix. Anonymous members tie into
327 // our inheritance model. I think the correct way to handle this is to
328 // cast the structure to the type of the member and let the resolver
329 // figure out whether it's valid and have a pass afterwards that fixes
330 // the assignment to use pointer arithmetic with the offset of the
331 // member, much like how generic type members are handled.
332 continue;
333 }
334
335 assert( ! func->get_functionType()->get_parameters().empty() );
336 ObjectDecl * dstParam = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_parameters().front() );
337 ObjectDecl * srcParam = NULL;
338 if ( func->get_functionType()->get_parameters().size() == 2 ) {
339 srcParam = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_parameters().back() );
340 }
341 // srcParam may be NULL, in which case we have default ctor/dtor
342 assert( dstParam );
343
344 Expression *srcselect = srcParam ? new MemberExpr( field, new VariableExpr( srcParam ) ) : NULL;
345 makeStructMemberOp( dstParam, srcselect, field, func, isDynamicLayout, forward );
346 } // if
347 } // for
348 } // makeStructFunctionBody
349
350 /// generate the body of a constructor which takes parameters that match fields, e.g.
351 /// void ?{}(A *, int) and void?{}(A *, int, int) for a struct A which has two int fields.
352 template<typename Iterator>
353 void makeStructFieldCtorBody( Iterator member, Iterator end, FunctionDecl * func, bool isDynamicLayout ) {
354 FunctionType * ftype = func->get_functionType();
355 std::list<DeclarationWithType*> & params = ftype->get_parameters();
356 assert( params.size() >= 2 ); // should not call this function for default ctor, etc.
357
358 // skip 'this' parameter
359 ObjectDecl * dstParam = dynamic_cast<ObjectDecl*>( params.front() );
360 assert( dstParam );
361 std::list<DeclarationWithType*>::iterator parameter = params.begin()+1;
362 for ( ; member != end; ++member ) {
363 if ( DeclarationWithType * field = dynamic_cast<DeclarationWithType*>( *member ) ) {
364 if ( isUnnamedBitfield( dynamic_cast< ObjectDecl * > ( field ) ) ) {
365 // don't make a function whose parameter is an unnamed bitfield
366 continue;
367 } else if ( field->get_name() == "" ) {
368 // don't assign to anonymous members
369 // xxx - this is a temporary fix. Anonymous members tie into
370 // our inheritance model. I think the correct way to handle this is to
371 // cast the structure to the type of the member and let the resolver
372 // figure out whether it's valid and have a pass afterwards that fixes
373 // the assignment to use pointer arithmetic with the offset of the
374 // member, much like how generic type members are handled.
375 continue;
376 } else if ( parameter != params.end() ) {
377 // matching parameter, initialize field with copy ctor
378 Expression *srcselect = new VariableExpr(*parameter);
379 makeStructMemberOp( dstParam, srcselect, field, func, isDynamicLayout );
380 ++parameter;
381 } else {
382 // no matching parameter, initialize field with default ctor
383 makeStructMemberOp( dstParam, NULL, field, func, isDynamicLayout );
384 }
385 }
386 }
387 }
388
389 /// generates struct constructors, destructor, and assignment functions
390 void makeStructFunctions( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, std::list< Declaration * > & declsToAdd, const std::vector< FuncData > & data ) {
391 // Make function polymorphic in same parameters as generic struct, if applicable
392 const std::list< TypeDecl* > & typeParams = aggregateDecl->get_parameters(); // List of type variables to be placed on the generated functions
393 bool isDynamicLayout = hasDynamicLayout( aggregateDecl ); // NOTE this flag is an incredibly ugly kludge; we should fix the assignment signature instead (ditto for union)
394
395 // generate each of the functions based on the supplied FuncData objects
396 std::list< FunctionDecl * > newFuncs;
397 auto generator = makeFuncGenerator( aggregateDecl, refType, functionNesting, typeParams, back_inserter( newFuncs ) );
398 for ( const FuncData & d : data ) {
399 generator.gen( d );
400 }
401 // field ctors are only generated if default constructor and copy constructor are both generated
402 unsigned numCtors = std::count_if( newFuncs.begin(), newFuncs.end(), [](FunctionDecl * dcl) { return InitTweak::isConstructor( dcl->get_name() ); } );
403
404 if ( functionNesting == 0 ) {
405 // forward declare if top-level struct, so that
406 // type is complete as soon as its body ends
407 // Note: this is necessary if we want structs which contain
408 // generic (otype) structs as members.
409 for ( FunctionDecl * dcl : newFuncs ) {
410 addForwardDecl( dcl, declsToAdd );
411 }
412 }
413
414 for ( FunctionDecl * dcl : newFuncs ) {
415 // generate appropriate calls to member ctor, assignment
416 // destructor needs to do everything in reverse, so pass "forward" based on whether the function is a destructor
417 if ( ! InitTweak::isDestructor( dcl->get_name() ) ) {
418 makeStructFunctionBody( aggregateDecl->get_members().begin(), aggregateDecl->get_members().end(), dcl, isDynamicLayout );
419 } else {
420 makeStructFunctionBody( aggregateDecl->get_members().rbegin(), aggregateDecl->get_members().rend(), dcl, isDynamicLayout, false );
421 }
422 if ( InitTweak::isAssignment( dcl->get_name() ) ) {
423 // assignment needs to return a value
424 FunctionType * assignType = dcl->get_functionType();
425 assert( assignType->get_parameters().size() == 2 );
426 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( assignType->get_parameters().back() );
427 dcl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, new VariableExpr( srcParam ) ) );
428 }
429 declsToAdd.push_back( dcl );
430 }
431
432 // create constructors which take each member type as a parameter.
433 // for example, for struct A { int x, y; }; generate
434 // void ?{}(A *, int) and void ?{}(A *, int, int)
435 // Field constructors are only generated if default and copy constructor
436 // are generated, since they need access to both
437 if ( numCtors == 2 ) {
438 FunctionType * memCtorType = genDefaultType( refType );
439 cloneAll( typeParams, memCtorType->get_forall() );
440 for ( std::list<Declaration *>::iterator i = aggregateDecl->get_members().begin(); i != aggregateDecl->get_members().end(); ++i ) {
441 DeclarationWithType * member = dynamic_cast<DeclarationWithType *>( *i );
442 assert( member );
443 if ( isUnnamedBitfield( dynamic_cast< ObjectDecl * > ( member ) ) ) {
444 // don't make a function whose parameter is an unnamed bitfield
445 continue;
446 } else if ( member->get_name() == "" ) {
447 // don't assign to anonymous members
448 // xxx - this is a temporary fix. Anonymous members tie into
449 // our inheritance model. I think the correct way to handle this is to
450 // cast the structure to the type of the member and let the resolver
451 // figure out whether it's valid and have a pass afterwards that fixes
452 // the assignment to use pointer arithmetic with the offset of the
453 // member, much like how generic type members are handled.
454 continue;
455 }
456 memCtorType->get_parameters().push_back( new ObjectDecl( member->get_name(), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, member->get_type()->clone(), 0 ) );
457 FunctionDecl * ctor = genFunc( "?{}", memCtorType->clone(), functionNesting );
458 makeStructFieldCtorBody( aggregateDecl->get_members().begin(), aggregateDecl->get_members().end(), ctor, isDynamicLayout );
459 declsToAdd.push_back( ctor );
460 }
461 delete memCtorType;
462 }
463 }
464
465 /// generate a single union assignment expression (using memcpy)
466 template< typename OutputIterator >
467 void makeUnionFieldsAssignment( ObjectDecl * srcParam, ObjectDecl * dstParam, OutputIterator out ) {
468 UntypedExpr *copy = new UntypedExpr( new NameExpr( "__builtin_memcpy" ) );
469 copy->get_args().push_back( new VariableExpr( dstParam ) );
470 copy->get_args().push_back( new AddressExpr( new VariableExpr( srcParam ) ) );
471 copy->get_args().push_back( new SizeofExpr( srcParam->get_type()->clone() ) );
472 *out++ = new ExprStmt( noLabels, copy );
473 }
474
475 /// generates the body of a union assignment/copy constructor/field constructor
476 void makeUnionAssignBody( FunctionDecl * funcDecl, bool isDynamicLayout ) {
477 FunctionType * ftype = funcDecl->get_functionType();
478 assert( ftype->get_parameters().size() == 2 );
479 ObjectDecl * dstParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().front() );
480 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().back() );
481 ObjectDecl * returnVal = nullptr;
482 if ( ! ftype->get_returnVals().empty() ) {
483 returnVal = safe_dynamic_cast< ObjectDecl * >( ftype->get_returnVals().front() );
484 }
485
486 makeUnionFieldsAssignment( srcParam, dstParam, back_inserter( funcDecl->get_statements()->get_kids() ) );
487 if ( returnVal ) {
488 if ( isDynamicLayout ) makeUnionFieldsAssignment( srcParam, returnVal, back_inserter( funcDecl->get_statements()->get_kids() ) );
489 else funcDecl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, new VariableExpr( srcParam ) ) );
490 }
491 }
492
493 /// generates union constructors, destructors, and assignment operator
494 void makeUnionFunctions( UnionDecl *aggregateDecl, UnionInstType *refType, unsigned int functionNesting, std::list< Declaration * > & declsToAdd ) {
495 // Make function polymorphic in same parameters as generic union, if applicable
496 const std::list< TypeDecl* > & typeParams = aggregateDecl->get_parameters(); // List of type variables to be placed on the generated functions
497 bool isDynamicLayout = hasDynamicLayout( aggregateDecl ); // NOTE this flag is an incredibly ugly kludge; we should fix the assignment signature instead (ditto for struct)
498
499 // default ctor/dtor need only first parameter
500 // void ?{}(T *); void ^?{}(T *);
501 FunctionType *ctorType = genDefaultType( refType );
502 FunctionType *dtorType = genDefaultType( refType );
503
504 // copy ctor needs both parameters
505 // void ?{}(T *, T);
506 FunctionType *copyCtorType = genCopyType( refType );
507
508 // assignment needs both and return value
509 // T ?=?(T *, T);
510 FunctionType *assignType = genAssignType( refType );
511
512 cloneAll( typeParams, ctorType->get_forall() );
513 cloneAll( typeParams, dtorType->get_forall() );
514 cloneAll( typeParams, copyCtorType->get_forall() );
515 cloneAll( typeParams, assignType->get_forall() );
516
517 // Routines at global scope marked "static" to prevent multiple definitions is separate translation units
518 // because each unit generates copies of the default routines for each aggregate.
519 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting );
520 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting );
521 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting );
522 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting );
523
524 makeUnionAssignBody( assignDecl, isDynamicLayout );
525
526 // body of assignment and copy ctor is the same
527 makeUnionAssignBody( copyCtorDecl, isDynamicLayout );
528
529 // create a constructor which takes the first member type as a parameter.
530 // for example, for Union A { int x; double y; }; generate
531 // void ?{}(A *, int)
532 // This is to mimic C's behaviour which initializes the first member of the union.
533 std::list<Declaration *> memCtors;
534 for ( Declaration * member : aggregateDecl->get_members() ) {
535 if ( DeclarationWithType * field = dynamic_cast< DeclarationWithType * >( member ) ) {
536 ObjectDecl * srcParam = new ObjectDecl( "src", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, field->get_type()->clone(), 0 );
537
538 FunctionType * memCtorType = ctorType->clone();
539 memCtorType->get_parameters().push_back( srcParam );
540 FunctionDecl * ctor = genFunc( "?{}", memCtorType, functionNesting );
541
542 makeUnionAssignBody( ctor, isDynamicLayout );
543 memCtors.push_back( ctor );
544 // only generate a ctor for the first field
545 break;
546 }
547 }
548
549 declsToAdd.push_back( ctorDecl );
550 declsToAdd.push_back( copyCtorDecl );
551 declsToAdd.push_back( dtorDecl );
552 declsToAdd.push_back( assignDecl ); // assignment should come last since it uses copy constructor in return
553 declsToAdd.splice( declsToAdd.end(), memCtors );
554 }
555
556 AutogenerateRoutines::AutogenerateRoutines() {
557 // the order here determines the order that these functions are generated.
558 // assignment should come last since it uses copy constructor in return.
559 data.push_back( FuncData( "?{}", genDefaultType, constructable ) );
560 data.push_back( FuncData( "?{}", genCopyType, copyable ) );
561 data.push_back( FuncData( "^?{}", genDefaultType, destructable ) );
562 data.push_back( FuncData( "?=?", genAssignType, assignable ) );
563 }
564
565 void AutogenerateRoutines::visit( EnumDecl *enumDecl ) {
566 if ( ! enumDecl->get_members().empty() ) {
567 EnumInstType *enumInst = new EnumInstType( Type::Qualifiers(), enumDecl->get_name() );
568 // enumInst->set_baseEnum( enumDecl );
569 // declsToAdd.push_back(
570 makeEnumFunctions( enumDecl, enumInst, functionNesting, declsToAdd );
571 }
572 }
573
574 void AutogenerateRoutines::visit( StructDecl *structDecl ) {
575 if ( structDecl->has_body() && structsDone.find( structDecl->get_name() ) == structsDone.end() ) {
576 StructInstType structInst( Type::Qualifiers(), structDecl->get_name() );
577 for ( TypeDecl * typeDecl : structDecl->get_parameters() ) {
578 // need to visit assertions so that they are added to the appropriate maps
579 acceptAll( typeDecl->get_assertions(), *this );
580 structInst.get_parameters().push_back( new TypeExpr( new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), typeDecl ) ) );
581 }
582 structInst.set_baseStruct( structDecl );
583 makeStructFunctions( structDecl, &structInst, functionNesting, declsToAdd, data );
584 structsDone.insert( structDecl->get_name() );
585 } // if
586 }
587
588 void AutogenerateRoutines::visit( UnionDecl *unionDecl ) {
589 if ( ! unionDecl->get_members().empty() ) {
590 UnionInstType unionInst( Type::Qualifiers(), unionDecl->get_name() );
591 unionInst.set_baseUnion( unionDecl );
592 for ( TypeDecl * typeDecl : unionDecl->get_parameters() ) {
593 unionInst.get_parameters().push_back( new TypeExpr( new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), typeDecl ) ) );
594 }
595 makeUnionFunctions( unionDecl, &unionInst, functionNesting, declsToAdd );
596 } // if
597 }
598
599 void AutogenerateRoutines::visit( TypeDecl *typeDecl ) {
600 TypeInstType *typeInst = new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), false );
601 typeInst->set_baseType( typeDecl );
602 ObjectDecl *src = new ObjectDecl( "_src", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, nullptr, typeInst->clone(), nullptr );
603 ObjectDecl *dst = new ObjectDecl( "_dst", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, nullptr, new PointerType( Type::Qualifiers(), typeInst->clone() ), nullptr );
604
605 std::list< Statement * > stmts;
606 if ( typeDecl->get_base() ) {
607 // xxx - generate ctor/dtors for typedecls, e.g.
608 // otype T = int *;
609 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
610 assign->get_args().push_back( new CastExpr( new VariableExpr( dst ), new PointerType( Type::Qualifiers(), typeDecl->get_base()->clone() ) ) );
611 assign->get_args().push_back( new CastExpr( new VariableExpr( src ), typeDecl->get_base()->clone() ) );
612 stmts.push_back( new ReturnStmt( std::list< Label >(), assign ) );
613 } // if
614 FunctionType *type = new FunctionType( Type::Qualifiers(), false );
615 type->get_returnVals().push_back( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, typeInst, 0 ) );
616 type->get_parameters().push_back( dst );
617 type->get_parameters().push_back( src );
618 FunctionDecl *func = genFunc( "?=?", type, functionNesting );
619 func->get_statements()->get_kids() = stmts;
620 declsToAdd.push_back( func );
621 }
622
623 void addDecls( std::list< Declaration * > &declsToAdd, std::list< Statement * > &statements, std::list< Statement * >::iterator i ) {
624 for ( std::list< Declaration * >::iterator decl = declsToAdd.begin(); decl != declsToAdd.end(); ++decl ) {
625 statements.insert( i, new DeclStmt( noLabels, *decl ) );
626 } // for
627 declsToAdd.clear();
628 }
629
630 void AutogenerateRoutines::visit( FunctionType *) {
631 // ensure that we don't add assignment ops for types defined as part of the function
632 }
633
634 void AutogenerateRoutines::visit( PointerType *) {
635 // ensure that we don't add assignment ops for types defined as part of the pointer
636 }
637
638 void AutogenerateRoutines::visit( TraitDecl *) {
639 // ensure that we don't add assignment ops for types defined as part of the trait
640 }
641
642 template< typename StmtClass >
643 inline void AutogenerateRoutines::visitStatement( StmtClass *stmt ) {
644 std::set< std::string > oldStructs = structsDone;
645 addVisit( stmt, *this );
646 structsDone = oldStructs;
647 }
648
649 void AutogenerateRoutines::visit( FunctionDecl *functionDecl ) {
650 // record the existence of this function as appropriate
651 insert( functionDecl, constructable, InitTweak::isDefaultConstructor );
652 insert( functionDecl, assignable, InitTweak::isAssignment );
653 insert( functionDecl, copyable, InitTweak::isCopyConstructor );
654 insert( functionDecl, destructable, InitTweak::isDestructor );
655
656 maybeAccept( functionDecl->get_functionType(), *this );
657 acceptAll( functionDecl->get_oldDecls(), *this );
658 functionNesting += 1;
659 maybeAccept( functionDecl->get_statements(), *this );
660 functionNesting -= 1;
661 }
662
663 void AutogenerateRoutines::visit( CompoundStmt *compoundStmt ) {
664 constructable.beginScope();
665 assignable.beginScope();
666 copyable.beginScope();
667 destructable.beginScope();
668 visitStatement( compoundStmt );
669 constructable.endScope();
670 assignable.endScope();
671 copyable.endScope();
672 destructable.endScope();
673 }
674
675 void AutogenerateRoutines::visit( SwitchStmt *switchStmt ) {
676 visitStatement( switchStmt );
677 }
678
679 void makeTupleFunctionBody( FunctionDecl * function ) {
680 FunctionType * ftype = function->get_functionType();
681 assertf( ftype->get_parameters().size() == 1 || ftype->get_parameters().size() == 2, "too many parameters in generated tuple function" );
682
683 UntypedExpr * untyped = new UntypedExpr( new NameExpr( function->get_name() ) );
684
685 /// xxx - &* is used to make this easier for later passes to handle
686 untyped->get_args().push_back( new AddressExpr( UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) );
687 if ( ftype->get_parameters().size() == 2 ) {
688 untyped->get_args().push_back( new VariableExpr( ftype->get_parameters().back() ) );
689 }
690 function->get_statements()->get_kids().push_back( new ExprStmt( noLabels, untyped ) );
691 function->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) );
692 }
693
694 Type * AutogenTupleRoutines::mutate( TupleType * tupleType ) {
695 tupleType = safe_dynamic_cast< TupleType * >( Parent::mutate( tupleType ) );
696 std::string mangleName = SymTab::Mangler::mangleType( tupleType );
697 if ( seenTuples.find( mangleName ) != seenTuples.end() ) return tupleType;
698 seenTuples.insert( mangleName );
699
700 // T ?=?(T *, T);
701 FunctionType *assignType = genAssignType( tupleType );
702
703 // void ?{}(T *); void ^?{}(T *);
704 FunctionType *ctorType = genDefaultType( tupleType );
705 FunctionType *dtorType = genDefaultType( tupleType );
706
707 // void ?{}(T *, T);
708 FunctionType *copyCtorType = genCopyType( tupleType );
709
710 std::set< TypeDecl* > done;
711 std::list< TypeDecl * > typeParams;
712 for ( Type * t : *tupleType ) {
713 if ( TypeInstType * ty = dynamic_cast< TypeInstType * >( t ) ) {
714 if ( ! done.count( ty->get_baseType() ) ) {
715 TypeDecl * newDecl = new TypeDecl( ty->get_baseType()->get_name(), DeclarationNode::NoStorageClass, nullptr, TypeDecl::Any );
716 TypeInstType * inst = new TypeInstType( Type::Qualifiers(), newDecl->get_name(), newDecl );
717 newDecl->get_assertions().push_back( new FunctionDecl( "?=?", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, genAssignType( inst ), nullptr, true, false ) );
718 newDecl->get_assertions().push_back( new FunctionDecl( "?{}", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, genDefaultType( inst ), nullptr, true, false ) );
719 newDecl->get_assertions().push_back( new FunctionDecl( "?{}", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, genCopyType( inst ), nullptr, true, false ) );
720 newDecl->get_assertions().push_back( new FunctionDecl( "^?{}", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, genDefaultType( inst ), nullptr, true, false ) );
721 typeParams.push_back( newDecl );
722 done.insert( ty->get_baseType() );
723 }
724 }
725 }
726 cloneAll( typeParams, ctorType->get_forall() );
727 cloneAll( typeParams, dtorType->get_forall() );
728 cloneAll( typeParams, copyCtorType->get_forall() );
729 cloneAll( typeParams, assignType->get_forall() );
730
731 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting );
732 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting );
733 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting );
734 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting );
735
736 makeTupleFunctionBody( assignDecl );
737 makeTupleFunctionBody( ctorDecl );
738 makeTupleFunctionBody( copyCtorDecl );
739 makeTupleFunctionBody( dtorDecl );
740
741 addDeclaration( ctorDecl );
742 addDeclaration( copyCtorDecl );
743 addDeclaration( dtorDecl );
744 addDeclaration( assignDecl ); // assignment should come last since it uses copy constructor in return
745
746 return tupleType;
747 }
748
749 DeclarationWithType * AutogenTupleRoutines::mutate( FunctionDecl *functionDecl ) {
750 functionDecl->set_functionType( maybeMutate( functionDecl->get_functionType(), *this ) );
751 mutateAll( functionDecl->get_oldDecls(), *this );
752 functionNesting += 1;
753 functionDecl->set_statements( maybeMutate( functionDecl->get_statements(), *this ) );
754 functionNesting -= 1;
755 return functionDecl;
756 }
757
758 CompoundStmt * AutogenTupleRoutines::mutate( CompoundStmt *compoundStmt ) {
759 seenTuples.beginScope();
760 compoundStmt = safe_dynamic_cast< CompoundStmt * >( Parent::mutate( compoundStmt ) );
761 seenTuples.endScope();
762 return compoundStmt;
763 }
764} // SymTab
Note: See TracBrowser for help on using the repository browser.