source: src/SymTab/Autogen.cc@ d180746

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since d180746 was d180746, checked in by Thierry Delisle <tdelisle@…>, 8 years ago

Big header cleaning pass - commit 2

  • Property mode set to 100644
File size: 37.0 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Autogen.cc --
8//
9// Author : Rob Schluntz
10// Created On : Thu Mar 03 15:45:56 2016
11// Last Modified By : Andrew Beach
12// Last Modified On : Fri Jul 14 16:41:00 2017
13// Update Count : 62
14//
15#include "Autogen.h"
16
17#include <cassert> // for assert, assertf
18#include <cstddef> // for NULL
19
20#include "AddVisit.h" // for addVisit
21#include "Common/ScopedMap.h" // for ScopedMap
22#include "GenPoly/DeclMutator.h" // for DeclMutator
23#include "GenPoly/ScopedSet.h" // for ScopedSet
24#include "Parser/LinkageSpec.h" // for AutoGen, Intrinsic, Spec
25#include "SynTree/Statement.h" // for SwitchStmt (ptr only), CompoundStmt
26#include "SynTree/Type.h" // for Type, ArrayType, Type::StorageClasses
27#include "SynTree/Visitor.h" // for Visitor
28
29namespace SymTab {
30 Type * SizeType = 0;
31 typedef ScopedMap< std::string, bool > TypeMap;
32
33 /// Data used to generate functions generically. Specifically, the name of the generated function, a function which generates the routine protoype, and a map which contains data to determine whether a function should be generated.
34 struct FuncData {
35 typedef FunctionType * (*TypeGen)( Type * );
36 FuncData( const std::string & fname, const TypeGen & genType, TypeMap & map ) : fname( fname ), genType( genType ), map( map ) {}
37 std::string fname;
38 TypeGen genType;
39 TypeMap & map;
40 };
41
42 class AutogenerateRoutines final : public Visitor {
43 template< typename Visitor >
44 friend void acceptAndAdd( std::list< Declaration * > &translationUnit, Visitor &visitor );
45 template< typename Visitor >
46 friend void addVisitStatementList( std::list< Statement* > &stmts, Visitor &visitor );
47 public:
48 std::list< Declaration * > &get_declsToAdd() { return declsToAdd; }
49
50 typedef Visitor Parent;
51 using Parent::visit;
52
53 AutogenerateRoutines();
54
55 virtual void visit( EnumDecl *enumDecl );
56 virtual void visit( StructDecl *structDecl );
57 virtual void visit( UnionDecl *structDecl );
58 virtual void visit( TypeDecl *typeDecl );
59 virtual void visit( TraitDecl *ctxDecl );
60 virtual void visit( FunctionDecl *functionDecl );
61
62 virtual void visit( FunctionType *ftype );
63 virtual void visit( PointerType *ftype );
64
65 virtual void visit( CompoundStmt *compoundStmt );
66 virtual void visit( SwitchStmt *switchStmt );
67
68 private:
69 template< typename StmtClass > void visitStatement( StmtClass *stmt );
70
71 std::list< Declaration * > declsToAdd, declsToAddAfter;
72 std::set< std::string > structsDone;
73 unsigned int functionNesting = 0; // current level of nested functions
74 /// Note: the following maps could be ScopedSets, but it should be easier to work
75 /// deleted functions in if they are maps, since the value false can be inserted
76 /// at the current scope without affecting outer scopes or requiring copies.
77 TypeMap copyable, assignable, constructable, destructable;
78 std::vector< FuncData > data;
79 };
80
81 /// generates routines for tuple types.
82 /// Doesn't really need to be a mutator, but it's easier to reuse DeclMutator than it is to use AddVisit
83 /// or anything we currently have that supports adding new declarations for visitors
84 class AutogenTupleRoutines : public GenPoly::DeclMutator {
85 public:
86 typedef GenPoly::DeclMutator Parent;
87 using Parent::mutate;
88
89 virtual DeclarationWithType * mutate( FunctionDecl *functionDecl );
90
91 virtual Type * mutate( TupleType *tupleType );
92
93 virtual CompoundStmt * mutate( CompoundStmt *compoundStmt );
94
95 private:
96 unsigned int functionNesting = 0; // current level of nested functions
97 GenPoly::ScopedSet< std::string > seenTuples;
98 };
99
100 void autogenerateRoutines( std::list< Declaration * > &translationUnit ) {
101 AutogenerateRoutines generator;
102 acceptAndAdd( translationUnit, generator );
103
104 // needs to be done separately because AutogenerateRoutines skips types that appear as function arguments, etc.
105 // AutogenTupleRoutines tupleGenerator;
106 // tupleGenerator.mutateDeclarationList( translationUnit );
107 }
108
109 bool isUnnamedBitfield( ObjectDecl * obj ) {
110 return obj != NULL && obj->get_name() == "" && obj->get_bitfieldWidth() != NULL;
111 }
112
113 /// inserts a forward declaration for functionDecl into declsToAdd
114 void addForwardDecl( FunctionDecl * functionDecl, std::list< Declaration * > & declsToAdd ) {
115 FunctionDecl * decl = functionDecl->clone();
116 delete decl->get_statements();
117 decl->set_statements( NULL );
118 declsToAdd.push_back( decl );
119 decl->fixUniqueId();
120 }
121
122 /// given type T, generate type of default ctor/dtor, i.e. function type void (*) (T *)
123 FunctionType * genDefaultType( Type * paramType ) {
124 FunctionType *ftype = new FunctionType( Type::Qualifiers(), false );
125 ObjectDecl *dstParam = new ObjectDecl( "_dst", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new PointerType( Type::Qualifiers(), paramType->clone() ), nullptr );
126 ftype->get_parameters().push_back( dstParam );
127
128 return ftype;
129 }
130
131 /// given type T, generate type of copy ctor, i.e. function type void (*) (T *, T)
132 FunctionType * genCopyType( Type * paramType ) {
133 FunctionType *ftype = genDefaultType( paramType );
134 ObjectDecl *srcParam = new ObjectDecl( "_src", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, paramType->clone(), nullptr );
135 ftype->get_parameters().push_back( srcParam );
136 return ftype;
137 }
138
139 /// given type T, generate type of assignment, i.e. function type T (*) (T *, T)
140 FunctionType * genAssignType( Type * paramType ) {
141 FunctionType *ftype = genCopyType( paramType );
142 ObjectDecl *returnVal = new ObjectDecl( "_ret", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, paramType->clone(), nullptr );
143 ftype->get_returnVals().push_back( returnVal );
144 return ftype;
145 }
146
147 /// true if the aggregate's layout is dynamic
148 template< typename AggrDecl >
149 bool hasDynamicLayout( AggrDecl * aggregateDecl ) {
150 for ( TypeDecl * param : aggregateDecl->get_parameters() ) {
151 if ( param->isComplete() ) return true;
152 }
153 return false;
154 }
155
156 /// generate a function decl from a name and type. Nesting depth determines whether
157 /// the declaration is static or not; optional paramter determines if declaration is intrinsic
158 FunctionDecl * genFunc( const std::string & fname, FunctionType * ftype, unsigned int functionNesting, bool isIntrinsic = false ) {
159 // Routines at global scope marked "static" to prevent multiple definitions in separate translation units
160 // because each unit generates copies of the default routines for each aggregate.
161// DeclarationNode::StorageClass sc = functionNesting > 0 ? DeclarationNode::NoStorageClass : DeclarationNode::Static;
162 Type::StorageClasses scs = functionNesting > 0 ? Type::StorageClasses() : Type::StorageClasses( Type::Static );
163 LinkageSpec::Spec spec = isIntrinsic ? LinkageSpec::Intrinsic : LinkageSpec::AutoGen;
164 FunctionDecl * decl = new FunctionDecl( fname, scs, spec, ftype, new CompoundStmt( noLabels ),
165 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) );
166 decl->fixUniqueId();
167 return decl;
168 }
169
170 /// inserts base type of first argument into map if pred(funcDecl) is true
171 void insert( FunctionDecl *funcDecl, TypeMap & map, FunctionDecl * (*pred)(Declaration *) ) {
172 // insert type into constructable, etc. map if appropriate
173 if ( pred( funcDecl ) ) {
174 FunctionType * ftype = funcDecl->get_functionType();
175 assert( ! ftype->get_parameters().empty() );
176 Type * t = safe_dynamic_cast< PointerType * >( ftype->get_parameters().front()->get_type() )->get_base();
177 map.insert( Mangler::mangleType( t ), true );
178 }
179 }
180
181 /// using map and t, determines if is constructable, etc.
182 bool lookup( const TypeMap & map, Type * t ) {
183 if ( dynamic_cast< PointerType * >( t ) ) {
184 // will need more complicated checking if we want this to work with pointer types, since currently
185 return true;
186 } else if ( ArrayType * at = dynamic_cast< ArrayType * >( t ) ) {
187 // an array's constructor, etc. is generated on the fly based on the base type's constructor, etc.
188 return lookup( map, at->get_base() );
189 }
190 TypeMap::const_iterator it = map.find( Mangler::mangleType( t ) );
191 if ( it != map.end() ) return it->second;
192 // something that does not appear in the map is by default not constructable, etc.
193 return false;
194 }
195
196 /// using map and aggr, examines each member to determine if constructor, etc. should be generated
197 template<typename AggrDecl>
198 bool shouldGenerate( const TypeMap & map, AggrDecl * aggr ) {
199 for ( Declaration * dcl : aggr->get_members() ) {
200 if ( DeclarationWithType * dwt = dynamic_cast< DeclarationWithType * >( dcl ) ) {
201 if ( ! lookup( map, dwt->get_type() ) ) return false;
202 }
203 }
204 return true;
205 }
206
207 /// data structure for abstracting the generation of special functions
208 template< typename OutputIterator >
209 struct FuncGenerator {
210 StructDecl *aggregateDecl;
211 StructInstType *refType;
212 unsigned int functionNesting;
213 const std::list< TypeDecl* > & typeParams;
214 OutputIterator out;
215 FuncGenerator( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, const std::list< TypeDecl* > & typeParams, OutputIterator out ) : aggregateDecl( aggregateDecl ), refType( refType ), functionNesting( functionNesting ), typeParams( typeParams ), out( out ) {}
216
217 /// generates a function (?{}, ?=?, ^?{}) based on the data argument and members. If function is generated, inserts the type into the map.
218 void gen( const FuncData & data, bool concurrent_type ) {
219 if ( ! shouldGenerate( data.map, aggregateDecl ) ) return;
220 FunctionType * ftype = data.genType( refType );
221
222 if(concurrent_type && InitTweak::isDestructor( data.fname )) {
223 ftype->get_parameters().front()->get_type()->set_mutex( true );
224 }
225
226 cloneAll( typeParams, ftype->get_forall() );
227 *out++ = genFunc( data.fname, ftype, functionNesting );
228 data.map.insert( Mangler::mangleType( refType ), true );
229 }
230 };
231
232 template< typename OutputIterator >
233 FuncGenerator<OutputIterator> makeFuncGenerator( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, const std::list< TypeDecl* > & typeParams, OutputIterator out ) {
234 return FuncGenerator<OutputIterator>( aggregateDecl, refType, functionNesting, typeParams, out );
235 }
236
237 /// generates a single enumeration assignment expression
238 ApplicationExpr * genEnumAssign( FunctionType * ftype, FunctionDecl * assignDecl ) {
239 // enum copy construct and assignment is just C-style assignment.
240 // this looks like a bad recursive call, but code gen will turn it into
241 // a C-style assignment.
242 // This happens before function pointer type conversion, so need to do it manually here
243 // NOTE: ftype is not necessarily the functionType belonging to assignDecl - ftype is the
244 // type of the function that this expression is being generated for (so that the correct
245 // parameters) are using in the variable exprs
246 assert( ftype->get_parameters().size() == 2 );
247 ObjectDecl * dstParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().front() );
248 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().back() );
249
250 VariableExpr * assignVarExpr = new VariableExpr( assignDecl );
251 Type * assignVarExprType = assignVarExpr->get_result();
252 assignVarExprType = new PointerType( Type::Qualifiers(), assignVarExprType );
253 assignVarExpr->set_result( assignVarExprType );
254 ApplicationExpr * assignExpr = new ApplicationExpr( assignVarExpr );
255 assignExpr->get_args().push_back( new VariableExpr( dstParam ) );
256 assignExpr->get_args().push_back( new VariableExpr( srcParam ) );
257 return assignExpr;
258 }
259
260 // E ?=?(E volatile*, int),
261 // ?=?(E _Atomic volatile*, int);
262 void makeEnumFunctions( EnumInstType *refType, unsigned int functionNesting, std::list< Declaration * > &declsToAdd ) {
263
264 // T ?=?(E *, E);
265 FunctionType *assignType = genAssignType( refType );
266
267 // void ?{}(E *); void ^?{}(E *);
268 FunctionType * ctorType = genDefaultType( refType->clone() );
269 FunctionType * dtorType = genDefaultType( refType->clone() );
270
271 // void ?{}(E *, E);
272 FunctionType *copyCtorType = genCopyType( refType->clone() );
273
274 // xxx - should we also generate void ?{}(E *, int) and E ?{}(E *, E)?
275 // right now these cases work, but that might change.
276
277 // xxx - Temporary: make these functions intrinsic so they codegen as C assignment.
278 // Really they're something of a cross between instrinsic and autogen, so should
279 // probably make a new linkage type
280 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting, true );
281 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting, true );
282 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting, true );
283 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting, true );
284
285 // body is either return stmt or expr stmt
286 assignDecl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, genEnumAssign( assignType, assignDecl ) ) );
287 copyCtorDecl->get_statements()->get_kids().push_back( new ExprStmt( noLabels, genEnumAssign( copyCtorType, assignDecl ) ) );
288
289 declsToAdd.push_back( ctorDecl );
290 declsToAdd.push_back( copyCtorDecl );
291 declsToAdd.push_back( dtorDecl );
292 declsToAdd.push_back( assignDecl ); // assignment should come last since it uses copy constructor in return
293 }
294
295 /// generates a single struct member operation (constructor call, destructor call, assignment call)
296 void makeStructMemberOp( ObjectDecl * dstParam, Expression * src, DeclarationWithType * field, FunctionDecl * func, bool isDynamicLayout, bool forward = true ) {
297 ObjectDecl * returnVal = NULL;
298 if ( ! func->get_functionType()->get_returnVals().empty() ) {
299 returnVal = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_returnVals().front() );
300 }
301
302 InitTweak::InitExpander srcParam( src );
303
304 // assign to destination (and return value if generic)
305 UntypedExpr *derefExpr = UntypedExpr::createDeref( new VariableExpr( dstParam ) );
306 Expression *dstselect = new MemberExpr( field, derefExpr );
307 genImplicitCall( srcParam, dstselect, func->get_name(), back_inserter( func->get_statements()->get_kids() ), field, forward );
308
309 if ( isDynamicLayout && returnVal ) {
310 // xxx - there used to be a dereference on returnVal, but this seems to have been wrong?
311 Expression *retselect = new MemberExpr( field, new VariableExpr( returnVal ) );
312 genImplicitCall( srcParam, retselect, func->get_name(), back_inserter( func->get_statements()->get_kids() ), field, forward );
313 } // if
314 }
315
316 /// generates the body of a struct function by iterating the struct members (via parameters) - generates default ctor, copy ctor, assignment, and dtor bodies, but NOT field ctor bodies
317 template<typename Iterator>
318 void makeStructFunctionBody( Iterator member, Iterator end, FunctionDecl * func, bool isDynamicLayout, bool forward = true ) {
319 for ( ; member != end; ++member ) {
320 if ( DeclarationWithType *field = dynamic_cast< DeclarationWithType * >( *member ) ) { // otherwise some form of type declaration, e.g. Aggregate
321 // query the type qualifiers of this field and skip assigning it if it is marked const.
322 // If it is an array type, we need to strip off the array layers to find its qualifiers.
323 Type * type = field->get_type();
324 while ( ArrayType * at = dynamic_cast< ArrayType * >( type ) ) {
325 type = at->get_base();
326 }
327
328 if ( type->get_const() && func->get_name() == "?=?" ) {
329 // don't assign const members, but do construct/destruct
330 continue;
331 }
332
333 if ( field->get_name() == "" ) {
334 // don't assign to anonymous members
335 // xxx - this is a temporary fix. Anonymous members tie into
336 // our inheritance model. I think the correct way to handle this is to
337 // cast the structure to the type of the member and let the resolver
338 // figure out whether it's valid and have a pass afterwards that fixes
339 // the assignment to use pointer arithmetic with the offset of the
340 // member, much like how generic type members are handled.
341 continue;
342 }
343
344 assert( ! func->get_functionType()->get_parameters().empty() );
345 ObjectDecl * dstParam = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_parameters().front() );
346 ObjectDecl * srcParam = NULL;
347 if ( func->get_functionType()->get_parameters().size() == 2 ) {
348 srcParam = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_parameters().back() );
349 }
350 // srcParam may be NULL, in which case we have default ctor/dtor
351 assert( dstParam );
352
353 Expression *srcselect = srcParam ? new MemberExpr( field, new VariableExpr( srcParam ) ) : NULL;
354 makeStructMemberOp( dstParam, srcselect, field, func, isDynamicLayout, forward );
355 } // if
356 } // for
357 } // makeStructFunctionBody
358
359 /// generate the body of a constructor which takes parameters that match fields, e.g.
360 /// void ?{}(A *, int) and void?{}(A *, int, int) for a struct A which has two int fields.
361 template<typename Iterator>
362 void makeStructFieldCtorBody( Iterator member, Iterator end, FunctionDecl * func, bool isDynamicLayout ) {
363 FunctionType * ftype = func->get_functionType();
364 std::list<DeclarationWithType*> & params = ftype->get_parameters();
365 assert( params.size() >= 2 ); // should not call this function for default ctor, etc.
366
367 // skip 'this' parameter
368 ObjectDecl * dstParam = dynamic_cast<ObjectDecl*>( params.front() );
369 assert( dstParam );
370 std::list<DeclarationWithType*>::iterator parameter = params.begin()+1;
371 for ( ; member != end; ++member ) {
372 if ( DeclarationWithType * field = dynamic_cast<DeclarationWithType*>( *member ) ) {
373 if ( isUnnamedBitfield( dynamic_cast< ObjectDecl * > ( field ) ) ) {
374 // don't make a function whose parameter is an unnamed bitfield
375 continue;
376 } else if ( field->get_name() == "" ) {
377 // don't assign to anonymous members
378 // xxx - this is a temporary fix. Anonymous members tie into
379 // our inheritance model. I think the correct way to handle this is to
380 // cast the structure to the type of the member and let the resolver
381 // figure out whether it's valid and have a pass afterwards that fixes
382 // the assignment to use pointer arithmetic with the offset of the
383 // member, much like how generic type members are handled.
384 continue;
385 } else if ( parameter != params.end() ) {
386 // matching parameter, initialize field with copy ctor
387 Expression *srcselect = new VariableExpr(*parameter);
388 makeStructMemberOp( dstParam, srcselect, field, func, isDynamicLayout );
389 ++parameter;
390 } else {
391 // no matching parameter, initialize field with default ctor
392 makeStructMemberOp( dstParam, NULL, field, func, isDynamicLayout );
393 }
394 }
395 }
396 }
397
398 /// generates struct constructors, destructor, and assignment functions
399 void makeStructFunctions( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, std::list< Declaration * > & declsToAdd, const std::vector< FuncData > & data ) {
400 // Builtins do not use autogeneration.
401 if ( aggregateDecl->get_linkage() == LinkageSpec::BuiltinCFA ||
402 aggregateDecl->get_linkage() == LinkageSpec::BuiltinC ) {
403 return;
404 }
405
406 // Make function polymorphic in same parameters as generic struct, if applicable
407 const std::list< TypeDecl* > & typeParams = aggregateDecl->get_parameters(); // List of type variables to be placed on the generated functions
408 bool isDynamicLayout = hasDynamicLayout( aggregateDecl ); // NOTE this flag is an incredibly ugly kludge; we should fix the assignment signature instead (ditto for union)
409
410 // generate each of the functions based on the supplied FuncData objects
411 std::list< FunctionDecl * > newFuncs;
412 auto generator = makeFuncGenerator( aggregateDecl, refType, functionNesting, typeParams, back_inserter( newFuncs ) );
413 for ( const FuncData & d : data ) {
414 generator.gen( d, aggregateDecl->is_thread() || aggregateDecl->is_monitor() );
415 }
416
417 // field ctors are only generated if default constructor and copy constructor are both generated
418 unsigned numCtors = std::count_if( newFuncs.begin(), newFuncs.end(), [](FunctionDecl * dcl) { return InitTweak::isConstructor( dcl->get_name() ); } );
419
420 if ( functionNesting == 0 ) {
421 // forward declare if top-level struct, so that
422 // type is complete as soon as its body ends
423 // Note: this is necessary if we want structs which contain
424 // generic (otype) structs as members.
425 for ( FunctionDecl * dcl : newFuncs ) {
426 addForwardDecl( dcl, declsToAdd );
427 }
428 }
429
430 for ( FunctionDecl * dcl : newFuncs ) {
431 // generate appropriate calls to member ctor, assignment
432 // destructor needs to do everything in reverse, so pass "forward" based on whether the function is a destructor
433 if ( ! InitTweak::isDestructor( dcl->get_name() ) ) {
434 makeStructFunctionBody( aggregateDecl->get_members().begin(), aggregateDecl->get_members().end(), dcl, isDynamicLayout );
435 } else {
436 makeStructFunctionBody( aggregateDecl->get_members().rbegin(), aggregateDecl->get_members().rend(), dcl, isDynamicLayout, false );
437 }
438 if ( InitTweak::isAssignment( dcl->get_name() ) ) {
439 // assignment needs to return a value
440 FunctionType * assignType = dcl->get_functionType();
441 assert( assignType->get_parameters().size() == 2 );
442 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( assignType->get_parameters().back() );
443 dcl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, new VariableExpr( srcParam ) ) );
444 }
445 declsToAdd.push_back( dcl );
446 }
447
448 // create constructors which take each member type as a parameter.
449 // for example, for struct A { int x, y; }; generate
450 // void ?{}(A *, int) and void ?{}(A *, int, int)
451 // Field constructors are only generated if default and copy constructor
452 // are generated, since they need access to both
453 if ( numCtors == 2 ) {
454 FunctionType * memCtorType = genDefaultType( refType );
455 cloneAll( typeParams, memCtorType->get_forall() );
456 for ( std::list<Declaration *>::iterator i = aggregateDecl->get_members().begin(); i != aggregateDecl->get_members().end(); ++i ) {
457 DeclarationWithType * member = dynamic_cast<DeclarationWithType *>( *i );
458 assert( member );
459 if ( isUnnamedBitfield( dynamic_cast< ObjectDecl * > ( member ) ) ) {
460 // don't make a function whose parameter is an unnamed bitfield
461 continue;
462 } else if ( member->get_name() == "" ) {
463 // don't assign to anonymous members
464 // xxx - this is a temporary fix. Anonymous members tie into
465 // our inheritance model. I think the correct way to handle this is to
466 // cast the structure to the type of the member and let the resolver
467 // figure out whether it's valid and have a pass afterwards that fixes
468 // the assignment to use pointer arithmetic with the offset of the
469 // member, much like how generic type members are handled.
470 continue;
471 }
472 memCtorType->get_parameters().push_back( new ObjectDecl( member->get_name(), Type::StorageClasses(), LinkageSpec::Cforall, 0, member->get_type()->clone(), 0 ) );
473 FunctionDecl * ctor = genFunc( "?{}", memCtorType->clone(), functionNesting );
474 makeStructFieldCtorBody( aggregateDecl->get_members().begin(), aggregateDecl->get_members().end(), ctor, isDynamicLayout );
475 declsToAdd.push_back( ctor );
476 }
477 delete memCtorType;
478 }
479 }
480
481 /// generate a single union assignment expression (using memcpy)
482 template< typename OutputIterator >
483 void makeUnionFieldsAssignment( ObjectDecl * srcParam, ObjectDecl * dstParam, OutputIterator out ) {
484 UntypedExpr *copy = new UntypedExpr( new NameExpr( "__builtin_memcpy" ) );
485 copy->get_args().push_back( new VariableExpr( dstParam ) );
486 copy->get_args().push_back( new AddressExpr( new VariableExpr( srcParam ) ) );
487 copy->get_args().push_back( new SizeofExpr( srcParam->get_type()->clone() ) );
488 *out++ = new ExprStmt( noLabels, copy );
489 }
490
491 /// generates the body of a union assignment/copy constructor/field constructor
492 void makeUnionAssignBody( FunctionDecl * funcDecl ) {
493 FunctionType * ftype = funcDecl->get_functionType();
494 assert( ftype->get_parameters().size() == 2 );
495 ObjectDecl * dstParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().front() );
496 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().back() );
497 ObjectDecl * returnVal = nullptr;
498 if ( ! ftype->get_returnVals().empty() ) {
499 returnVal = safe_dynamic_cast< ObjectDecl * >( ftype->get_returnVals().front() );
500 }
501
502 makeUnionFieldsAssignment( srcParam, dstParam, back_inserter( funcDecl->get_statements()->get_kids() ) );
503 if ( returnVal ) {
504 funcDecl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, new VariableExpr( srcParam ) ) );
505 }
506 }
507
508 /// generates union constructors, destructors, and assignment operator
509 void makeUnionFunctions( UnionDecl *aggregateDecl, UnionInstType *refType, unsigned int functionNesting, std::list< Declaration * > & declsToAdd ) {
510 // Make function polymorphic in same parameters as generic union, if applicable
511 const std::list< TypeDecl* > & typeParams = aggregateDecl->get_parameters(); // List of type variables to be placed on the generated functions
512
513 // default ctor/dtor need only first parameter
514 // void ?{}(T *); void ^?{}(T *);
515 FunctionType *ctorType = genDefaultType( refType );
516 FunctionType *dtorType = genDefaultType( refType );
517
518 // copy ctor needs both parameters
519 // void ?{}(T *, T);
520 FunctionType *copyCtorType = genCopyType( refType );
521
522 // assignment needs both and return value
523 // T ?=?(T *, T);
524 FunctionType *assignType = genAssignType( refType );
525
526 cloneAll( typeParams, ctorType->get_forall() );
527 cloneAll( typeParams, dtorType->get_forall() );
528 cloneAll( typeParams, copyCtorType->get_forall() );
529 cloneAll( typeParams, assignType->get_forall() );
530
531 // Routines at global scope marked "static" to prevent multiple definitions is separate translation units
532 // because each unit generates copies of the default routines for each aggregate.
533 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting );
534 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting );
535 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting );
536 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting );
537
538 makeUnionAssignBody( assignDecl );
539
540 // body of assignment and copy ctor is the same
541 makeUnionAssignBody( copyCtorDecl );
542
543 // create a constructor which takes the first member type as a parameter.
544 // for example, for Union A { int x; double y; }; generate
545 // void ?{}(A *, int)
546 // This is to mimic C's behaviour which initializes the first member of the union.
547 std::list<Declaration *> memCtors;
548 for ( Declaration * member : aggregateDecl->get_members() ) {
549 if ( DeclarationWithType * field = dynamic_cast< DeclarationWithType * >( member ) ) {
550 ObjectDecl * srcParam = new ObjectDecl( "src", Type::StorageClasses(), LinkageSpec::Cforall, 0, field->get_type()->clone(), 0 );
551
552 FunctionType * memCtorType = ctorType->clone();
553 memCtorType->get_parameters().push_back( srcParam );
554 FunctionDecl * ctor = genFunc( "?{}", memCtorType, functionNesting );
555
556 makeUnionAssignBody( ctor );
557 memCtors.push_back( ctor );
558 // only generate a ctor for the first field
559 break;
560 }
561 }
562
563 declsToAdd.push_back( ctorDecl );
564 declsToAdd.push_back( copyCtorDecl );
565 declsToAdd.push_back( dtorDecl );
566 declsToAdd.push_back( assignDecl ); // assignment should come last since it uses copy constructor in return
567 declsToAdd.splice( declsToAdd.end(), memCtors );
568 }
569
570 AutogenerateRoutines::AutogenerateRoutines() {
571 // the order here determines the order that these functions are generated.
572 // assignment should come last since it uses copy constructor in return.
573 data.push_back( FuncData( "?{}", genDefaultType, constructable ) );
574 data.push_back( FuncData( "?{}", genCopyType, copyable ) );
575 data.push_back( FuncData( "^?{}", genDefaultType, destructable ) );
576 data.push_back( FuncData( "?=?", genAssignType, assignable ) );
577 }
578
579 void AutogenerateRoutines::visit( EnumDecl *enumDecl ) {
580 if ( ! enumDecl->get_members().empty() ) {
581 EnumInstType *enumInst = new EnumInstType( Type::Qualifiers(), enumDecl->get_name() );
582 // enumInst->set_baseEnum( enumDecl );
583 makeEnumFunctions( enumInst, functionNesting, declsToAddAfter );
584 }
585 }
586
587 void AutogenerateRoutines::visit( StructDecl *structDecl ) {
588 if ( structDecl->has_body() && structsDone.find( structDecl->get_name() ) == structsDone.end() ) {
589 StructInstType structInst( Type::Qualifiers(), structDecl->get_name() );
590 for ( TypeDecl * typeDecl : structDecl->get_parameters() ) {
591 // need to visit assertions so that they are added to the appropriate maps
592 acceptAll( typeDecl->get_assertions(), *this );
593 structInst.get_parameters().push_back( new TypeExpr( new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), typeDecl ) ) );
594 }
595 structInst.set_baseStruct( structDecl );
596 makeStructFunctions( structDecl, &structInst, functionNesting, declsToAddAfter, data );
597 structsDone.insert( structDecl->get_name() );
598 } // if
599 }
600
601 void AutogenerateRoutines::visit( UnionDecl *unionDecl ) {
602 if ( ! unionDecl->get_members().empty() ) {
603 UnionInstType unionInst( Type::Qualifiers(), unionDecl->get_name() );
604 unionInst.set_baseUnion( unionDecl );
605 for ( TypeDecl * typeDecl : unionDecl->get_parameters() ) {
606 unionInst.get_parameters().push_back( new TypeExpr( new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), typeDecl ) ) );
607 }
608 makeUnionFunctions( unionDecl, &unionInst, functionNesting, declsToAddAfter );
609 } // if
610 }
611
612 void AutogenerateRoutines::visit( TypeDecl *typeDecl ) {
613 TypeInstType *typeInst = new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), false );
614 typeInst->set_baseType( typeDecl );
615 ObjectDecl *src = new ObjectDecl( "_src", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, typeInst->clone(), nullptr );
616 ObjectDecl *dst = new ObjectDecl( "_dst", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new PointerType( Type::Qualifiers(), typeInst->clone() ), nullptr );
617
618 std::list< Statement * > stmts;
619 if ( typeDecl->get_base() ) {
620 // xxx - generate ctor/dtors for typedecls, e.g.
621 // otype T = int *;
622 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
623 assign->get_args().push_back( new CastExpr( new VariableExpr( dst ), new PointerType( Type::Qualifiers(), typeDecl->get_base()->clone() ) ) );
624 assign->get_args().push_back( new CastExpr( new VariableExpr( src ), typeDecl->get_base()->clone() ) );
625 stmts.push_back( new ReturnStmt( std::list< Label >(), assign ) );
626 } // if
627 FunctionType *type = new FunctionType( Type::Qualifiers(), false );
628 type->get_returnVals().push_back( new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, typeInst, 0 ) );
629 type->get_parameters().push_back( dst );
630 type->get_parameters().push_back( src );
631 FunctionDecl *func = genFunc( "?=?", type, functionNesting );
632 func->get_statements()->get_kids() = stmts;
633 declsToAddAfter.push_back( func );
634 }
635
636 void addDecls( std::list< Declaration * > &declsToAdd, std::list< Statement * > &statements, std::list< Statement * >::iterator i ) {
637 for ( std::list< Declaration * >::iterator decl = declsToAdd.begin(); decl != declsToAdd.end(); ++decl ) {
638 statements.insert( i, new DeclStmt( noLabels, *decl ) );
639 } // for
640 declsToAdd.clear();
641 }
642
643 void AutogenerateRoutines::visit( FunctionType *) {
644 // ensure that we don't add assignment ops for types defined as part of the function
645 }
646
647 void AutogenerateRoutines::visit( PointerType *) {
648 // ensure that we don't add assignment ops for types defined as part of the pointer
649 }
650
651 void AutogenerateRoutines::visit( TraitDecl *) {
652 // ensure that we don't add assignment ops for types defined as part of the trait
653 }
654
655 template< typename StmtClass >
656 inline void AutogenerateRoutines::visitStatement( StmtClass *stmt ) {
657 std::set< std::string > oldStructs = structsDone;
658 addVisit( stmt, *this );
659 structsDone = oldStructs;
660 }
661
662 void AutogenerateRoutines::visit( FunctionDecl *functionDecl ) {
663 // record the existence of this function as appropriate
664 insert( functionDecl, constructable, InitTweak::isDefaultConstructor );
665 insert( functionDecl, assignable, InitTweak::isAssignment );
666 insert( functionDecl, copyable, InitTweak::isCopyConstructor );
667 insert( functionDecl, destructable, InitTweak::isDestructor );
668
669 maybeAccept( functionDecl->get_functionType(), *this );
670 functionNesting += 1;
671 maybeAccept( functionDecl->get_statements(), *this );
672 functionNesting -= 1;
673 }
674
675 void AutogenerateRoutines::visit( CompoundStmt *compoundStmt ) {
676 constructable.beginScope();
677 assignable.beginScope();
678 copyable.beginScope();
679 destructable.beginScope();
680 visitStatement( compoundStmt );
681 constructable.endScope();
682 assignable.endScope();
683 copyable.endScope();
684 destructable.endScope();
685 }
686
687 void AutogenerateRoutines::visit( SwitchStmt *switchStmt ) {
688 visitStatement( switchStmt );
689 }
690
691 void makeTupleFunctionBody( FunctionDecl * function ) {
692 FunctionType * ftype = function->get_functionType();
693 assertf( ftype->get_parameters().size() == 1 || ftype->get_parameters().size() == 2, "too many parameters in generated tuple function" );
694
695 UntypedExpr * untyped = new UntypedExpr( new NameExpr( function->get_name() ) );
696
697 /// xxx - &* is used to make this easier for later passes to handle
698 untyped->get_args().push_back( new AddressExpr( UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) );
699 if ( ftype->get_parameters().size() == 2 ) {
700 untyped->get_args().push_back( new VariableExpr( ftype->get_parameters().back() ) );
701 }
702 function->get_statements()->get_kids().push_back( new ExprStmt( noLabels, untyped ) );
703 function->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) );
704 }
705
706 Type * AutogenTupleRoutines::mutate( TupleType * tupleType ) {
707 tupleType = safe_dynamic_cast< TupleType * >( Parent::mutate( tupleType ) );
708 std::string mangleName = SymTab::Mangler::mangleType( tupleType );
709 if ( seenTuples.find( mangleName ) != seenTuples.end() ) return tupleType;
710 seenTuples.insert( mangleName );
711
712 // T ?=?(T *, T);
713 FunctionType *assignType = genAssignType( tupleType );
714
715 // void ?{}(T *); void ^?{}(T *);
716 FunctionType *ctorType = genDefaultType( tupleType );
717 FunctionType *dtorType = genDefaultType( tupleType );
718
719 // void ?{}(T *, T);
720 FunctionType *copyCtorType = genCopyType( tupleType );
721
722 std::set< TypeDecl* > done;
723 std::list< TypeDecl * > typeParams;
724 for ( Type * t : *tupleType ) {
725 if ( TypeInstType * ty = dynamic_cast< TypeInstType * >( t ) ) {
726 if ( ! done.count( ty->get_baseType() ) ) {
727 TypeDecl * newDecl = new TypeDecl( ty->get_baseType()->get_name(), Type::StorageClasses(), nullptr, TypeDecl::Any );
728 TypeInstType * inst = new TypeInstType( Type::Qualifiers(), newDecl->get_name(), newDecl );
729 newDecl->get_assertions().push_back( new FunctionDecl( "?=?", Type::StorageClasses(), LinkageSpec::Cforall, genAssignType( inst ), nullptr,
730 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
731 newDecl->get_assertions().push_back( new FunctionDecl( "?{}", Type::StorageClasses(), LinkageSpec::Cforall, genDefaultType( inst ), nullptr,
732 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
733 newDecl->get_assertions().push_back( new FunctionDecl( "?{}", Type::StorageClasses(), LinkageSpec::Cforall, genCopyType( inst ), nullptr,
734 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
735 newDecl->get_assertions().push_back( new FunctionDecl( "^?{}", Type::StorageClasses(), LinkageSpec::Cforall, genDefaultType( inst ), nullptr,
736 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
737 typeParams.push_back( newDecl );
738 done.insert( ty->get_baseType() );
739 }
740 }
741 }
742 cloneAll( typeParams, ctorType->get_forall() );
743 cloneAll( typeParams, dtorType->get_forall() );
744 cloneAll( typeParams, copyCtorType->get_forall() );
745 cloneAll( typeParams, assignType->get_forall() );
746
747 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting );
748 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting );
749 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting );
750 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting );
751
752 makeTupleFunctionBody( assignDecl );
753 makeTupleFunctionBody( ctorDecl );
754 makeTupleFunctionBody( copyCtorDecl );
755 makeTupleFunctionBody( dtorDecl );
756
757 addDeclaration( ctorDecl );
758 addDeclaration( copyCtorDecl );
759 addDeclaration( dtorDecl );
760 addDeclaration( assignDecl ); // assignment should come last since it uses copy constructor in return
761
762 return tupleType;
763 }
764
765 DeclarationWithType * AutogenTupleRoutines::mutate( FunctionDecl *functionDecl ) {
766 functionDecl->set_functionType( maybeMutate( functionDecl->get_functionType(), *this ) );
767 functionNesting += 1;
768 functionDecl->set_statements( maybeMutate( functionDecl->get_statements(), *this ) );
769 functionNesting -= 1;
770 return functionDecl;
771 }
772
773 CompoundStmt * AutogenTupleRoutines::mutate( CompoundStmt *compoundStmt ) {
774 seenTuples.beginScope();
775 compoundStmt = safe_dynamic_cast< CompoundStmt * >( Parent::mutate( compoundStmt ) );
776 seenTuples.endScope();
777 return compoundStmt;
778 }
779} // SymTab
780
781// Local Variables: //
782// tab-width: 4 //
783// mode: c++ //
784// compile-command: "make install" //
785// End: //
Note: See TracBrowser for help on using the repository browser.