source: src/SymTab/Autogen.cc@ c0d00b6

ADT arm-eh ast-experimental cleanup-dtors enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since c0d00b6 was c0d00b6, checked in by Rob Schluntz <rschlunt@…>, 8 years ago

Merge branch 'master' into cleanup-dtors

  • Property mode set to 100644
File size: 33.2 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Autogen.cc --
8//
9// Author : Rob Schluntz
10// Created On : Thu Mar 03 15:45:56 2016
11// Last Modified By : Andrew Beach
12// Last Modified On : Fri Jul 14 16:41:00 2017
13// Update Count : 62
14//
15
16#include "Autogen.h"
17
18#include <algorithm> // for count_if
19#include <cassert> // for strict_dynamic_cast, assert, assertf
20#include <iterator> // for back_insert_iterator, back_inserter
21#include <list> // for list, _List_iterator, list<>::iter...
22#include <set> // for set, _Rb_tree_const_iterator
23#include <utility> // for pair
24#include <vector> // for vector
25
26#include "AddVisit.h" // for addVisit
27#include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign
28#include "Common/PassVisitor.h" // for PassVisitor
29#include "Common/ScopedMap.h" // for ScopedMap<>::const_iterator, Scope...
30#include "Common/utility.h" // for cloneAll, operator+
31#include "GenPoly/ScopedSet.h" // for ScopedSet, ScopedSet<>::iterator
32#include "InitTweak/GenInit.h" // for fixReturnStatements
33#include "ResolvExpr/Resolver.h" // for resolveDecl
34#include "SymTab/Mangler.h" // for Mangler
35#include "SynTree/Attribute.h" // For Attribute
36#include "SynTree/Mutator.h" // for maybeMutate
37#include "SynTree/Statement.h" // for CompoundStmt, ReturnStmt, ExprStmt
38#include "SynTree/Type.h" // for FunctionType, Type, TypeInstType
39#include "SynTree/Visitor.h" // for maybeAccept, Visitor, acceptAll
40
41class Attribute;
42
43namespace SymTab {
44 Type * SizeType = 0;
45
46 /// Data used to generate functions generically. Specifically, the name of the generated function and a function which generates the routine protoype
47 struct FuncData {
48 typedef FunctionType * (*TypeGen)( Type *, bool );
49 FuncData( const std::string & fname, const TypeGen & genType ) : fname( fname ), genType( genType ) {}
50 std::string fname;
51 TypeGen genType;
52 };
53
54 struct AutogenerateRoutines final : public WithDeclsToAdd, public WithVisitorRef<AutogenerateRoutines>, public WithGuards, public WithShortCircuiting, public WithIndexer {
55 AutogenerateRoutines();
56
57 void previsit( EnumDecl * enumDecl );
58 void previsit( StructDecl * structDecl );
59 void previsit( UnionDecl * structDecl );
60 void previsit( TypeDecl * typeDecl );
61 void previsit( TraitDecl * traitDecl );
62 void previsit( FunctionDecl * functionDecl );
63
64 void previsit( CompoundStmt * compoundStmt );
65
66 private:
67
68 GenPoly::ScopedSet< std::string > structsDone;
69 unsigned int functionNesting = 0; // current level of nested functions
70
71 std::vector< FuncData > data;
72 };
73
74 /// generates routines for tuple types.
75 struct AutogenTupleRoutines : public WithDeclsToAdd, public WithVisitorRef<AutogenTupleRoutines>, public WithGuards, public WithShortCircuiting {
76 void previsit( FunctionDecl * functionDecl );
77
78 void postvisit( TupleType * tupleType );
79
80 void previsit( CompoundStmt * compoundStmt );
81
82 private:
83 unsigned int functionNesting = 0; // current level of nested functions
84 GenPoly::ScopedSet< std::string > seenTuples;
85 };
86
87 void autogenerateRoutines( std::list< Declaration * > &translationUnit ) {
88 PassVisitor<AutogenerateRoutines> generator;
89 acceptAll( translationUnit, generator );
90
91 // needs to be done separately because AutogenerateRoutines skips types that appear as function arguments, etc.
92 // AutogenTupleRoutines tupleGenerator;
93 // acceptAll( translationUnit, tupleGenerator );
94 }
95
96 //=============================================================================================
97 // FuncGenerator definitions
98 //=============================================================================================
99 class FuncGenerator {
100 public:
101 std::list< Declaration * > definitions, forwards;
102
103 FuncGenerator( Type * type, const std::vector< FuncData > & data, unsigned int functionNesting, SymTab::Indexer & indexer ) : type( type ), data( data ), functionNesting( functionNesting ), indexer( indexer ) {}
104
105 virtual bool shouldAutogen() const = 0;
106 void genStandardFuncs();
107 virtual void genFieldCtors() = 0;
108 protected:
109 Type * type;
110 const std::vector< FuncData > & data;
111 unsigned int functionNesting;
112 SymTab::Indexer & indexer;
113
114 virtual void genFuncBody( FunctionDecl * dcl ) = 0;
115 virtual bool isConcurrentType() const = 0;
116
117 void resolve( FunctionDecl * dcl );
118 void generatePrototypes( std::list< FunctionDecl * > & newFuncs );
119 };
120
121 class StructFuncGenerator : public FuncGenerator {
122 StructDecl * aggregateDecl;
123 public:
124 StructFuncGenerator( StructDecl * aggregateDecl, StructInstType * refType, const std::vector< FuncData > & data, unsigned int functionNesting, SymTab::Indexer & indexer ) : FuncGenerator( refType, data, functionNesting, indexer ), aggregateDecl( aggregateDecl) {}
125
126 virtual bool shouldAutogen() const override;
127 virtual bool isConcurrentType() const override;
128
129 virtual void genFuncBody( FunctionDecl * dcl ) override;
130 virtual void genFieldCtors() override;
131
132 private:
133 /// generates a single struct member operation (constructor call, destructor call, assignment call)
134 void makeMemberOp( ObjectDecl * dstParam, Expression * src, DeclarationWithType * field, FunctionDecl * func, bool forward = true );
135
136 /// generates the body of a struct function by iterating the struct members (via parameters) - generates default ctor, copy ctor, assignment, and dtor bodies, but NOT field ctor bodies
137 template<typename Iterator>
138 void makeFunctionBody( Iterator member, Iterator end, FunctionDecl * func, bool forward = true );
139
140 /// generate the body of a constructor which takes parameters that match fields, e.g.
141 /// void ?{}(A *, int) and void?{}(A *, int, int) for a struct A which has two int fields.
142 template<typename Iterator>
143 void makeFieldCtorBody( Iterator member, Iterator end, FunctionDecl * func );
144 };
145
146 class UnionFuncGenerator : public FuncGenerator {
147 UnionDecl * aggregateDecl;
148 public:
149 UnionFuncGenerator( UnionDecl * aggregateDecl, UnionInstType * refType, const std::vector< FuncData > & data, unsigned int functionNesting, SymTab::Indexer & indexer ) : FuncGenerator( refType, data, functionNesting, indexer ), aggregateDecl( aggregateDecl) {}
150
151 virtual bool shouldAutogen() const override;
152 virtual bool isConcurrentType() const override;
153
154 virtual void genFuncBody( FunctionDecl * dcl ) override;
155 virtual void genFieldCtors() override;
156
157 private:
158 /// generates a single struct member operation (constructor call, destructor call, assignment call)
159 template<typename OutputIterator>
160 void makeMemberOp( ObjectDecl * srcParam, ObjectDecl * dstParam, OutputIterator out );
161
162 /// generates the body of a struct function by iterating the struct members (via parameters) - generates default ctor, copy ctor, assignment, and dtor bodies, but NOT field ctor bodies
163 template<typename Iterator>
164 void makeFunctionBody( Iterator member, Iterator end, FunctionDecl * func, bool forward = true );
165
166 /// generate the body of a constructor which takes parameters that match fields, e.g.
167 /// void ?{}(A *, int) and void?{}(A *, int, int) for a struct A which has two int fields.
168 template<typename Iterator>
169 void makeFieldCtorBody( Iterator member, Iterator end, FunctionDecl * func );
170 };
171
172 class EnumFuncGenerator : public FuncGenerator {
173 public:
174 EnumFuncGenerator( EnumInstType * refType, const std::vector< FuncData > & data, unsigned int functionNesting, SymTab::Indexer & indexer ) : FuncGenerator( refType, data, functionNesting, indexer ) {}
175
176 virtual bool shouldAutogen() const override;
177 virtual bool isConcurrentType() const override;
178
179 virtual void genFuncBody( FunctionDecl * dcl ) override;
180 virtual void genFieldCtors() override;
181
182 private:
183 };
184
185 class TypeFuncGenerator : public FuncGenerator {
186 TypeDecl * typeDecl;
187 public:
188 TypeFuncGenerator( TypeDecl * typeDecl, TypeInstType * refType, const std::vector<FuncData> & data, unsigned int functionNesting, SymTab::Indexer & indexer ) : FuncGenerator( refType, data, functionNesting, indexer ), typeDecl( typeDecl ) {}
189
190 virtual bool shouldAutogen() const override;
191 virtual void genFuncBody( FunctionDecl * dcl ) override;
192 virtual bool isConcurrentType() const override;
193 virtual void genFieldCtors() override;
194 };
195
196 //=============================================================================================
197 // helper functions
198 //=============================================================================================
199 void generateFunctions( FuncGenerator & gen, std::list< Declaration * > & declsToAdd ) {
200 if ( ! gen.shouldAutogen() ) return;
201
202 // generate each of the functions based on the supplied FuncData objects
203 gen.genStandardFuncs();
204 gen.genFieldCtors();
205
206 declsToAdd.splice( declsToAdd.end(), gen.forwards );
207 declsToAdd.splice( declsToAdd.end(), gen.definitions );
208 }
209
210 bool isUnnamedBitfield( ObjectDecl * obj ) {
211 return obj != nullptr && obj->name == "" && obj->bitfieldWidth != nullptr;
212 }
213
214 /// inserts a forward declaration for functionDecl into declsToAdd
215 void addForwardDecl( FunctionDecl * functionDecl, std::list< Declaration * > & declsToAdd ) {
216 FunctionDecl * decl = functionDecl->clone();
217 delete decl->statements;
218 decl->statements = nullptr;
219 declsToAdd.push_back( decl );
220 decl->fixUniqueId();
221 }
222
223 const std::list< TypeDecl * > getGenericParams( Type * t ) {
224 std::list< TypeDecl * > * ret = nullptr;
225 if ( StructInstType * inst = dynamic_cast< StructInstType * > ( t ) ) {
226 ret = inst->get_baseParameters();
227 } else if ( UnionInstType * inst = dynamic_cast< UnionInstType * >( t ) ) {
228 ret = inst->get_baseParameters();
229 }
230 return ret ? *ret : std::list< TypeDecl * >();
231 }
232
233 /// given type T, generate type of default ctor/dtor, i.e. function type void (*) (T *)
234 FunctionType * genDefaultType( Type * paramType, bool maybePolymorphic ) {
235 FunctionType *ftype = new FunctionType( Type::Qualifiers(), false );
236 if ( maybePolymorphic ) {
237 // only copy in
238 const auto & typeParams = getGenericParams( paramType );
239 cloneAll( typeParams, ftype->forall );
240 }
241 ObjectDecl *dstParam = new ObjectDecl( "_dst", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new ReferenceType( Type::Qualifiers(), paramType->clone() ), nullptr );
242 ftype->parameters.push_back( dstParam );
243 return ftype;
244 }
245
246 /// given type T, generate type of copy ctor, i.e. function type void (*) (T *, T)
247 FunctionType * genCopyType( Type * paramType, bool maybePolymorphic ) {
248 FunctionType *ftype = genDefaultType( paramType, maybePolymorphic );
249 ObjectDecl *srcParam = new ObjectDecl( "_src", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, paramType->clone(), nullptr );
250 ftype->parameters.push_back( srcParam );
251 return ftype;
252 }
253
254 /// given type T, generate type of assignment, i.e. function type T (*) (T *, T)
255 FunctionType * genAssignType( Type * paramType, bool maybePolymorphic ) {
256 FunctionType *ftype = genCopyType( paramType, maybePolymorphic );
257 ObjectDecl *returnVal = new ObjectDecl( "_ret", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, paramType->clone(), nullptr );
258 ftype->returnVals.push_back( returnVal );
259 return ftype;
260 }
261
262 /// generate a function decl from a name and type. Nesting depth determines whether
263 /// the declaration is static or not; optional paramter determines if declaration is intrinsic
264 FunctionDecl * genFunc( const std::string & fname, FunctionType * ftype, unsigned int functionNesting, bool isIntrinsic = false ) {
265 // Routines at global scope marked "static" to prevent multiple definitions in separate translation units
266 // because each unit generates copies of the default routines for each aggregate.
267 Type::StorageClasses scs = functionNesting > 0 ? Type::StorageClasses() : Type::StorageClasses( Type::Static );
268 LinkageSpec::Spec spec = isIntrinsic ? LinkageSpec::Intrinsic : LinkageSpec::AutoGen;
269 FunctionDecl * decl = new FunctionDecl( fname, scs, spec, ftype, new CompoundStmt( noLabels ),
270 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) );
271 decl->fixUniqueId();
272 return decl;
273 }
274
275 Type * declToType( Declaration * decl ) {
276 if ( DeclarationWithType * dwt = dynamic_cast< DeclarationWithType * >( decl ) ) {
277 return dwt->get_type();
278 }
279 return nullptr;
280 }
281
282 Type * declToTypeDeclBase( Declaration * decl ) {
283 if ( TypeDecl * td = dynamic_cast< TypeDecl * >( decl ) ) {
284 return td->base;
285 }
286 return nullptr;
287 }
288
289 //=============================================================================================
290 // FuncGenerator member definitions
291 //=============================================================================================
292 void FuncGenerator::genStandardFuncs() {
293 std::list< FunctionDecl * > newFuncs;
294 generatePrototypes( newFuncs );
295
296 for ( FunctionDecl * dcl : newFuncs ) {
297 genFuncBody( dcl );
298 if ( CodeGen::isAssignment( dcl->name ) ) {
299 // assignment needs to return a value
300 FunctionType * assignType = dcl->type;
301 assert( assignType->parameters.size() == 2 );
302 assert( assignType->returnVals.size() == 1 );
303 ObjectDecl * dstParam = strict_dynamic_cast< ObjectDecl * >( assignType->parameters.front() );
304 dcl->statements->push_back( new ReturnStmt( noLabels, new VariableExpr( dstParam ) ) );
305 }
306 resolve( dcl );
307 }
308 }
309
310 void FuncGenerator::generatePrototypes( std::list< FunctionDecl * > & newFuncs ) {
311 bool concurrent_type = isConcurrentType();
312 for ( const FuncData & d : data ) {
313 // generate a function (?{}, ?=?, ^?{}) based on the current FuncData.
314 FunctionType * ftype = d.genType( type, true );
315
316 // destructor for concurrent type must be mutex
317 if ( concurrent_type && CodeGen::isDestructor( d.fname ) ) {
318 ftype->parameters.front()->get_type()->set_mutex( true );
319 }
320
321 newFuncs.push_back( genFunc( d.fname, ftype, functionNesting ) );
322 }
323 }
324
325 void FuncGenerator::resolve( FunctionDecl * dcl ) {
326 try {
327 ResolvExpr::resolveDecl( dcl, indexer );
328 if ( functionNesting == 0 ) {
329 // forward declare if top-level struct, so that
330 // type is complete as soon as its body ends
331 // Note: this is necessary if we want structs which contain
332 // generic (otype) structs as members.
333 addForwardDecl( dcl, forwards );
334 }
335 definitions.push_back( dcl );
336 indexer.addId( dcl );
337 } catch ( SemanticError err ) {
338 // okay if decl does not resolve - that means the function should not be generated
339 delete dcl;
340 }
341 }
342
343 bool StructFuncGenerator::shouldAutogen() const {
344 // Builtins do not use autogeneration.
345 return ! aggregateDecl->linkage.is_builtin;
346 }
347 bool StructFuncGenerator::isConcurrentType() const { return aggregateDecl->is_thread() || aggregateDecl->is_monitor(); }
348
349 void StructFuncGenerator::genFuncBody( FunctionDecl * dcl ) {
350 // generate appropriate calls to member ctor, assignment
351 // destructor needs to do everything in reverse, so pass "forward" based on whether the function is a destructor
352 if ( ! CodeGen::isDestructor( dcl->name ) ) {
353 makeFunctionBody( aggregateDecl->members.begin(), aggregateDecl->members.end(), dcl );
354 } else {
355 makeFunctionBody( aggregateDecl->members.rbegin(), aggregateDecl->members.rend(), dcl, false );
356 }
357 }
358
359 void StructFuncGenerator::genFieldCtors() {
360 // field ctors are only generated if default constructor and copy constructor are both generated
361 unsigned numCtors = std::count_if( definitions.begin(), definitions.end(), [](Declaration * dcl) { return CodeGen::isConstructor( dcl->name ); } );
362
363 // Field constructors are only generated if default and copy constructor
364 // are generated, since they need access to both
365 if ( numCtors != 2 ) return;
366
367 // create constructors which take each member type as a parameter.
368 // for example, for struct A { int x, y; }; generate
369 // void ?{}(A *, int) and void ?{}(A *, int, int)
370 FunctionType * memCtorType = genDefaultType( type );
371 for ( Declaration * member : aggregateDecl->members ) {
372 DeclarationWithType * field = strict_dynamic_cast<DeclarationWithType *>( member );
373 if ( isUnnamedBitfield( dynamic_cast< ObjectDecl * > ( field ) ) ) {
374 // don't make a function whose parameter is an unnamed bitfield
375 continue;
376 }
377 memCtorType->parameters.push_back( new ObjectDecl( field->name, Type::StorageClasses(), LinkageSpec::Cforall, 0, field->get_type()->clone(), 0 ) );
378 FunctionDecl * ctor = genFunc( "?{}", memCtorType->clone(), functionNesting );
379 makeFieldCtorBody( aggregateDecl->members.begin(), aggregateDecl->members.end(), ctor );
380 resolve( ctor );
381 }
382 delete memCtorType;
383 }
384
385 void StructFuncGenerator::makeMemberOp( ObjectDecl * dstParam, Expression * src, DeclarationWithType * field, FunctionDecl * func, bool forward ) {
386 InitTweak::InitExpander srcParam( src );
387
388 // assign to destination
389 Expression *dstselect = new MemberExpr( field, new CastExpr( new VariableExpr( dstParam ), strict_dynamic_cast< ReferenceType* >( dstParam->get_type() )->base->clone() ) );
390 genImplicitCall( srcParam, dstselect, func->name, back_inserter( func->statements->kids ), field, forward );
391 }
392
393 template<typename Iterator>
394 void StructFuncGenerator::makeFunctionBody( Iterator member, Iterator end, FunctionDecl * func, bool forward ) {
395 for ( ; member != end; ++member ) {
396 if ( DeclarationWithType *field = dynamic_cast< DeclarationWithType * >( *member ) ) { // otherwise some form of type declaration, e.g. Aggregate
397 // query the type qualifiers of this field and skip assigning it if it is marked const.
398 // If it is an array type, we need to strip off the array layers to find its qualifiers.
399 Type * type = field->get_type();
400 while ( ArrayType * at = dynamic_cast< ArrayType * >( type ) ) {
401 type = at->get_base();
402 }
403
404 if ( type->get_const() && CodeGen::isAssignment( func->name ) ) {
405 // don't assign const members, but do construct/destruct
406 continue;
407 }
408
409 assert( ! func->get_functionType()->get_parameters().empty() );
410 ObjectDecl * dstParam = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_parameters().front() );
411 ObjectDecl * srcParam = nullptr;
412 if ( func->get_functionType()->get_parameters().size() == 2 ) {
413 srcParam = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_parameters().back() );
414 }
415
416 // srcParam may be NULL, in which case we have default ctor/dtor
417 assert( dstParam );
418
419 Expression *srcselect = srcParam ? new MemberExpr( field, new VariableExpr( srcParam ) ) : nullptr;
420 makeMemberOp( dstParam, srcselect, field, func, forward );
421 } // if
422 } // for
423 } // makeFunctionBody
424
425 template<typename Iterator>
426 void StructFuncGenerator::makeFieldCtorBody( Iterator member, Iterator end, FunctionDecl * func ) {
427 FunctionType * ftype = func->type;
428 std::list<DeclarationWithType*> & params = ftype->parameters;
429 assert( params.size() >= 2 ); // should not call this function for default ctor, etc.
430
431 // skip 'this' parameter
432 ObjectDecl * dstParam = dynamic_cast<ObjectDecl*>( params.front() );
433 assert( dstParam );
434 std::list<DeclarationWithType*>::iterator parameter = params.begin()+1;
435 for ( ; member != end; ++member ) {
436 if ( DeclarationWithType * field = dynamic_cast<DeclarationWithType*>( *member ) ) {
437 if ( isUnnamedBitfield( dynamic_cast< ObjectDecl * > ( field ) ) ) {
438 // don't make a function whose parameter is an unnamed bitfield
439 continue;
440 } else if ( parameter != params.end() ) {
441 // matching parameter, initialize field with copy ctor
442 Expression *srcselect = new VariableExpr(*parameter);
443 makeMemberOp( dstParam, srcselect, field, func );
444 ++parameter;
445 } else {
446 // no matching parameter, initialize field with default ctor
447 makeMemberOp( dstParam, nullptr, field, func );
448 }
449 }
450 }
451 }
452
453 bool UnionFuncGenerator::shouldAutogen() const {
454 // Builtins do not use autogeneration.
455 return ! aggregateDecl->linkage.is_builtin;
456 }
457
458 // xxx - is this right?
459 bool UnionFuncGenerator::isConcurrentType() const { return false; };
460
461 /// generate a single union assignment expression (using memcpy)
462 template< typename OutputIterator >
463 void UnionFuncGenerator::makeMemberOp( ObjectDecl * srcParam, ObjectDecl * dstParam, OutputIterator out ) {
464 UntypedExpr *copy = new UntypedExpr( new NameExpr( "__builtin_memcpy" ) );
465 copy->args.push_back( new AddressExpr( new VariableExpr( dstParam ) ) );
466 copy->args.push_back( new AddressExpr( new VariableExpr( srcParam ) ) );
467 copy->args.push_back( new SizeofExpr( srcParam->get_type()->clone() ) );
468 *out++ = new ExprStmt( noLabels, copy );
469 }
470
471 /// generates the body of a union assignment/copy constructor/field constructor
472 void UnionFuncGenerator::genFuncBody( FunctionDecl * funcDecl ) {
473 FunctionType * ftype = funcDecl->type;
474 if ( InitTweak::isCopyConstructor( funcDecl ) || InitTweak::isAssignment( funcDecl ) ) {
475 assert( ftype->parameters.size() == 2 );
476 ObjectDecl * dstParam = strict_dynamic_cast< ObjectDecl * >( ftype->parameters.front() );
477 ObjectDecl * srcParam = strict_dynamic_cast< ObjectDecl * >( ftype->parameters.back() );
478 makeMemberOp( srcParam, dstParam, back_inserter( funcDecl->statements->kids ) );
479 } else {
480 // default ctor/dtor body is empty - add unused attribute to parameter to silence warnings
481 assert( ftype->parameters.size() == 1 );
482 ObjectDecl * dstParam = strict_dynamic_cast< ObjectDecl * >( ftype->parameters.front() );
483 dstParam->attributes.push_back( new Attribute( "unused" ) );
484 }
485 }
486
487 /// generate the body of a constructor which takes parameters that match fields, e.g.
488 /// void ?{}(A *, int) and void?{}(A *, int, int) for a struct A which has two int fields.
489 void UnionFuncGenerator::genFieldCtors() {
490 // field ctors are only generated if default constructor and copy constructor are both generated
491 unsigned numCtors = std::count_if( definitions.begin(), definitions.end(), [](Declaration * dcl) { return CodeGen::isConstructor( dcl->get_name() ); } );
492
493 // Field constructors are only generated if default and copy constructor
494 // are generated, since they need access to both
495 if ( numCtors != 2 ) return;
496
497 // create a constructor which takes the first member type as a parameter.
498 // for example, for Union A { int x; double y; }; generate
499 // void ?{}(A *, int)
500 // This is to mimic C's behaviour which initializes the first member of the union.
501 FunctionType * memCtorType = genDefaultType( type );
502 for ( Declaration * member : aggregateDecl->members ) {
503 DeclarationWithType * field = strict_dynamic_cast<DeclarationWithType *>( member );
504 if ( isUnnamedBitfield( dynamic_cast< ObjectDecl * > ( field ) ) ) {
505 // don't make a function whose parameter is an unnamed bitfield
506 break;
507 }
508 memCtorType->parameters.push_back( new ObjectDecl( field->name, Type::StorageClasses(), LinkageSpec::Cforall, nullptr, field->get_type()->clone(), nullptr ) );
509 FunctionDecl * ctor = genFunc( "?{}", memCtorType->clone(), functionNesting );
510 ObjectDecl * srcParam = strict_dynamic_cast<ObjectDecl *>( ctor->type->parameters.back() );
511 srcParam->fixUniqueId();
512 ObjectDecl * dstParam = InitTweak::getParamThis( ctor->type );
513 makeMemberOp( srcParam, dstParam, back_inserter( ctor->statements->kids ) );
514 resolve( ctor );
515 // only generate one field ctor for unions
516 break;
517 }
518 delete memCtorType;
519 }
520
521 void EnumFuncGenerator::genFuncBody( FunctionDecl * funcDecl ) {
522 // xxx - Temporary: make these functions intrinsic so they codegen as C assignment.
523 // Really they're something of a cross between instrinsic and autogen, so should
524 // probably make a new linkage type
525 funcDecl->linkage = LinkageSpec::Intrinsic;
526 FunctionType * ftype = funcDecl->type;
527 if ( InitTweak::isCopyConstructor( funcDecl ) || InitTweak::isAssignment( funcDecl ) ) {
528 assert( ftype->parameters.size() == 2 );
529 ObjectDecl * dstParam = strict_dynamic_cast< ObjectDecl * >( ftype->parameters.front() );
530 ObjectDecl * srcParam = strict_dynamic_cast< ObjectDecl * >( ftype->parameters.back() );
531
532 // enum copy construct and assignment is just C-style assignment.
533 // this looks like a bad recursive call, but code gen will turn it into
534 // a C-style assignment.
535 // This happens before function pointer type conversion, so need to do it manually here
536 ApplicationExpr * callExpr = new ApplicationExpr( VariableExpr::functionPointer( funcDecl ) );
537 callExpr->get_args().push_back( new VariableExpr( dstParam ) );
538 callExpr->get_args().push_back( new VariableExpr( srcParam ) );
539 funcDecl->statements->push_back( new ExprStmt( noLabels, callExpr ) );
540 } else {
541 // default ctor/dtor body is empty - add unused attribute to parameter to silence warnings
542 assert( ftype->parameters.size() == 1 );
543 ObjectDecl * dstParam = strict_dynamic_cast< ObjectDecl * >( ftype->parameters.front() );
544 dstParam->attributes.push_back( new Attribute( "unused" ) );
545 }
546 }
547
548 bool EnumFuncGenerator::shouldAutogen() const { return true; }
549 bool EnumFuncGenerator::isConcurrentType() const { return false; }
550 // enums do not have field constructors
551 void EnumFuncGenerator::genFieldCtors() {}
552
553 bool TypeFuncGenerator::shouldAutogen() const { return true; };
554
555 void TypeFuncGenerator::genFuncBody( FunctionDecl * dcl ) {
556 FunctionType * ftype = dcl->type;
557 assertf( ftype->parameters.size() == 1 || ftype->parameters.size() == 2, "Incorrect number of parameters in autogenerated typedecl function: %zd", ftype->parameters.size() );
558 DeclarationWithType * dst = ftype->parameters.front();
559 DeclarationWithType * src = ftype->parameters.size() == 2 ? ftype->parameters.back() : nullptr;
560 // generate appropriate calls to member ctor, assignment
561 UntypedExpr * expr = new UntypedExpr( new NameExpr( dcl->name ) );
562 expr->args.push_back( new CastExpr( new VariableExpr( dst ), new ReferenceType( Type::Qualifiers(), typeDecl->base->clone() ) ) );
563 if ( src ) expr->args.push_back( new CastExpr( new VariableExpr( src ), typeDecl->base->clone() ) );
564 dcl->statements->kids.push_back( new ExprStmt( noLabels, expr ) );
565 };
566
567 // xxx - should reach in and determine if base type is concurrent?
568 bool TypeFuncGenerator::isConcurrentType() const { return false; };
569
570 // opaque types do not have field constructors
571 void TypeFuncGenerator::genFieldCtors() {};
572
573 //=============================================================================================
574 // Visitor definitions
575 //=============================================================================================
576 AutogenerateRoutines::AutogenerateRoutines() {
577 // the order here determines the order that these functions are generated.
578 // assignment should come last since it uses copy constructor in return.
579 data.emplace_back( "?{}", genDefaultType );
580 data.emplace_back( "?{}", genCopyType );
581 data.emplace_back( "^?{}", genDefaultType );
582 data.emplace_back( "?=?", genAssignType );
583 }
584
585 void AutogenerateRoutines::previsit( EnumDecl * enumDecl ) {
586 // must visit children (enum constants) to add them to the indexer
587 if ( enumDecl->has_body() ) {
588 EnumInstType enumInst( Type::Qualifiers(), enumDecl->get_name() );
589 enumInst.set_baseEnum( enumDecl );
590 EnumFuncGenerator gen( &enumInst, data, functionNesting, indexer );
591 generateFunctions( gen, declsToAddAfter );
592 }
593 }
594
595 void AutogenerateRoutines::previsit( StructDecl * structDecl ) {
596 visit_children = false;
597 if ( structDecl->has_body() ) {
598 StructInstType structInst( Type::Qualifiers(), structDecl->name );
599 structInst.set_baseStruct( structDecl );
600 for ( TypeDecl * typeDecl : structDecl->parameters ) {
601 structInst.parameters.push_back( new TypeExpr( new TypeInstType( Type::Qualifiers(), typeDecl->name, typeDecl ) ) );
602 }
603 StructFuncGenerator gen( structDecl, &structInst, data, functionNesting, indexer );
604 generateFunctions( gen, declsToAddAfter );
605 } // if
606 }
607
608 void AutogenerateRoutines::previsit( UnionDecl * unionDecl ) {
609 visit_children = false;
610 if ( unionDecl->has_body() ) {
611 UnionInstType unionInst( Type::Qualifiers(), unionDecl->get_name() );
612 unionInst.set_baseUnion( unionDecl );
613 for ( TypeDecl * typeDecl : unionDecl->get_parameters() ) {
614 unionInst.get_parameters().push_back( new TypeExpr( new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), typeDecl ) ) );
615 }
616 UnionFuncGenerator gen( unionDecl, &unionInst, data, functionNesting, indexer );
617 generateFunctions( gen, declsToAddAfter );
618 } // if
619 }
620
621 // generate ctor/dtors/assign for typedecls, e.g., otype T = int *;
622 void AutogenerateRoutines::previsit( TypeDecl * typeDecl ) {
623 if ( ! typeDecl->base ) return;
624
625 TypeInstType refType( Type::Qualifiers(), typeDecl->name, typeDecl );
626 TypeFuncGenerator gen( typeDecl, &refType, data, functionNesting, indexer );
627 generateFunctions( gen, declsToAddAfter );
628
629 }
630
631 void AutogenerateRoutines::previsit( TraitDecl * ) {
632 // ensure that we don't add assignment ops for types defined as part of the trait
633 visit_children = false;
634 }
635
636 void AutogenerateRoutines::previsit( FunctionDecl * ) {
637 // Track whether we're currently in a function.
638 // Can ignore function type idiosyncrasies, because function type can never
639 // declare a new type.
640 functionNesting += 1;
641 GuardAction( [this]() { functionNesting -= 1; } );
642 }
643
644 void AutogenerateRoutines::previsit( CompoundStmt * ) {
645 GuardScope( structsDone );
646 }
647
648 void makeTupleFunctionBody( FunctionDecl * function ) {
649 FunctionType * ftype = function->get_functionType();
650 assertf( ftype->get_parameters().size() == 1 || ftype->get_parameters().size() == 2, "too many parameters in generated tuple function" );
651
652 UntypedExpr * untyped = new UntypedExpr( new NameExpr( function->get_name() ) );
653
654 /// xxx - &* is used to make this easier for later passes to handle
655 untyped->get_args().push_back( new AddressExpr( UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) );
656 if ( ftype->get_parameters().size() == 2 ) {
657 untyped->get_args().push_back( new VariableExpr( ftype->get_parameters().back() ) );
658 }
659 function->get_statements()->get_kids().push_back( new ExprStmt( noLabels, untyped ) );
660 function->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) );
661 }
662
663 void AutogenTupleRoutines::postvisit( TupleType * tupleType ) {
664 std::string mangleName = SymTab::Mangler::mangleType( tupleType );
665 if ( seenTuples.find( mangleName ) != seenTuples.end() ) return;
666 seenTuples.insert( mangleName );
667
668 // T ?=?(T *, T);
669 FunctionType *assignType = genAssignType( tupleType );
670
671 // void ?{}(T *); void ^?{}(T *);
672 FunctionType *ctorType = genDefaultType( tupleType );
673 FunctionType *dtorType = genDefaultType( tupleType );
674
675 // void ?{}(T *, T);
676 FunctionType *copyCtorType = genCopyType( tupleType );
677
678 std::set< TypeDecl* > done;
679 std::list< TypeDecl * > typeParams;
680 for ( Type * t : *tupleType ) {
681 if ( TypeInstType * ty = dynamic_cast< TypeInstType * >( t ) ) {
682 if ( ! done.count( ty->get_baseType() ) ) {
683 TypeDecl * newDecl = new TypeDecl( ty->get_baseType()->get_name(), Type::StorageClasses(), nullptr, TypeDecl::Dtype, true );
684 TypeInstType * inst = new TypeInstType( Type::Qualifiers(), newDecl->get_name(), newDecl );
685 newDecl->get_assertions().push_back( new FunctionDecl( "?=?", Type::StorageClasses(), LinkageSpec::Cforall, genAssignType( inst ), nullptr,
686 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
687 newDecl->get_assertions().push_back( new FunctionDecl( "?{}", Type::StorageClasses(), LinkageSpec::Cforall, genDefaultType( inst ), nullptr,
688 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
689 newDecl->get_assertions().push_back( new FunctionDecl( "?{}", Type::StorageClasses(), LinkageSpec::Cforall, genCopyType( inst ), nullptr,
690 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
691 newDecl->get_assertions().push_back( new FunctionDecl( "^?{}", Type::StorageClasses(), LinkageSpec::Cforall, genDefaultType( inst ), nullptr,
692 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
693 typeParams.push_back( newDecl );
694 done.insert( ty->get_baseType() );
695 }
696 }
697 }
698 cloneAll( typeParams, ctorType->get_forall() );
699 cloneAll( typeParams, dtorType->get_forall() );
700 cloneAll( typeParams, copyCtorType->get_forall() );
701 cloneAll( typeParams, assignType->get_forall() );
702
703 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting );
704 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting );
705 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting );
706 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting );
707
708 makeTupleFunctionBody( assignDecl );
709 makeTupleFunctionBody( ctorDecl );
710 makeTupleFunctionBody( copyCtorDecl );
711 makeTupleFunctionBody( dtorDecl );
712
713 declsToAddBefore.push_back( ctorDecl );
714 declsToAddBefore.push_back( copyCtorDecl );
715 declsToAddBefore.push_back( dtorDecl );
716 declsToAddBefore.push_back( assignDecl ); // assignment should come last since it uses copy constructor in return
717 }
718
719 void AutogenTupleRoutines::previsit( FunctionDecl *functionDecl ) {
720 visit_children = false;
721 maybeAccept( functionDecl->type, *visitor );
722 functionNesting += 1;
723 maybeAccept( functionDecl->statements, *visitor );
724 functionNesting -= 1;
725 }
726
727 void AutogenTupleRoutines::previsit( CompoundStmt * ) {
728 GuardScope( seenTuples );
729 }
730} // SymTab
731
732// Local Variables: //
733// tab-width: 4 //
734// mode: c++ //
735// compile-command: "make install" //
736// End: //
Note: See TracBrowser for help on using the repository browser.