source: src/SymTab/Autogen.cc@ 78a0b88

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 78a0b88 was 8135d4c, checked in by Rob Schluntz <rschlunt@…>, 8 years ago

Merge branch 'master' into references

  • Property mode set to 100644
File size: 36.9 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Autogen.cc --
8//
9// Author : Rob Schluntz
10// Created On : Thu Mar 03 15:45:56 2016
11// Last Modified By : Andrew Beach
12// Last Modified On : Fri Jul 14 16:41:00 2017
13// Update Count : 62
14//
15
16#include "Autogen.h"
17
18#include <cstddef> // for NULL
19#include <algorithm> // for count_if
20#include <cassert> // for safe_dynamic_cast, assert, assertf
21#include <iterator> // for back_insert_iterator, back_inserter
22#include <list> // for list, _List_iterator, list<>::iter...
23#include <set> // for set, _Rb_tree_const_iterator
24#include <utility> // for pair
25#include <vector> // for vector
26
27#include "AddVisit.h" // for addVisit
28#include "CodeGen/OperatorTable.h" // for isCtorDtor, isCtorDtorAssign
29#include "Common/ScopedMap.h" // for ScopedMap<>::const_iterator, Scope...
30#include "Common/utility.h" // for cloneAll, operator+
31#include "GenPoly/DeclMutator.h" // for DeclMutator
32#include "GenPoly/ScopedSet.h" // for ScopedSet, ScopedSet<>::iterator
33#include "SymTab/Mangler.h" // for Mangler
34#include "SynTree/Attribute.h" // For Attribute
35#include "SynTree/Mutator.h" // for maybeMutate
36#include "SynTree/Statement.h" // for CompoundStmt, ReturnStmt, ExprStmt
37#include "SynTree/Type.h" // for FunctionType, Type, TypeInstType
38#include "SynTree/Visitor.h" // for maybeAccept, Visitor, acceptAll
39
40class Attribute;
41
42namespace SymTab {
43 Type * SizeType = 0;
44 typedef ScopedMap< std::string, bool > TypeMap;
45
46 /// Data used to generate functions generically. Specifically, the name of the generated function, a function which generates the routine protoype, and a map which contains data to determine whether a function should be generated.
47 struct FuncData {
48 typedef FunctionType * (*TypeGen)( Type * );
49 FuncData( const std::string & fname, const TypeGen & genType, TypeMap & map ) : fname( fname ), genType( genType ), map( map ) {}
50 std::string fname;
51 TypeGen genType;
52 TypeMap & map;
53 };
54
55 class AutogenerateRoutines final : public Visitor {
56 template< typename Visitor >
57 friend void acceptAndAdd( std::list< Declaration * > &translationUnit, Visitor &visitor );
58 template< typename Visitor >
59 friend void addVisitStatementList( std::list< Statement* > &stmts, Visitor &visitor );
60 public:
61 std::list< Declaration * > &get_declsToAdd() { return declsToAdd; }
62
63 typedef Visitor Parent;
64 using Parent::visit;
65
66 AutogenerateRoutines();
67
68 virtual void visit( EnumDecl *enumDecl );
69 virtual void visit( StructDecl *structDecl );
70 virtual void visit( UnionDecl *structDecl );
71 virtual void visit( TypeDecl *typeDecl );
72 virtual void visit( TraitDecl *ctxDecl );
73 virtual void visit( FunctionDecl *functionDecl );
74
75 virtual void visit( FunctionType *ftype );
76 virtual void visit( PointerType *ftype );
77
78 virtual void visit( CompoundStmt *compoundStmt );
79 virtual void visit( SwitchStmt *switchStmt );
80
81 private:
82 template< typename StmtClass > void visitStatement( StmtClass *stmt );
83
84 std::list< Declaration * > declsToAdd, declsToAddAfter;
85 std::set< std::string > structsDone;
86 unsigned int functionNesting = 0; // current level of nested functions
87 /// Note: the following maps could be ScopedSets, but it should be easier to work
88 /// deleted functions in if they are maps, since the value false can be inserted
89 /// at the current scope without affecting outer scopes or requiring copies.
90 TypeMap copyable, assignable, constructable, destructable;
91 std::vector< FuncData > data;
92 };
93
94 /// generates routines for tuple types.
95 /// Doesn't really need to be a mutator, but it's easier to reuse DeclMutator than it is to use AddVisit
96 /// or anything we currently have that supports adding new declarations for visitors
97 class AutogenTupleRoutines : public GenPoly::DeclMutator {
98 public:
99 typedef GenPoly::DeclMutator Parent;
100 using Parent::mutate;
101
102 virtual DeclarationWithType * mutate( FunctionDecl *functionDecl );
103
104 virtual Type * mutate( TupleType *tupleType );
105
106 virtual CompoundStmt * mutate( CompoundStmt *compoundStmt );
107
108 private:
109 unsigned int functionNesting = 0; // current level of nested functions
110 GenPoly::ScopedSet< std::string > seenTuples;
111 };
112
113 void autogenerateRoutines( std::list< Declaration * > &translationUnit ) {
114 AutogenerateRoutines generator;
115 acceptAndAdd( translationUnit, generator );
116
117 // needs to be done separately because AutogenerateRoutines skips types that appear as function arguments, etc.
118 // AutogenTupleRoutines tupleGenerator;
119 // tupleGenerator.mutateDeclarationList( translationUnit );
120 }
121
122 bool isUnnamedBitfield( ObjectDecl * obj ) {
123 return obj != NULL && obj->get_name() == "" && obj->get_bitfieldWidth() != NULL;
124 }
125
126 /// inserts a forward declaration for functionDecl into declsToAdd
127 void addForwardDecl( FunctionDecl * functionDecl, std::list< Declaration * > & declsToAdd ) {
128 FunctionDecl * decl = functionDecl->clone();
129 delete decl->get_statements();
130 decl->set_statements( NULL );
131 declsToAdd.push_back( decl );
132 decl->fixUniqueId();
133 }
134
135 /// given type T, generate type of default ctor/dtor, i.e. function type void (*) (T *)
136 FunctionType * genDefaultType( Type * paramType ) {
137 FunctionType *ftype = new FunctionType( Type::Qualifiers(), false );
138 ObjectDecl *dstParam = new ObjectDecl( "_dst", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new ReferenceType( Type::Qualifiers(), paramType->clone() ), nullptr );
139 ftype->get_parameters().push_back( dstParam );
140
141 return ftype;
142 }
143
144 /// given type T, generate type of copy ctor, i.e. function type void (*) (T *, T)
145 FunctionType * genCopyType( Type * paramType ) {
146 FunctionType *ftype = genDefaultType( paramType );
147 ObjectDecl *srcParam = new ObjectDecl( "_src", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, paramType->clone(), nullptr );
148 ftype->get_parameters().push_back( srcParam );
149 return ftype;
150 }
151
152 /// given type T, generate type of assignment, i.e. function type T (*) (T *, T)
153 FunctionType * genAssignType( Type * paramType ) {
154 FunctionType *ftype = genCopyType( paramType );
155 ObjectDecl *returnVal = new ObjectDecl( "_ret", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, paramType->clone(), nullptr );
156 ftype->get_returnVals().push_back( returnVal );
157 return ftype;
158 }
159
160 /// generate a function decl from a name and type. Nesting depth determines whether
161 /// the declaration is static or not; optional paramter determines if declaration is intrinsic
162 FunctionDecl * genFunc( const std::string & fname, FunctionType * ftype, unsigned int functionNesting, bool isIntrinsic = false ) {
163 // Routines at global scope marked "static" to prevent multiple definitions in separate translation units
164 // because each unit generates copies of the default routines for each aggregate.
165// DeclarationNode::StorageClass sc = functionNesting > 0 ? DeclarationNode::NoStorageClass : DeclarationNode::Static;
166 Type::StorageClasses scs = functionNesting > 0 ? Type::StorageClasses() : Type::StorageClasses( Type::Static );
167 LinkageSpec::Spec spec = isIntrinsic ? LinkageSpec::Intrinsic : LinkageSpec::AutoGen;
168 FunctionDecl * decl = new FunctionDecl( fname, scs, spec, ftype, new CompoundStmt( noLabels ),
169 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) );
170 decl->fixUniqueId();
171 return decl;
172 }
173
174 /// inserts base type of first argument into map if pred(funcDecl) is true
175 void insert( FunctionDecl *funcDecl, TypeMap & map, FunctionDecl * (*pred)(Declaration *) ) {
176 // insert type into constructable, etc. map if appropriate
177 if ( pred( funcDecl ) ) {
178 FunctionType * ftype = funcDecl->get_functionType();
179 assert( ! ftype->get_parameters().empty() );
180 Type * t = InitTweak::getPointerBase( ftype->get_parameters().front()->get_type() );
181 assert( t );
182 map.insert( Mangler::mangleType( t ), true );
183 }
184 }
185
186 /// using map and t, determines if is constructable, etc.
187 bool lookup( const TypeMap & map, Type * t ) {
188 if ( dynamic_cast< PointerType * >( t ) ) {
189 // will need more complicated checking if we want this to work with pointer types, since currently
190 return true;
191 } else if ( ArrayType * at = dynamic_cast< ArrayType * >( t ) ) {
192 // an array's constructor, etc. is generated on the fly based on the base type's constructor, etc.
193 return lookup( map, at->get_base() );
194 }
195 TypeMap::const_iterator it = map.find( Mangler::mangleType( t ) );
196 if ( it != map.end() ) return it->second;
197 // something that does not appear in the map is by default not constructable, etc.
198 return false;
199 }
200
201 /// using map and aggr, examines each member to determine if constructor, etc. should be generated
202 template<typename AggrDecl>
203 bool shouldGenerate( const TypeMap & map, AggrDecl * aggr ) {
204 for ( Declaration * dcl : aggr->get_members() ) {
205 if ( DeclarationWithType * dwt = dynamic_cast< DeclarationWithType * >( dcl ) ) {
206 if ( ! lookup( map, dwt->get_type() ) ) return false;
207 }
208 }
209 return true;
210 }
211
212 /// data structure for abstracting the generation of special functions
213 template< typename OutputIterator >
214 struct FuncGenerator {
215 StructDecl *aggregateDecl;
216 StructInstType *refType;
217 unsigned int functionNesting;
218 const std::list< TypeDecl* > & typeParams;
219 OutputIterator out;
220 FuncGenerator( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, const std::list< TypeDecl* > & typeParams, OutputIterator out ) : aggregateDecl( aggregateDecl ), refType( refType ), functionNesting( functionNesting ), typeParams( typeParams ), out( out ) {}
221
222 /// generates a function (?{}, ?=?, ^?{}) based on the data argument and members. If function is generated, inserts the type into the map.
223 void gen( const FuncData & data, bool concurrent_type ) {
224 if ( ! shouldGenerate( data.map, aggregateDecl ) ) return;
225 FunctionType * ftype = data.genType( refType );
226
227 if(concurrent_type && CodeGen::isDestructor( data.fname )) {
228 ftype->get_parameters().front()->get_type()->set_mutex( true );
229 }
230
231 cloneAll( typeParams, ftype->get_forall() );
232 *out++ = genFunc( data.fname, ftype, functionNesting );
233 data.map.insert( Mangler::mangleType( refType ), true );
234 }
235 };
236
237 template< typename OutputIterator >
238 FuncGenerator<OutputIterator> makeFuncGenerator( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, const std::list< TypeDecl* > & typeParams, OutputIterator out ) {
239 return FuncGenerator<OutputIterator>( aggregateDecl, refType, functionNesting, typeParams, out );
240 }
241
242 /// generates a single enumeration assignment expression
243 ApplicationExpr * genEnumAssign( FunctionType * ftype, FunctionDecl * assignDecl ) {
244 // enum copy construct and assignment is just C-style assignment.
245 // this looks like a bad recursive call, but code gen will turn it into
246 // a C-style assignment.
247 // This happens before function pointer type conversion, so need to do it manually here
248 // NOTE: ftype is not necessarily the functionType belonging to assignDecl - ftype is the
249 // type of the function that this expression is being generated for (so that the correct
250 // parameters) are using in the variable exprs
251 assert( ftype->get_parameters().size() == 2 );
252 ObjectDecl * dstParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().front() );
253 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().back() );
254
255 VariableExpr * assignVarExpr = new VariableExpr( assignDecl );
256 Type * assignVarExprType = assignVarExpr->get_result();
257 assignVarExprType = new PointerType( Type::Qualifiers(), assignVarExprType );
258 assignVarExpr->set_result( assignVarExprType );
259 ApplicationExpr * assignExpr = new ApplicationExpr( assignVarExpr );
260 assignExpr->get_args().push_back( new VariableExpr( dstParam ) );
261 assignExpr->get_args().push_back( new VariableExpr( srcParam ) );
262 return assignExpr;
263 }
264
265 // E ?=?(E volatile*, int),
266 // ?=?(E _Atomic volatile*, int);
267 void makeEnumFunctions( EnumInstType *refType, unsigned int functionNesting, std::list< Declaration * > &declsToAdd ) {
268
269 // T ?=?(E *, E);
270 FunctionType *assignType = genAssignType( refType );
271
272 // void ?{}(E *); void ^?{}(E *);
273 FunctionType * ctorType = genDefaultType( refType->clone() );
274 FunctionType * dtorType = genDefaultType( refType->clone() );
275
276 // void ?{}(E *, E);
277 FunctionType *copyCtorType = genCopyType( refType->clone() );
278
279 // add unused attribute to parameters of default constructor and destructor
280 ctorType->get_parameters().front()->get_attributes().push_back( new Attribute( "unused" ) );
281 dtorType->get_parameters().front()->get_attributes().push_back( new Attribute( "unused" ) );
282
283 // xxx - should we also generate void ?{}(E *, int) and E ?{}(E *, E)?
284 // right now these cases work, but that might change.
285
286 // xxx - Temporary: make these functions intrinsic so they codegen as C assignment.
287 // Really they're something of a cross between instrinsic and autogen, so should
288 // probably make a new linkage type
289 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting, true );
290 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting, true );
291 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting, true );
292 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting, true );
293
294 // body is either return stmt or expr stmt
295 assignDecl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, genEnumAssign( assignType, assignDecl ) ) );
296 copyCtorDecl->get_statements()->get_kids().push_back( new ExprStmt( noLabels, genEnumAssign( copyCtorType, assignDecl ) ) );
297
298 declsToAdd.push_back( ctorDecl );
299 declsToAdd.push_back( copyCtorDecl );
300 declsToAdd.push_back( dtorDecl );
301 declsToAdd.push_back( assignDecl ); // assignment should come last since it uses copy constructor in return
302 }
303
304 /// generates a single struct member operation (constructor call, destructor call, assignment call)
305 void makeStructMemberOp( ObjectDecl * dstParam, Expression * src, DeclarationWithType * field, FunctionDecl * func, bool forward = true ) {
306 InitTweak::InitExpander srcParam( src );
307
308 // assign to destination
309 Expression *dstselect = new MemberExpr( field, new CastExpr( new VariableExpr( dstParam ), safe_dynamic_cast< ReferenceType* >( dstParam->get_type() )->get_base()->clone() ) );
310 genImplicitCall( srcParam, dstselect, func->get_name(), back_inserter( func->get_statements()->get_kids() ), field, forward );
311 }
312
313 /// generates the body of a struct function by iterating the struct members (via parameters) - generates default ctor, copy ctor, assignment, and dtor bodies, but NOT field ctor bodies
314 template<typename Iterator>
315 void makeStructFunctionBody( Iterator member, Iterator end, FunctionDecl * func, bool forward = true ) {
316 for ( ; member != end; ++member ) {
317 if ( DeclarationWithType *field = dynamic_cast< DeclarationWithType * >( *member ) ) { // otherwise some form of type declaration, e.g. Aggregate
318 // query the type qualifiers of this field and skip assigning it if it is marked const.
319 // If it is an array type, we need to strip off the array layers to find its qualifiers.
320 Type * type = field->get_type();
321 while ( ArrayType * at = dynamic_cast< ArrayType * >( type ) ) {
322 type = at->get_base();
323 }
324
325 if ( type->get_const() && func->get_name() == "?=?" ) {
326 // don't assign const members, but do construct/destruct
327 continue;
328 }
329
330 if ( field->get_name() == "" ) {
331 // don't assign to anonymous members
332 // xxx - this is a temporary fix. Anonymous members tie into
333 // our inheritance model. I think the correct way to handle this is to
334 // cast the structure to the type of the member and let the resolver
335 // figure out whether it's valid and have a pass afterwards that fixes
336 // the assignment to use pointer arithmetic with the offset of the
337 // member, much like how generic type members are handled.
338 continue;
339 }
340
341 assert( ! func->get_functionType()->get_parameters().empty() );
342 ObjectDecl * dstParam = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_parameters().front() );
343 ObjectDecl * srcParam = NULL;
344 if ( func->get_functionType()->get_parameters().size() == 2 ) {
345 srcParam = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_parameters().back() );
346 }
347 // srcParam may be NULL, in which case we have default ctor/dtor
348 assert( dstParam );
349
350 Expression *srcselect = srcParam ? new MemberExpr( field, new VariableExpr( srcParam ) ) : NULL;
351 makeStructMemberOp( dstParam, srcselect, field, func, forward );
352 } // if
353 } // for
354 } // makeStructFunctionBody
355
356 /// generate the body of a constructor which takes parameters that match fields, e.g.
357 /// void ?{}(A *, int) and void?{}(A *, int, int) for a struct A which has two int fields.
358 template<typename Iterator>
359 void makeStructFieldCtorBody( Iterator member, Iterator end, FunctionDecl * func ) {
360 FunctionType * ftype = func->get_functionType();
361 std::list<DeclarationWithType*> & params = ftype->get_parameters();
362 assert( params.size() >= 2 ); // should not call this function for default ctor, etc.
363
364 // skip 'this' parameter
365 ObjectDecl * dstParam = dynamic_cast<ObjectDecl*>( params.front() );
366 assert( dstParam );
367 std::list<DeclarationWithType*>::iterator parameter = params.begin()+1;
368 for ( ; member != end; ++member ) {
369 if ( DeclarationWithType * field = dynamic_cast<DeclarationWithType*>( *member ) ) {
370 if ( isUnnamedBitfield( dynamic_cast< ObjectDecl * > ( field ) ) ) {
371 // don't make a function whose parameter is an unnamed bitfield
372 continue;
373 } else if ( field->get_name() == "" ) {
374 // don't assign to anonymous members
375 // xxx - this is a temporary fix. Anonymous members tie into
376 // our inheritance model. I think the correct way to handle this is to
377 // cast the structure to the type of the member and let the resolver
378 // figure out whether it's valid and have a pass afterwards that fixes
379 // the assignment to use pointer arithmetic with the offset of the
380 // member, much like how generic type members are handled.
381 continue;
382 } else if ( parameter != params.end() ) {
383 // matching parameter, initialize field with copy ctor
384 Expression *srcselect = new VariableExpr(*parameter);
385 makeStructMemberOp( dstParam, srcselect, field, func );
386 ++parameter;
387 } else {
388 // no matching parameter, initialize field with default ctor
389 makeStructMemberOp( dstParam, NULL, field, func );
390 }
391 }
392 }
393 }
394
395 /// generates struct constructors, destructor, and assignment functions
396 void makeStructFunctions( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, std::list< Declaration * > & declsToAdd, const std::vector< FuncData > & data ) {
397 // Builtins do not use autogeneration.
398 if ( aggregateDecl->get_linkage() == LinkageSpec::BuiltinCFA ||
399 aggregateDecl->get_linkage() == LinkageSpec::BuiltinC ) {
400 return;
401 }
402
403 // Make function polymorphic in same parameters as generic struct, if applicable
404 const std::list< TypeDecl* > & typeParams = aggregateDecl->get_parameters(); // List of type variables to be placed on the generated functions
405
406 // generate each of the functions based on the supplied FuncData objects
407 std::list< FunctionDecl * > newFuncs;
408 auto generator = makeFuncGenerator( aggregateDecl, refType, functionNesting, typeParams, back_inserter( newFuncs ) );
409 for ( const FuncData & d : data ) {
410 generator.gen( d, aggregateDecl->is_thread() || aggregateDecl->is_monitor() );
411 }
412
413 // field ctors are only generated if default constructor and copy constructor are both generated
414 unsigned numCtors = std::count_if( newFuncs.begin(), newFuncs.end(), [](FunctionDecl * dcl) { return CodeGen::isConstructor( dcl->get_name() ); } );
415
416 if ( functionNesting == 0 ) {
417 // forward declare if top-level struct, so that
418 // type is complete as soon as its body ends
419 // Note: this is necessary if we want structs which contain
420 // generic (otype) structs as members.
421 for ( FunctionDecl * dcl : newFuncs ) {
422 addForwardDecl( dcl, declsToAdd );
423 }
424 }
425
426 for ( FunctionDecl * dcl : newFuncs ) {
427 // generate appropriate calls to member ctor, assignment
428 // destructor needs to do everything in reverse, so pass "forward" based on whether the function is a destructor
429 if ( ! CodeGen::isDestructor( dcl->get_name() ) ) {
430 makeStructFunctionBody( aggregateDecl->get_members().begin(), aggregateDecl->get_members().end(), dcl );
431 } else {
432 makeStructFunctionBody( aggregateDecl->get_members().rbegin(), aggregateDecl->get_members().rend(), dcl, false );
433 }
434 if ( CodeGen::isAssignment( dcl->get_name() ) ) {
435 // assignment needs to return a value
436 FunctionType * assignType = dcl->get_functionType();
437 assert( assignType->get_parameters().size() == 2 );
438 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( assignType->get_parameters().back() );
439 dcl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, new VariableExpr( srcParam ) ) );
440 }
441 declsToAdd.push_back( dcl );
442 }
443
444 // create constructors which take each member type as a parameter.
445 // for example, for struct A { int x, y; }; generate
446 // void ?{}(A *, int) and void ?{}(A *, int, int)
447 // Field constructors are only generated if default and copy constructor
448 // are generated, since they need access to both
449 if ( numCtors == 2 ) {
450 FunctionType * memCtorType = genDefaultType( refType );
451 cloneAll( typeParams, memCtorType->get_forall() );
452 for ( std::list<Declaration *>::iterator i = aggregateDecl->get_members().begin(); i != aggregateDecl->get_members().end(); ++i ) {
453 DeclarationWithType * member = dynamic_cast<DeclarationWithType *>( *i );
454 assert( member );
455 if ( isUnnamedBitfield( dynamic_cast< ObjectDecl * > ( member ) ) ) {
456 // don't make a function whose parameter is an unnamed bitfield
457 continue;
458 } else if ( member->get_name() == "" ) {
459 // don't assign to anonymous members
460 // xxx - this is a temporary fix. Anonymous members tie into
461 // our inheritance model. I think the correct way to handle this is to
462 // cast the structure to the type of the member and let the resolver
463 // figure out whether it's valid/choose the correct unnamed member
464 continue;
465 }
466 memCtorType->get_parameters().push_back( new ObjectDecl( member->get_name(), Type::StorageClasses(), LinkageSpec::Cforall, 0, member->get_type()->clone(), 0 ) );
467 FunctionDecl * ctor = genFunc( "?{}", memCtorType->clone(), functionNesting );
468 makeStructFieldCtorBody( aggregateDecl->get_members().begin(), aggregateDecl->get_members().end(), ctor );
469 declsToAdd.push_back( ctor );
470 }
471 delete memCtorType;
472 }
473 }
474
475 /// generate a single union assignment expression (using memcpy)
476 template< typename OutputIterator >
477 void makeUnionFieldsAssignment( ObjectDecl * srcParam, ObjectDecl * dstParam, OutputIterator out ) {
478 UntypedExpr *copy = new UntypedExpr( new NameExpr( "__builtin_memcpy" ) );
479 copy->get_args().push_back( new AddressExpr( new VariableExpr( dstParam ) ) );
480 copy->get_args().push_back( new AddressExpr( new VariableExpr( srcParam ) ) );
481 copy->get_args().push_back( new SizeofExpr( srcParam->get_type()->clone() ) );
482 *out++ = new ExprStmt( noLabels, copy );
483 }
484
485 /// generates the body of a union assignment/copy constructor/field constructor
486 void makeUnionAssignBody( FunctionDecl * funcDecl ) {
487 FunctionType * ftype = funcDecl->get_functionType();
488 assert( ftype->get_parameters().size() == 2 );
489 ObjectDecl * dstParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().front() );
490 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().back() );
491
492 makeUnionFieldsAssignment( srcParam, dstParam, back_inserter( funcDecl->get_statements()->get_kids() ) );
493 if ( CodeGen::isAssignment( funcDecl->get_name() ) ) {
494 // also generate return statement in assignment
495 funcDecl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, new VariableExpr( srcParam ) ) );
496 }
497 }
498
499 /// generates union constructors, destructors, and assignment operator
500 void makeUnionFunctions( UnionDecl *aggregateDecl, UnionInstType *refType, unsigned int functionNesting, std::list< Declaration * > & declsToAdd ) {
501 // Make function polymorphic in same parameters as generic union, if applicable
502 const std::list< TypeDecl* > & typeParams = aggregateDecl->get_parameters(); // List of type variables to be placed on the generated functions
503
504 // default ctor/dtor need only first parameter
505 // void ?{}(T *); void ^?{}(T *);
506 FunctionType *ctorType = genDefaultType( refType );
507 FunctionType *dtorType = genDefaultType( refType );
508
509 // copy ctor needs both parameters
510 // void ?{}(T *, T);
511 FunctionType *copyCtorType = genCopyType( refType );
512
513 // assignment needs both and return value
514 // T ?=?(T *, T);
515 FunctionType *assignType = genAssignType( refType );
516
517 cloneAll( typeParams, ctorType->get_forall() );
518 cloneAll( typeParams, dtorType->get_forall() );
519 cloneAll( typeParams, copyCtorType->get_forall() );
520 cloneAll( typeParams, assignType->get_forall() );
521
522 // add unused attribute to parameters of default constructor and destructor
523 ctorType->get_parameters().front()->get_attributes().push_back( new Attribute( "unused" ) );
524 dtorType->get_parameters().front()->get_attributes().push_back( new Attribute( "unused" ) );
525
526 // Routines at global scope marked "static" to prevent multiple definitions is separate translation units
527 // because each unit generates copies of the default routines for each aggregate.
528 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting );
529 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting );
530 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting );
531 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting );
532
533 makeUnionAssignBody( assignDecl );
534
535 // body of assignment and copy ctor is the same
536 makeUnionAssignBody( copyCtorDecl );
537
538 // create a constructor which takes the first member type as a parameter.
539 // for example, for Union A { int x; double y; }; generate
540 // void ?{}(A *, int)
541 // This is to mimic C's behaviour which initializes the first member of the union.
542 std::list<Declaration *> memCtors;
543 for ( Declaration * member : aggregateDecl->get_members() ) {
544 if ( DeclarationWithType * field = dynamic_cast< DeclarationWithType * >( member ) ) {
545 ObjectDecl * srcParam = new ObjectDecl( "src", Type::StorageClasses(), LinkageSpec::Cforall, 0, field->get_type()->clone(), 0 );
546
547 FunctionType * memCtorType = ctorType->clone();
548 memCtorType->get_parameters().push_back( srcParam );
549 FunctionDecl * ctor = genFunc( "?{}", memCtorType, functionNesting );
550
551 makeUnionAssignBody( ctor );
552 memCtors.push_back( ctor );
553 // only generate a ctor for the first field
554 break;
555 }
556 }
557
558 declsToAdd.push_back( ctorDecl );
559 declsToAdd.push_back( copyCtorDecl );
560 declsToAdd.push_back( dtorDecl );
561 declsToAdd.push_back( assignDecl ); // assignment should come last since it uses copy constructor in return
562 declsToAdd.splice( declsToAdd.end(), memCtors );
563 }
564
565 AutogenerateRoutines::AutogenerateRoutines() {
566 // the order here determines the order that these functions are generated.
567 // assignment should come last since it uses copy constructor in return.
568 data.push_back( FuncData( "?{}", genDefaultType, constructable ) );
569 data.push_back( FuncData( "?{}", genCopyType, copyable ) );
570 data.push_back( FuncData( "^?{}", genDefaultType, destructable ) );
571 data.push_back( FuncData( "?=?", genAssignType, assignable ) );
572 }
573
574 void AutogenerateRoutines::visit( EnumDecl *enumDecl ) {
575 if ( ! enumDecl->get_members().empty() ) {
576 EnumInstType *enumInst = new EnumInstType( Type::Qualifiers(), enumDecl->get_name() );
577 // enumInst->set_baseEnum( enumDecl );
578 makeEnumFunctions( enumInst, functionNesting, declsToAddAfter );
579 }
580 }
581
582 void AutogenerateRoutines::visit( StructDecl *structDecl ) {
583 if ( structDecl->has_body() && structsDone.find( structDecl->get_name() ) == structsDone.end() ) {
584 StructInstType structInst( Type::Qualifiers(), structDecl->get_name() );
585 for ( TypeDecl * typeDecl : structDecl->get_parameters() ) {
586 // need to visit assertions so that they are added to the appropriate maps
587 acceptAll( typeDecl->get_assertions(), *this );
588 structInst.get_parameters().push_back( new TypeExpr( new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), typeDecl ) ) );
589 }
590 structInst.set_baseStruct( structDecl );
591 makeStructFunctions( structDecl, &structInst, functionNesting, declsToAddAfter, data );
592 structsDone.insert( structDecl->get_name() );
593 } // if
594 }
595
596 void AutogenerateRoutines::visit( UnionDecl *unionDecl ) {
597 if ( ! unionDecl->get_members().empty() ) {
598 UnionInstType unionInst( Type::Qualifiers(), unionDecl->get_name() );
599 unionInst.set_baseUnion( unionDecl );
600 for ( TypeDecl * typeDecl : unionDecl->get_parameters() ) {
601 unionInst.get_parameters().push_back( new TypeExpr( new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), typeDecl ) ) );
602 }
603 makeUnionFunctions( unionDecl, &unionInst, functionNesting, declsToAddAfter );
604 } // if
605 }
606
607 void AutogenerateRoutines::visit( TypeDecl *typeDecl ) {
608 TypeInstType *typeInst = new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), false );
609 typeInst->set_baseType( typeDecl );
610 ObjectDecl *src = new ObjectDecl( "_src", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, typeInst->clone(), nullptr );
611 ObjectDecl *dst = new ObjectDecl( "_dst", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new PointerType( Type::Qualifiers(), typeInst->clone() ), nullptr );
612
613 std::list< Statement * > stmts;
614 if ( typeDecl->get_base() ) {
615 // xxx - generate ctor/dtors for typedecls, e.g.
616 // otype T = int *;
617 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
618 assign->get_args().push_back( new CastExpr( new VariableExpr( dst ), new PointerType( Type::Qualifiers(), typeDecl->get_base()->clone() ) ) );
619 assign->get_args().push_back( new CastExpr( new VariableExpr( src ), typeDecl->get_base()->clone() ) );
620 stmts.push_back( new ReturnStmt( std::list< Label >(), assign ) );
621 } // if
622 FunctionType *type = new FunctionType( Type::Qualifiers(), false );
623 type->get_returnVals().push_back( new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, typeInst, 0 ) );
624 type->get_parameters().push_back( dst );
625 type->get_parameters().push_back( src );
626 FunctionDecl *func = genFunc( "?=?", type, functionNesting );
627 func->get_statements()->get_kids() = stmts;
628 declsToAddAfter.push_back( func );
629 }
630
631 void addDecls( std::list< Declaration * > &declsToAdd, std::list< Statement * > &statements, std::list< Statement * >::iterator i ) {
632 for ( std::list< Declaration * >::iterator decl = declsToAdd.begin(); decl != declsToAdd.end(); ++decl ) {
633 statements.insert( i, new DeclStmt( noLabels, *decl ) );
634 } // for
635 declsToAdd.clear();
636 }
637
638 void AutogenerateRoutines::visit( FunctionType *) {
639 // ensure that we don't add assignment ops for types defined as part of the function
640 }
641
642 void AutogenerateRoutines::visit( PointerType *) {
643 // ensure that we don't add assignment ops for types defined as part of the pointer
644 }
645
646 void AutogenerateRoutines::visit( TraitDecl *) {
647 // ensure that we don't add assignment ops for types defined as part of the trait
648 }
649
650 template< typename StmtClass >
651 inline void AutogenerateRoutines::visitStatement( StmtClass *stmt ) {
652 std::set< std::string > oldStructs = structsDone;
653 addVisit( stmt, *this );
654 structsDone = oldStructs;
655 }
656
657 void AutogenerateRoutines::visit( FunctionDecl *functionDecl ) {
658 // record the existence of this function as appropriate
659 insert( functionDecl, constructable, InitTweak::isDefaultConstructor );
660 insert( functionDecl, assignable, InitTweak::isAssignment );
661 insert( functionDecl, copyable, InitTweak::isCopyConstructor );
662 insert( functionDecl, destructable, InitTweak::isDestructor );
663
664 maybeAccept( functionDecl->get_functionType(), *this );
665 functionNesting += 1;
666 maybeAccept( functionDecl->get_statements(), *this );
667 functionNesting -= 1;
668 }
669
670 void AutogenerateRoutines::visit( CompoundStmt *compoundStmt ) {
671 constructable.beginScope();
672 assignable.beginScope();
673 copyable.beginScope();
674 destructable.beginScope();
675 visitStatement( compoundStmt );
676 constructable.endScope();
677 assignable.endScope();
678 copyable.endScope();
679 destructable.endScope();
680 }
681
682 void AutogenerateRoutines::visit( SwitchStmt *switchStmt ) {
683 visitStatement( switchStmt );
684 }
685
686 void makeTupleFunctionBody( FunctionDecl * function ) {
687 FunctionType * ftype = function->get_functionType();
688 assertf( ftype->get_parameters().size() == 1 || ftype->get_parameters().size() == 2, "too many parameters in generated tuple function" );
689
690 UntypedExpr * untyped = new UntypedExpr( new NameExpr( function->get_name() ) );
691
692 /// xxx - &* is used to make this easier for later passes to handle
693 untyped->get_args().push_back( new AddressExpr( UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) );
694 if ( ftype->get_parameters().size() == 2 ) {
695 untyped->get_args().push_back( new VariableExpr( ftype->get_parameters().back() ) );
696 }
697 function->get_statements()->get_kids().push_back( new ExprStmt( noLabels, untyped ) );
698 function->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) );
699 }
700
701 Type * AutogenTupleRoutines::mutate( TupleType * tupleType ) {
702 tupleType = safe_dynamic_cast< TupleType * >( Parent::mutate( tupleType ) );
703 std::string mangleName = SymTab::Mangler::mangleType( tupleType );
704 if ( seenTuples.find( mangleName ) != seenTuples.end() ) return tupleType;
705 seenTuples.insert( mangleName );
706
707 // T ?=?(T *, T);
708 FunctionType *assignType = genAssignType( tupleType );
709
710 // void ?{}(T *); void ^?{}(T *);
711 FunctionType *ctorType = genDefaultType( tupleType );
712 FunctionType *dtorType = genDefaultType( tupleType );
713
714 // void ?{}(T *, T);
715 FunctionType *copyCtorType = genCopyType( tupleType );
716
717 std::set< TypeDecl* > done;
718 std::list< TypeDecl * > typeParams;
719 for ( Type * t : *tupleType ) {
720 if ( TypeInstType * ty = dynamic_cast< TypeInstType * >( t ) ) {
721 if ( ! done.count( ty->get_baseType() ) ) {
722 TypeDecl * newDecl = new TypeDecl( ty->get_baseType()->get_name(), Type::StorageClasses(), nullptr, TypeDecl::Any );
723 TypeInstType * inst = new TypeInstType( Type::Qualifiers(), newDecl->get_name(), newDecl );
724 newDecl->get_assertions().push_back( new FunctionDecl( "?=?", Type::StorageClasses(), LinkageSpec::Cforall, genAssignType( inst ), nullptr,
725 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
726 newDecl->get_assertions().push_back( new FunctionDecl( "?{}", Type::StorageClasses(), LinkageSpec::Cforall, genDefaultType( inst ), nullptr,
727 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
728 newDecl->get_assertions().push_back( new FunctionDecl( "?{}", Type::StorageClasses(), LinkageSpec::Cforall, genCopyType( inst ), nullptr,
729 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
730 newDecl->get_assertions().push_back( new FunctionDecl( "^?{}", Type::StorageClasses(), LinkageSpec::Cforall, genDefaultType( inst ), nullptr,
731 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
732 typeParams.push_back( newDecl );
733 done.insert( ty->get_baseType() );
734 }
735 }
736 }
737 cloneAll( typeParams, ctorType->get_forall() );
738 cloneAll( typeParams, dtorType->get_forall() );
739 cloneAll( typeParams, copyCtorType->get_forall() );
740 cloneAll( typeParams, assignType->get_forall() );
741
742 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting );
743 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting );
744 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting );
745 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting );
746
747 makeTupleFunctionBody( assignDecl );
748 makeTupleFunctionBody( ctorDecl );
749 makeTupleFunctionBody( copyCtorDecl );
750 makeTupleFunctionBody( dtorDecl );
751
752 addDeclaration( ctorDecl );
753 addDeclaration( copyCtorDecl );
754 addDeclaration( dtorDecl );
755 addDeclaration( assignDecl ); // assignment should come last since it uses copy constructor in return
756
757 return tupleType;
758 }
759
760 DeclarationWithType * AutogenTupleRoutines::mutate( FunctionDecl *functionDecl ) {
761 functionDecl->set_functionType( maybeMutate( functionDecl->get_functionType(), *this ) );
762 functionNesting += 1;
763 functionDecl->set_statements( maybeMutate( functionDecl->get_statements(), *this ) );
764 functionNesting -= 1;
765 return functionDecl;
766 }
767
768 CompoundStmt * AutogenTupleRoutines::mutate( CompoundStmt *compoundStmt ) {
769 seenTuples.beginScope();
770 compoundStmt = safe_dynamic_cast< CompoundStmt * >( Parent::mutate( compoundStmt ) );
771 seenTuples.endScope();
772 return compoundStmt;
773 }
774} // SymTab
775
776// Local Variables: //
777// tab-width: 4 //
778// mode: c++ //
779// compile-command: "make install" //
780// End: //
Note: See TracBrowser for help on using the repository browser.