source: src/SymTab/Autogen.cc@ 6d267ca

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 6d267ca was bff227f, checked in by Rob Schluntz <rschlunt@…>, 8 years ago

Refactor operator predicates into OperatorTable.cc

  • Property mode set to 100644
File size: 36.1 KB
RevLine 
[972e6f7]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Autogen.cc --
8//
9// Author : Rob Schluntz
10// Created On : Thu Mar 03 15:45:56 2016
[fa4805f]11// Last Modified By : Andrew Beach
12// Last Modified On : Wed Jun 28 15:30:00 2017
13// Update Count : 61
[972e6f7]14//
15
16#include <list>
17#include <iterator>
18#include "SynTree/Visitor.h"
19#include "SynTree/Type.h"
20#include "SynTree/Statement.h"
21#include "SynTree/TypeSubstitution.h"
22#include "Common/utility.h"
[bff227f]23#include "CodeGen/OperatorTable.h"
[972e6f7]24#include "AddVisit.h"
25#include "MakeLibCfa.h"
26#include "Autogen.h"
[1486116]27#include "GenPoly/ScopedSet.h"
[207c7e1d]28#include "Common/ScopedMap.h"
[1486116]29#include "SymTab/Mangler.h"
30#include "GenPoly/DeclMutator.h"
[972e6f7]31
32namespace SymTab {
[5f98ce5]33 Type * SizeType = 0;
[207c7e1d]34 typedef ScopedMap< std::string, bool > TypeMap;
35
36 /// Data used to generate functions generically. Specifically, the name of the generated function, a function which generates the routine protoype, and a map which contains data to determine whether a function should be generated.
37 struct FuncData {
38 typedef FunctionType * (*TypeGen)( Type * );
39 FuncData( const std::string & fname, const TypeGen & genType, TypeMap & map ) : fname( fname ), genType( genType ), map( map ) {}
40 std::string fname;
41 TypeGen genType;
42 TypeMap & map;
43 };
[5f98ce5]44
[207c7e1d]45 class AutogenerateRoutines final : public Visitor {
[c0aa336]46 template< typename Visitor >
47 friend void acceptAndAdd( std::list< Declaration * > &translationUnit, Visitor &visitor );
48 template< typename Visitor >
49 friend void addVisitStatementList( std::list< Statement* > &stmts, Visitor &visitor );
[1486116]50 public:
[972e6f7]51 std::list< Declaration * > &get_declsToAdd() { return declsToAdd; }
52
[186fd86]53 typedef Visitor Parent;
54 using Parent::visit;
55
[207c7e1d]56 AutogenerateRoutines();
57
[972e6f7]58 virtual void visit( EnumDecl *enumDecl );
59 virtual void visit( StructDecl *structDecl );
60 virtual void visit( UnionDecl *structDecl );
61 virtual void visit( TypeDecl *typeDecl );
[a5a71d0]62 virtual void visit( TraitDecl *ctxDecl );
[972e6f7]63 virtual void visit( FunctionDecl *functionDecl );
64
65 virtual void visit( FunctionType *ftype );
66 virtual void visit( PointerType *ftype );
67
68 virtual void visit( CompoundStmt *compoundStmt );
69 virtual void visit( SwitchStmt *switchStmt );
70
[1486116]71 private:
[972e6f7]72 template< typename StmtClass > void visitStatement( StmtClass *stmt );
73
[c0aa336]74 std::list< Declaration * > declsToAdd, declsToAddAfter;
[972e6f7]75 std::set< std::string > structsDone;
[1486116]76 unsigned int functionNesting = 0; // current level of nested functions
[207c7e1d]77 /// Note: the following maps could be ScopedSets, but it should be easier to work
78 /// deleted functions in if they are maps, since the value false can be inserted
79 /// at the current scope without affecting outer scopes or requiring copies.
80 TypeMap copyable, assignable, constructable, destructable;
81 std::vector< FuncData > data;
[1486116]82 };
83
84 /// generates routines for tuple types.
85 /// Doesn't really need to be a mutator, but it's easier to reuse DeclMutator than it is to use AddVisit
86 /// or anything we currently have that supports adding new declarations for visitors
87 class AutogenTupleRoutines : public GenPoly::DeclMutator {
88 public:
89 typedef GenPoly::DeclMutator Parent;
90 using Parent::mutate;
91
92 virtual DeclarationWithType * mutate( FunctionDecl *functionDecl );
93
94 virtual Type * mutate( TupleType *tupleType );
95
96 virtual CompoundStmt * mutate( CompoundStmt *compoundStmt );
97
98 private:
99 unsigned int functionNesting = 0; // current level of nested functions
100 GenPoly::ScopedSet< std::string > seenTuples;
[972e6f7]101 };
102
103 void autogenerateRoutines( std::list< Declaration * > &translationUnit ) {
[1486116]104 AutogenerateRoutines generator;
[c0aa336]105 acceptAndAdd( translationUnit, generator );
[1486116]106
107 // needs to be done separately because AutogenerateRoutines skips types that appear as function arguments, etc.
108 // AutogenTupleRoutines tupleGenerator;
109 // tupleGenerator.mutateDeclarationList( translationUnit );
[972e6f7]110 }
111
[356189a]112 bool isUnnamedBitfield( ObjectDecl * obj ) {
113 return obj != NULL && obj->get_name() == "" && obj->get_bitfieldWidth() != NULL;
114 }
115
[186fd86]116 /// inserts a forward declaration for functionDecl into declsToAdd
117 void addForwardDecl( FunctionDecl * functionDecl, std::list< Declaration * > & declsToAdd ) {
118 FunctionDecl * decl = functionDecl->clone();
119 delete decl->get_statements();
120 decl->set_statements( NULL );
121 declsToAdd.push_back( decl );
122 decl->fixUniqueId();
[972e6f7]123 }
124
[186fd86]125 /// given type T, generate type of default ctor/dtor, i.e. function type void (*) (T *)
126 FunctionType * genDefaultType( Type * paramType ) {
127 FunctionType *ftype = new FunctionType( Type::Qualifiers(), false );
[49148d5]128 ObjectDecl *dstParam = new ObjectDecl( "_dst", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new ReferenceType( Type::Qualifiers(), paramType->clone() ), nullptr );
[186fd86]129 ftype->get_parameters().push_back( dstParam );
[972e6f7]130
[186fd86]131 return ftype;
132 }
[d0f8b19]133
[186fd86]134 /// given type T, generate type of copy ctor, i.e. function type void (*) (T *, T)
135 FunctionType * genCopyType( Type * paramType ) {
136 FunctionType *ftype = genDefaultType( paramType );
[68fe077a]137 ObjectDecl *srcParam = new ObjectDecl( "_src", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, paramType->clone(), nullptr );
[186fd86]138 ftype->get_parameters().push_back( srcParam );
139 return ftype;
140 }
[d0f8b19]141
[186fd86]142 /// given type T, generate type of assignment, i.e. function type T (*) (T *, T)
[1486116]143 FunctionType * genAssignType( Type * paramType ) {
[186fd86]144 FunctionType *ftype = genCopyType( paramType );
[68fe077a]145 ObjectDecl *returnVal = new ObjectDecl( "_ret", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, paramType->clone(), nullptr );
[186fd86]146 ftype->get_returnVals().push_back( returnVal );
147 return ftype;
148 }
[972e6f7]149
[186fd86]150 /// true if the aggregate's layout is dynamic
151 template< typename AggrDecl >
152 bool hasDynamicLayout( AggrDecl * aggregateDecl ) {
153 for ( TypeDecl * param : aggregateDecl->get_parameters() ) {
[861799c7]154 if ( param->isComplete() ) return true;
[186fd86]155 }
156 return false;
157 }
[972e6f7]158
[186fd86]159 /// generate a function decl from a name and type. Nesting depth determines whether
160 /// the declaration is static or not; optional paramter determines if declaration is intrinsic
161 FunctionDecl * genFunc( const std::string & fname, FunctionType * ftype, unsigned int functionNesting, bool isIntrinsic = false ) {
162 // Routines at global scope marked "static" to prevent multiple definitions in separate translation units
[972e6f7]163 // because each unit generates copies of the default routines for each aggregate.
[a7c90d4]164// DeclarationNode::StorageClass sc = functionNesting > 0 ? DeclarationNode::NoStorageClass : DeclarationNode::Static;
[68fe077a]165 Type::StorageClasses scs = functionNesting > 0 ? Type::StorageClasses() : Type::StorageClasses( Type::Static );
[186fd86]166 LinkageSpec::Spec spec = isIntrinsic ? LinkageSpec::Intrinsic : LinkageSpec::AutoGen;
[a7c90d4]167 FunctionDecl * decl = new FunctionDecl( fname, scs, spec, ftype, new CompoundStmt( noLabels ),
[ddfd945]168 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) );
[186fd86]169 decl->fixUniqueId();
170 return decl;
171 }
[d0f8b19]172
[207c7e1d]173 /// inserts base type of first argument into map if pred(funcDecl) is true
174 void insert( FunctionDecl *funcDecl, TypeMap & map, FunctionDecl * (*pred)(Declaration *) ) {
175 // insert type into constructable, etc. map if appropriate
176 if ( pred( funcDecl ) ) {
177 FunctionType * ftype = funcDecl->get_functionType();
178 assert( ! ftype->get_parameters().empty() );
[ce8c12f]179 Type * t = InitTweak::getPointerBase( ftype->get_parameters().front()->get_type() );
180 assert( t );
[207c7e1d]181 map.insert( Mangler::mangleType( t ), true );
182 }
183 }
184
185 /// using map and t, determines if is constructable, etc.
186 bool lookup( const TypeMap & map, Type * t ) {
187 if ( dynamic_cast< PointerType * >( t ) ) {
188 // will need more complicated checking if we want this to work with pointer types, since currently
189 return true;
190 } else if ( ArrayType * at = dynamic_cast< ArrayType * >( t ) ) {
191 // an array's constructor, etc. is generated on the fly based on the base type's constructor, etc.
192 return lookup( map, at->get_base() );
193 }
194 TypeMap::const_iterator it = map.find( Mangler::mangleType( t ) );
195 if ( it != map.end() ) return it->second;
196 // something that does not appear in the map is by default not constructable, etc.
197 return false;
198 }
199
200 /// using map and aggr, examines each member to determine if constructor, etc. should be generated
201 template<typename AggrDecl>
202 bool shouldGenerate( const TypeMap & map, AggrDecl * aggr ) {
203 for ( Declaration * dcl : aggr->get_members() ) {
204 if ( DeclarationWithType * dwt = dynamic_cast< DeclarationWithType * >( dcl ) ) {
205 if ( ! lookup( map, dwt->get_type() ) ) return false;
206 }
207 }
208 return true;
209 }
210
211 /// data structure for abstracting the generation of special functions
212 template< typename OutputIterator >
213 struct FuncGenerator {
214 StructDecl *aggregateDecl;
215 StructInstType *refType;
216 unsigned int functionNesting;
217 const std::list< TypeDecl* > & typeParams;
218 OutputIterator out;
219 FuncGenerator( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, const std::list< TypeDecl* > & typeParams, OutputIterator out ) : aggregateDecl( aggregateDecl ), refType( refType ), functionNesting( functionNesting ), typeParams( typeParams ), out( out ) {}
220
221 /// generates a function (?{}, ?=?, ^?{}) based on the data argument and members. If function is generated, inserts the type into the map.
[bcda04c]222 void gen( const FuncData & data, bool concurrent_type ) {
[207c7e1d]223 if ( ! shouldGenerate( data.map, aggregateDecl ) ) return;
224 FunctionType * ftype = data.genType( refType );
[bcda04c]225
[bff227f]226 if(concurrent_type && CodeGen::isDestructor( data.fname )) {
[bcda04c]227 ftype->get_parameters().front()->get_type()->set_mutex( true );
228 }
229
[207c7e1d]230 cloneAll( typeParams, ftype->get_forall() );
231 *out++ = genFunc( data.fname, ftype, functionNesting );
232 data.map.insert( Mangler::mangleType( refType ), true );
233 }
234 };
235
236 template< typename OutputIterator >
237 FuncGenerator<OutputIterator> makeFuncGenerator( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, const std::list< TypeDecl* > & typeParams, OutputIterator out ) {
238 return FuncGenerator<OutputIterator>( aggregateDecl, refType, functionNesting, typeParams, out );
239 }
240
[186fd86]241 /// generates a single enumeration assignment expression
242 ApplicationExpr * genEnumAssign( FunctionType * ftype, FunctionDecl * assignDecl ) {
[d0f8b19]243 // enum copy construct and assignment is just C-style assignment.
244 // this looks like a bad recursive call, but code gen will turn it into
245 // a C-style assignment.
246 // This happens before function pointer type conversion, so need to do it manually here
[186fd86]247 // NOTE: ftype is not necessarily the functionType belonging to assignDecl - ftype is the
248 // type of the function that this expression is being generated for (so that the correct
249 // parameters) are using in the variable exprs
250 assert( ftype->get_parameters().size() == 2 );
251 ObjectDecl * dstParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().front() );
252 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().back() );
253
[d0f8b19]254 VariableExpr * assignVarExpr = new VariableExpr( assignDecl );
[906e24d]255 Type * assignVarExprType = assignVarExpr->get_result();
[d0f8b19]256 assignVarExprType = new PointerType( Type::Qualifiers(), assignVarExprType );
[906e24d]257 assignVarExpr->set_result( assignVarExprType );
[d0f8b19]258 ApplicationExpr * assignExpr = new ApplicationExpr( assignVarExpr );
259 assignExpr->get_args().push_back( new VariableExpr( dstParam ) );
260 assignExpr->get_args().push_back( new VariableExpr( srcParam ) );
[186fd86]261 return assignExpr;
[972e6f7]262 }
263
[186fd86]264 // E ?=?(E volatile*, int),
265 // ?=?(E _Atomic volatile*, int);
[d7dc824]266 void makeEnumFunctions( EnumInstType *refType, unsigned int functionNesting, std::list< Declaration * > &declsToAdd ) {
[972e6f7]267
[186fd86]268 // T ?=?(E *, E);
269 FunctionType *assignType = genAssignType( refType );
[9554d9b]270
[186fd86]271 // void ?{}(E *); void ^?{}(E *);
272 FunctionType * ctorType = genDefaultType( refType->clone() );
273 FunctionType * dtorType = genDefaultType( refType->clone() );
[9554d9b]274
[186fd86]275 // void ?{}(E *, E);
276 FunctionType *copyCtorType = genCopyType( refType->clone() );
[9554d9b]277
[186fd86]278 // xxx - should we also generate void ?{}(E *, int) and E ?{}(E *, E)?
279 // right now these cases work, but that might change.
[9554d9b]280
[186fd86]281 // xxx - Temporary: make these functions intrinsic so they codegen as C assignment.
282 // Really they're something of a cross between instrinsic and autogen, so should
283 // probably make a new linkage type
284 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting, true );
285 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting, true );
286 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting, true );
287 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting, true );
[9554d9b]288
[186fd86]289 // body is either return stmt or expr stmt
290 assignDecl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, genEnumAssign( assignType, assignDecl ) ) );
291 copyCtorDecl->get_statements()->get_kids().push_back( new ExprStmt( noLabels, genEnumAssign( copyCtorType, assignDecl ) ) );
[9554d9b]292
[186fd86]293 declsToAdd.push_back( ctorDecl );
294 declsToAdd.push_back( copyCtorDecl );
295 declsToAdd.push_back( dtorDecl );
[1486116]296 declsToAdd.push_back( assignDecl ); // assignment should come last since it uses copy constructor in return
[972e6f7]297 }
298
[186fd86]299 /// generates a single struct member operation (constructor call, destructor call, assignment call)
300 void makeStructMemberOp( ObjectDecl * dstParam, Expression * src, DeclarationWithType * field, FunctionDecl * func, bool isDynamicLayout, bool forward = true ) {
[39f84a4]301 InitTweak::InitExpander srcParam( src );
302
[49148d5]303 // assign to destination
304 Expression *dstselect = new MemberExpr( field, new CastExpr( new VariableExpr( dstParam ), safe_dynamic_cast< ReferenceType* >( dstParam->get_type() )->get_base()->clone() ) );
[39f84a4]305 genImplicitCall( srcParam, dstselect, func->get_name(), back_inserter( func->get_statements()->get_kids() ), field, forward );
[dac0aa9]306 }
307
[186fd86]308 /// generates the body of a struct function by iterating the struct members (via parameters) - generates default ctor, copy ctor, assignment, and dtor bodies, but NOT field ctor bodies
[972e6f7]309 template<typename Iterator>
[186fd86]310 void makeStructFunctionBody( Iterator member, Iterator end, FunctionDecl * func, bool isDynamicLayout, bool forward = true ) {
[972e6f7]311 for ( ; member != end; ++member ) {
[dac0aa9]312 if ( DeclarationWithType *field = dynamic_cast< DeclarationWithType * >( *member ) ) { // otherwise some form of type declaration, e.g. Aggregate
[972e6f7]313 // query the type qualifiers of this field and skip assigning it if it is marked const.
314 // If it is an array type, we need to strip off the array layers to find its qualifiers.
[dac0aa9]315 Type * type = field->get_type();
[972e6f7]316 while ( ArrayType * at = dynamic_cast< ArrayType * >( type ) ) {
317 type = at->get_base();
318 }
319
[615a096]320 if ( type->get_const() && func->get_name() == "?=?" ) {
[cad355a]321 // don't assign const members, but do construct/destruct
[972e6f7]322 continue;
323 }
324
[fb24492]325 if ( field->get_name() == "" ) {
326 // don't assign to anonymous members
327 // xxx - this is a temporary fix. Anonymous members tie into
328 // our inheritance model. I think the correct way to handle this is to
329 // cast the structure to the type of the member and let the resolver
330 // figure out whether it's valid and have a pass afterwards that fixes
331 // the assignment to use pointer arithmetic with the offset of the
332 // member, much like how generic type members are handled.
333 continue;
334 }
335
[972e6f7]336 assert( ! func->get_functionType()->get_parameters().empty() );
337 ObjectDecl * dstParam = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_parameters().front() );
338 ObjectDecl * srcParam = NULL;
339 if ( func->get_functionType()->get_parameters().size() == 2 ) {
340 srcParam = dynamic_cast<ObjectDecl*>( func->get_functionType()->get_parameters().back() );
341 }
342 // srcParam may be NULL, in which case we have default ctor/dtor
343 assert( dstParam );
344
[dac0aa9]345 Expression *srcselect = srcParam ? new MemberExpr( field, new VariableExpr( srcParam ) ) : NULL;
[186fd86]346 makeStructMemberOp( dstParam, srcselect, field, func, isDynamicLayout, forward );
[972e6f7]347 } // if
348 } // for
349 } // makeStructFunctionBody
350
[dac0aa9]351 /// generate the body of a constructor which takes parameters that match fields, e.g.
352 /// void ?{}(A *, int) and void?{}(A *, int, int) for a struct A which has two int fields.
353 template<typename Iterator>
[186fd86]354 void makeStructFieldCtorBody( Iterator member, Iterator end, FunctionDecl * func, bool isDynamicLayout ) {
[dac0aa9]355 FunctionType * ftype = func->get_functionType();
356 std::list<DeclarationWithType*> & params = ftype->get_parameters();
357 assert( params.size() >= 2 ); // should not call this function for default ctor, etc.
358
359 // skip 'this' parameter
360 ObjectDecl * dstParam = dynamic_cast<ObjectDecl*>( params.front() );
361 assert( dstParam );
362 std::list<DeclarationWithType*>::iterator parameter = params.begin()+1;
363 for ( ; member != end; ++member ) {
364 if ( DeclarationWithType * field = dynamic_cast<DeclarationWithType*>( *member ) ) {
[0b4d93ab]365 if ( isUnnamedBitfield( dynamic_cast< ObjectDecl * > ( field ) ) ) {
366 // don't make a function whose parameter is an unnamed bitfield
367 continue;
368 } else if ( field->get_name() == "" ) {
369 // don't assign to anonymous members
370 // xxx - this is a temporary fix. Anonymous members tie into
371 // our inheritance model. I think the correct way to handle this is to
372 // cast the structure to the type of the member and let the resolver
373 // figure out whether it's valid and have a pass afterwards that fixes
374 // the assignment to use pointer arithmetic with the offset of the
375 // member, much like how generic type members are handled.
376 continue;
377 } else if ( parameter != params.end() ) {
[dac0aa9]378 // matching parameter, initialize field with copy ctor
379 Expression *srcselect = new VariableExpr(*parameter);
[186fd86]380 makeStructMemberOp( dstParam, srcselect, field, func, isDynamicLayout );
[dac0aa9]381 ++parameter;
382 } else {
383 // no matching parameter, initialize field with default ctor
[186fd86]384 makeStructMemberOp( dstParam, NULL, field, func, isDynamicLayout );
[dac0aa9]385 }
386 }
387 }
388 }
389
[186fd86]390 /// generates struct constructors, destructor, and assignment functions
[207c7e1d]391 void makeStructFunctions( StructDecl *aggregateDecl, StructInstType *refType, unsigned int functionNesting, std::list< Declaration * > & declsToAdd, const std::vector< FuncData > & data ) {
[fa4805f]392 // Builtins do not use autogeneration.
393 if ( aggregateDecl->get_linkage() == LinkageSpec::Builtin ||
394 aggregateDecl->get_linkage() == LinkageSpec::BuiltinC ) {
395 return;
396 }
397
[972e6f7]398 // Make function polymorphic in same parameters as generic struct, if applicable
[186fd86]399 const std::list< TypeDecl* > & typeParams = aggregateDecl->get_parameters(); // List of type variables to be placed on the generated functions
400 bool isDynamicLayout = hasDynamicLayout( aggregateDecl ); // NOTE this flag is an incredibly ugly kludge; we should fix the assignment signature instead (ditto for union)
[972e6f7]401
[207c7e1d]402 // generate each of the functions based on the supplied FuncData objects
403 std::list< FunctionDecl * > newFuncs;
404 auto generator = makeFuncGenerator( aggregateDecl, refType, functionNesting, typeParams, back_inserter( newFuncs ) );
405 for ( const FuncData & d : data ) {
[bcda04c]406 generator.gen( d, aggregateDecl->is_thread() || aggregateDecl->is_monitor() );
[207c7e1d]407 }
[bcda04c]408
[207c7e1d]409 // field ctors are only generated if default constructor and copy constructor are both generated
[bff227f]410 unsigned numCtors = std::count_if( newFuncs.begin(), newFuncs.end(), [](FunctionDecl * dcl) { return CodeGen::isConstructor( dcl->get_name() ); } );
[972e6f7]411
[9f70ab57]412 if ( functionNesting == 0 ) {
413 // forward declare if top-level struct, so that
414 // type is complete as soon as its body ends
[1486116]415 // Note: this is necessary if we want structs which contain
416 // generic (otype) structs as members.
[207c7e1d]417 for ( FunctionDecl * dcl : newFuncs ) {
418 addForwardDecl( dcl, declsToAdd );
419 }
420 }
421
422 for ( FunctionDecl * dcl : newFuncs ) {
423 // generate appropriate calls to member ctor, assignment
424 // destructor needs to do everything in reverse, so pass "forward" based on whether the function is a destructor
[bff227f]425 if ( ! CodeGen::isDestructor( dcl->get_name() ) ) {
[207c7e1d]426 makeStructFunctionBody( aggregateDecl->get_members().begin(), aggregateDecl->get_members().end(), dcl, isDynamicLayout );
427 } else {
428 makeStructFunctionBody( aggregateDecl->get_members().rbegin(), aggregateDecl->get_members().rend(), dcl, isDynamicLayout, false );
429 }
[bff227f]430 if ( CodeGen::isAssignment( dcl->get_name() ) ) {
[207c7e1d]431 // assignment needs to return a value
432 FunctionType * assignType = dcl->get_functionType();
433 assert( assignType->get_parameters().size() == 2 );
434 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( assignType->get_parameters().back() );
435 dcl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, new VariableExpr( srcParam ) ) );
436 }
437 declsToAdd.push_back( dcl );
[9f70ab57]438 }
439
[dac0aa9]440 // create constructors which take each member type as a parameter.
[f5ef08c]441 // for example, for struct A { int x, y; }; generate
[207c7e1d]442 // void ?{}(A *, int) and void ?{}(A *, int, int)
443 // Field constructors are only generated if default and copy constructor
444 // are generated, since they need access to both
445 if ( numCtors == 2 ) {
446 FunctionType * memCtorType = genDefaultType( refType );
447 cloneAll( typeParams, memCtorType->get_forall() );
448 for ( std::list<Declaration *>::iterator i = aggregateDecl->get_members().begin(); i != aggregateDecl->get_members().end(); ++i ) {
449 DeclarationWithType * member = dynamic_cast<DeclarationWithType *>( *i );
450 assert( member );
451 if ( isUnnamedBitfield( dynamic_cast< ObjectDecl * > ( member ) ) ) {
452 // don't make a function whose parameter is an unnamed bitfield
453 continue;
454 } else if ( member->get_name() == "" ) {
455 // don't assign to anonymous members
456 // xxx - this is a temporary fix. Anonymous members tie into
457 // our inheritance model. I think the correct way to handle this is to
458 // cast the structure to the type of the member and let the resolver
[49148d5]459 // figure out whether it's valid/choose the correct unnamed member
[207c7e1d]460 continue;
461 }
[68fe077a]462 memCtorType->get_parameters().push_back( new ObjectDecl( member->get_name(), Type::StorageClasses(), LinkageSpec::Cforall, 0, member->get_type()->clone(), 0 ) );
[207c7e1d]463 FunctionDecl * ctor = genFunc( "?{}", memCtorType->clone(), functionNesting );
464 makeStructFieldCtorBody( aggregateDecl->get_members().begin(), aggregateDecl->get_members().end(), ctor, isDynamicLayout );
465 declsToAdd.push_back( ctor );
[356189a]466 }
[207c7e1d]467 delete memCtorType;
[dac0aa9]468 }
[972e6f7]469 }
470
[186fd86]471 /// generate a single union assignment expression (using memcpy)
472 template< typename OutputIterator >
473 void makeUnionFieldsAssignment( ObjectDecl * srcParam, ObjectDecl * dstParam, OutputIterator out ) {
474 UntypedExpr *copy = new UntypedExpr( new NameExpr( "__builtin_memcpy" ) );
[49148d5]475 copy->get_args().push_back( new AddressExpr( new VariableExpr( dstParam ) ) );
[186fd86]476 copy->get_args().push_back( new AddressExpr( new VariableExpr( srcParam ) ) );
477 copy->get_args().push_back( new SizeofExpr( srcParam->get_type()->clone() ) );
478 *out++ = new ExprStmt( noLabels, copy );
479 }
[972e6f7]480
[186fd86]481 /// generates the body of a union assignment/copy constructor/field constructor
[d7dc824]482 void makeUnionAssignBody( FunctionDecl * funcDecl ) {
[186fd86]483 FunctionType * ftype = funcDecl->get_functionType();
484 assert( ftype->get_parameters().size() == 2 );
485 ObjectDecl * dstParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().front() );
486 ObjectDecl * srcParam = safe_dynamic_cast< ObjectDecl * >( ftype->get_parameters().back() );
[972e6f7]487
[186fd86]488 makeUnionFieldsAssignment( srcParam, dstParam, back_inserter( funcDecl->get_statements()->get_kids() ) );
[bff227f]489 if ( CodeGen::isAssignment( funcDecl->get_name() ) ) {
[49148d5]490 // also generate return statement in assignment
[4b0f997]491 funcDecl->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, new VariableExpr( srcParam ) ) );
[186fd86]492 }
493 }
[972e6f7]494
[186fd86]495 /// generates union constructors, destructors, and assignment operator
496 void makeUnionFunctions( UnionDecl *aggregateDecl, UnionInstType *refType, unsigned int functionNesting, std::list< Declaration * > & declsToAdd ) {
497 // Make function polymorphic in same parameters as generic union, if applicable
498 const std::list< TypeDecl* > & typeParams = aggregateDecl->get_parameters(); // List of type variables to be placed on the generated functions
[49148d5]499
[186fd86]500 // default ctor/dtor need only first parameter
501 // void ?{}(T *); void ^?{}(T *);
502 FunctionType *ctorType = genDefaultType( refType );
503 FunctionType *dtorType = genDefaultType( refType );
[972e6f7]504
505 // copy ctor needs both parameters
[186fd86]506 // void ?{}(T *, T);
507 FunctionType *copyCtorType = genCopyType( refType );
[972e6f7]508
509 // assignment needs both and return value
[186fd86]510 // T ?=?(T *, T);
511 FunctionType *assignType = genAssignType( refType );
[1486116]512
513 cloneAll( typeParams, ctorType->get_forall() );
514 cloneAll( typeParams, dtorType->get_forall() );
515 cloneAll( typeParams, copyCtorType->get_forall() );
[186fd86]516 cloneAll( typeParams, assignType->get_forall() );
[972e6f7]517
518 // Routines at global scope marked "static" to prevent multiple definitions is separate translation units
519 // because each unit generates copies of the default routines for each aggregate.
[186fd86]520 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting );
521 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting );
522 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting );
523 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting );
[972e6f7]524
[d7dc824]525 makeUnionAssignBody( assignDecl );
[972e6f7]526
527 // body of assignment and copy ctor is the same
[d7dc824]528 makeUnionAssignBody( copyCtorDecl );
[972e6f7]529
[a465caff]530 // create a constructor which takes the first member type as a parameter.
531 // for example, for Union A { int x; double y; }; generate
532 // void ?{}(A *, int)
533 // This is to mimic C's behaviour which initializes the first member of the union.
534 std::list<Declaration *> memCtors;
535 for ( Declaration * member : aggregateDecl->get_members() ) {
536 if ( DeclarationWithType * field = dynamic_cast< DeclarationWithType * >( member ) ) {
[68fe077a]537 ObjectDecl * srcParam = new ObjectDecl( "src", Type::StorageClasses(), LinkageSpec::Cforall, 0, field->get_type()->clone(), 0 );
[a465caff]538
539 FunctionType * memCtorType = ctorType->clone();
540 memCtorType->get_parameters().push_back( srcParam );
[186fd86]541 FunctionDecl * ctor = genFunc( "?{}", memCtorType, functionNesting );
[a465caff]542
[d7dc824]543 makeUnionAssignBody( ctor );
[a465caff]544 memCtors.push_back( ctor );
545 // only generate a ctor for the first field
546 break;
547 }
548 }
549
[972e6f7]550 declsToAdd.push_back( ctorDecl );
551 declsToAdd.push_back( copyCtorDecl );
552 declsToAdd.push_back( dtorDecl );
[1486116]553 declsToAdd.push_back( assignDecl ); // assignment should come last since it uses copy constructor in return
[a465caff]554 declsToAdd.splice( declsToAdd.end(), memCtors );
[972e6f7]555 }
556
[207c7e1d]557 AutogenerateRoutines::AutogenerateRoutines() {
558 // the order here determines the order that these functions are generated.
559 // assignment should come last since it uses copy constructor in return.
560 data.push_back( FuncData( "?{}", genDefaultType, constructable ) );
561 data.push_back( FuncData( "?{}", genCopyType, copyable ) );
562 data.push_back( FuncData( "^?{}", genDefaultType, destructable ) );
563 data.push_back( FuncData( "?=?", genAssignType, assignable ) );
564 }
565
[972e6f7]566 void AutogenerateRoutines::visit( EnumDecl *enumDecl ) {
567 if ( ! enumDecl->get_members().empty() ) {
568 EnumInstType *enumInst = new EnumInstType( Type::Qualifiers(), enumDecl->get_name() );
569 // enumInst->set_baseEnum( enumDecl );
[d7dc824]570 makeEnumFunctions( enumInst, functionNesting, declsToAddAfter );
[972e6f7]571 }
572 }
573
574 void AutogenerateRoutines::visit( StructDecl *structDecl ) {
[207c7e1d]575 if ( structDecl->has_body() && structsDone.find( structDecl->get_name() ) == structsDone.end() ) {
[972e6f7]576 StructInstType structInst( Type::Qualifiers(), structDecl->get_name() );
[186fd86]577 for ( TypeDecl * typeDecl : structDecl->get_parameters() ) {
[207c7e1d]578 // need to visit assertions so that they are added to the appropriate maps
579 acceptAll( typeDecl->get_assertions(), *this );
[186fd86]580 structInst.get_parameters().push_back( new TypeExpr( new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), typeDecl ) ) );
581 }
[972e6f7]582 structInst.set_baseStruct( structDecl );
[c0aa336]583 makeStructFunctions( structDecl, &structInst, functionNesting, declsToAddAfter, data );
[972e6f7]584 structsDone.insert( structDecl->get_name() );
585 } // if
586 }
587
588 void AutogenerateRoutines::visit( UnionDecl *unionDecl ) {
589 if ( ! unionDecl->get_members().empty() ) {
590 UnionInstType unionInst( Type::Qualifiers(), unionDecl->get_name() );
591 unionInst.set_baseUnion( unionDecl );
[186fd86]592 for ( TypeDecl * typeDecl : unionDecl->get_parameters() ) {
593 unionInst.get_parameters().push_back( new TypeExpr( new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), typeDecl ) ) );
594 }
[c0aa336]595 makeUnionFunctions( unionDecl, &unionInst, functionNesting, declsToAddAfter );
[972e6f7]596 } // if
597 }
598
599 void AutogenerateRoutines::visit( TypeDecl *typeDecl ) {
600 TypeInstType *typeInst = new TypeInstType( Type::Qualifiers(), typeDecl->get_name(), false );
601 typeInst->set_baseType( typeDecl );
[68fe077a]602 ObjectDecl *src = new ObjectDecl( "_src", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, typeInst->clone(), nullptr );
603 ObjectDecl *dst = new ObjectDecl( "_dst", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new PointerType( Type::Qualifiers(), typeInst->clone() ), nullptr );
[186fd86]604
605 std::list< Statement * > stmts;
[972e6f7]606 if ( typeDecl->get_base() ) {
[c738ca4]607 // xxx - generate ctor/dtors for typedecls, e.g.
608 // otype T = int *;
[972e6f7]609 UntypedExpr *assign = new UntypedExpr( new NameExpr( "?=?" ) );
610 assign->get_args().push_back( new CastExpr( new VariableExpr( dst ), new PointerType( Type::Qualifiers(), typeDecl->get_base()->clone() ) ) );
611 assign->get_args().push_back( new CastExpr( new VariableExpr( src ), typeDecl->get_base()->clone() ) );
[186fd86]612 stmts.push_back( new ReturnStmt( std::list< Label >(), assign ) );
[972e6f7]613 } // if
614 FunctionType *type = new FunctionType( Type::Qualifiers(), false );
[68fe077a]615 type->get_returnVals().push_back( new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, 0, typeInst, 0 ) );
[972e6f7]616 type->get_parameters().push_back( dst );
617 type->get_parameters().push_back( src );
[186fd86]618 FunctionDecl *func = genFunc( "?=?", type, functionNesting );
619 func->get_statements()->get_kids() = stmts;
[c0aa336]620 declsToAddAfter.push_back( func );
[972e6f7]621 }
622
623 void addDecls( std::list< Declaration * > &declsToAdd, std::list< Statement * > &statements, std::list< Statement * >::iterator i ) {
624 for ( std::list< Declaration * >::iterator decl = declsToAdd.begin(); decl != declsToAdd.end(); ++decl ) {
625 statements.insert( i, new DeclStmt( noLabels, *decl ) );
626 } // for
627 declsToAdd.clear();
628 }
629
630 void AutogenerateRoutines::visit( FunctionType *) {
631 // ensure that we don't add assignment ops for types defined as part of the function
632 }
633
634 void AutogenerateRoutines::visit( PointerType *) {
635 // ensure that we don't add assignment ops for types defined as part of the pointer
636 }
637
[a5a71d0]638 void AutogenerateRoutines::visit( TraitDecl *) {
639 // ensure that we don't add assignment ops for types defined as part of the trait
[972e6f7]640 }
641
642 template< typename StmtClass >
643 inline void AutogenerateRoutines::visitStatement( StmtClass *stmt ) {
644 std::set< std::string > oldStructs = structsDone;
645 addVisit( stmt, *this );
646 structsDone = oldStructs;
647 }
648
649 void AutogenerateRoutines::visit( FunctionDecl *functionDecl ) {
[207c7e1d]650 // record the existence of this function as appropriate
651 insert( functionDecl, constructable, InitTweak::isDefaultConstructor );
652 insert( functionDecl, assignable, InitTweak::isAssignment );
653 insert( functionDecl, copyable, InitTweak::isCopyConstructor );
654 insert( functionDecl, destructable, InitTweak::isDestructor );
655
[972e6f7]656 maybeAccept( functionDecl->get_functionType(), *this );
657 functionNesting += 1;
658 maybeAccept( functionDecl->get_statements(), *this );
659 functionNesting -= 1;
660 }
661
662 void AutogenerateRoutines::visit( CompoundStmt *compoundStmt ) {
[207c7e1d]663 constructable.beginScope();
664 assignable.beginScope();
665 copyable.beginScope();
666 destructable.beginScope();
[972e6f7]667 visitStatement( compoundStmt );
[207c7e1d]668 constructable.endScope();
669 assignable.endScope();
670 copyable.endScope();
671 destructable.endScope();
[972e6f7]672 }
673
674 void AutogenerateRoutines::visit( SwitchStmt *switchStmt ) {
675 visitStatement( switchStmt );
676 }
[1486116]677
678 void makeTupleFunctionBody( FunctionDecl * function ) {
679 FunctionType * ftype = function->get_functionType();
680 assertf( ftype->get_parameters().size() == 1 || ftype->get_parameters().size() == 2, "too many parameters in generated tuple function" );
681
682 UntypedExpr * untyped = new UntypedExpr( new NameExpr( function->get_name() ) );
683
684 /// xxx - &* is used to make this easier for later passes to handle
685 untyped->get_args().push_back( new AddressExpr( UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) );
686 if ( ftype->get_parameters().size() == 2 ) {
687 untyped->get_args().push_back( new VariableExpr( ftype->get_parameters().back() ) );
688 }
689 function->get_statements()->get_kids().push_back( new ExprStmt( noLabels, untyped ) );
690 function->get_statements()->get_kids().push_back( new ReturnStmt( noLabels, UntypedExpr::createDeref( new VariableExpr( ftype->get_parameters().front() ) ) ) );
691 }
692
693 Type * AutogenTupleRoutines::mutate( TupleType * tupleType ) {
694 tupleType = safe_dynamic_cast< TupleType * >( Parent::mutate( tupleType ) );
695 std::string mangleName = SymTab::Mangler::mangleType( tupleType );
696 if ( seenTuples.find( mangleName ) != seenTuples.end() ) return tupleType;
697 seenTuples.insert( mangleName );
698
699 // T ?=?(T *, T);
700 FunctionType *assignType = genAssignType( tupleType );
701
702 // void ?{}(T *); void ^?{}(T *);
703 FunctionType *ctorType = genDefaultType( tupleType );
704 FunctionType *dtorType = genDefaultType( tupleType );
705
706 // void ?{}(T *, T);
707 FunctionType *copyCtorType = genCopyType( tupleType );
708
709 std::set< TypeDecl* > done;
710 std::list< TypeDecl * > typeParams;
711 for ( Type * t : *tupleType ) {
712 if ( TypeInstType * ty = dynamic_cast< TypeInstType * >( t ) ) {
713 if ( ! done.count( ty->get_baseType() ) ) {
[68fe077a]714 TypeDecl * newDecl = new TypeDecl( ty->get_baseType()->get_name(), Type::StorageClasses(), nullptr, TypeDecl::Any );
[1486116]715 TypeInstType * inst = new TypeInstType( Type::Qualifiers(), newDecl->get_name(), newDecl );
[68fe077a]716 newDecl->get_assertions().push_back( new FunctionDecl( "?=?", Type::StorageClasses(), LinkageSpec::Cforall, genAssignType( inst ), nullptr,
[ddfd945]717 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
[68fe077a]718 newDecl->get_assertions().push_back( new FunctionDecl( "?{}", Type::StorageClasses(), LinkageSpec::Cforall, genDefaultType( inst ), nullptr,
[ddfd945]719 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
[68fe077a]720 newDecl->get_assertions().push_back( new FunctionDecl( "?{}", Type::StorageClasses(), LinkageSpec::Cforall, genCopyType( inst ), nullptr,
[ddfd945]721 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
[68fe077a]722 newDecl->get_assertions().push_back( new FunctionDecl( "^?{}", Type::StorageClasses(), LinkageSpec::Cforall, genDefaultType( inst ), nullptr,
[ddfd945]723 std::list< Attribute * >(), Type::FuncSpecifiers( Type::Inline ) ) );
[1486116]724 typeParams.push_back( newDecl );
725 done.insert( ty->get_baseType() );
726 }
727 }
728 }
729 cloneAll( typeParams, ctorType->get_forall() );
730 cloneAll( typeParams, dtorType->get_forall() );
731 cloneAll( typeParams, copyCtorType->get_forall() );
732 cloneAll( typeParams, assignType->get_forall() );
733
734 FunctionDecl *assignDecl = genFunc( "?=?", assignType, functionNesting );
735 FunctionDecl *ctorDecl = genFunc( "?{}", ctorType, functionNesting );
736 FunctionDecl *copyCtorDecl = genFunc( "?{}", copyCtorType, functionNesting );
737 FunctionDecl *dtorDecl = genFunc( "^?{}", dtorType, functionNesting );
738
739 makeTupleFunctionBody( assignDecl );
740 makeTupleFunctionBody( ctorDecl );
741 makeTupleFunctionBody( copyCtorDecl );
742 makeTupleFunctionBody( dtorDecl );
743
744 addDeclaration( ctorDecl );
745 addDeclaration( copyCtorDecl );
746 addDeclaration( dtorDecl );
747 addDeclaration( assignDecl ); // assignment should come last since it uses copy constructor in return
748
749 return tupleType;
750 }
751
752 DeclarationWithType * AutogenTupleRoutines::mutate( FunctionDecl *functionDecl ) {
753 functionDecl->set_functionType( maybeMutate( functionDecl->get_functionType(), *this ) );
754 functionNesting += 1;
755 functionDecl->set_statements( maybeMutate( functionDecl->get_statements(), *this ) );
756 functionNesting -= 1;
757 return functionDecl;
758 }
759
760 CompoundStmt * AutogenTupleRoutines::mutate( CompoundStmt *compoundStmt ) {
761 seenTuples.beginScope();
762 compoundStmt = safe_dynamic_cast< CompoundStmt * >( Parent::mutate( compoundStmt ) );
763 seenTuples.endScope();
764 return compoundStmt;
765 }
[972e6f7]766} // SymTab
[c0aa336]767
768// Local Variables: //
769// tab-width: 4 //
770// mode: c++ //
771// compile-command: "make install" //
772// End: //
Note: See TracBrowser for help on using the repository browser.