source: src/ResolvExpr/Unify.cpp@ 4d5c5b6a

Last change on this file since 4d5c5b6a was 81e768d, checked in by Michael Brooks <mlbrooks@…>, 10 months ago

Fix #276; add support for c-array parameters using dependent lengths.

Without this fix, declarations like

void f( int m, int n, float[m][n] );

would either

  • generate bad C code, with unmangled variable names appearing in the function definition, or
  • refuse to resolve a valid-c call of such a function.

tests/array-collections/c-dependent: add direct tests of such cases
tests/tuplearray: activate and expand cases which were blocked on #276
tests/array: activate case fm5y, which was blocked on #276; [noise] adjust source line numbers in .expect
tests/typedefRedef: expand coverage of "error, an array detail is different" cases; [noise] adjust source line numbers in .expect
tests/functions: [noise] adjust .expect to have resolved array sizes (extra casts) in the diffed code dump

The fix is:

  • (ResolvExpr/ResolveTypeof, ResolvExpr/Resolver) Resolve the dimension expressions, where they were missed.
  • (ResolvExpr/Resolver) Prevent dimension expressions that are bound to other parameters from escaping in the function's type, to where they are out of scope. In the f example above, redact the type shown to callers from void (*)(int, int, float[m][n]) to void (*)(int, int, float[][*]).
  • (ResolvExpr/Unify) Relax the matching rules for such a type, when used at a call site, letting the patameters wildcard type match with the concrete type in scope at the caller's side.
  • (Validate/ReplaceTypedef) Apply the former, stricter matching rules to the one place where they are still needed: detecting inconsistent typedefs.
  • Property mode set to 100644
File size: 22.6 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Unify.cpp --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 12:27:10 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Fri Dec 13 23:43:05 2019
13// Update Count : 46
14//
15
16#include "Unify.hpp"
17
18#include <cassert> // for assertf, assert
19#include <iterator> // for back_insert_iterator, back_inserter
20#include <map> // for _Rb_tree_const_iterator, _Rb_tree_i...
21#include <memory> // for unique_ptr
22#include <set> // for set
23#include <string> // for string, operator==, operator!=, bas...
24#include <utility> // for pair, move
25#include <vector>
26
27#include "AST/Copy.hpp"
28#include "AST/Decl.hpp"
29#include "AST/Node.hpp"
30#include "AST/Pass.hpp"
31#include "AST/Print.hpp"
32#include "AST/Type.hpp"
33#include "AST/TypeEnvironment.hpp"
34#include "Common/Eval.hpp" // for eval
35#include "CommonType.hpp" // for commonType
36#include "FindOpenVars.hpp" // for findOpenVars
37#include "SpecCost.hpp" // for SpecCost
38#include "Tuples/Tuples.hpp" // for isTtype
39#include "Typeops.hpp" // for flatten, occurs
40
41namespace ast {
42 class SymbolTable;
43}
44
45// #define DEBUG
46
47namespace ResolvExpr {
48
49bool typesCompatible(
50 const ast::Type * first, const ast::Type * second,
51 const ast::TypeEnvironment & env ) {
52 ast::TypeEnvironment newEnv;
53 ast::OpenVarSet open, closed;
54 ast::AssertionSet need, have;
55
56 ast::ptr<ast::Type> newFirst( first ), newSecond( second );
57 env.apply( newFirst );
58 env.apply( newSecond );
59
60 // findOpenVars( newFirst, open, closed, need, have, FirstClosed );
61 findOpenVars( newSecond, open, closed, need, have, newEnv, FirstOpen );
62
63 return unifyExact(newFirst, newSecond, newEnv, need, have, open, noWiden() );
64}
65
66bool typesCompatibleIgnoreQualifiers(
67 const ast::Type * first, const ast::Type * second,
68 const ast::TypeEnvironment & env ) {
69 ast::TypeEnvironment newEnv;
70 ast::OpenVarSet open;
71 ast::AssertionSet need, have;
72
73 ast::Type * newFirst = shallowCopy( first );
74 ast::Type * newSecond = shallowCopy( second );
75
76 newFirst ->qualifiers = {};
77 newSecond->qualifiers = {};
78 ast::ptr< ast::Type > t1_(newFirst );
79 ast::ptr< ast::Type > t2_(newSecond);
80
81 ast::ptr< ast::Type > subFirst = env.apply(newFirst).node;
82 ast::ptr< ast::Type > subSecond = env.apply(newSecond).node;
83
84 return unifyExact(
85 subFirst,
86 subSecond,
87 newEnv, need, have, open, noWiden() );
88}
89
90namespace {
91 /// Replaces ttype variables with their bound types.
92 /// If this isn't done when satifying ttype assertions, then argument lists can have
93 /// different size and structure when they should be compatible.
94 struct TtypeExpander : public ast::WithShortCircuiting, public ast::PureVisitor {
95 ast::TypeEnvironment & tenv;
96
97 TtypeExpander( ast::TypeEnvironment & env ) : tenv( env ) {}
98
99 const ast::Type * postvisit( const ast::TypeInstType * typeInst ) {
100 if ( const ast::EqvClass * clz = tenv.lookup( *typeInst ) ) {
101 // expand ttype parameter into its actual type
102 if ( clz->data.kind == ast::TypeDecl::Ttype && clz->bound ) {
103 return clz->bound;
104 }
105 }
106 return typeInst;
107 }
108 };
109}
110
111std::vector< ast::ptr< ast::Type > > flattenList(
112 const std::vector< ast::ptr< ast::Type > > & src, ast::TypeEnvironment & env
113) {
114 std::vector< ast::ptr< ast::Type > > dst;
115 dst.reserve( src.size() );
116 for ( const auto & d : src ) {
117 ast::Pass<TtypeExpander> expander( env );
118 // TtypeExpander pass is impure (may mutate nodes in place)
119 // need to make nodes shared to prevent accidental mutation
120 ast::ptr<ast::Type> dc = d->accept(expander);
121 auto types = flatten( dc );
122 for ( ast::ptr< ast::Type > & t : types ) {
123 // outermost const, volatile, _Atomic qualifiers in parameters should not play
124 // a role in the unification of function types, since they do not determine
125 // whether a function is callable.
126 // NOTE: **must** consider at least mutex qualifier, since functions can be
127 // overloaded on outermost mutex and a mutex function has different
128 // requirements than a non-mutex function
129 remove_qualifiers( t, ast::CV::Const | ast::CV::Volatile | ast::CV::Atomic );
130 dst.emplace_back( t );
131 }
132 }
133 return dst;
134}
135
136// Unification of Expressions
137//
138// Boolean outcome (obvious): Are they basically spelled the same?
139// Side effect of binding variables (subtle): if `sizeof(int)` ===_expr `sizeof(T)` then `int` ===_ty `T`
140//
141// Context: if `float[VAREXPR1]` ===_ty `float[VAREXPR2]` then `VAREXPR1` ===_expr `VAREXPR2`
142// where the VAREXPR are meant as notational metavariables representing the fact that unification always
143// sees distinct ast::VariableExpr objects at these positions
144
145static bool unify( const ast::Expr * e1, const ast::Expr * e2, ast::TypeEnvironment & env,
146 ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open,
147 WidenMode widen );
148
149class UnifyExpr final : public ast::WithShortCircuiting {
150 const ast::Expr * e2;
151 ast::TypeEnvironment & tenv;
152 ast::AssertionSet & need;
153 ast::AssertionSet & have;
154 const ast::OpenVarSet & open;
155 WidenMode widen;
156public:
157 bool result;
158
159private:
160
161 void tryMatchOnStaticValue( const ast::Expr * e1 ) {
162 Evaluation r1 = eval(e1);
163 Evaluation r2 = eval(e2);
164
165 if ( !r1.hasKnownValue ) return;
166 if ( !r2.hasKnownValue ) return;
167
168 if ( r1.knownValue != r2.knownValue ) return;
169
170 visit_children = false;
171 result = true;
172 }
173
174public:
175
176 void previsit( const ast::Node * ) { assert(false); }
177
178 void previsit( const ast::Expr * e1 ) {
179 tryMatchOnStaticValue( e1 );
180 visit_children = false;
181 }
182
183 void previsit( const ast::CastExpr * e1 ) {
184 tryMatchOnStaticValue( e1 );
185
186 if ( result ) {
187 assert( visit_children == false );
188 } else {
189 assert( visit_children == true );
190 visit_children = false;
191
192 auto e2c = dynamic_cast< const ast::CastExpr * >( e2 );
193 if ( !e2c ) return;
194
195 // inspect casts' target types
196 if ( !unifyExact(
197 e1->result, e2c->result, tenv, need, have, open, widen ) ) return;
198
199 // inspect casts' inner expressions
200 result = unify( e1->arg, e2c->arg, tenv, need, have, open, widen );
201 }
202 }
203
204 void previsit( const ast::VariableExpr * e1 ) {
205 tryMatchOnStaticValue( e1 );
206
207 if ( result ) {
208 assert( visit_children == false );
209 } else {
210 assert( visit_children == true );
211 visit_children = false;
212
213 auto e2v = dynamic_cast< const ast::VariableExpr * >( e2 );
214 if ( !e2v ) return;
215
216 assert(e1->var);
217 assert(e2v->var);
218
219 // conservative: variable exprs match if their declarations are represented by the same C++ AST object
220 result = (e1->var == e2v->var);
221 }
222 }
223
224 void previsit( const ast::SizeofExpr * e1 ) {
225 tryMatchOnStaticValue( e1 );
226
227 if ( result ) {
228 assert( visit_children == false );
229 } else {
230 assert( visit_children == true );
231 visit_children = false;
232
233 auto e2so = dynamic_cast< const ast::SizeofExpr * >( e2 );
234 if ( !e2so ) return;
235
236 // expression unification calls type unification (mutual recursion)
237 result = unifyExact( e1->type, e2so->type, tenv, need, have, open, widen );
238 }
239 }
240
241 UnifyExpr( const ast::Expr * e2, ast::TypeEnvironment & env, ast::AssertionSet & need,
242 ast::AssertionSet & have, const ast::OpenVarSet & open, WidenMode widen )
243 : e2( e2 ), tenv(env), need(need), have(have), open(open), widen(widen), result(false) {}
244};
245
246static bool unify( const ast::Expr * e1, const ast::Expr * e2, ast::TypeEnvironment & env,
247 ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open,
248 WidenMode widen ) {
249 assert( e1 && e2 );
250 return ast::Pass<UnifyExpr>::read( e1, e2, env, need, have, open, widen );
251}
252
253class Unify final : public ast::WithShortCircuiting {
254 const ast::Type * type2;
255 ast::TypeEnvironment & tenv;
256 ast::AssertionSet & need;
257 ast::AssertionSet & have;
258 const ast::OpenVarSet & open;
259 WidenMode widen;
260public:
261 static size_t traceId;
262 bool result;
263
264 Unify(
265 const ast::Type * type2, ast::TypeEnvironment & env, ast::AssertionSet & need,
266 ast::AssertionSet & have, const ast::OpenVarSet & open, WidenMode widen )
267 : type2(type2), tenv(env), need(need), have(have), open(open), widen(widen),
268 result(false) {}
269
270 void previsit( const ast::Node * ) { visit_children = false; }
271
272 void postvisit( const ast::VoidType * ) {
273 result = dynamic_cast< const ast::VoidType * >( type2 );
274 }
275
276 void postvisit( const ast::BasicType * basic ) {
277 if ( auto basic2 = dynamic_cast< const ast::BasicType * >( type2 ) ) {
278 result = basic->kind == basic2->kind;
279 }
280 }
281
282 void postvisit( const ast::PointerType * pointer ) {
283 if ( auto pointer2 = dynamic_cast< const ast::PointerType * >( type2 ) ) {
284 result = unifyExact(
285 pointer->base, pointer2->base, tenv, need, have, open,
286 noWiden());
287 }
288 }
289
290 void postvisit( const ast::ArrayType * array ) {
291 auto array2 = dynamic_cast< const ast::ArrayType * >( type2 );
292 if ( !array2 ) return;
293
294 // Permit cases where one side has a dimension or isVarLen,
295 // while the other side is the opposite.
296 // Acheves a wildcard-iterpretation semantics, where lack of
297 // dimension (`float a[]` or `float a[25][*]`) means
298 // "anything here is fine."
299 // Sole known case where a verbatim-match semantics is intended
300 // is typedef redefinition, for which extra checking is added
301 // in src/Validate/ReplaceTypedef.cpp.
302
303 if ( array->dimension && array2->dimension ) {
304 assert( array2->dimension );
305 // type unification calls expression unification (mutual recursion)
306 if ( !unify(array->dimension, array2->dimension,
307 tenv, need, have, open, widen) ) return;
308 }
309
310 result = unifyExact(
311 array->base, array2->base, tenv, need, have, open, noWiden());
312 }
313
314 void postvisit( const ast::ReferenceType * ref ) {
315 if ( auto ref2 = dynamic_cast< const ast::ReferenceType * >( type2 ) ) {
316 result = unifyExact(
317 ref->base, ref2->base, tenv, need, have, open, noWiden());
318 }
319 }
320
321private:
322
323 template< typename Iter >
324 static bool unifyTypeList(
325 Iter crnt1, Iter end1, Iter crnt2, Iter end2, ast::TypeEnvironment & env,
326 ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open
327 ) {
328 while ( crnt1 != end1 && crnt2 != end2 ) {
329 const ast::Type * t1 = *crnt1;
330 const ast::Type * t2 = *crnt2;
331 bool isTuple1 = Tuples::isTtype( t1 );
332 bool isTuple2 = Tuples::isTtype( t2 );
333
334 // assumes here that ttype *must* be last parameter
335 if ( isTuple1 && !isTuple2 ) {
336 // combine remainder of list2, then unify
337 return unifyExact(
338 t1, tupleFromTypes( crnt2, end2 ), env, need, have, open,
339 noWiden() );
340 } else if ( !isTuple1 && isTuple2 ) {
341 // combine remainder of list1, then unify
342 return unifyExact(
343 tupleFromTypes( crnt1, end1 ), t2, env, need, have, open,
344 noWiden() );
345 }
346
347 if ( !unifyExact(
348 t1, t2, env, need, have, open, noWiden() )
349 ) return false;
350
351 ++crnt1; ++crnt2;
352 }
353
354 // May get to the end of one argument list before the other. This is only okay if the
355 // other is a ttype
356 if ( crnt1 != end1 ) {
357 // try unifying empty tuple with ttype
358 const ast::Type * t1 = *crnt1;
359 if ( !Tuples::isTtype( t1 ) ) return false;
360 return unifyExact(
361 t1, tupleFromTypes( crnt2, end2 ), env, need, have, open,
362 noWiden() );
363 } else if ( crnt2 != end2 ) {
364 // try unifying empty tuple with ttype
365 const ast::Type * t2 = *crnt2;
366 if ( !Tuples::isTtype( t2 ) ) return false;
367 return unifyExact(
368 tupleFromTypes( crnt1, end1 ), t2, env, need, have, open,
369 noWiden() );
370 }
371
372 return true;
373 }
374
375 static bool unifyTypeList(
376 const std::vector< ast::ptr< ast::Type > > & list1,
377 const std::vector< ast::ptr< ast::Type > > & list2,
378 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have,
379 const ast::OpenVarSet & open
380 ) {
381 return unifyTypeList(
382 list1.begin(), list1.end(), list2.begin(), list2.end(), env, need, have, open);
383 }
384
385 static void markAssertionSet( ast::AssertionSet & assns, const ast::VariableExpr * assn ) {
386 auto i = assns.find( assn );
387 if ( i != assns.end() ) {
388 i->second.isUsed = true;
389 }
390 }
391
392 /// mark all assertions in `type` used in both `assn1` and `assn2`
393 static void markAssertions(
394 ast::AssertionSet & assn1, ast::AssertionSet & assn2,
395 const ast::FunctionType * type
396 ) {
397 for ( auto & assert : type->assertions ) {
398 markAssertionSet( assn1, assert );
399 markAssertionSet( assn2, assert );
400 }
401 }
402
403public:
404 void postvisit( const ast::FunctionType * func ) {
405 auto func2 = dynamic_cast< const ast::FunctionType * >( type2 );
406 if ( !func2 ) return;
407
408 if ( func->isVarArgs != func2->isVarArgs ) return;
409
410 // Flatten the parameter lists for both functions so that tuple structure does not
411 // affect unification. Does not actually mutate function parameters.
412 auto params = flattenList( func->params, tenv );
413 auto params2 = flattenList( func2->params, tenv );
414
415 // sizes don't have to match if ttypes are involved; need to be more precise w.r.t.
416 // where the ttype is to prevent errors
417 if (
418 ( params.size() != params2.size() || func->returns.size() != func2->returns.size() )
419 && !func->isTtype()
420 && !func2->isTtype()
421 ) return;
422
423 if ( !unifyTypeList( params, params2, tenv, need, have, open ) ) return;
424 if ( !unifyTypeList(
425 func->returns, func2->returns, tenv, need, have, open ) ) return;
426
427 markAssertions( have, need, func );
428 markAssertions( have, need, func2 );
429
430 result = true;
431 }
432
433private:
434 // Returns: other, cast as XInstType
435 // Assigns this->result: whether types are compatible (up to generic parameters)
436 template< typename XInstType >
437 const XInstType * handleRefType( const XInstType * inst, const ast::Type * other ) {
438 // check that the other type is compatible and named the same
439 auto otherInst = dynamic_cast< const XInstType * >( other );
440 if ( otherInst && inst->name == otherInst->name ) {
441 this->result = otherInst;
442 }
443 return otherInst;
444 }
445
446 /// Creates a tuple type based on a list of TypeExpr
447 template< typename Iter >
448 static const ast::Type * tupleFromExprs(
449 const ast::TypeExpr * param, Iter & crnt, Iter end, ast::CV::Qualifiers qs
450 ) {
451 std::vector< ast::ptr< ast::Type > > types;
452 do {
453 types.emplace_back( param->type );
454
455 ++crnt;
456 if ( crnt == end ) break;
457 param = strict_dynamic_cast< const ast::TypeExpr * >( crnt->get() );
458 } while(true);
459
460 return new ast::TupleType( std::move(types), qs );
461 }
462
463 template< typename XInstType >
464 void handleGenericRefType( const XInstType * inst, const ast::Type * other ) {
465 // check that other type is compatible and named the same
466 const XInstType * otherInst = handleRefType( inst, other );
467 if ( !this->result ) return;
468
469 // check that parameters of types unify, if any
470 const std::vector< ast::ptr< ast::Expr > > & params = inst->params;
471 const std::vector< ast::ptr< ast::Expr > > & params2 = otherInst->params;
472
473 auto it = params.begin();
474 auto jt = params2.begin();
475 for ( ; it != params.end() && jt != params2.end(); ++it, ++jt ) {
476 auto param = strict_dynamic_cast< const ast::TypeExpr * >( it->get() );
477 auto param2 = strict_dynamic_cast< const ast::TypeExpr * >( jt->get() );
478
479 ast::ptr< ast::Type > pty = param->type;
480 ast::ptr< ast::Type > pty2 = param2->type;
481
482 bool isTuple = Tuples::isTtype( pty );
483 bool isTuple2 = Tuples::isTtype( pty2 );
484
485 if ( isTuple && isTuple2 ) {
486 ++it; ++jt; // skip ttype parameters before break
487 } else if ( isTuple ) {
488 // bundle remaining params into tuple
489 pty2 = tupleFromExprs( param2, jt, params2.end(), pty->qualifiers );
490 ++it; // skip ttype parameter for break
491 } else if ( isTuple2 ) {
492 // bundle remaining params into tuple
493 pty = tupleFromExprs( param, it, params.end(), pty2->qualifiers );
494 ++jt; // skip ttype parameter for break
495 }
496
497 if ( !unifyExact(
498 pty, pty2, tenv, need, have, open, noWiden() ) ) {
499 result = false;
500 return;
501 }
502
503 // ttype parameter should be last
504 if ( isTuple || isTuple2 ) break;
505 }
506 result = it == params.end() && jt == params2.end();
507 }
508
509public:
510 void postvisit( const ast::StructInstType * aggrType ) {
511 handleGenericRefType( aggrType, type2 );
512 }
513
514 void postvisit( const ast::UnionInstType * aggrType ) {
515 handleGenericRefType( aggrType, type2 );
516 }
517
518 void postvisit( const ast::EnumInstType * aggrType ) {
519 handleRefType( aggrType, type2 );
520 }
521
522 void postvisit( const ast::TraitInstType * aggrType ) {
523 handleRefType( aggrType, type2 );
524 }
525
526 void postvisit( const ast::TypeInstType * typeInst ) {
527 // assert( open.find( *typeInst ) == open.end() );
528 auto otherInst = dynamic_cast< const ast::TypeInstType * >( type2 );
529 if ( otherInst && typeInst->name == otherInst->name ) {
530 this->result = otherInst;
531 }
532 }
533
534private:
535 /// Creates a tuple type based on a list of Type
536 static bool unifyList(
537 const std::vector< ast::ptr< ast::Type > > & list1,
538 const std::vector< ast::ptr< ast::Type > > & list2, ast::TypeEnvironment & env,
539 ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open
540 ) {
541 auto crnt1 = list1.begin();
542 auto crnt2 = list2.begin();
543 while ( crnt1 != list1.end() && crnt2 != list2.end() ) {
544 const ast::Type * t1 = *crnt1;
545 const ast::Type * t2 = *crnt2;
546 bool isTuple1 = Tuples::isTtype( t1 );
547 bool isTuple2 = Tuples::isTtype( t2 );
548
549 // assumes ttype must be last parameter
550 if ( isTuple1 && !isTuple2 ) {
551 // combine entirety of list2, then unify
552 return unifyExact(
553 t1, tupleFromTypes( list2 ), env, need, have, open,
554 noWiden() );
555 } else if ( !isTuple1 && isTuple2 ) {
556 // combine entirety of list1, then unify
557 return unifyExact(
558 tupleFromTypes( list1 ), t2, env, need, have, open,
559 noWiden() );
560 }
561
562 if ( !unifyExact(
563 t1, t2, env, need, have, open, noWiden() )
564 ) return false;
565
566 ++crnt1; ++crnt2;
567 }
568
569 if ( crnt1 != list1.end() ) {
570 // try unifying empty tuple type with ttype
571 const ast::Type * t1 = *crnt1;
572 if ( !Tuples::isTtype( t1 ) ) return false;
573 // xxx - this doesn't generate an empty tuple, contrary to comment; both ported
574 // from Rob's code
575 return unifyExact(
576 t1, tupleFromTypes( list2 ), env, need, have, open,
577 noWiden() );
578 } else if ( crnt2 != list2.end() ) {
579 // try unifying empty tuple with ttype
580 const ast::Type * t2 = *crnt2;
581 if ( !Tuples::isTtype( t2 ) ) return false;
582 // xxx - this doesn't generate an empty tuple, contrary to comment; both ported
583 // from Rob's code
584 return unifyExact(
585 tupleFromTypes( list1 ), t2, env, need, have, open,
586 noWiden() );
587 }
588
589 return true;
590 }
591
592public:
593 void postvisit( const ast::TupleType * tuple ) {
594 auto tuple2 = dynamic_cast< const ast::TupleType * >( type2 );
595 if ( ! tuple2 ) return;
596
597 ast::Pass<TtypeExpander> expander{ tenv };
598
599 const ast::Type * flat = tuple->accept( expander );
600 const ast::Type * flat2 = tuple2->accept( expander );
601
602 auto types = flatten( flat );
603 auto types2 = flatten( flat2 );
604
605 result = unifyList( types, types2, tenv, need, have, open );
606 }
607
608 void postvisit( const ast::VarArgsType * ) {
609 result = dynamic_cast< const ast::VarArgsType * >( type2 );
610 }
611
612 void postvisit( const ast::ZeroType * ) {
613 result = dynamic_cast< const ast::ZeroType * >( type2 );
614 }
615
616 void postvisit( const ast::OneType * ) {
617 result = dynamic_cast< const ast::OneType * >( type2 );
618 }
619};
620
621// size_t Unify::traceId = Stats::Heap::new_stacktrace_id("Unify");
622
623bool unify(
624 const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2,
625 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have,
626 ast::OpenVarSet & open
627) {
628 ast::ptr<ast::Type> common;
629 return unify( type1, type2, env, need, have, open, common );
630}
631
632bool unify(
633 const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2,
634 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have,
635 ast::OpenVarSet & open, ast::ptr<ast::Type> & common
636) {
637 ast::OpenVarSet closed;
638 // findOpenVars( type1, open, closed, need, have, FirstClosed );
639 findOpenVars( type2, open, closed, need, have, env, FirstOpen );
640 return unifyInexact(
641 type1, type2, env, need, have, open, WidenMode{ true, true }, common );
642}
643
644bool unifyExact(
645 const ast::Type * type1, const ast::Type * type2, ast::TypeEnvironment & env,
646 ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open,
647 WidenMode widen
648) {
649 if ( type1->qualifiers != type2->qualifiers ) return false;
650
651 auto var1 = dynamic_cast< const ast::TypeInstType * >( type1 );
652 auto var2 = dynamic_cast< const ast::TypeInstType * >( type2 );
653 bool isopen1 = var1 && env.lookup(*var1);
654 bool isopen2 = var2 && env.lookup(*var2);
655
656 if ( isopen1 && isopen2 ) {
657 if ( var1->base->kind != var2->base->kind ) return false;
658 return env.bindVarToVar(
659 var1, var2, ast::TypeData{ var1->base->kind, var1->base->sized||var2->base->sized }, need, have,
660 open, widen );
661 } else if ( isopen1 ) {
662 return env.bindVar( var1, type2, ast::TypeData{var1->base}, need, have, open, widen );
663 } else if ( isopen2 ) {
664 return env.bindVar( var2, type1, ast::TypeData{var2->base}, need, have, open, widen );
665 } else {
666 return ast::Pass<Unify>::read(
667 type1, type2, env, need, have, open, widen );
668 }
669}
670
671bool unifyInexact(
672 const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2,
673 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have,
674 const ast::OpenVarSet & open, WidenMode widen,
675 ast::ptr<ast::Type> & common
676) {
677 ast::CV::Qualifiers q1 = type1->qualifiers, q2 = type2->qualifiers;
678
679 // force t1 and t2 to be cloned if their qualifiers must be stripped, so that type1 and
680 // type2 are left unchanged; calling convention forces type{1,2}->strong_ref >= 1
681 ast::Type * t1 = shallowCopy(type1.get());
682 ast::Type * t2 = shallowCopy(type2.get());
683 t1->qualifiers = {};
684 t2->qualifiers = {};
685 ast::ptr< ast::Type > t1_(t1);
686 ast::ptr< ast::Type > t2_(t2);
687
688 if ( unifyExact( t1, t2, env, need, have, open, widen ) ) {
689 // if exact unification on unqualified types, try to merge qualifiers
690 if ( q1 == q2 || ( ( q1 > q2 || widen.first ) && ( q2 > q1 || widen.second ) ) ) {
691 t1->qualifiers = q1 | q2;
692 common = t1;
693 return true;
694 } else {
695 return false;
696 }
697 } else if (( common = commonType( t1, t2, env, need, have, open, widen ))) {
698 // no exact unification, but common type
699 auto c = shallowCopy(common.get());
700 c->qualifiers = q1 | q2;
701 common = c;
702 return true;
703 } else {
704 return false;
705 }
706}
707
708ast::ptr<ast::Type> extractResultType( const ast::FunctionType * func ) {
709 if ( func->returns.empty() ) return new ast::VoidType();
710 if ( func->returns.size() == 1 ) return func->returns[0];
711
712 std::vector<ast::ptr<ast::Type>> tys;
713 for ( const auto & decl : func->returns ) {
714 tys.emplace_back( decl );
715 }
716 return new ast::TupleType( std::move(tys) );
717}
718
719} // namespace ResolvExpr
720
721// Local Variables: //
722// tab-width: 4 //
723// mode: c++ //
724// compile-command: "make install" //
725// End: //
Note: See TracBrowser for help on using the repository browser.