source: src/ResolvExpr/Unify.cc@ 83ab931

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr no_list persistent-indexer pthread-emulation qualifiedEnum
Last change on this file since 83ab931 was d286cf68, checked in by Aaron Moss <a3moss@…>, 7 years ago

Fix TypeEnvironment bind algorithms

  • Property mode set to 100644
File size: 28.2 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Unify.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 12:27:10 2015
11// Last Modified By : Aaron B. Moss
12// Last Modified On : Mon Jun 18 11:58:00 2018
13// Update Count : 43
14//
15
16#include <cassert> // for assertf, assert
17#include <iterator> // for back_insert_iterator, back_inserter
18#include <map> // for _Rb_tree_const_iterator, _Rb_tree_i...
19#include <memory> // for unique_ptr
20#include <set> // for set
21#include <string> // for string, operator==, operator!=, bas...
22#include <utility> // for pair, move
23
24#include "Common/PassVisitor.h" // for PassVisitor
25#include "FindOpenVars.h" // for findOpenVars
26#include "Parser/LinkageSpec.h" // for C
27#include "SynTree/Constant.h" // for Constant
28#include "SynTree/Declaration.h" // for TypeDecl, TypeDecl::Data, Declarati...
29#include "SynTree/Expression.h" // for TypeExpr, Expression, ConstantExpr
30#include "SynTree/Mutator.h" // for Mutator
31#include "SynTree/Type.h" // for Type, TypeInstType, FunctionType
32#include "SynTree/Visitor.h" // for Visitor
33#include "Tuples/Tuples.h" // for isTtype
34#include "TypeEnvironment.h" // for EqvClass, AssertionSet, OpenVarSet
35#include "Unify.h"
36#include "typeops.h" // for flatten, occurs, commonType
37
38namespace SymTab {
39class Indexer;
40} // namespace SymTab
41
42// #define DEBUG
43
44namespace ResolvExpr {
45
46 struct Unify : public WithShortCircuiting {
47 Unify( Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widenMode, const SymTab::Indexer &indexer );
48
49 bool get_result() const { return result; }
50
51 void previsit( BaseSyntaxNode * ) { visit_children = false; }
52
53 void postvisit( VoidType * voidType );
54 void postvisit( BasicType * basicType );
55 void postvisit( PointerType * pointerType );
56 void postvisit( ArrayType * arrayType );
57 void postvisit( ReferenceType * refType );
58 void postvisit( FunctionType * functionType );
59 void postvisit( StructInstType * aggregateUseType );
60 void postvisit( UnionInstType * aggregateUseType );
61 void postvisit( EnumInstType * aggregateUseType );
62 void postvisit( TraitInstType * aggregateUseType );
63 void postvisit( TypeInstType * aggregateUseType );
64 void postvisit( TupleType * tupleType );
65 void postvisit( VarArgsType * varArgsType );
66 void postvisit( ZeroType * zeroType );
67 void postvisit( OneType * oneType );
68
69 private:
70 template< typename RefType > void handleRefType( RefType *inst, Type *other );
71 template< typename RefType > void handleGenericRefType( RefType *inst, Type *other );
72
73 bool result;
74 Type *type2; // inherited
75 TypeEnvironment &env;
76 AssertionSet &needAssertions;
77 AssertionSet &haveAssertions;
78 const OpenVarSet &openVars;
79 WidenMode widenMode;
80 const SymTab::Indexer &indexer;
81 };
82
83 /// Attempts an inexact unification of type1 and type2.
84 /// Returns false if no such unification; if the types can be unified, sets common (unless they unify exactly and have identical type qualifiers)
85 bool unifyInexact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widenMode, const SymTab::Indexer &indexer, Type *&common );
86 bool unifyExact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widenMode, const SymTab::Indexer &indexer );
87
88 bool typesCompatible( Type *first, Type *second, const SymTab::Indexer &indexer, const TypeEnvironment &env ) {
89 TypeEnvironment newEnv;
90 OpenVarSet openVars, closedVars; // added closedVars
91 AssertionSet needAssertions, haveAssertions;
92 Type *newFirst = first->clone(), *newSecond = second->clone();
93 env.apply( newFirst );
94 env.apply( newSecond );
95
96 // do we need to do this? Seems like we do, types should be able to be compatible if they
97 // have free variables that can unify
98 findOpenVars( newFirst, openVars, closedVars, needAssertions, haveAssertions, false );
99 findOpenVars( newSecond, openVars, closedVars, needAssertions, haveAssertions, true );
100
101 bool result = unifyExact( newFirst, newSecond, newEnv, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
102 delete newFirst;
103 delete newSecond;
104 return result;
105 }
106
107 bool typesCompatibleIgnoreQualifiers( Type *first, Type *second, const SymTab::Indexer &indexer, const TypeEnvironment &env ) {
108 TypeEnvironment newEnv;
109 OpenVarSet openVars;
110 AssertionSet needAssertions, haveAssertions;
111 Type *newFirst = first->clone(), *newSecond = second->clone();
112 env.apply( newFirst );
113 env.apply( newSecond );
114 newFirst->get_qualifiers() = Type::Qualifiers();
115 newSecond->get_qualifiers() = Type::Qualifiers();
116/// std::cerr << "first is ";
117/// first->print( std::cerr );
118/// std::cerr << std::endl << "second is ";
119/// second->print( std::cerr );
120/// std::cerr << std::endl << "newFirst is ";
121/// newFirst->print( std::cerr );
122/// std::cerr << std::endl << "newSecond is ";
123/// newSecond->print( std::cerr );
124/// std::cerr << std::endl;
125 bool result = unifyExact( newFirst, newSecond, newEnv, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
126 delete newFirst;
127 delete newSecond;
128 return result;
129 }
130
131 bool unify( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, OpenVarSet &openVars, const SymTab::Indexer &indexer ) {
132 OpenVarSet closedVars;
133 findOpenVars( type1, openVars, closedVars, needAssertions, haveAssertions, false );
134 findOpenVars( type2, openVars, closedVars, needAssertions, haveAssertions, true );
135 Type *commonType = 0;
136 if ( unifyInexact( type1, type2, env, needAssertions, haveAssertions, openVars, WidenMode( true, true ), indexer, commonType ) ) {
137 if ( commonType ) {
138 delete commonType;
139 } // if
140 return true;
141 } else {
142 return false;
143 } // if
144 }
145
146 bool unify( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, OpenVarSet &openVars, const SymTab::Indexer &indexer, Type *&commonType ) {
147 OpenVarSet closedVars;
148 findOpenVars( type1, openVars, closedVars, needAssertions, haveAssertions, false );
149 findOpenVars( type2, openVars, closedVars, needAssertions, haveAssertions, true );
150 return unifyInexact( type1, type2, env, needAssertions, haveAssertions, openVars, WidenMode( true, true ), indexer, commonType );
151 }
152
153 bool unifyExact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widenMode, const SymTab::Indexer &indexer ) {
154#ifdef DEBUG
155 TypeEnvironment debugEnv( env );
156#endif
157 if ( type1->get_qualifiers() != type2->get_qualifiers() ) {
158 return false;
159 }
160
161 bool result;
162 TypeInstType *var1 = dynamic_cast< TypeInstType* >( type1 );
163 TypeInstType *var2 = dynamic_cast< TypeInstType* >( type2 );
164 OpenVarSet::const_iterator entry1, entry2;
165 if ( var1 ) {
166 entry1 = openVars.find( var1->get_name() );
167 } // if
168 if ( var2 ) {
169 entry2 = openVars.find( var2->get_name() );
170 } // if
171 bool isopen1 = var1 && ( entry1 != openVars.end() );
172 bool isopen2 = var2 && ( entry2 != openVars.end() );
173
174 if ( isopen1 && isopen2 && entry1->second == entry2->second ) {
175 result = env.bindVarToVar( var1, var2, entry1->second, needAssertions, haveAssertions, openVars, widenMode, indexer );
176 } else if ( isopen1 ) {
177 result = env.bindVar( var1, type2, entry1->second, needAssertions, haveAssertions, openVars, widenMode, indexer );
178 } else if ( isopen2 ) { // TODO: swap widenMode values in call, since type positions are flipped?
179 result = env.bindVar( var2, type1, entry2->second, needAssertions, haveAssertions, openVars, widenMode, indexer );
180 } else {
181 PassVisitor<Unify> comparator( type2, env, needAssertions, haveAssertions, openVars, widenMode, indexer );
182 type1->accept( comparator );
183 result = comparator.pass.get_result();
184 } // if
185#ifdef DEBUG
186 std::cerr << "============ unifyExact" << std::endl;
187 std::cerr << "type1 is ";
188 type1->print( std::cerr );
189 std::cerr << std::endl << "type2 is ";
190 type2->print( std::cerr );
191 std::cerr << std::endl << "openVars are ";
192 printOpenVarSet( openVars, std::cerr, 8 );
193 std::cerr << std::endl << "input env is " << std::endl;
194 debugEnv.print( std::cerr, 8 );
195 std::cerr << std::endl << "result env is " << std::endl;
196 env.print( std::cerr, 8 );
197 std::cerr << "result is " << result << std::endl;
198#endif
199 return result;
200 }
201
202 bool unifyExact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, OpenVarSet &openVars, const SymTab::Indexer &indexer ) {
203 return unifyExact( type1, type2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
204 }
205
206 bool unifyInexact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widenMode, const SymTab::Indexer &indexer, Type *&common ) {
207 Type::Qualifiers tq1 = type1->get_qualifiers(), tq2 = type2->get_qualifiers();
208 type1->get_qualifiers() = Type::Qualifiers();
209 type2->get_qualifiers() = Type::Qualifiers();
210 bool result;
211#ifdef DEBUG
212 std::cerr << "unifyInexact type 1 is ";
213 type1->print( std::cerr );
214 std::cerr << " type 2 is ";
215 type2->print( std::cerr );
216 std::cerr << std::endl;
217#endif
218 if ( ! unifyExact( type1, type2, env, needAssertions, haveAssertions, openVars, widenMode, indexer ) ) {
219#ifdef DEBUG
220 std::cerr << "unifyInexact: no exact unification found" << std::endl;
221#endif
222 if ( ( common = commonType( type1, type2, widenMode.widenFirst, widenMode.widenSecond, indexer, env, openVars ) ) ) {
223 common->get_qualifiers() = tq1 | tq2;
224#ifdef DEBUG
225 std::cerr << "unifyInexact: common type is ";
226 common->print( std::cerr );
227 std::cerr << std::endl;
228#endif
229 result = true;
230 } else {
231#ifdef DEBUG
232 std::cerr << "unifyInexact: no common type found" << std::endl;
233#endif
234 result = false;
235 } // if
236 } else {
237 if ( tq1 != tq2 ) {
238 if ( ( tq1 > tq2 || widenMode.widenFirst ) && ( tq2 > tq1 || widenMode.widenSecond ) ) {
239 common = type1->clone();
240 common->get_qualifiers() = tq1 | tq2;
241 result = true;
242 } else {
243 result = false;
244 } // if
245 } else {
246 common = type1->clone();
247 common->get_qualifiers() = tq1 | tq2;
248 result = true;
249 } // if
250 } // if
251 type1->get_qualifiers() = tq1;
252 type2->get_qualifiers() = tq2;
253 return result;
254 }
255
256 Unify::Unify( Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widenMode, const SymTab::Indexer &indexer )
257 : result( false ), type2( type2 ), env( env ), needAssertions( needAssertions ), haveAssertions( haveAssertions ), openVars( openVars ), widenMode( widenMode ), indexer( indexer ) {
258 }
259
260 void Unify::postvisit( __attribute__((unused)) VoidType *voidType) {
261 result = dynamic_cast< VoidType* >( type2 );
262 }
263
264 void Unify::postvisit(BasicType *basicType) {
265 if ( BasicType *otherBasic = dynamic_cast< BasicType* >( type2 ) ) {
266 result = basicType->get_kind() == otherBasic->get_kind();
267 } // if
268 }
269
270 void markAssertionSet( AssertionSet &assertions, DeclarationWithType *assert ) {
271/// std::cerr << "assertion set is" << std::endl;
272/// printAssertionSet( assertions, std::cerr, 8 );
273/// std::cerr << "looking for ";
274/// assert->print( std::cerr );
275/// std::cerr << std::endl;
276 AssertionSet::iterator i = assertions.find( assert );
277 if ( i != assertions.end() ) {
278/// std::cerr << "found it!" << std::endl;
279 i->second.isUsed = true;
280 } // if
281 }
282
283 void markAssertions( AssertionSet &assertion1, AssertionSet &assertion2, Type *type ) {
284 for ( std::list< TypeDecl* >::const_iterator tyvar = type->get_forall().begin(); tyvar != type->get_forall().end(); ++tyvar ) {
285 for ( std::list< DeclarationWithType* >::const_iterator assert = (*tyvar)->get_assertions().begin(); assert != (*tyvar)->get_assertions().end(); ++assert ) {
286 markAssertionSet( assertion1, *assert );
287 markAssertionSet( assertion2, *assert );
288 } // for
289 } // for
290 }
291
292 void Unify::postvisit(PointerType *pointerType) {
293 if ( PointerType *otherPointer = dynamic_cast< PointerType* >( type2 ) ) {
294 result = unifyExact( pointerType->get_base(), otherPointer->get_base(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
295 markAssertions( haveAssertions, needAssertions, pointerType );
296 markAssertions( haveAssertions, needAssertions, otherPointer );
297 } // if
298 }
299
300 void Unify::postvisit(ReferenceType *refType) {
301 if ( ReferenceType *otherRef = dynamic_cast< ReferenceType* >( type2 ) ) {
302 result = unifyExact( refType->get_base(), otherRef->get_base(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
303 markAssertions( haveAssertions, needAssertions, refType );
304 markAssertions( haveAssertions, needAssertions, otherRef );
305 } // if
306 }
307
308 void Unify::postvisit(ArrayType *arrayType) {
309 ArrayType *otherArray = dynamic_cast< ArrayType* >( type2 );
310 // to unify, array types must both be VLA or both not VLA
311 // and must both have a dimension expression or not have a dimension
312 if ( otherArray && arrayType->get_isVarLen() == otherArray->get_isVarLen() ) {
313
314 if ( ! arrayType->get_isVarLen() && ! otherArray->get_isVarLen() &&
315 arrayType->get_dimension() != 0 && otherArray->get_dimension() != 0 ) {
316 ConstantExpr * ce1 = dynamic_cast< ConstantExpr * >( arrayType->get_dimension() );
317 ConstantExpr * ce2 = dynamic_cast< ConstantExpr * >( otherArray->get_dimension() );
318 // see C11 Reference Manual 6.7.6.2.6
319 // two array types with size specifiers that are integer constant expressions are
320 // compatible if both size specifiers have the same constant value
321 if ( ce1 && ce2 ) {
322 Constant * c1 = ce1->get_constant();
323 Constant * c2 = ce2->get_constant();
324
325 if ( c1->get_value() != c2->get_value() ) {
326 // does not unify if the dimension is different
327 return;
328 }
329 }
330 }
331
332 result = unifyExact( arrayType->get_base(), otherArray->get_base(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
333 } // if
334 }
335
336 template< typename Iterator, typename Func >
337 std::unique_ptr<Type> combineTypes( Iterator begin, Iterator end, Func & toType ) {
338 std::list< Type * > types;
339 for ( ; begin != end; ++begin ) {
340 // it's guaranteed that a ttype variable will be bound to a flat tuple, so ensure that this results in a flat tuple
341 flatten( toType( *begin ), back_inserter( types ) );
342 }
343 return std::unique_ptr<Type>( new TupleType( Type::Qualifiers(), types ) );
344 }
345
346 template< typename Iterator1, typename Iterator2 >
347 bool unifyDeclList( Iterator1 list1Begin, Iterator1 list1End, Iterator2 list2Begin, Iterator2 list2End, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, const SymTab::Indexer &indexer ) {
348 auto get_type = [](DeclarationWithType * dwt){ return dwt->get_type(); };
349 for ( ; list1Begin != list1End && list2Begin != list2End; ++list1Begin, ++list2Begin ) {
350 Type * t1 = (*list1Begin)->get_type();
351 Type * t2 = (*list2Begin)->get_type();
352 bool isTtype1 = Tuples::isTtype( t1 );
353 bool isTtype2 = Tuples::isTtype( t2 );
354 // xxx - assumes ttype must be last parameter
355 // xxx - there may be a nice way to refactor this, but be careful because the argument positioning might matter in some cases.
356 if ( isTtype1 && ! isTtype2 ) {
357 // combine all of the things in list2, then unify
358 return unifyExact( t1, combineTypes( list2Begin, list2End, get_type ).get(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
359 } else if ( isTtype2 && ! isTtype1 ) {
360 // combine all of the things in list1, then unify
361 return unifyExact( combineTypes( list1Begin, list1End, get_type ).get(), t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
362 } else if ( ! unifyExact( t1, t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ) ) {
363 return false;
364 } // if
365 } // for
366 // may get to the end of one argument list before the end of the other. This is only okay when the other is a ttype
367 if ( list1Begin != list1End ) {
368 // try unifying empty tuple type with ttype
369 Type * t1 = (*list1Begin)->get_type();
370 if ( Tuples::isTtype( t1 ) ) {
371 return unifyExact( t1, combineTypes( list2Begin, list2End, get_type ).get(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
372 } else return false;
373 } else if ( list2Begin != list2End ) {
374 // try unifying empty tuple type with ttype
375 Type * t2 = (*list2Begin)->get_type();
376 if ( Tuples::isTtype( t2 ) ) {
377 return unifyExact( combineTypes( list1Begin, list1End, get_type ).get(), t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
378 } else return false;
379 } else {
380 return true;
381 } // if
382 }
383
384 /// Finds ttypes and replaces them with their expansion, if known.
385 /// This needs to be done so that satisfying ttype assertions is easier.
386 /// If this isn't done then argument lists can have wildly different
387 /// size and structure, when they should be compatible.
388 struct TtypeExpander : public WithShortCircuiting {
389 TypeEnvironment & tenv;
390 TtypeExpander( TypeEnvironment & tenv ) : tenv( tenv ) {}
391 void premutate( TypeInstType * ) { visit_children = false; }
392 Type * postmutate( TypeInstType * typeInst ) {
393 if ( const EqvClass *eqvClass = tenv.lookup( typeInst->get_name() ) ) {
394 // expand ttype parameter into its actual type
395 if ( eqvClass->data.kind == TypeDecl::Ttype && eqvClass->type ) {
396 delete typeInst;
397 return eqvClass->type->clone();
398 }
399 }
400 return typeInst;
401 }
402 };
403
404 /// flattens a list of declarations, so that each tuple type has a single declaration.
405 /// makes use of TtypeExpander to ensure ttypes are flat as well.
406 void flattenList( std::list< DeclarationWithType * > src, std::list< DeclarationWithType * > & dst, TypeEnvironment & env ) {
407 dst.clear();
408 for ( DeclarationWithType * dcl : src ) {
409 PassVisitor<TtypeExpander> expander( env );
410 dcl->acceptMutator( expander );
411 std::list< Type * > types;
412 flatten( dcl->get_type(), back_inserter( types ) );
413 for ( Type * t : types ) {
414 // outermost const, volatile, _Atomic qualifiers in parameters should not play a role in the unification of function types, since they do not determine whether a function is callable.
415 // Note: MUST consider at least mutex qualifier, since functions can be overloaded on outermost mutex and a mutex function has different requirements than a non-mutex function.
416 t->get_qualifiers() -= Type::Qualifiers(Type::Const | Type::Volatile | Type::Atomic);
417
418 dst.push_back( new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::C, nullptr, t, nullptr ) );
419 }
420 delete dcl;
421 }
422 }
423
424 void Unify::postvisit(FunctionType *functionType) {
425 FunctionType *otherFunction = dynamic_cast< FunctionType* >( type2 );
426 if ( otherFunction && functionType->get_isVarArgs() == otherFunction->get_isVarArgs() ) {
427 // flatten the parameter lists for both functions so that tuple structure
428 // doesn't affect unification. Must be a clone so that the types don't change.
429 std::unique_ptr<FunctionType> flatFunc( functionType->clone() );
430 std::unique_ptr<FunctionType> flatOther( otherFunction->clone() );
431 flattenList( flatFunc->get_parameters(), flatFunc->get_parameters(), env );
432 flattenList( flatOther->get_parameters(), flatOther->get_parameters(), env );
433
434 // sizes don't have to match if ttypes are involved; need to be more precise wrt where the ttype is to prevent errors
435 if ( (flatFunc->parameters.size() == flatOther->parameters.size() && flatFunc->returnVals.size() == flatOther->returnVals.size()) || flatFunc->isTtype() || flatOther->isTtype() ) {
436 if ( unifyDeclList( flatFunc->parameters.begin(), flatFunc->parameters.end(), flatOther->parameters.begin(), flatOther->parameters.end(), env, needAssertions, haveAssertions, openVars, indexer ) ) {
437 if ( unifyDeclList( flatFunc->returnVals.begin(), flatFunc->returnVals.end(), flatOther->returnVals.begin(), flatOther->returnVals.end(), env, needAssertions, haveAssertions, openVars, indexer ) ) {
438
439 // the original types must be used in mark assertions, since pointer comparisons are used
440 markAssertions( haveAssertions, needAssertions, functionType );
441 markAssertions( haveAssertions, needAssertions, otherFunction );
442
443 result = true;
444 } // if
445 } // if
446 } // if
447 } // if
448 }
449
450 template< typename RefType >
451 void Unify::handleRefType( RefType *inst, Type *other ) {
452 // check that other type is compatible and named the same
453 RefType *otherStruct = dynamic_cast< RefType* >( other );
454 result = otherStruct && inst->name == otherStruct->name;
455 }
456
457 template< typename RefType >
458 void Unify::handleGenericRefType( RefType *inst, Type *other ) {
459 // Check that other type is compatible and named the same
460 handleRefType( inst, other );
461 if ( ! result ) return;
462 // Check that parameters of types unify, if any
463 std::list< Expression* > params = inst->parameters;
464 std::list< Expression* > otherParams = ((RefType*)other)->parameters;
465
466 std::list< Expression* >::const_iterator it = params.begin(), jt = otherParams.begin();
467 for ( ; it != params.end() && jt != otherParams.end(); ++it, ++jt ) {
468 TypeExpr *param = dynamic_cast< TypeExpr* >(*it);
469 assertf(param, "Aggregate parameters should be type expressions");
470 TypeExpr *otherParam = dynamic_cast< TypeExpr* >(*jt);
471 assertf(otherParam, "Aggregate parameters should be type expressions");
472
473 Type* paramTy = param->get_type();
474 Type* otherParamTy = otherParam->get_type();
475
476 bool tupleParam = Tuples::isTtype( paramTy );
477 bool otherTupleParam = Tuples::isTtype( otherParamTy );
478
479 if ( tupleParam && otherTupleParam ) {
480 ++it; ++jt; // skip ttype parameters for break
481 } else if ( tupleParam ) {
482 // bundle other parameters into tuple to match
483 std::list< Type * > binderTypes;
484
485 do {
486 binderTypes.push_back( otherParam->get_type()->clone() );
487 ++jt;
488
489 if ( jt == otherParams.end() ) break;
490
491 otherParam = dynamic_cast< TypeExpr* >(*jt);
492 assertf(otherParam, "Aggregate parameters should be type expressions");
493 } while (true);
494
495 otherParamTy = new TupleType{ paramTy->get_qualifiers(), binderTypes };
496 ++it; // skip ttype parameter for break
497 } else if ( otherTupleParam ) {
498 // bundle parameters into tuple to match other
499 std::list< Type * > binderTypes;
500
501 do {
502 binderTypes.push_back( param->get_type()->clone() );
503 ++it;
504
505 if ( it == params.end() ) break;
506
507 param = dynamic_cast< TypeExpr* >(*it);
508 assertf(param, "Aggregate parameters should be type expressions");
509 } while (true);
510
511 paramTy = new TupleType{ otherParamTy->get_qualifiers(), binderTypes };
512 ++jt; // skip ttype parameter for break
513 }
514
515 if ( ! unifyExact( paramTy, otherParamTy, env, needAssertions, haveAssertions, openVars, WidenMode(false, false), indexer ) ) {
516 result = false;
517 return;
518 }
519
520 // ttype parameter should be last
521 if ( tupleParam || otherTupleParam ) break;
522 }
523 result = ( it == params.end() && jt == otherParams.end() );
524 }
525
526 void Unify::postvisit(StructInstType *structInst) {
527 handleGenericRefType( structInst, type2 );
528 }
529
530 void Unify::postvisit(UnionInstType *unionInst) {
531 handleGenericRefType( unionInst, type2 );
532 }
533
534 void Unify::postvisit(EnumInstType *enumInst) {
535 handleRefType( enumInst, type2 );
536 }
537
538 void Unify::postvisit(TraitInstType *contextInst) {
539 handleRefType( contextInst, type2 );
540 }
541
542 void Unify::postvisit(TypeInstType *typeInst) {
543 assert( openVars.find( typeInst->get_name() ) == openVars.end() );
544 TypeInstType *otherInst = dynamic_cast< TypeInstType* >( type2 );
545 if ( otherInst && typeInst->get_name() == otherInst->get_name() ) {
546 result = true;
547/// } else {
548/// NamedTypeDecl *nt = indexer.lookupType( typeInst->get_name() );
549/// if ( nt ) {
550/// TypeDecl *type = dynamic_cast< TypeDecl* >( nt );
551/// assert( type );
552/// if ( type->get_base() ) {
553/// result = unifyExact( type->get_base(), typeInst, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
554/// }
555/// }
556 } // if
557 }
558
559 template< typename Iterator1, typename Iterator2 >
560 bool unifyList( Iterator1 list1Begin, Iterator1 list1End, Iterator2 list2Begin, Iterator2 list2End, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, const SymTab::Indexer &indexer ) {
561 auto get_type = [](Type * t) { return t; };
562 for ( ; list1Begin != list1End && list2Begin != list2End; ++list1Begin, ++list2Begin ) {
563 Type * t1 = *list1Begin;
564 Type * t2 = *list2Begin;
565 bool isTtype1 = Tuples::isTtype( t1 );
566 bool isTtype2 = Tuples::isTtype( t2 );
567 // xxx - assumes ttype must be last parameter
568 // xxx - there may be a nice way to refactor this, but be careful because the argument positioning might matter in some cases.
569 if ( isTtype1 && ! isTtype2 ) {
570 // combine all of the things in list2, then unify
571 return unifyExact( t1, combineTypes( list2Begin, list2End, get_type ).get(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
572 } else if ( isTtype2 && ! isTtype1 ) {
573 // combine all of the things in list1, then unify
574 return unifyExact( combineTypes( list1Begin, list1End, get_type ).get(), t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
575 } else if ( ! unifyExact( t1, t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ) ) {
576 return false;
577 } // if
578
579 } // for
580 if ( list1Begin != list1End ) {
581 // try unifying empty tuple type with ttype
582 Type * t1 = *list1Begin;
583 if ( Tuples::isTtype( t1 ) ) {
584 return unifyExact( t1, combineTypes( list2Begin, list2End, get_type ).get(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
585 } else return false;
586 } else if ( list2Begin != list2End ) {
587 // try unifying empty tuple type with ttype
588 Type * t2 = *list2Begin;
589 if ( Tuples::isTtype( t2 ) ) {
590 return unifyExact( combineTypes( list1Begin, list1End, get_type ).get(), t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
591 } else return false;
592 } else {
593 return true;
594 } // if
595 }
596
597 void Unify::postvisit(TupleType *tupleType) {
598 if ( TupleType *otherTuple = dynamic_cast< TupleType* >( type2 ) ) {
599 std::unique_ptr<TupleType> flat1( tupleType->clone() );
600 std::unique_ptr<TupleType> flat2( otherTuple->clone() );
601 std::list<Type *> types1, types2;
602
603 PassVisitor<TtypeExpander> expander( env );
604 flat1->acceptMutator( expander );
605 flat2->acceptMutator( expander );
606
607 flatten( flat1.get(), back_inserter( types1 ) );
608 flatten( flat2.get(), back_inserter( types2 ) );
609
610 result = unifyList( types1.begin(), types1.end(), types2.begin(), types2.end(), env, needAssertions, haveAssertions, openVars, indexer );
611 } // if
612 }
613
614 void Unify::postvisit( __attribute__((unused)) VarArgsType *varArgsType ) {
615 result = dynamic_cast< VarArgsType* >( type2 );
616 }
617
618 void Unify::postvisit( __attribute__((unused)) ZeroType *zeroType ) {
619 result = dynamic_cast< ZeroType* >( type2 );
620 }
621
622 void Unify::postvisit( __attribute__((unused)) OneType *oneType ) {
623 result = dynamic_cast< OneType* >( type2 );
624 }
625
626 // xxx - compute once and store in the FunctionType?
627 Type * extractResultType( FunctionType * function ) {
628 if ( function->get_returnVals().size() == 0 ) {
629 return new VoidType( Type::Qualifiers() );
630 } else if ( function->get_returnVals().size() == 1 ) {
631 return function->get_returnVals().front()->get_type()->clone();
632 } else {
633 std::list< Type * > types;
634 for ( DeclarationWithType * decl : function->get_returnVals() ) {
635 types.push_back( decl->get_type()->clone() );
636 } // for
637 return new TupleType( Type::Qualifiers(), types );
638 }
639 }
640} // namespace ResolvExpr
641
642// Local Variables: //
643// tab-width: 4 //
644// mode: c++ //
645// compile-command: "make install" //
646// End: //
Note: See TracBrowser for help on using the repository browser.