source: src/ResolvExpr/Unify.cc@ b0d9ff7

ADT ast-experimental pthread-emulation qualifiedEnum
Last change on this file since b0d9ff7 was b729c01, checked in by JiadaL <j82liang@…>, 3 years ago

Update enum unifier; now unifier compare types based on the enum's base

  • Property mode set to 100644
File size: 48.6 KB
RevLine 
[a32b204]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
[41a2620]7// Unify.cc --
[a32b204]8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 12:27:10 2015
[07de76b]11// Last Modified By : Peter A. Buhr
12// Last Modified On : Fri Dec 13 23:43:05 2019
13// Update Count : 46
[a32b204]14//
[51b73452]15
[f474e91]16#include "Unify.h"
17
[d76c588]18#include <cassert> // for assertf, assert
19#include <iterator> // for back_insert_iterator, back_inserter
20#include <map> // for _Rb_tree_const_iterator, _Rb_tree_i...
21#include <memory> // for unique_ptr
22#include <set> // for set
23#include <string> // for string, operator==, operator!=, bas...
24#include <utility> // for pair, move
[54e41b3]25#include <vector>
[51b73452]26
[2890212]27#include "AST/Copy.hpp"
[f474e91]28#include "AST/Decl.hpp"
[54e41b3]29#include "AST/Node.hpp"
[f474e91]30#include "AST/Pass.hpp"
[2890212]31#include "AST/Print.hpp"
[54e41b3]32#include "AST/Type.hpp"
[d76c588]33#include "AST/TypeEnvironment.hpp"
34#include "Common/PassVisitor.h" // for PassVisitor
35#include "FindOpenVars.h" // for findOpenVars
[07de76b]36#include "SynTree/LinkageSpec.h" // for C
[d76c588]37#include "SynTree/Constant.h" // for Constant
38#include "SynTree/Declaration.h" // for TypeDecl, TypeDecl::Data, Declarati...
39#include "SynTree/Expression.h" // for TypeExpr, Expression, ConstantExpr
40#include "SynTree/Mutator.h" // for Mutator
41#include "SynTree/Type.h" // for Type, TypeInstType, FunctionType
42#include "SynTree/Visitor.h" // for Visitor
43#include "Tuples/Tuples.h" // for isTtype
44#include "TypeEnvironment.h" // for EqvClass, AssertionSet, OpenVarSet
45#include "typeops.h" // for flatten, occurs, commonType
[ea6332d]46
[f474e91]47namespace ast {
48 class SymbolTable;
49}
50
[ea6332d]51namespace SymTab {
52class Indexer;
53} // namespace SymTab
[51b73452]54
[1cbca6e]55// #define DEBUG
[51b73452]56
57namespace ResolvExpr {
58
[f474e91]59 struct Unify_old : public WithShortCircuiting {
60 Unify_old( Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widen, const SymTab::Indexer &indexer );
[41a2620]61
[a32b204]62 bool get_result() const { return result; }
63
[36a2367]64 void previsit( BaseSyntaxNode * ) { visit_children = false; }
65
66 void postvisit( VoidType * voidType );
67 void postvisit( BasicType * basicType );
68 void postvisit( PointerType * pointerType );
69 void postvisit( ArrayType * arrayType );
70 void postvisit( ReferenceType * refType );
71 void postvisit( FunctionType * functionType );
72 void postvisit( StructInstType * aggregateUseType );
73 void postvisit( UnionInstType * aggregateUseType );
74 void postvisit( EnumInstType * aggregateUseType );
75 void postvisit( TraitInstType * aggregateUseType );
76 void postvisit( TypeInstType * aggregateUseType );
77 void postvisit( TupleType * tupleType );
78 void postvisit( VarArgsType * varArgsType );
79 void postvisit( ZeroType * zeroType );
80 void postvisit( OneType * oneType );
81
82 private:
[a32b204]83 template< typename RefType > void handleRefType( RefType *inst, Type *other );
[02ec390]84 template< typename RefType > void handleGenericRefType( RefType *inst, Type *other );
[a32b204]85
86 bool result;
87 Type *type2; // inherited
88 TypeEnvironment &env;
89 AssertionSet &needAssertions;
90 AssertionSet &haveAssertions;
91 const OpenVarSet &openVars;
[f474e91]92 WidenMode widen;
[a32b204]93 const SymTab::Indexer &indexer;
94 };
95
[eb50842]96 /// Attempts an inexact unification of type1 and type2.
97 /// Returns false if no such unification; if the types can be unified, sets common (unless they unify exactly and have identical type qualifiers)
[f474e91]98 bool unifyInexact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widen, const SymTab::Indexer &indexer, Type *&common );
99 bool unifyExact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widen, const SymTab::Indexer &indexer );
100
[7870799]101 bool unifyExact(
102 const ast::Type * type1, const ast::Type * type2, ast::TypeEnvironment & env,
103 ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open,
[f474e91]104 WidenMode widen, const ast::SymbolTable & symtab );
[41a2620]105
[6f096d2]106 bool typesCompatible( const Type * first, const Type * second, const SymTab::Indexer & indexer, const TypeEnvironment & env ) {
[a32b204]107 TypeEnvironment newEnv;
[1cbca6e]108 OpenVarSet openVars, closedVars; // added closedVars
[a32b204]109 AssertionSet needAssertions, haveAssertions;
[6f096d2]110 Type * newFirst = first->clone(), * newSecond = second->clone();
[a32b204]111 env.apply( newFirst );
112 env.apply( newSecond );
[1cbca6e]113
114 // do we need to do this? Seems like we do, types should be able to be compatible if they
115 // have free variables that can unify
116 findOpenVars( newFirst, openVars, closedVars, needAssertions, haveAssertions, false );
117 findOpenVars( newSecond, openVars, closedVars, needAssertions, haveAssertions, true );
118
[a32b204]119 bool result = unifyExact( newFirst, newSecond, newEnv, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
120 delete newFirst;
121 delete newSecond;
122 return result;
123 }
124
[7870799]125 bool typesCompatible(
126 const ast::Type * first, const ast::Type * second, const ast::SymbolTable & symtab,
[d76c588]127 const ast::TypeEnvironment & env ) {
[f474e91]128 ast::TypeEnvironment newEnv;
129 ast::OpenVarSet open, closed;
130 ast::AssertionSet need, have;
131
132 ast::ptr<ast::Type> newFirst{ first }, newSecond{ second };
133 env.apply( newFirst );
134 env.apply( newSecond );
135
136 findOpenVars( newFirst, open, closed, need, have, FirstClosed );
137 findOpenVars( newSecond, open, closed, need, have, FirstOpen );
138
[2890212]139 return unifyExact(newFirst, newSecond, newEnv, need, have, open, noWiden(), symtab );
[d76c588]140 }
141
[7870799]142 bool typesCompatibleIgnoreQualifiers( const Type * first, const Type * second, const SymTab::Indexer &indexer, const TypeEnvironment &env ) {
[a32b204]143 TypeEnvironment newEnv;
144 OpenVarSet openVars;
145 AssertionSet needAssertions, haveAssertions;
146 Type *newFirst = first->clone(), *newSecond = second->clone();
147 env.apply( newFirst );
148 env.apply( newSecond );
149 newFirst->get_qualifiers() = Type::Qualifiers();
150 newSecond->get_qualifiers() = Type::Qualifiers();
[2890212]151
[a32b204]152 bool result = unifyExact( newFirst, newSecond, newEnv, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
153 delete newFirst;
154 delete newSecond;
155 return result;
156 }
157
[7870799]158 bool typesCompatibleIgnoreQualifiers(
159 const ast::Type * first, const ast::Type * second, const ast::SymbolTable & symtab,
[d76c588]160 const ast::TypeEnvironment & env ) {
[f474e91]161 ast::TypeEnvironment newEnv;
162 ast::OpenVarSet open;
163 ast::AssertionSet need, have;
[7870799]164
[2890212]165 ast::Type * newFirst = shallowCopy( first );
166 ast::Type * newSecond = shallowCopy( second );
[b729c01]167 if ( auto temp = dynamic_cast<const ast::EnumInstType *>(first) ) {
168 if ( !dynamic_cast< const ast::EnumInstType * >( second ) ) {
169 const ast::EnumDecl * baseEnum = dynamic_cast<const ast::EnumDecl *>(temp->base.get());
170 if ( auto t = baseEnum->base.get() ) {
171 newFirst = ast::shallowCopy( t );
172 }
173 }
174 } else if ( auto temp = dynamic_cast<const ast::EnumInstType *>(second) ) {
175 const ast::EnumDecl * baseEnum = dynamic_cast<const ast::EnumDecl *>(temp->base.get());
176 if ( auto t = baseEnum->base.get() ) {
177 newSecond = ast::shallowCopy( t );
178 }
179 }
180
[2890212]181 newFirst ->qualifiers = {};
182 newSecond->qualifiers = {};
[f49b3fc]183 ast::ptr< ast::Type > t1_(newFirst );
184 ast::ptr< ast::Type > t2_(newSecond);
[f474e91]185
[c7f834e]186 ast::ptr< ast::Type > subFirst = env.apply(newFirst).node;
187 ast::ptr< ast::Type > subSecond = env.apply(newSecond).node;
188
[7870799]189 return unifyExact(
[c7f834e]190 subFirst,
191 subSecond,
[2890212]192 newEnv, need, have, open, noWiden(), symtab );
[d76c588]193 }
194
[a32b204]195 bool unify( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, OpenVarSet &openVars, const SymTab::Indexer &indexer ) {
196 OpenVarSet closedVars;
197 findOpenVars( type1, openVars, closedVars, needAssertions, haveAssertions, false );
198 findOpenVars( type2, openVars, closedVars, needAssertions, haveAssertions, true );
199 Type *commonType = 0;
200 if ( unifyInexact( type1, type2, env, needAssertions, haveAssertions, openVars, WidenMode( true, true ), indexer, commonType ) ) {
201 if ( commonType ) {
202 delete commonType;
203 } // if
204 return true;
205 } else {
206 return false;
207 } // if
208 }
209
210 bool unify( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, OpenVarSet &openVars, const SymTab::Indexer &indexer, Type *&commonType ) {
211 OpenVarSet closedVars;
212 findOpenVars( type1, openVars, closedVars, needAssertions, haveAssertions, false );
213 findOpenVars( type2, openVars, closedVars, needAssertions, haveAssertions, true );
214 return unifyInexact( type1, type2, env, needAssertions, haveAssertions, openVars, WidenMode( true, true ), indexer, commonType );
215 }
216
[f474e91]217 bool unifyExact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widen, const SymTab::Indexer &indexer ) {
[51b73452]218#ifdef DEBUG
[a32b204]219 TypeEnvironment debugEnv( env );
[51b73452]220#endif
[eb50842]221 if ( type1->get_qualifiers() != type2->get_qualifiers() ) {
222 return false;
223 }
224
[a32b204]225 bool result;
226 TypeInstType *var1 = dynamic_cast< TypeInstType* >( type1 );
227 TypeInstType *var2 = dynamic_cast< TypeInstType* >( type2 );
228 OpenVarSet::const_iterator entry1, entry2;
229 if ( var1 ) {
230 entry1 = openVars.find( var1->get_name() );
231 } // if
232 if ( var2 ) {
233 entry2 = openVars.find( var2->get_name() );
234 } // if
235 bool isopen1 = var1 && ( entry1 != openVars.end() );
236 bool isopen2 = var2 && ( entry2 != openVars.end() );
[eb50842]237
[7a63486]238 if ( isopen1 && isopen2 ) {
239 if ( entry1->second.kind != entry2->second.kind ) {
240 result = false;
241 } else {
[4139e3d]242 result = env.bindVarToVar(
243 var1, var2, TypeDecl::Data{ entry1->second, entry2->second }, needAssertions,
[f474e91]244 haveAssertions, openVars, widen, indexer );
[7a63486]245 }
[a32b204]246 } else if ( isopen1 ) {
[f474e91]247 result = env.bindVar( var1, type2, entry1->second, needAssertions, haveAssertions, openVars, widen, indexer );
248 } else if ( isopen2 ) { // TODO: swap widen values in call, since type positions are flipped?
249 result = env.bindVar( var2, type1, entry2->second, needAssertions, haveAssertions, openVars, widen, indexer );
[a32b204]250 } else {
[f474e91]251 PassVisitor<Unify_old> comparator( type2, env, needAssertions, haveAssertions, openVars, widen, indexer );
[a32b204]252 type1->accept( comparator );
[36a2367]253 result = comparator.pass.get_result();
[a32b204]254 } // if
[51b73452]255#ifdef DEBUG
[2c57025]256 std::cerr << "============ unifyExact" << std::endl;
257 std::cerr << "type1 is ";
258 type1->print( std::cerr );
259 std::cerr << std::endl << "type2 is ";
260 type2->print( std::cerr );
261 std::cerr << std::endl << "openVars are ";
262 printOpenVarSet( openVars, std::cerr, 8 );
263 std::cerr << std::endl << "input env is " << std::endl;
264 debugEnv.print( std::cerr, 8 );
265 std::cerr << std::endl << "result env is " << std::endl;
266 env.print( std::cerr, 8 );
267 std::cerr << "result is " << result << std::endl;
[51b73452]268#endif
[a32b204]269 return result;
270 }
271
272 bool unifyExact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, OpenVarSet &openVars, const SymTab::Indexer &indexer ) {
273 return unifyExact( type1, type2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
274 }
275
[f474e91]276 bool unifyInexact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widen, const SymTab::Indexer &indexer, Type *&common ) {
[a32b204]277 Type::Qualifiers tq1 = type1->get_qualifiers(), tq2 = type2->get_qualifiers();
278 type1->get_qualifiers() = Type::Qualifiers();
279 type2->get_qualifiers() = Type::Qualifiers();
280 bool result;
[51b73452]281#ifdef DEBUG
[2c57025]282 std::cerr << "unifyInexact type 1 is ";
283 type1->print( std::cerr );
[0b150ec]284 std::cerr << " type 2 is ";
[2c57025]285 type2->print( std::cerr );
286 std::cerr << std::endl;
[51b73452]287#endif
[f474e91]288 if ( ! unifyExact( type1, type2, env, needAssertions, haveAssertions, openVars, widen, indexer ) ) {
[51b73452]289#ifdef DEBUG
[2c57025]290 std::cerr << "unifyInexact: no exact unification found" << std::endl;
[51b73452]291#endif
[f474e91]292 if ( ( common = commonType( type1, type2, widen.first, widen.second, indexer, env, openVars ) ) ) {
[3315e3d]293 common->tq = tq1.unify( tq2 );
[51b73452]294#ifdef DEBUG
[2c57025]295 std::cerr << "unifyInexact: common type is ";
296 common->print( std::cerr );
297 std::cerr << std::endl;
[51b73452]298#endif
[a32b204]299 result = true;
300 } else {
[51b73452]301#ifdef DEBUG
[2c57025]302 std::cerr << "unifyInexact: no common type found" << std::endl;
[51b73452]303#endif
[a32b204]304 result = false;
305 } // if
306 } else {
307 if ( tq1 != tq2 ) {
[f474e91]308 if ( ( tq1 > tq2 || widen.first ) && ( tq2 > tq1 || widen.second ) ) {
[a32b204]309 common = type1->clone();
[3315e3d]310 common->tq = tq1.unify( tq2 );
[a32b204]311 result = true;
312 } else {
313 result = false;
314 } // if
315 } else {
[e6cee92]316 common = type1->clone();
[3315e3d]317 common->tq = tq1.unify( tq2 );
[a32b204]318 result = true;
319 } // if
320 } // if
321 type1->get_qualifiers() = tq1;
322 type2->get_qualifiers() = tq2;
323 return result;
324 }
325
[f474e91]326 Unify_old::Unify_old( Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widen, const SymTab::Indexer &indexer )
327 : result( false ), type2( type2 ), env( env ), needAssertions( needAssertions ), haveAssertions( haveAssertions ), openVars( openVars ), widen( widen ), indexer( indexer ) {
[d76c588]328 }
329
[f474e91]330 void Unify_old::postvisit( __attribute__((unused)) VoidType *voidType) {
[a32b204]331 result = dynamic_cast< VoidType* >( type2 );
332 }
333
[f474e91]334 void Unify_old::postvisit(BasicType *basicType) {
[a32b204]335 if ( BasicType *otherBasic = dynamic_cast< BasicType* >( type2 ) ) {
336 result = basicType->get_kind() == otherBasic->get_kind();
337 } // if
338 }
339
340 void markAssertionSet( AssertionSet &assertions, DeclarationWithType *assert ) {
341 AssertionSet::iterator i = assertions.find( assert );
342 if ( i != assertions.end() ) {
[6c3a988f]343 i->second.isUsed = true;
[a32b204]344 } // if
345 }
346
347 void markAssertions( AssertionSet &assertion1, AssertionSet &assertion2, Type *type ) {
[aefcc3b]348 for ( std::list< TypeDecl* >::const_iterator tyvar = type->get_forall().begin(); tyvar != type->get_forall().end(); ++tyvar ) {
[a32b204]349 for ( std::list< DeclarationWithType* >::const_iterator assert = (*tyvar)->get_assertions().begin(); assert != (*tyvar)->get_assertions().end(); ++assert ) {
350 markAssertionSet( assertion1, *assert );
351 markAssertionSet( assertion2, *assert );
352 } // for
353 } // for
354 }
355
[f474e91]356 void Unify_old::postvisit(PointerType *pointerType) {
[a32b204]357 if ( PointerType *otherPointer = dynamic_cast< PointerType* >( type2 ) ) {
358 result = unifyExact( pointerType->get_base(), otherPointer->get_base(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
359 markAssertions( haveAssertions, needAssertions, pointerType );
360 markAssertions( haveAssertions, needAssertions, otherPointer );
361 } // if
362 }
363
[f474e91]364 void Unify_old::postvisit(ReferenceType *refType) {
[ce8c12f]365 if ( ReferenceType *otherRef = dynamic_cast< ReferenceType* >( type2 ) ) {
366 result = unifyExact( refType->get_base(), otherRef->get_base(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
367 markAssertions( haveAssertions, needAssertions, refType );
368 markAssertions( haveAssertions, needAssertions, otherRef );
369 } // if
370 }
371
[f474e91]372 void Unify_old::postvisit(ArrayType *arrayType) {
[a32b204]373 ArrayType *otherArray = dynamic_cast< ArrayType* >( type2 );
[1cbca6e]374 // to unify, array types must both be VLA or both not VLA
375 // and must both have a dimension expression or not have a dimension
[41a2620]376 if ( otherArray && arrayType->get_isVarLen() == otherArray->get_isVarLen() ) {
[1cbca6e]377
378 if ( ! arrayType->get_isVarLen() && ! otherArray->get_isVarLen() &&
379 arrayType->get_dimension() != 0 && otherArray->get_dimension() != 0 ) {
380 ConstantExpr * ce1 = dynamic_cast< ConstantExpr * >( arrayType->get_dimension() );
381 ConstantExpr * ce2 = dynamic_cast< ConstantExpr * >( otherArray->get_dimension() );
[41a2620]382 // see C11 Reference Manual 6.7.6.2.6
383 // two array types with size specifiers that are integer constant expressions are
384 // compatible if both size specifiers have the same constant value
385 if ( ce1 && ce2 ) {
386 Constant * c1 = ce1->get_constant();
387 Constant * c2 = ce2->get_constant();
388
389 if ( c1->get_value() != c2->get_value() ) {
390 // does not unify if the dimension is different
391 return;
392 }
[1cbca6e]393 }
394 }
395
[a32b204]396 result = unifyExact( arrayType->get_base(), otherArray->get_base(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
397 } // if
398 }
399
[f3b0a07]400 template< typename Iterator, typename Func >
401 std::unique_ptr<Type> combineTypes( Iterator begin, Iterator end, Func & toType ) {
[53e3b4a]402 std::list< Type * > types;
403 for ( ; begin != end; ++begin ) {
[64eae56]404 // it's guaranteed that a ttype variable will be bound to a flat tuple, so ensure that this results in a flat tuple
[f3b0a07]405 flatten( toType( *begin ), back_inserter( types ) );
[53e3b4a]406 }
[6c3a988f]407 return std::unique_ptr<Type>( new TupleType( Type::Qualifiers(), types ) );
[53e3b4a]408 }
409
[a32b204]410 template< typename Iterator1, typename Iterator2 >
[954c954]411 bool unifyTypeList( Iterator1 list1Begin, Iterator1 list1End, Iterator2 list2Begin, Iterator2 list2End, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, const SymTab::Indexer &indexer ) {
[f3b0a07]412 auto get_type = [](DeclarationWithType * dwt){ return dwt->get_type(); };
[a32b204]413 for ( ; list1Begin != list1End && list2Begin != list2End; ++list1Begin, ++list2Begin ) {
[53e3b4a]414 Type * t1 = (*list1Begin)->get_type();
415 Type * t2 = (*list2Begin)->get_type();
416 bool isTtype1 = Tuples::isTtype( t1 );
417 bool isTtype2 = Tuples::isTtype( t2 );
[6c3a988f]418 // xxx - assumes ttype must be last parameter
419 // xxx - there may be a nice way to refactor this, but be careful because the argument positioning might matter in some cases.
[53e3b4a]420 if ( isTtype1 && ! isTtype2 ) {
421 // combine all of the things in list2, then unify
[f3b0a07]422 return unifyExact( t1, combineTypes( list2Begin, list2End, get_type ).get(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
[53e3b4a]423 } else if ( isTtype2 && ! isTtype1 ) {
424 // combine all of the things in list1, then unify
[f3b0a07]425 return unifyExact( combineTypes( list1Begin, list1End, get_type ).get(), t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
[53e3b4a]426 } else if ( ! unifyExact( t1, t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ) ) {
[a32b204]427 return false;
428 } // if
429 } // for
[6c3a988f]430 // may get to the end of one argument list before the end of the other. This is only okay when the other is a ttype
[4c8621ac]431 if ( list1Begin != list1End ) {
432 // try unifying empty tuple type with ttype
433 Type * t1 = (*list1Begin)->get_type();
434 if ( Tuples::isTtype( t1 ) ) {
[f3b0a07]435 return unifyExact( t1, combineTypes( list2Begin, list2End, get_type ).get(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
[4c8621ac]436 } else return false;
437 } else if ( list2Begin != list2End ) {
438 // try unifying empty tuple type with ttype
439 Type * t2 = (*list2Begin)->get_type();
440 if ( Tuples::isTtype( t2 ) ) {
[f3b0a07]441 return unifyExact( combineTypes( list1Begin, list1End, get_type ).get(), t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
[4c8621ac]442 } else return false;
[a32b204]443 } else {
444 return true;
445 } // if
446 }
447
[6c3a988f]448 /// Finds ttypes and replaces them with their expansion, if known.
449 /// This needs to be done so that satisfying ttype assertions is easier.
450 /// If this isn't done then argument lists can have wildly different
451 /// size and structure, when they should be compatible.
[f474e91]452 struct TtypeExpander_old : public WithShortCircuiting {
[3096ec1]453 TypeEnvironment & tenv;
[f474e91]454 TtypeExpander_old( TypeEnvironment & tenv ) : tenv( tenv ) {}
[3096ec1]455 void premutate( TypeInstType * ) { visit_children = false; }
456 Type * postmutate( TypeInstType * typeInst ) {
[00ac42e]457 if ( const EqvClass *eqvClass = tenv.lookup( typeInst->get_name() ) ) {
458 // expand ttype parameter into its actual type
459 if ( eqvClass->data.kind == TypeDecl::Ttype && eqvClass->type ) {
460 delete typeInst;
461 return eqvClass->type->clone();
[6c3a988f]462 }
463 }
464 return typeInst;
465 }
466 };
467
468 /// flattens a list of declarations, so that each tuple type has a single declaration.
469 /// makes use of TtypeExpander to ensure ttypes are flat as well.
470 void flattenList( std::list< DeclarationWithType * > src, std::list< DeclarationWithType * > & dst, TypeEnvironment & env ) {
471 dst.clear();
472 for ( DeclarationWithType * dcl : src ) {
[f474e91]473 PassVisitor<TtypeExpander_old> expander( env );
[6c3a988f]474 dcl->acceptMutator( expander );
475 std::list< Type * > types;
476 flatten( dcl->get_type(), back_inserter( types ) );
477 for ( Type * t : types ) {
[1dcd52a3]478 // outermost const, volatile, _Atomic qualifiers in parameters should not play a role in the unification of function types, since they do not determine whether a function is callable.
479 // Note: MUST consider at least mutex qualifier, since functions can be overloaded on outermost mutex and a mutex function has different requirements than a non-mutex function.
480 t->get_qualifiers() -= Type::Qualifiers(Type::Const | Type::Volatile | Type::Atomic);
481
[68fe077a]482 dst.push_back( new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::C, nullptr, t, nullptr ) );
[6c3a988f]483 }
484 delete dcl;
485 }
486 }
487
[f474e91]488 void Unify_old::postvisit(FunctionType *functionType) {
[a32b204]489 FunctionType *otherFunction = dynamic_cast< FunctionType* >( type2 );
490 if ( otherFunction && functionType->get_isVarArgs() == otherFunction->get_isVarArgs() ) {
[6c3a988f]491 // flatten the parameter lists for both functions so that tuple structure
492 // doesn't affect unification. Must be a clone so that the types don't change.
493 std::unique_ptr<FunctionType> flatFunc( functionType->clone() );
494 std::unique_ptr<FunctionType> flatOther( otherFunction->clone() );
495 flattenList( flatFunc->get_parameters(), flatFunc->get_parameters(), env );
496 flattenList( flatOther->get_parameters(), flatOther->get_parameters(), env );
497
[53e3b4a]498 // sizes don't have to match if ttypes are involved; need to be more precise wrt where the ttype is to prevent errors
[7870799]499 if (
500 (flatFunc->parameters.size() == flatOther->parameters.size() &&
501 flatFunc->returnVals.size() == flatOther->returnVals.size())
502 || flatFunc->isTtype()
503 || flatOther->isTtype()
[f474e91]504 ) {
[954c954]505 if ( unifyTypeList( flatFunc->parameters.begin(), flatFunc->parameters.end(), flatOther->parameters.begin(), flatOther->parameters.end(), env, needAssertions, haveAssertions, openVars, indexer ) ) {
506 if ( unifyTypeList( flatFunc->returnVals.begin(), flatFunc->returnVals.end(), flatOther->returnVals.begin(), flatOther->returnVals.end(), env, needAssertions, haveAssertions, openVars, indexer ) ) {
[1cbca6e]507
[6c3a988f]508 // the original types must be used in mark assertions, since pointer comparisons are used
[03da511]509 markAssertions( haveAssertions, needAssertions, functionType );
510 markAssertions( haveAssertions, needAssertions, otherFunction );
[41a2620]511
[03da511]512 result = true;
513 } // if
[a32b204]514 } // if
515 } // if
516 } // if
517 }
518
519 template< typename RefType >
[f474e91]520 void Unify_old::handleRefType( RefType *inst, Type *other ) {
[02ec390]521 // check that other type is compatible and named the same
[a32b204]522 RefType *otherStruct = dynamic_cast< RefType* >( other );
[538334a]523 result = otherStruct && inst->name == otherStruct->name;
[02ec390]524 }
525
526 template< typename RefType >
[f474e91]527 void Unify_old::handleGenericRefType( RefType *inst, Type *other ) {
[02ec390]528 // Check that other type is compatible and named the same
529 handleRefType( inst, other );
530 if ( ! result ) return;
[f5234f3]531 // Check that parameters of types unify, if any
[538334a]532 std::list< Expression* > params = inst->parameters;
533 std::list< Expression* > otherParams = ((RefType*)other)->parameters;
[f5234f3]534
535 std::list< Expression* >::const_iterator it = params.begin(), jt = otherParams.begin();
536 for ( ; it != params.end() && jt != otherParams.end(); ++it, ++jt ) {
537 TypeExpr *param = dynamic_cast< TypeExpr* >(*it);
[b2daebd4]538 assertf(param, "Aggregate parameters should be type expressions");
[f5234f3]539 TypeExpr *otherParam = dynamic_cast< TypeExpr* >(*jt);
[b2daebd4]540 assertf(otherParam, "Aggregate parameters should be type expressions");
[ce8c12f]541
[b2daebd4]542 Type* paramTy = param->get_type();
543 Type* otherParamTy = otherParam->get_type();
[f5234f3]544
[b2daebd4]545 bool tupleParam = Tuples::isTtype( paramTy );
546 bool otherTupleParam = Tuples::isTtype( otherParamTy );
547
548 if ( tupleParam && otherTupleParam ) {
549 ++it; ++jt; // skip ttype parameters for break
550 } else if ( tupleParam ) {
551 // bundle other parameters into tuple to match
[62423350]552 std::list< Type * > binderTypes;
[b2daebd4]553
554 do {
[62423350]555 binderTypes.push_back( otherParam->get_type()->clone() );
[b2daebd4]556 ++jt;
557
558 if ( jt == otherParams.end() ) break;
559
560 otherParam = dynamic_cast< TypeExpr* >(*jt);
561 assertf(otherParam, "Aggregate parameters should be type expressions");
562 } while (true);
563
[62423350]564 otherParamTy = new TupleType{ paramTy->get_qualifiers(), binderTypes };
[b2daebd4]565 ++it; // skip ttype parameter for break
566 } else if ( otherTupleParam ) {
567 // bundle parameters into tuple to match other
[62423350]568 std::list< Type * > binderTypes;
[b2daebd4]569
570 do {
[62423350]571 binderTypes.push_back( param->get_type()->clone() );
[b2daebd4]572 ++it;
573
574 if ( it == params.end() ) break;
575
576 param = dynamic_cast< TypeExpr* >(*it);
577 assertf(param, "Aggregate parameters should be type expressions");
578 } while (true);
579
[62423350]580 paramTy = new TupleType{ otherParamTy->get_qualifiers(), binderTypes };
[b2daebd4]581 ++jt; // skip ttype parameter for break
582 }
583
584 if ( ! unifyExact( paramTy, otherParamTy, env, needAssertions, haveAssertions, openVars, WidenMode(false, false), indexer ) ) {
[02ec390]585 result = false;
586 return;
587 }
[b2daebd4]588
589 // ttype parameter should be last
590 if ( tupleParam || otherTupleParam ) break;
[02ec390]591 }
[f5234f3]592 result = ( it == params.end() && jt == otherParams.end() );
[02ec390]593 }
[a32b204]594
[f474e91]595 void Unify_old::postvisit(StructInstType *structInst) {
[02ec390]596 handleGenericRefType( structInst, type2 );
[a32b204]597 }
598
[f474e91]599 void Unify_old::postvisit(UnionInstType *unionInst) {
[02ec390]600 handleGenericRefType( unionInst, type2 );
[a32b204]601 }
602
[f474e91]603 void Unify_old::postvisit(EnumInstType *enumInst) {
[a32b204]604 handleRefType( enumInst, type2 );
605 }
606
[f474e91]607 void Unify_old::postvisit(TraitInstType *contextInst) {
[a32b204]608 handleRefType( contextInst, type2 );
609 }
610
[f474e91]611 void Unify_old::postvisit(TypeInstType *typeInst) {
[a32b204]612 assert( openVars.find( typeInst->get_name() ) == openVars.end() );
613 TypeInstType *otherInst = dynamic_cast< TypeInstType* >( type2 );
614 if ( otherInst && typeInst->get_name() == otherInst->get_name() ) {
615 result = true;
[51b73452]616/// } else {
617/// NamedTypeDecl *nt = indexer.lookupType( typeInst->get_name() );
[a32b204]618/// if ( nt ) {
[51b73452]619/// TypeDecl *type = dynamic_cast< TypeDecl* >( nt );
620/// assert( type );
[a32b204]621/// if ( type->get_base() ) {
[51b73452]622/// result = unifyExact( type->get_base(), typeInst, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
623/// }
624/// }
[a32b204]625 } // if
626 }
627
628 template< typename Iterator1, typename Iterator2 >
[c77fd8b]629 bool unifyList( Iterator1 list1Begin, Iterator1 list1End, Iterator2 list2Begin, Iterator2 list2End, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, const SymTab::Indexer &indexer ) {
[f3b0a07]630 auto get_type = [](Type * t) { return t; };
[a32b204]631 for ( ; list1Begin != list1End && list2Begin != list2End; ++list1Begin, ++list2Begin ) {
[f3b0a07]632 Type * t1 = *list1Begin;
633 Type * t2 = *list2Begin;
634 bool isTtype1 = Tuples::isTtype( t1 );
635 bool isTtype2 = Tuples::isTtype( t2 );
636 // xxx - assumes ttype must be last parameter
637 // xxx - there may be a nice way to refactor this, but be careful because the argument positioning might matter in some cases.
638 if ( isTtype1 && ! isTtype2 ) {
639 // combine all of the things in list2, then unify
640 return unifyExact( t1, combineTypes( list2Begin, list2End, get_type ).get(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
641 } else if ( isTtype2 && ! isTtype1 ) {
642 // combine all of the things in list1, then unify
643 return unifyExact( combineTypes( list1Begin, list1End, get_type ).get(), t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
644 } else if ( ! unifyExact( t1, t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ) ) {
[a32b204]645 return false;
[f3b0a07]646 } // if
647
[a32b204]648 } // for
[f3b0a07]649 if ( list1Begin != list1End ) {
650 // try unifying empty tuple type with ttype
651 Type * t1 = *list1Begin;
652 if ( Tuples::isTtype( t1 ) ) {
653 return unifyExact( t1, combineTypes( list2Begin, list2End, get_type ).get(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
654 } else return false;
655 } else if ( list2Begin != list2End ) {
656 // try unifying empty tuple type with ttype
657 Type * t2 = *list2Begin;
658 if ( Tuples::isTtype( t2 ) ) {
659 return unifyExact( combineTypes( list1Begin, list1End, get_type ).get(), t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );
660 } else return false;
[a32b204]661 } else {
662 return true;
[f3b0a07]663 } // if
[a32b204]664 }
665
[f474e91]666 void Unify_old::postvisit(TupleType *tupleType) {
[a32b204]667 if ( TupleType *otherTuple = dynamic_cast< TupleType* >( type2 ) ) {
[f3b0a07]668 std::unique_ptr<TupleType> flat1( tupleType->clone() );
669 std::unique_ptr<TupleType> flat2( otherTuple->clone() );
670 std::list<Type *> types1, types2;
671
[f474e91]672 PassVisitor<TtypeExpander_old> expander( env );
[f3b0a07]673 flat1->acceptMutator( expander );
674 flat2->acceptMutator( expander );
675
676 flatten( flat1.get(), back_inserter( types1 ) );
677 flatten( flat2.get(), back_inserter( types2 ) );
678
[c77fd8b]679 result = unifyList( types1.begin(), types1.end(), types2.begin(), types2.end(), env, needAssertions, haveAssertions, openVars, indexer );
[a32b204]680 } // if
681 }
[51b73452]682
[f474e91]683 void Unify_old::postvisit( __attribute__((unused)) VarArgsType *varArgsType ) {
[44b7088]684 result = dynamic_cast< VarArgsType* >( type2 );
685 }
686
[f474e91]687 void Unify_old::postvisit( __attribute__((unused)) ZeroType *zeroType ) {
[89e6ffc]688 result = dynamic_cast< ZeroType* >( type2 );
689 }
690
[f474e91]691 void Unify_old::postvisit( __attribute__((unused)) OneType *oneType ) {
[89e6ffc]692 result = dynamic_cast< OneType* >( type2 );
693 }
694
[906e24d]695 Type * extractResultType( FunctionType * function ) {
696 if ( function->get_returnVals().size() == 0 ) {
697 return new VoidType( Type::Qualifiers() );
698 } else if ( function->get_returnVals().size() == 1 ) {
699 return function->get_returnVals().front()->get_type()->clone();
700 } else {
[62423350]701 std::list< Type * > types;
[906e24d]702 for ( DeclarationWithType * decl : function->get_returnVals() ) {
[62423350]703 types.push_back( decl->get_type()->clone() );
[906e24d]704 } // for
[62423350]705 return new TupleType( Type::Qualifiers(), types );
[906e24d]706 }
707 }
[54e41b3]708
[ee574a2]709 class Unify_new final : public ast::WithShortCircuiting {
[f474e91]710 const ast::Type * type2;
711 ast::TypeEnvironment & tenv;
712 ast::AssertionSet & need;
713 ast::AssertionSet & have;
714 const ast::OpenVarSet & open;
715 WidenMode widen;
716 const ast::SymbolTable & symtab;
717 public:
[c15085d]718 static size_t traceId;
[f474e91]719 bool result;
720
[7870799]721 Unify_new(
722 const ast::Type * type2, ast::TypeEnvironment & env, ast::AssertionSet & need,
723 ast::AssertionSet & have, const ast::OpenVarSet & open, WidenMode widen,
[f474e91]724 const ast::SymbolTable & symtab )
[7870799]725 : type2(type2), tenv(env), need(need), have(have), open(open), widen(widen),
[f474e91]726 symtab(symtab), result(false) {}
727
728 void previsit( const ast::Node * ) { visit_children = false; }
[7870799]729
[ee574a2]730 void postvisit( const ast::VoidType * ) {
[f474e91]731 result = dynamic_cast< const ast::VoidType * >( type2 );
732 }
733
[ee574a2]734 void postvisit( const ast::BasicType * basic ) {
[f474e91]735 if ( auto basic2 = dynamic_cast< const ast::BasicType * >( type2 ) ) {
736 result = basic->kind == basic2->kind;
737 }
738 }
739
[ee574a2]740 void postvisit( const ast::PointerType * pointer ) {
[f474e91]741 if ( auto pointer2 = dynamic_cast< const ast::PointerType * >( type2 ) ) {
[7870799]742 result = unifyExact(
743 pointer->base, pointer2->base, tenv, need, have, open,
[ee574a2]744 noWiden(), symtab );
[f474e91]745 }
746 }
747
[ee574a2]748 void postvisit( const ast::ArrayType * array ) {
[f474e91]749 auto array2 = dynamic_cast< const ast::ArrayType * >( type2 );
750 if ( ! array2 ) return;
751
[7870799]752 // to unify, array types must both be VLA or both not VLA and both must have a
[f474e91]753 // dimension expression or not have a dimension
754 if ( array->isVarLen != array2->isVarLen ) return;
[7870799]755 if ( ! array->isVarLen && ! array2->isVarLen
[f474e91]756 && array->dimension && array2->dimension ) {
757 auto ce1 = array->dimension.as< ast::ConstantExpr >();
758 auto ce2 = array2->dimension.as< ast::ConstantExpr >();
759
760 // see C11 Reference Manual 6.7.6.2.6
[7870799]761 // two array types with size specifiers that are integer constant expressions are
[f474e91]762 // compatible if both size specifiers have the same constant value
763 if ( ce1 && ce2 && ce1->intValue() != ce2->intValue() ) return;
764 }
765
[7870799]766 result = unifyExact(
767 array->base, array2->base, tenv, need, have, open, noWiden(),
[f474e91]768 symtab );
769 }
770
[ee574a2]771 void postvisit( const ast::ReferenceType * ref ) {
[f474e91]772 if ( auto ref2 = dynamic_cast< const ast::ReferenceType * >( type2 ) ) {
[7870799]773 result = unifyExact(
774 ref->base, ref2->base, tenv, need, have, open, noWiden(),
[f474e91]775 symtab );
776 }
777 }
778
779 private:
780 /// Replaces ttype variables with their bound types.
[7870799]781 /// If this isn't done when satifying ttype assertions, then argument lists can have
[f474e91]782 /// different size and structure when they should be compatible.
[d3aa64f1]783 struct TtypeExpander_new : public ast::WithShortCircuiting, public ast::PureVisitor {
[f474e91]784 ast::TypeEnvironment & tenv;
785
786 TtypeExpander_new( ast::TypeEnvironment & env ) : tenv( env ) {}
787
[ee574a2]788 const ast::Type * postvisit( const ast::TypeInstType * typeInst ) {
[3e5dd913]789 if ( const ast::EqvClass * clz = tenv.lookup( *typeInst ) ) {
[f474e91]790 // expand ttype parameter into its actual type
[07de76b]791 if ( clz->data.kind == ast::TypeDecl::Ttype && clz->bound ) {
[f474e91]792 return clz->bound;
793 }
794 }
795 return typeInst;
796 }
797 };
798
799 /// returns flattened version of `src`
[954c954]800 static std::vector< ast::ptr< ast::Type > > flattenList(
801 const std::vector< ast::ptr< ast::Type > > & src, ast::TypeEnvironment & env
[f474e91]802 ) {
[954c954]803 std::vector< ast::ptr< ast::Type > > dst;
[f474e91]804 dst.reserve( src.size() );
[954c954]805 for ( const auto & d : src ) {
[f474e91]806 ast::Pass<TtypeExpander_new> expander{ env };
[ef9988b]807 // TtypeExpander pass is impure (may mutate nodes in place)
808 // need to make nodes shared to prevent accidental mutation
[954c954]809 ast::ptr<ast::Type> dc = d->accept(expander);
810 auto types = flatten( dc );
[f474e91]811 for ( ast::ptr< ast::Type > & t : types ) {
[7870799]812 // outermost const, volatile, _Atomic qualifiers in parameters should not play
813 // a role in the unification of function types, since they do not determine
[f474e91]814 // whether a function is callable.
[7870799]815 // NOTE: **must** consider at least mutex qualifier, since functions can be
816 // overloaded on outermost mutex and a mutex function has different
[f474e91]817 // requirements than a non-mutex function
[ee574a2]818 remove_qualifiers( t, ast::CV::Const | ast::CV::Volatile | ast::CV::Atomic );
[954c954]819 dst.emplace_back( t );
[f474e91]820 }
821 }
822 return dst;
823 }
824
825 /// Creates a tuple type based on a list of DeclWithType
826 template< typename Iter >
[302ef2a]827 static const ast::Type * tupleFromTypes( Iter crnt, Iter end ) {
[f474e91]828 std::vector< ast::ptr< ast::Type > > types;
829 while ( crnt != end ) {
[7870799]830 // it is guaranteed that a ttype variable will be bound to a flat tuple, so ensure
[f474e91]831 // that this results in a flat tuple
[954c954]832 flatten( *crnt, types );
[f474e91]833
834 ++crnt;
835 }
836
[302ef2a]837 return new ast::TupleType{ std::move(types) };
[f474e91]838 }
839
840 template< typename Iter >
[954c954]841 static bool unifyTypeList(
[7870799]842 Iter crnt1, Iter end1, Iter crnt2, Iter end2, ast::TypeEnvironment & env,
843 ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open,
[f474e91]844 const ast::SymbolTable & symtab
845 ) {
846 while ( crnt1 != end1 && crnt2 != end2 ) {
[954c954]847 const ast::Type * t1 = *crnt1;
848 const ast::Type * t2 = *crnt2;
[f474e91]849 bool isTuple1 = Tuples::isTtype( t1 );
850 bool isTuple2 = Tuples::isTtype( t2 );
851
852 // assumes here that ttype *must* be last parameter
853 if ( isTuple1 && ! isTuple2 ) {
854 // combine remainder of list2, then unify
[7870799]855 return unifyExact(
[954c954]856 t1, tupleFromTypes( crnt2, end2 ), env, need, have, open,
[ee574a2]857 noWiden(), symtab );
[f474e91]858 } else if ( ! isTuple1 && isTuple2 ) {
859 // combine remainder of list1, then unify
[7870799]860 return unifyExact(
[954c954]861 tupleFromTypes( crnt1, end1 ), t2, env, need, have, open,
[ee574a2]862 noWiden(), symtab );
[f474e91]863 }
864
[7870799]865 if ( ! unifyExact(
866 t1, t2, env, need, have, open, noWiden(), symtab )
[f474e91]867 ) return false;
868
869 ++crnt1; ++crnt2;
870 }
871
[7870799]872 // May get to the end of one argument list before the other. This is only okay if the
[f474e91]873 // other is a ttype
874 if ( crnt1 != end1 ) {
875 // try unifying empty tuple with ttype
[954c954]876 const ast::Type * t1 = *crnt1;
[f474e91]877 if ( ! Tuples::isTtype( t1 ) ) return false;
[7870799]878 return unifyExact(
[954c954]879 t1, tupleFromTypes( crnt2, end2 ), env, need, have, open,
[ee574a2]880 noWiden(), symtab );
[f474e91]881 } else if ( crnt2 != end2 ) {
882 // try unifying empty tuple with ttype
[954c954]883 const ast::Type * t2 = *crnt2;
[f474e91]884 if ( ! Tuples::isTtype( t2 ) ) return false;
[7870799]885 return unifyExact(
[954c954]886 tupleFromTypes( crnt1, end1 ), t2, env, need, have, open,
[ee574a2]887 noWiden(), symtab );
[f474e91]888 }
889
890 return true;
891 }
892
[954c954]893 static bool unifyTypeList(
894 const std::vector< ast::ptr< ast::Type > > & list1,
895 const std::vector< ast::ptr< ast::Type > > & list2,
[7870799]896 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have,
[f474e91]897 const ast::OpenVarSet & open, const ast::SymbolTable & symtab
898 ) {
[954c954]899 return unifyTypeList(
[7870799]900 list1.begin(), list1.end(), list2.begin(), list2.end(), env, need, have, open,
[f474e91]901 symtab );
902 }
903
[3e5dd913]904 static void markAssertionSet( ast::AssertionSet & assns, const ast::VariableExpr * assn ) {
[f474e91]905 auto i = assns.find( assn );
906 if ( i != assns.end() ) {
907 i->second.isUsed = true;
908 }
909 }
910
911 /// mark all assertions in `type` used in both `assn1` and `assn2`
[7870799]912 static void markAssertions(
913 ast::AssertionSet & assn1, ast::AssertionSet & assn2,
[361bf01]914 const ast::FunctionType * type
[f474e91]915 ) {
[3e5dd913]916 for ( auto & assert : type->assertions ) {
917 markAssertionSet( assn1, assert );
918 markAssertionSet( assn2, assert );
[f474e91]919 }
920 }
921
922 public:
[ee574a2]923 void postvisit( const ast::FunctionType * func ) {
[f474e91]924 auto func2 = dynamic_cast< const ast::FunctionType * >( type2 );
925 if ( ! func2 ) return;
926
927 if ( func->isVarArgs != func2->isVarArgs ) return;
[7870799]928
929 // Flatten the parameter lists for both functions so that tuple structure does not
[f474e91]930 // affect unification. Does not actually mutate function parameters.
931 auto params = flattenList( func->params, tenv );
932 auto params2 = flattenList( func2->params, tenv );
933
[7870799]934 // sizes don't have to match if ttypes are involved; need to be more precise w.r.t.
[f474e91]935 // where the ttype is to prevent errors
[7870799]936 if (
[f474e91]937 ( params.size() != params2.size() || func->returns.size() != func2->returns.size() )
938 && ! func->isTtype()
939 && ! func2->isTtype()
940 ) return;
941
[954c954]942 if ( ! unifyTypeList( params, params2, tenv, need, have, open, symtab ) ) return;
943 if ( ! unifyTypeList(
[f474e91]944 func->returns, func2->returns, tenv, need, have, open, symtab ) ) return;
[7870799]945
[f474e91]946 markAssertions( have, need, func );
947 markAssertions( have, need, func2 );
948
949 result = true;
950 }
[7870799]951
[f474e91]952 private:
[90ce35aa]953 // Returns: other, cast as XInstType
954 // Assigns this->result: whether types are compatible (up to generic parameters)
955 template< typename XInstType >
956 const XInstType * handleRefType( const XInstType * inst, const ast::Type * other ) {
[f474e91]957 // check that the other type is compatible and named the same
[90ce35aa]958 auto otherInst = dynamic_cast< const XInstType * >( other );
[9d8124f]959 if (otherInst && inst->name == otherInst->name) this->result = otherInst;
[f474e91]960 return otherInst;
961 }
962
963 /// Creates a tuple type based on a list of TypeExpr
964 template< typename Iter >
[7870799]965 static const ast::Type * tupleFromExprs(
[f474e91]966 const ast::TypeExpr * param, Iter & crnt, Iter end, ast::CV::Qualifiers qs
967 ) {
968 std::vector< ast::ptr< ast::Type > > types;
969 do {
970 types.emplace_back( param->type );
971
972 ++crnt;
973 if ( crnt == end ) break;
974 param = strict_dynamic_cast< const ast::TypeExpr * >( crnt->get() );
975 } while(true);
976
977 return new ast::TupleType{ std::move(types), qs };
978 }
979
[90ce35aa]980 template< typename XInstType >
981 void handleGenericRefType( const XInstType * inst, const ast::Type * other ) {
[f474e91]982 // check that other type is compatible and named the same
[90ce35aa]983 const XInstType * otherInst = handleRefType( inst, other );
984 if ( ! this->result ) return;
[7870799]985
[f474e91]986 // check that parameters of types unify, if any
987 const std::vector< ast::ptr< ast::Expr > > & params = inst->params;
[90ce35aa]988 const std::vector< ast::ptr< ast::Expr > > & params2 = otherInst->params;
[f474e91]989
990 auto it = params.begin();
991 auto jt = params2.begin();
992 for ( ; it != params.end() && jt != params2.end(); ++it, ++jt ) {
993 auto param = strict_dynamic_cast< const ast::TypeExpr * >( it->get() );
994 auto param2 = strict_dynamic_cast< const ast::TypeExpr * >( jt->get() );
995
996 ast::ptr< ast::Type > pty = param->type;
997 ast::ptr< ast::Type > pty2 = param2->type;
998
999 bool isTuple = Tuples::isTtype( pty );
1000 bool isTuple2 = Tuples::isTtype( pty2 );
1001
1002 if ( isTuple && isTuple2 ) {
1003 ++it; ++jt; // skip ttype parameters before break
[b729c01]1004 } else if ( isTuple ) {
[f474e91]1005 // bundle remaining params into tuple
1006 pty2 = tupleFromExprs( param2, jt, params2.end(), pty->qualifiers );
1007 ++it; // skip ttype parameter for break
1008 } else if ( isTuple2 ) {
1009 // bundle remaining params into tuple
1010 pty = tupleFromExprs( param, it, params.end(), pty2->qualifiers );
1011 ++jt; // skip ttype parameter for break
1012 }
1013
[7870799]1014 if ( ! unifyExact(
[ee574a2]1015 pty, pty2, tenv, need, have, open, noWiden(), symtab ) ) {
[f474e91]1016 result = false;
1017 return;
1018 }
1019
1020 // ttype parameter should be last
1021 if ( isTuple || isTuple2 ) break;
1022 }
1023 result = it == params.end() && jt == params2.end();
1024 }
1025
1026 public:
[ee574a2]1027 void postvisit( const ast::StructInstType * aggrType ) {
[f474e91]1028 handleGenericRefType( aggrType, type2 );
1029 }
1030
[ee574a2]1031 void postvisit( const ast::UnionInstType * aggrType ) {
[f474e91]1032 handleGenericRefType( aggrType, type2 );
1033 }
1034
[ee574a2]1035 void postvisit( const ast::EnumInstType * aggrType ) {
[f474e91]1036 handleRefType( aggrType, type2 );
1037 }
1038
[ee574a2]1039 void postvisit( const ast::TraitInstType * aggrType ) {
[f474e91]1040 handleRefType( aggrType, type2 );
1041 }
1042
[ee574a2]1043 void postvisit( const ast::TypeInstType * typeInst ) {
[3e5dd913]1044 assert( open.find( *typeInst ) == open.end() );
[f474e91]1045 handleRefType( typeInst, type2 );
1046 }
1047
1048 private:
1049 /// Creates a tuple type based on a list of Type
[302ef2a]1050 static const ast::Type * tupleFromTypes(
[f474e91]1051 const std::vector< ast::ptr< ast::Type > > & tys
1052 ) {
1053 std::vector< ast::ptr< ast::Type > > out;
1054 for ( const ast::Type * ty : tys ) {
[7870799]1055 // it is guaranteed that a ttype variable will be bound to a flat tuple, so ensure
[f474e91]1056 // that this results in a flat tuple
1057 flatten( ty, out );
1058 }
1059
[943bfad]1060 return new ast::TupleType{ std::move(out) };
[f474e91]1061 }
1062
[7870799]1063 static bool unifyList(
1064 const std::vector< ast::ptr< ast::Type > > & list1,
1065 const std::vector< ast::ptr< ast::Type > > & list2, ast::TypeEnvironment & env,
1066 ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open,
[f474e91]1067 const ast::SymbolTable & symtab
1068 ) {
1069 auto crnt1 = list1.begin();
1070 auto crnt2 = list2.begin();
1071 while ( crnt1 != list1.end() && crnt2 != list2.end() ) {
1072 const ast::Type * t1 = *crnt1;
1073 const ast::Type * t2 = *crnt2;
1074 bool isTuple1 = Tuples::isTtype( t1 );
1075 bool isTuple2 = Tuples::isTtype( t2 );
1076
1077 // assumes ttype must be last parameter
1078 if ( isTuple1 && ! isTuple2 ) {
1079 // combine entirety of list2, then unify
[7870799]1080 return unifyExact(
1081 t1, tupleFromTypes( list2 ), env, need, have, open,
[ee574a2]1082 noWiden(), symtab );
[f474e91]1083 } else if ( ! isTuple1 && isTuple2 ) {
1084 // combine entirety of list1, then unify
1085 return unifyExact(
[7870799]1086 tupleFromTypes( list1 ), t2, env, need, have, open,
[ee574a2]1087 noWiden(), symtab );
[f474e91]1088 }
1089
[7870799]1090 if ( ! unifyExact(
1091 t1, t2, env, need, have, open, noWiden(), symtab )
[f474e91]1092 ) return false;
1093
1094 ++crnt1; ++crnt2;
1095 }
1096
1097 if ( crnt1 != list1.end() ) {
1098 // try unifying empty tuple type with ttype
1099 const ast::Type * t1 = *crnt1;
1100 if ( ! Tuples::isTtype( t1 ) ) return false;
[7870799]1101 // xxx - this doesn't generate an empty tuple, contrary to comment; both ported
[f474e91]1102 // from Rob's code
[7870799]1103 return unifyExact(
1104 t1, tupleFromTypes( list2 ), env, need, have, open,
[ee574a2]1105 noWiden(), symtab );
[f474e91]1106 } else if ( crnt2 != list2.end() ) {
1107 // try unifying empty tuple with ttype
1108 const ast::Type * t2 = *crnt2;
1109 if ( ! Tuples::isTtype( t2 ) ) return false;
[7870799]1110 // xxx - this doesn't generate an empty tuple, contrary to comment; both ported
[f474e91]1111 // from Rob's code
1112 return unifyExact(
[7870799]1113 tupleFromTypes( list1 ), t2, env, need, have, open,
[ee574a2]1114 noWiden(), symtab );
[f474e91]1115 }
1116
1117 return true;
1118 }
1119
1120 public:
[ee574a2]1121 void postvisit( const ast::TupleType * tuple ) {
[f474e91]1122 auto tuple2 = dynamic_cast< const ast::TupleType * >( type2 );
1123 if ( ! tuple2 ) return;
1124
1125 ast::Pass<TtypeExpander_new> expander{ tenv };
[ef9988b]1126
[d3aa64f1]1127 const ast::Type * flat = tuple->accept( expander );
1128 const ast::Type * flat2 = tuple2->accept( expander );
[f474e91]1129
1130 auto types = flatten( flat );
1131 auto types2 = flatten( flat2 );
1132
1133 result = unifyList( types, types2, tenv, need, have, open, symtab );
1134 }
1135
[ee574a2]1136 void postvisit( const ast::VarArgsType * ) {
[f474e91]1137 result = dynamic_cast< const ast::VarArgsType * >( type2 );
1138 }
1139
[ee574a2]1140 void postvisit( const ast::ZeroType * ) {
[f474e91]1141 result = dynamic_cast< const ast::ZeroType * >( type2 );
1142 }
1143
[ee574a2]1144 void postvisit( const ast::OneType * ) {
[f474e91]1145 result = dynamic_cast< const ast::OneType * >( type2 );
[7870799]1146 }
[f474e91]1147
1148 private:
1149 template< typename RefType > void handleRefType( RefType *inst, Type *other );
1150 template< typename RefType > void handleGenericRefType( RefType *inst, Type *other );
1151 };
1152
[0d070ca]1153 // size_t Unify_new::traceId = Stats::Heap::new_stacktrace_id("Unify_new");
[7870799]1154 bool unify(
1155 const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2,
1156 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have,
[2773ab8]1157 ast::OpenVarSet & open, const ast::SymbolTable & symtab
1158 ) {
1159 ast::ptr<ast::Type> common;
1160 return unify( type1, type2, env, need, have, open, symtab, common );
1161 }
1162
[7870799]1163 bool unify(
1164 const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2,
1165 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have,
1166 ast::OpenVarSet & open, const ast::SymbolTable & symtab, ast::ptr<ast::Type> & common
[ee574a2]1167 ) {
1168 ast::OpenVarSet closed;
1169 findOpenVars( type1, open, closed, need, have, FirstClosed );
1170 findOpenVars( type2, open, closed, need, have, FirstOpen );
[7870799]1171 return unifyInexact(
[ee574a2]1172 type1, type2, env, need, have, open, WidenMode{ true, true }, symtab, common );
1173 }
1174
[7870799]1175 bool unifyExact(
1176 const ast::Type * type1, const ast::Type * type2, ast::TypeEnvironment & env,
1177 ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open,
[f474e91]1178 WidenMode widen, const ast::SymbolTable & symtab
1179 ) {
1180 if ( type1->qualifiers != type2->qualifiers ) return false;
1181
1182 auto var1 = dynamic_cast< const ast::TypeInstType * >( type1 );
1183 auto var2 = dynamic_cast< const ast::TypeInstType * >( type2 );
[7870799]1184 ast::OpenVarSet::const_iterator
[3e5dd913]1185 entry1 = var1 ? open.find( *var1 ) : open.end(),
1186 entry2 = var2 ? open.find( *var2 ) : open.end();
[f474e91]1187 bool isopen1 = entry1 != open.end();
1188 bool isopen2 = entry2 != open.end();
1189
1190 if ( isopen1 && isopen2 ) {
1191 if ( entry1->second.kind != entry2->second.kind ) return false;
[7870799]1192 return env.bindVarToVar(
1193 var1, var2, ast::TypeDecl::Data{ entry1->second, entry2->second }, need, have,
[f474e91]1194 open, widen, symtab );
1195 } else if ( isopen1 ) {
1196 return env.bindVar( var1, type2, entry1->second, need, have, open, widen, symtab );
1197 } else if ( isopen2 ) {
1198 return env.bindVar( var2, type1, entry2->second, need, have, open, widen, symtab );
1199 } else {
1200 ast::Pass<Unify_new> comparator{ type2, env, need, have, open, widen, symtab };
1201 type1->accept( comparator );
[7ff3e522]1202 return comparator.core.result;
[f474e91]1203 }
1204 }
1205
[7870799]1206 bool unifyInexact(
1207 const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2,
1208 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have,
1209 const ast::OpenVarSet & open, WidenMode widen, const ast::SymbolTable & symtab,
1210 ast::ptr<ast::Type> & common
[f474e91]1211 ) {
1212 ast::CV::Qualifiers q1 = type1->qualifiers, q2 = type2->qualifiers;
[7870799]1213
1214 // force t1 and t2 to be cloned if their qualifiers must be stripped, so that type1 and
[f474e91]1215 // type2 are left unchanged; calling convention forces type{1,2}->strong_ref >= 1
[2890212]1216 ast::Type * t1 = shallowCopy(type1.get());
1217 ast::Type * t2 = shallowCopy(type2.get());
1218 t1->qualifiers = {};
1219 t2->qualifiers = {};
[f49b3fc]1220 ast::ptr< ast::Type > t1_(t1);
1221 ast::ptr< ast::Type > t2_(t2);
[7870799]1222
[f474e91]1223 if ( unifyExact( t1, t2, env, need, have, open, widen, symtab ) ) {
1224 // if exact unification on unqualified types, try to merge qualifiers
1225 if ( q1 == q2 || ( ( q1 > q2 || widen.first ) && ( q2 > q1 || widen.second ) ) ) {
[2890212]1226 t1->qualifiers = q1 | q2;
1227 common = t1;
[f474e91]1228 return true;
1229 } else {
1230 return false;
1231 }
1232
1233 } else if (( common = commonType( t1, t2, widen, symtab, env, open ) )) {
1234 // no exact unification, but common type
[2890212]1235 auto c = shallowCopy(common.get());
1236 c->qualifiers = q1 | q2;
1237 common = c;
[f474e91]1238 return true;
1239 } else {
1240 return false;
1241 }
1242 }
1243
[54e41b3]1244 ast::ptr<ast::Type> extractResultType( const ast::FunctionType * func ) {
[4139e3d]1245 if ( func->returns.empty() ) return new ast::VoidType{};
[954c954]1246 if ( func->returns.size() == 1 ) return func->returns[0];
[4139e3d]1247
1248 std::vector<ast::ptr<ast::Type>> tys;
[954c954]1249 for ( const auto & decl : func->returns ) {
1250 tys.emplace_back( decl );
[4139e3d]1251 }
1252 return new ast::TupleType{ std::move(tys) };
[54e41b3]1253 }
[51b73452]1254} // namespace ResolvExpr
[a32b204]1255
1256// Local Variables: //
1257// tab-width: 4 //
1258// mode: c++ //
1259// compile-command: "make install" //
1260// End: //
Note: See TracBrowser for help on using the repository browser.