source: src/ResolvExpr/Resolver.cc@ f48ed47

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors ctor deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox memory new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since f48ed47 was 71a145de, checked in by Rob Schluntz <rschlunt@…>, 9 years ago

remove destructor from ConstructorInit in fallback case

  • Property mode set to 100644
File size: 21.2 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Resolver.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 12:17:01 2015
11// Last Modified By : Rob Schluntz
12// Last Modified On : Fri May 13 11:36:40 2016
13// Update Count : 203
14//
15
16#include "Resolver.h"
17#include "AlternativeFinder.h"
18#include "Alternative.h"
19#include "RenameVars.h"
20#include "ResolveTypeof.h"
21#include "SynTree/Statement.h"
22#include "SynTree/Type.h"
23#include "SynTree/Expression.h"
24#include "SynTree/Initializer.h"
25#include "SymTab/Indexer.h"
26#include "Common/utility.h"
27#include "InitTweak/InitTweak.h"
28
29#include <iostream>
30using namespace std;
31
32namespace ResolvExpr {
33 class Resolver : public SymTab::Indexer {
34 public:
35 Resolver() : SymTab::Indexer( false ), switchType( 0 ) {}
36
37 virtual void visit( FunctionDecl *functionDecl );
38 virtual void visit( ObjectDecl *functionDecl );
39 virtual void visit( TypeDecl *typeDecl );
40 virtual void visit( EnumDecl * enumDecl );
41
42 virtual void visit( ArrayType * at );
43
44 virtual void visit( ExprStmt *exprStmt );
45 virtual void visit( AsmExpr *asmExpr );
46 virtual void visit( AsmStmt *asmStmt );
47 virtual void visit( IfStmt *ifStmt );
48 virtual void visit( WhileStmt *whileStmt );
49 virtual void visit( ForStmt *forStmt );
50 virtual void visit( SwitchStmt *switchStmt );
51 virtual void visit( ChooseStmt *switchStmt );
52 virtual void visit( CaseStmt *caseStmt );
53 virtual void visit( BranchStmt *branchStmt );
54 virtual void visit( ReturnStmt *returnStmt );
55 virtual void visit( ImplicitCtorDtorStmt * impCtorDtorStmt );
56
57 virtual void visit( SingleInit *singleInit );
58 virtual void visit( ListInit *listInit );
59 virtual void visit( ConstructorInit *ctorInit );
60 private:
61 typedef std::list< Initializer * >::iterator InitIterator;
62
63 void resolveAggrInit( AggregateDecl *, InitIterator &, InitIterator & );
64 void resolveSingleAggrInit( Declaration *, InitIterator &, InitIterator & );
65 void fallbackInit( ConstructorInit * ctorInit );
66 std::list< Type * > functionReturn;
67 Type *initContext;
68 Type *switchType;
69 bool inEnumDecl = false;
70 };
71
72 void resolve( std::list< Declaration * > translationUnit ) {
73 Resolver resolver;
74 acceptAll( translationUnit, resolver );
75#if 0
76 resolver.print( cerr );
77 for ( std::list< Declaration * >::iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) {
78 (*i)->print( std::cerr );
79 (*i)->accept( resolver );
80 } // for
81#endif
82 }
83
84 Expression *resolveInVoidContext( Expression *expr, const SymTab::Indexer &indexer ) {
85 TypeEnvironment env;
86 return resolveInVoidContext( expr, indexer, env );
87 }
88
89
90 namespace {
91 void finishExpr( Expression *expr, const TypeEnvironment &env ) {
92 expr->set_env( new TypeSubstitution );
93 env.makeSubstitution( *expr->get_env() );
94 }
95 } // namespace
96
97 Expression *findVoidExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
98 global_renamer.reset();
99 TypeEnvironment env;
100 Expression *newExpr = resolveInVoidContext( untyped, indexer, env );
101 finishExpr( newExpr, env );
102 return newExpr;
103 }
104
105 namespace {
106 Expression *findSingleExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
107 TypeEnvironment env;
108 AlternativeFinder finder( indexer, env );
109 finder.find( untyped );
110#if 0
111 if ( finder.get_alternatives().size() != 1 ) {
112 std::cout << "untyped expr is ";
113 untyped->print( std::cout );
114 std::cout << std::endl << "alternatives are:";
115 for ( std::list< Alternative >::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
116 i->print( std::cout );
117 } // for
118 } // if
119#endif
120 assert( finder.get_alternatives().size() == 1 );
121 Alternative &choice = finder.get_alternatives().front();
122 Expression *newExpr = choice.expr->clone();
123 finishExpr( newExpr, choice.env );
124 return newExpr;
125 }
126
127 bool isIntegralType( Type *type ) {
128 if ( dynamic_cast< EnumInstType * >( type ) ) {
129 return true;
130 } else if ( BasicType *bt = dynamic_cast< BasicType * >( type ) ) {
131 return bt->isInteger();
132 } else {
133 return false;
134 } // if
135 }
136
137 Expression *findIntegralExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
138 TypeEnvironment env;
139 AlternativeFinder finder( indexer, env );
140 finder.find( untyped );
141#if 0
142 if ( finder.get_alternatives().size() != 1 ) {
143 std::cout << "untyped expr is ";
144 untyped->print( std::cout );
145 std::cout << std::endl << "alternatives are:";
146 for ( std::list< Alternative >::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
147 i->print( std::cout );
148 } // for
149 } // if
150#endif
151 Expression *newExpr = 0;
152 const TypeEnvironment *newEnv = 0;
153 for ( AltList::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
154 if ( i->expr->get_results().size() == 1 && isIntegralType( i->expr->get_results().front() ) ) {
155 if ( newExpr ) {
156 throw SemanticError( "Too many interpretations for case control expression", untyped );
157 } else {
158 newExpr = i->expr->clone();
159 newEnv = &i->env;
160 } // if
161 } // if
162 } // for
163 if ( ! newExpr ) {
164 throw SemanticError( "No interpretations for case control expression", untyped );
165 } // if
166 finishExpr( newExpr, *newEnv );
167 return newExpr;
168 }
169
170 }
171
172 void Resolver::visit( ObjectDecl *objectDecl ) {
173 Type *new_type = resolveTypeof( objectDecl->get_type(), *this );
174 objectDecl->set_type( new_type );
175 // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that class-variable
176 // initContext is changed multiple time because the LHS is analysed twice. The second analysis changes
177 // initContext because of a function type can contain object declarations in the return and parameter types. So
178 // each value of initContext is retained, so the type on the first analysis is preserved and used for selecting
179 // the RHS.
180 Type *temp = initContext;
181 initContext = new_type;
182 if ( inEnumDecl && dynamic_cast< EnumInstType * >( initContext ) ) {
183 // enumerator initializers should not use the enum type to initialize, since
184 // the enum type is still incomplete at this point. Use signed int instead.
185 initContext = new BasicType( Type::Qualifiers(), BasicType::SignedInt );
186 }
187 SymTab::Indexer::visit( objectDecl );
188 if ( inEnumDecl && dynamic_cast< EnumInstType * >( initContext ) ) {
189 // delete newly created signed int type
190 delete initContext;
191 }
192 initContext = temp;
193 }
194
195 void Resolver::visit( ArrayType * at ) {
196 if ( at->get_dimension() ) {
197 BasicType arrayLenType = BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
198 CastExpr *castExpr = new CastExpr( at->get_dimension(), arrayLenType.clone() );
199 Expression *newExpr = findSingleExpression( castExpr, *this );
200 delete at->get_dimension();
201 at->set_dimension( newExpr );
202 }
203 Visitor::visit( at );
204 }
205
206 void Resolver::visit( TypeDecl *typeDecl ) {
207 if ( typeDecl->get_base() ) {
208 Type *new_type = resolveTypeof( typeDecl->get_base(), *this );
209 typeDecl->set_base( new_type );
210 } // if
211 SymTab::Indexer::visit( typeDecl );
212 }
213
214 void Resolver::visit( FunctionDecl *functionDecl ) {
215#if 0
216 std::cout << "resolver visiting functiondecl ";
217 functionDecl->print( std::cout );
218 std::cout << std::endl;
219#endif
220 Type *new_type = resolveTypeof( functionDecl->get_type(), *this );
221 functionDecl->set_type( new_type );
222 std::list< Type * > oldFunctionReturn = functionReturn;
223 functionReturn.clear();
224 for ( std::list< DeclarationWithType * >::const_iterator i = functionDecl->get_functionType()->get_returnVals().begin(); i != functionDecl->get_functionType()->get_returnVals().end(); ++i ) {
225 functionReturn.push_back( (*i)->get_type() );
226 } // for
227 SymTab::Indexer::visit( functionDecl );
228 functionReturn = oldFunctionReturn;
229 }
230
231 void Resolver::visit( EnumDecl * enumDecl ) {
232 // in case we decide to allow nested enums
233 bool oldInEnumDecl = inEnumDecl;
234 inEnumDecl = true;
235 SymTab::Indexer::visit( enumDecl );
236 inEnumDecl = oldInEnumDecl;
237 }
238
239 void Resolver::visit( ExprStmt *exprStmt ) {
240 if ( exprStmt->get_expr() ) {
241 Expression *newExpr = findVoidExpression( exprStmt->get_expr(), *this );
242 delete exprStmt->get_expr();
243 exprStmt->set_expr( newExpr );
244 } // if
245 }
246
247 void Resolver::visit( AsmExpr *asmExpr ) {
248 Expression *newExpr = findVoidExpression( asmExpr->get_operand(), *this );
249 delete asmExpr->get_operand();
250 asmExpr->set_operand( newExpr );
251 if ( asmExpr->get_inout() ) {
252 newExpr = findVoidExpression( asmExpr->get_inout(), *this );
253 delete asmExpr->get_inout();
254 asmExpr->set_inout( newExpr );
255 } // if
256 }
257
258 void Resolver::visit( AsmStmt *asmStmt ) {
259 acceptAll( asmStmt->get_input(), *this);
260 acceptAll( asmStmt->get_output(), *this);
261 }
262
263 void Resolver::visit( IfStmt *ifStmt ) {
264 Expression *newExpr = findSingleExpression( ifStmt->get_condition(), *this );
265 delete ifStmt->get_condition();
266 ifStmt->set_condition( newExpr );
267 Visitor::visit( ifStmt );
268 }
269
270 void Resolver::visit( WhileStmt *whileStmt ) {
271 Expression *newExpr = findSingleExpression( whileStmt->get_condition(), *this );
272 delete whileStmt->get_condition();
273 whileStmt->set_condition( newExpr );
274 Visitor::visit( whileStmt );
275 }
276
277 void Resolver::visit( ForStmt *forStmt ) {
278 SymTab::Indexer::visit( forStmt );
279
280 if ( forStmt->get_condition() ) {
281 Expression * newExpr = findSingleExpression( forStmt->get_condition(), *this );
282 delete forStmt->get_condition();
283 forStmt->set_condition( newExpr );
284 } // if
285
286 if ( forStmt->get_increment() ) {
287 Expression * newExpr = findVoidExpression( forStmt->get_increment(), *this );
288 delete forStmt->get_increment();
289 forStmt->set_increment( newExpr );
290 } // if
291 }
292
293 template< typename SwitchClass >
294 void handleSwitchStmt( SwitchClass *switchStmt, SymTab::Indexer &visitor ) {
295 Expression *newExpr;
296 newExpr = findIntegralExpression( switchStmt->get_condition(), visitor );
297 delete switchStmt->get_condition();
298 switchStmt->set_condition( newExpr );
299
300 visitor.Visitor::visit( switchStmt );
301 }
302
303 void Resolver::visit( SwitchStmt *switchStmt ) {
304 handleSwitchStmt( switchStmt, *this );
305 }
306
307 void Resolver::visit( ChooseStmt *switchStmt ) {
308 handleSwitchStmt( switchStmt, *this );
309 }
310
311 void Resolver::visit( CaseStmt *caseStmt ) {
312 Visitor::visit( caseStmt );
313 }
314
315 void Resolver::visit( BranchStmt *branchStmt ) {
316 // must resolve the argument for a computed goto
317 if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement
318 if ( Expression * arg = branchStmt->get_computedTarget() ) {
319 VoidType v = Type::Qualifiers(); // cast to void * for the alternative finder
320 PointerType pt( Type::Qualifiers(), v.clone() );
321 CastExpr * castExpr = new CastExpr( arg, pt.clone() );
322 Expression * newExpr = findSingleExpression( castExpr, *this ); // find best expression
323 branchStmt->set_target( newExpr );
324 } // if
325 } // if
326 }
327
328 void Resolver::visit( ReturnStmt *returnStmt ) {
329 if ( returnStmt->get_expr() ) {
330 CastExpr *castExpr = new CastExpr( returnStmt->get_expr() );
331 cloneAll( functionReturn, castExpr->get_results() );
332 Expression *newExpr = findSingleExpression( castExpr, *this );
333 delete castExpr;
334 returnStmt->set_expr( newExpr );
335 } // if
336 }
337
338 template< typename T >
339 bool isCharType( T t ) {
340 if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) {
341 return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar ||
342 bt->get_kind() == BasicType::UnsignedChar;
343 }
344 return false;
345 }
346
347 void Resolver::visit( SingleInit *singleInit ) {
348 if ( singleInit->get_value() ) {
349#if 0
350 if (NameExpr * ne = dynamic_cast<NameExpr*>(singleInit->get_value())) {
351 string n = ne->get_name();
352 if (n == "0") {
353 initContext = new BasicType(Type::Qualifiers(),
354 BasicType::SignedInt);
355 } else {
356 DeclarationWithType * decl = lookupId( n );
357 initContext = decl->get_type();
358 }
359 } else if (ConstantExpr * e =
360 dynamic_cast<ConstantExpr*>(singleInit->get_value())) {
361 Constant *c = e->get_constant();
362 initContext = c->get_type();
363 } else {
364 assert(0);
365 }
366#endif
367 CastExpr *castExpr = new CastExpr( singleInit->get_value(), initContext->clone() );
368 Expression *newExpr = findSingleExpression( castExpr, *this );
369 delete castExpr;
370 singleInit->set_value( newExpr );
371
372 // check if initializing type is char[]
373 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
374 if ( isCharType( at->get_base() ) ) {
375 // check if the resolved type is char *
376 if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_results().front() ) ) {
377 if ( isCharType( pt->get_base() ) ) {
378 // strip cast if we're initializing a char[] with a char *, e.g. char x[] = "hello";
379 CastExpr *ce = dynamic_cast< CastExpr * >( newExpr );
380 singleInit->set_value( ce->get_arg() );
381 ce->set_arg( NULL );
382 delete ce;
383 }
384 }
385 }
386 }
387 } // if
388// singleInit->get_value()->accept( *this );
389 }
390
391 void Resolver::resolveSingleAggrInit( Declaration * dcl, InitIterator & init, InitIterator & initEnd ) {
392 DeclarationWithType * dt = dynamic_cast< DeclarationWithType * >( dcl );
393 assert( dt );
394 initContext = dt->get_type();
395 try {
396 if ( init == initEnd ) return; // stop when there are no more initializers
397 (*init)->accept( *this );
398 ++init; // made it past an initializer
399 } catch( SemanticError & ) {
400 // need to delve deeper, if you can
401 if ( StructInstType * sit = dynamic_cast< StructInstType * >( dt->get_type() ) ) {
402 resolveAggrInit( sit->get_baseStruct(), init, initEnd );
403 } else if ( UnionInstType * uit = dynamic_cast< UnionInstType * >( dt->get_type() ) ) {
404 resolveAggrInit( uit->get_baseUnion(), init, initEnd );
405 } else {
406 // member is not an aggregate type, so can't go any deeper
407
408 // might need to rethink what is being thrown
409 throw;
410 } // if
411 }
412 }
413
414 void Resolver::resolveAggrInit( AggregateDecl * aggr, InitIterator & init, InitIterator & initEnd ) {
415 if ( StructDecl * st = dynamic_cast< StructDecl * >( aggr ) ) {
416 // want to resolve each initializer to the members of the struct,
417 // but if there are more initializers than members we should stop
418 list< Declaration * >::iterator it = st->get_members().begin();
419 for ( ; it != st->get_members().end(); ++it) {
420 resolveSingleAggrInit( *it, init, initEnd );
421 }
422 } else if ( UnionDecl * un = dynamic_cast< UnionDecl * >( aggr ) ) {
423 // only resolve to the first member of a union
424 resolveSingleAggrInit( *un->get_members().begin(), init, initEnd );
425 } // if
426 }
427
428 void Resolver::visit( ListInit * listInit ) {
429 InitIterator iter = listInit->begin_initializers();
430 InitIterator end = listInit->end_initializers();
431
432 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
433 // resolve each member to the base type of the array
434 for ( ; iter != end; ++iter ) {
435 initContext = at->get_base();
436 (*iter)->accept( *this );
437 } // for
438 } else if ( StructInstType * st = dynamic_cast< StructInstType * >( initContext ) ) {
439 resolveAggrInit( st->get_baseStruct(), iter, end );
440 } else if ( UnionInstType *st = dynamic_cast< UnionInstType * >( initContext ) ) {
441 resolveAggrInit( st->get_baseUnion(), iter, end );
442 } else {
443 // basic types are handled here
444 Visitor::visit( listInit );
445 }
446
447#if 0
448 if ( ArrayType *at = dynamic_cast<ArrayType*>(initContext) ) {
449 std::list<Initializer *>::iterator iter( listInit->begin_initializers() );
450 for ( ; iter != listInit->end_initializers(); ++iter ) {
451 initContext = at->get_base();
452 (*iter)->accept( *this );
453 } // for
454 } else if ( StructInstType *st = dynamic_cast<StructInstType*>(initContext) ) {
455 StructDecl *baseStruct = st->get_baseStruct();
456 std::list<Declaration *>::iterator iter1( baseStruct->get_members().begin() );
457 std::list<Initializer *>::iterator iter2( listInit->begin_initializers() );
458 for ( ; iter1 != baseStruct->get_members().end() && iter2 != listInit->end_initializers(); ++iter2 ) {
459 if ( (*iter2)->get_designators().empty() ) {
460 DeclarationWithType *dt = dynamic_cast<DeclarationWithType *>( *iter1 );
461 initContext = dt->get_type();
462 (*iter2)->accept( *this );
463 ++iter1;
464 } else {
465 StructDecl *st = baseStruct;
466 iter1 = st->get_members().begin();
467 std::list<Expression *>::iterator iter3( (*iter2)->get_designators().begin() );
468 for ( ; iter3 != (*iter2)->get_designators().end(); ++iter3 ) {
469 NameExpr *key = dynamic_cast<NameExpr *>( *iter3 );
470 assert( key );
471 for ( ; iter1 != st->get_members().end(); ++iter1 ) {
472 if ( key->get_name() == (*iter1)->get_name() ) {
473 (*iter1)->print( cout );
474 cout << key->get_name() << endl;
475 ObjectDecl *fred = dynamic_cast<ObjectDecl *>( *iter1 );
476 assert( fred );
477 StructInstType *mary = dynamic_cast<StructInstType*>( fred->get_type() );
478 assert( mary );
479 st = mary->get_baseStruct();
480 iter1 = st->get_members().begin();
481 break;
482 } // if
483 } // for
484 } // for
485 ObjectDecl *fred = dynamic_cast<ObjectDecl *>( *iter1 );
486 assert( fred );
487 initContext = fred->get_type();
488 (*listInit->begin_initializers())->accept( *this );
489 } // if
490 } // for
491 } else if ( UnionInstType *st = dynamic_cast<UnionInstType*>(initContext) ) {
492 DeclarationWithType *dt = dynamic_cast<DeclarationWithType *>( *st->get_baseUnion()->get_members().begin() );
493 initContext = dt->get_type();
494 (*listInit->begin_initializers())->accept( *this );
495 } // if
496#endif
497 }
498
499 // ConstructorInit - fall back on C-style initializer
500 void Resolver::fallbackInit( ConstructorInit * ctorInit ) {
501 // could not find valid constructor, or found an intrinsic constructor
502 // fall back on C-style initializer
503 delete ctorInit->get_ctor();
504 ctorInit->set_ctor( NULL );
505 delete ctorInit->get_dtor();
506 ctorInit->set_dtor( NULL );
507 maybeAccept( ctorInit->get_init(), *this );
508 }
509
510 void Resolver::visit( ConstructorInit *ctorInit ) {
511 try {
512 maybeAccept( ctorInit->get_ctor(), *this );
513 maybeAccept( ctorInit->get_dtor(), *this );
514 } catch ( SemanticError ) {
515 // no alternatives for the constructor initializer - fallback on C-style initializer
516 // xxx - not sure if this makes a ton of sense - should maybe never be able to have this situation?
517 fallbackInit( ctorInit );
518 return;
519 }
520
521 // found a constructor - can get rid of C-style initializer
522 delete ctorInit->get_init();
523 ctorInit->set_init( NULL );
524
525 // intrinsic single parameter constructors and destructors do nothing. Since this was
526 // implicitly generated, there's no way for it to have side effects, so get rid of it
527 // to clean up generated code.
528 if ( InitTweak::isInstrinsicSingleArgCallStmt( ctorInit->get_ctor() ) ) {
529 delete ctorInit->get_ctor();
530 ctorInit->set_ctor( NULL );
531 }
532 if ( InitTweak::isInstrinsicSingleArgCallStmt( ctorInit->get_ctor() ) ) {
533 delete ctorInit->get_dtor();
534 ctorInit->set_dtor( NULL );
535 }
536 }
537
538 void Resolver::visit( ImplicitCtorDtorStmt * impCtorDtorStmt ) {
539 // before resolving ctor/dtor, need to remove type qualifiers from the first argument (the object being constructed).
540 // Do this through a cast expression to greatly simplify the code.
541 Expression * callExpr = InitTweak::getCtorDtorCall( impCtorDtorStmt );
542 assert( callExpr );
543 Expression *& constructee = InitTweak::getCallArg( callExpr, 0 );
544 Type * type = 0;
545
546 // need to find the type of the first argument, which is unfortunately not uniform since array construction
547 // includes an untyped '+' expression.
548 if ( UntypedExpr * plusExpr = dynamic_cast< UntypedExpr * >( constructee ) ) {
549 // constructee is <array>+<index>
550 // get Variable <array>, then get the base type of the VariableExpr - this is the type that needs to be fixed
551 Expression * arr = InitTweak::getCallArg( plusExpr, 0 );
552 assert( dynamic_cast< VariableExpr * >( arr ) );
553 assert( arr && arr->get_results().size() == 1 );
554 type = arr->get_results().front()->clone();
555 } else {
556 // otherwise, constructing a plain object, which means the object's address is being taken.
557 // Need to get the type of the VariableExpr object, because the AddressExpr is rebuilt and uses the
558 // type of the VariableExpr to do so.
559 assert( constructee->get_results().size() == 1 );
560 AddressExpr * addrExpr = dynamic_cast< AddressExpr * > ( constructee );
561 assert( addrExpr && addrExpr->get_results().size() == 1);
562 type = addrExpr->get_results().front()->clone();
563 }
564 // cast to T* with qualifiers removed.
565 // unfortunately, lvalue is considered a qualifier. For AddressExpr to resolve, its argument
566 // must have an lvalue qualified type, so remove all qualifiers except lvalue. If we ever
567 // remove lvalue as a qualifier, this can change to
568 // type->get_qualifiers() = Type::Qualifiers();
569 Type * base = InitTweak::getPointerBase( type );
570 assert( base );
571 base->get_qualifiers() -= Type::Qualifiers(true, true, true, false, true, true);
572 // if pointer has lvalue qualifier, cast won't appear in output
573 type->set_isLvalue( false );
574 constructee = new CastExpr( constructee, type );
575
576 // finally, resolve the ctor/dtor
577 impCtorDtorStmt->get_callStmt()->accept( *this );
578 }
579} // namespace ResolvExpr
580
581// Local Variables: //
582// tab-width: 4 //
583// mode: c++ //
584// compile-command: "make install" //
585// End: //
Note: See TracBrowser for help on using the repository browser.