source: src/ResolvExpr/Resolver.cc@ ed9ecda

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors ctor deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox memory new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since ed9ecda was e4d3ceb, checked in by Peter A. Buhr <pabuhr@…>, 9 years ago

Merge branch 'master' of plg2:software/cfa/cfa-cc

  • Property mode set to 100644
File size: 21.1 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Resolver.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 12:17:01 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Tue Jul 12 17:45:42 2016
13// Update Count : 204
14//
15
16#include "Resolver.h"
17#include "AlternativeFinder.h"
18#include "Alternative.h"
19#include "RenameVars.h"
20#include "ResolveTypeof.h"
21#include "SynTree/Statement.h"
22#include "SynTree/Type.h"
23#include "SynTree/Expression.h"
24#include "SynTree/Initializer.h"
25#include "SymTab/Indexer.h"
26#include "Common/utility.h"
27#include "InitTweak/InitTweak.h"
28
29#include <iostream>
30using namespace std;
31
32namespace ResolvExpr {
33 class Resolver : public SymTab::Indexer {
34 public:
35 Resolver() : SymTab::Indexer( false ), switchType( 0 ) {}
36
37 virtual void visit( FunctionDecl *functionDecl );
38 virtual void visit( ObjectDecl *functionDecl );
39 virtual void visit( TypeDecl *typeDecl );
40 virtual void visit( EnumDecl * enumDecl );
41
42 virtual void visit( ArrayType * at );
43
44 virtual void visit( ExprStmt *exprStmt );
45 virtual void visit( AsmExpr *asmExpr );
46 virtual void visit( AsmStmt *asmStmt );
47 virtual void visit( IfStmt *ifStmt );
48 virtual void visit( WhileStmt *whileStmt );
49 virtual void visit( ForStmt *forStmt );
50 virtual void visit( SwitchStmt *switchStmt );
51 virtual void visit( CaseStmt *caseStmt );
52 virtual void visit( BranchStmt *branchStmt );
53 virtual void visit( ReturnStmt *returnStmt );
54 virtual void visit( ImplicitCtorDtorStmt * impCtorDtorStmt );
55
56 virtual void visit( SingleInit *singleInit );
57 virtual void visit( ListInit *listInit );
58 virtual void visit( ConstructorInit *ctorInit );
59 private:
60 typedef std::list< Initializer * >::iterator InitIterator;
61
62 void resolveAggrInit( AggregateDecl *, InitIterator &, InitIterator & );
63 void resolveSingleAggrInit( Declaration *, InitIterator &, InitIterator & );
64 void fallbackInit( ConstructorInit * ctorInit );
65 std::list< Type * > functionReturn;
66 Type *initContext;
67 Type *switchType;
68 bool inEnumDecl = false;
69 };
70
71 void resolve( std::list< Declaration * > translationUnit ) {
72 Resolver resolver;
73 acceptAll( translationUnit, resolver );
74#if 0
75 resolver.print( cerr );
76 for ( std::list< Declaration * >::iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) {
77 (*i)->print( std::cerr );
78 (*i)->accept( resolver );
79 } // for
80#endif
81 }
82
83 Expression *resolveInVoidContext( Expression *expr, const SymTab::Indexer &indexer ) {
84 TypeEnvironment env;
85 return resolveInVoidContext( expr, indexer, env );
86 }
87
88
89 namespace {
90 void finishExpr( Expression *expr, const TypeEnvironment &env ) {
91 expr->set_env( new TypeSubstitution );
92 env.makeSubstitution( *expr->get_env() );
93 }
94 } // namespace
95
96 Expression *findVoidExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
97 global_renamer.reset();
98 TypeEnvironment env;
99 Expression *newExpr = resolveInVoidContext( untyped, indexer, env );
100 finishExpr( newExpr, env );
101 return newExpr;
102 }
103
104 namespace {
105 Expression *findSingleExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
106 TypeEnvironment env;
107 AlternativeFinder finder( indexer, env );
108 finder.find( untyped );
109#if 0
110 if ( finder.get_alternatives().size() != 1 ) {
111 std::cout << "untyped expr is ";
112 untyped->print( std::cout );
113 std::cout << std::endl << "alternatives are:";
114 for ( std::list< Alternative >::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
115 i->print( std::cout );
116 } // for
117 } // if
118#endif
119 assert( finder.get_alternatives().size() == 1 );
120 Alternative &choice = finder.get_alternatives().front();
121 Expression *newExpr = choice.expr->clone();
122 finishExpr( newExpr, choice.env );
123 return newExpr;
124 }
125
126 bool isIntegralType( Type *type ) {
127 if ( dynamic_cast< EnumInstType * >( type ) ) {
128 return true;
129 } else if ( BasicType *bt = dynamic_cast< BasicType * >( type ) ) {
130 return bt->isInteger();
131 } else {
132 return false;
133 } // if
134 }
135
136 Expression *findIntegralExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
137 TypeEnvironment env;
138 AlternativeFinder finder( indexer, env );
139 finder.find( untyped );
140#if 0
141 if ( finder.get_alternatives().size() != 1 ) {
142 std::cout << "untyped expr is ";
143 untyped->print( std::cout );
144 std::cout << std::endl << "alternatives are:";
145 for ( std::list< Alternative >::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
146 i->print( std::cout );
147 } // for
148 } // if
149#endif
150 Expression *newExpr = 0;
151 const TypeEnvironment *newEnv = 0;
152 for ( AltList::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
153 if ( i->expr->get_results().size() == 1 && isIntegralType( i->expr->get_results().front() ) ) {
154 if ( newExpr ) {
155 throw SemanticError( "Too many interpretations for case control expression", untyped );
156 } else {
157 newExpr = i->expr->clone();
158 newEnv = &i->env;
159 } // if
160 } // if
161 } // for
162 if ( ! newExpr ) {
163 throw SemanticError( "No interpretations for case control expression", untyped );
164 } // if
165 finishExpr( newExpr, *newEnv );
166 return newExpr;
167 }
168
169 }
170
171 void Resolver::visit( ObjectDecl *objectDecl ) {
172 Type *new_type = resolveTypeof( objectDecl->get_type(), *this );
173 objectDecl->set_type( new_type );
174 // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that class-variable
175 // initContext is changed multiple time because the LHS is analysed twice. The second analysis changes
176 // initContext because of a function type can contain object declarations in the return and parameter types. So
177 // each value of initContext is retained, so the type on the first analysis is preserved and used for selecting
178 // the RHS.
179 Type *temp = initContext;
180 initContext = new_type;
181 if ( inEnumDecl && dynamic_cast< EnumInstType * >( initContext ) ) {
182 // enumerator initializers should not use the enum type to initialize, since
183 // the enum type is still incomplete at this point. Use signed int instead.
184 initContext = new BasicType( Type::Qualifiers(), BasicType::SignedInt );
185 }
186 SymTab::Indexer::visit( objectDecl );
187 if ( inEnumDecl && dynamic_cast< EnumInstType * >( initContext ) ) {
188 // delete newly created signed int type
189 delete initContext;
190 }
191 initContext = temp;
192 }
193
194 void Resolver::visit( ArrayType * at ) {
195 if ( at->get_dimension() ) {
196 BasicType arrayLenType = BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
197 CastExpr *castExpr = new CastExpr( at->get_dimension(), arrayLenType.clone() );
198 Expression *newExpr = findSingleExpression( castExpr, *this );
199 delete at->get_dimension();
200 at->set_dimension( newExpr );
201 }
202 Visitor::visit( at );
203 }
204
205 void Resolver::visit( TypeDecl *typeDecl ) {
206 if ( typeDecl->get_base() ) {
207 Type *new_type = resolveTypeof( typeDecl->get_base(), *this );
208 typeDecl->set_base( new_type );
209 } // if
210 SymTab::Indexer::visit( typeDecl );
211 }
212
213 void Resolver::visit( FunctionDecl *functionDecl ) {
214#if 0
215 std::cout << "resolver visiting functiondecl ";
216 functionDecl->print( std::cout );
217 std::cout << std::endl;
218#endif
219 Type *new_type = resolveTypeof( functionDecl->get_type(), *this );
220 functionDecl->set_type( new_type );
221 std::list< Type * > oldFunctionReturn = functionReturn;
222 functionReturn.clear();
223 for ( std::list< DeclarationWithType * >::const_iterator i = functionDecl->get_functionType()->get_returnVals().begin(); i != functionDecl->get_functionType()->get_returnVals().end(); ++i ) {
224 functionReturn.push_back( (*i)->get_type() );
225 } // for
226 SymTab::Indexer::visit( functionDecl );
227 functionReturn = oldFunctionReturn;
228 }
229
230 void Resolver::visit( EnumDecl * enumDecl ) {
231 // in case we decide to allow nested enums
232 bool oldInEnumDecl = inEnumDecl;
233 inEnumDecl = true;
234 SymTab::Indexer::visit( enumDecl );
235 inEnumDecl = oldInEnumDecl;
236 }
237
238 void Resolver::visit( ExprStmt *exprStmt ) {
239 if ( exprStmt->get_expr() ) {
240 Expression *newExpr = findVoidExpression( exprStmt->get_expr(), *this );
241 delete exprStmt->get_expr();
242 exprStmt->set_expr( newExpr );
243 } // if
244 }
245
246 void Resolver::visit( AsmExpr *asmExpr ) {
247 Expression *newExpr = findVoidExpression( asmExpr->get_operand(), *this );
248 delete asmExpr->get_operand();
249 asmExpr->set_operand( newExpr );
250 if ( asmExpr->get_inout() ) {
251 newExpr = findVoidExpression( asmExpr->get_inout(), *this );
252 delete asmExpr->get_inout();
253 asmExpr->set_inout( newExpr );
254 } // if
255 }
256
257 void Resolver::visit( AsmStmt *asmStmt ) {
258 acceptAll( asmStmt->get_input(), *this);
259 acceptAll( asmStmt->get_output(), *this);
260 }
261
262 void Resolver::visit( IfStmt *ifStmt ) {
263 Expression *newExpr = findSingleExpression( ifStmt->get_condition(), *this );
264 delete ifStmt->get_condition();
265 ifStmt->set_condition( newExpr );
266 Visitor::visit( ifStmt );
267 }
268
269 void Resolver::visit( WhileStmt *whileStmt ) {
270 Expression *newExpr = findSingleExpression( whileStmt->get_condition(), *this );
271 delete whileStmt->get_condition();
272 whileStmt->set_condition( newExpr );
273 Visitor::visit( whileStmt );
274 }
275
276 void Resolver::visit( ForStmt *forStmt ) {
277 SymTab::Indexer::visit( forStmt );
278
279 if ( forStmt->get_condition() ) {
280 Expression * newExpr = findSingleExpression( forStmt->get_condition(), *this );
281 delete forStmt->get_condition();
282 forStmt->set_condition( newExpr );
283 } // if
284
285 if ( forStmt->get_increment() ) {
286 Expression * newExpr = findVoidExpression( forStmt->get_increment(), *this );
287 delete forStmt->get_increment();
288 forStmt->set_increment( newExpr );
289 } // if
290 }
291
292 template< typename SwitchClass >
293 void handleSwitchStmt( SwitchClass *switchStmt, SymTab::Indexer &visitor ) {
294 Expression *newExpr;
295 newExpr = findIntegralExpression( switchStmt->get_condition(), visitor );
296 delete switchStmt->get_condition();
297 switchStmt->set_condition( newExpr );
298
299 visitor.Visitor::visit( switchStmt );
300 }
301
302 void Resolver::visit( SwitchStmt *switchStmt ) {
303 handleSwitchStmt( switchStmt, *this );
304 }
305
306 void Resolver::visit( CaseStmt *caseStmt ) {
307 Visitor::visit( caseStmt );
308 }
309
310 void Resolver::visit( BranchStmt *branchStmt ) {
311 // must resolve the argument for a computed goto
312 if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement
313 if ( Expression * arg = branchStmt->get_computedTarget() ) {
314 VoidType v = Type::Qualifiers(); // cast to void * for the alternative finder
315 PointerType pt( Type::Qualifiers(), v.clone() );
316 CastExpr * castExpr = new CastExpr( arg, pt.clone() );
317 Expression * newExpr = findSingleExpression( castExpr, *this ); // find best expression
318 branchStmt->set_target( newExpr );
319 } // if
320 } // if
321 }
322
323 void Resolver::visit( ReturnStmt *returnStmt ) {
324 if ( returnStmt->get_expr() ) {
325 CastExpr *castExpr = new CastExpr( returnStmt->get_expr() );
326 cloneAll( functionReturn, castExpr->get_results() );
327 Expression *newExpr = findSingleExpression( castExpr, *this );
328 delete castExpr;
329 returnStmt->set_expr( newExpr );
330 } // if
331 }
332
333 template< typename T >
334 bool isCharType( T t ) {
335 if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) {
336 return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar ||
337 bt->get_kind() == BasicType::UnsignedChar;
338 }
339 return false;
340 }
341
342 void Resolver::visit( SingleInit *singleInit ) {
343 if ( singleInit->get_value() ) {
344#if 0
345 if (NameExpr * ne = dynamic_cast<NameExpr*>(singleInit->get_value())) {
346 string n = ne->get_name();
347 if (n == "0") {
348 initContext = new BasicType(Type::Qualifiers(),
349 BasicType::SignedInt);
350 } else {
351 DeclarationWithType * decl = lookupId( n );
352 initContext = decl->get_type();
353 }
354 } else if (ConstantExpr * e =
355 dynamic_cast<ConstantExpr*>(singleInit->get_value())) {
356 Constant *c = e->get_constant();
357 initContext = c->get_type();
358 } else {
359 assert(0);
360 }
361#endif
362 CastExpr *castExpr = new CastExpr( singleInit->get_value(), initContext->clone() );
363 Expression *newExpr = findSingleExpression( castExpr, *this );
364 delete castExpr;
365 singleInit->set_value( newExpr );
366
367 // check if initializing type is char[]
368 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
369 if ( isCharType( at->get_base() ) ) {
370 // check if the resolved type is char *
371 if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_results().front() ) ) {
372 if ( isCharType( pt->get_base() ) ) {
373 // strip cast if we're initializing a char[] with a char *, e.g. char x[] = "hello";
374 CastExpr *ce = dynamic_cast< CastExpr * >( newExpr );
375 singleInit->set_value( ce->get_arg() );
376 ce->set_arg( NULL );
377 delete ce;
378 }
379 }
380 }
381 }
382 } // if
383// singleInit->get_value()->accept( *this );
384 }
385
386 void Resolver::resolveSingleAggrInit( Declaration * dcl, InitIterator & init, InitIterator & initEnd ) {
387 DeclarationWithType * dt = dynamic_cast< DeclarationWithType * >( dcl );
388 assert( dt );
389 initContext = dt->get_type();
390 try {
391 if ( init == initEnd ) return; // stop when there are no more initializers
392 (*init)->accept( *this );
393 ++init; // made it past an initializer
394 } catch( SemanticError & ) {
395 // need to delve deeper, if you can
396 if ( StructInstType * sit = dynamic_cast< StructInstType * >( dt->get_type() ) ) {
397 resolveAggrInit( sit->get_baseStruct(), init, initEnd );
398 } else if ( UnionInstType * uit = dynamic_cast< UnionInstType * >( dt->get_type() ) ) {
399 resolveAggrInit( uit->get_baseUnion(), init, initEnd );
400 } else {
401 // member is not an aggregate type, so can't go any deeper
402
403 // might need to rethink what is being thrown
404 throw;
405 } // if
406 }
407 }
408
409 void Resolver::resolveAggrInit( AggregateDecl * aggr, InitIterator & init, InitIterator & initEnd ) {
410 if ( StructDecl * st = dynamic_cast< StructDecl * >( aggr ) ) {
411 // want to resolve each initializer to the members of the struct,
412 // but if there are more initializers than members we should stop
413 list< Declaration * >::iterator it = st->get_members().begin();
414 for ( ; it != st->get_members().end(); ++it) {
415 resolveSingleAggrInit( *it, init, initEnd );
416 }
417 } else if ( UnionDecl * un = dynamic_cast< UnionDecl * >( aggr ) ) {
418 // only resolve to the first member of a union
419 resolveSingleAggrInit( *un->get_members().begin(), init, initEnd );
420 } // if
421 }
422
423 void Resolver::visit( ListInit * listInit ) {
424 InitIterator iter = listInit->begin_initializers();
425 InitIterator end = listInit->end_initializers();
426
427 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
428 // resolve each member to the base type of the array
429 for ( ; iter != end; ++iter ) {
430 initContext = at->get_base();
431 (*iter)->accept( *this );
432 } // for
433 } else if ( StructInstType * st = dynamic_cast< StructInstType * >( initContext ) ) {
434 resolveAggrInit( st->get_baseStruct(), iter, end );
435 } else if ( UnionInstType *st = dynamic_cast< UnionInstType * >( initContext ) ) {
436 resolveAggrInit( st->get_baseUnion(), iter, end );
437 } else {
438 // basic types are handled here
439 Visitor::visit( listInit );
440 }
441
442#if 0
443 if ( ArrayType *at = dynamic_cast<ArrayType*>(initContext) ) {
444 std::list<Initializer *>::iterator iter( listInit->begin_initializers() );
445 for ( ; iter != listInit->end_initializers(); ++iter ) {
446 initContext = at->get_base();
447 (*iter)->accept( *this );
448 } // for
449 } else if ( StructInstType *st = dynamic_cast<StructInstType*>(initContext) ) {
450 StructDecl *baseStruct = st->get_baseStruct();
451 std::list<Declaration *>::iterator iter1( baseStruct->get_members().begin() );
452 std::list<Initializer *>::iterator iter2( listInit->begin_initializers() );
453 for ( ; iter1 != baseStruct->get_members().end() && iter2 != listInit->end_initializers(); ++iter2 ) {
454 if ( (*iter2)->get_designators().empty() ) {
455 DeclarationWithType *dt = dynamic_cast<DeclarationWithType *>( *iter1 );
456 initContext = dt->get_type();
457 (*iter2)->accept( *this );
458 ++iter1;
459 } else {
460 StructDecl *st = baseStruct;
461 iter1 = st->get_members().begin();
462 std::list<Expression *>::iterator iter3( (*iter2)->get_designators().begin() );
463 for ( ; iter3 != (*iter2)->get_designators().end(); ++iter3 ) {
464 NameExpr *key = dynamic_cast<NameExpr *>( *iter3 );
465 assert( key );
466 for ( ; iter1 != st->get_members().end(); ++iter1 ) {
467 if ( key->get_name() == (*iter1)->get_name() ) {
468 (*iter1)->print( cout );
469 cout << key->get_name() << endl;
470 ObjectDecl *fred = dynamic_cast<ObjectDecl *>( *iter1 );
471 assert( fred );
472 StructInstType *mary = dynamic_cast<StructInstType*>( fred->get_type() );
473 assert( mary );
474 st = mary->get_baseStruct();
475 iter1 = st->get_members().begin();
476 break;
477 } // if
478 } // for
479 } // for
480 ObjectDecl *fred = dynamic_cast<ObjectDecl *>( *iter1 );
481 assert( fred );
482 initContext = fred->get_type();
483 (*listInit->begin_initializers())->accept( *this );
484 } // if
485 } // for
486 } else if ( UnionInstType *st = dynamic_cast<UnionInstType*>(initContext) ) {
487 DeclarationWithType *dt = dynamic_cast<DeclarationWithType *>( *st->get_baseUnion()->get_members().begin() );
488 initContext = dt->get_type();
489 (*listInit->begin_initializers())->accept( *this );
490 } // if
491#endif
492 }
493
494 // ConstructorInit - fall back on C-style initializer
495 void Resolver::fallbackInit( ConstructorInit * ctorInit ) {
496 // could not find valid constructor, or found an intrinsic constructor
497 // fall back on C-style initializer
498 delete ctorInit->get_ctor();
499 ctorInit->set_ctor( NULL );
500 delete ctorInit->get_dtor();
501 ctorInit->set_dtor( NULL );
502 maybeAccept( ctorInit->get_init(), *this );
503 }
504
505 void Resolver::visit( ConstructorInit *ctorInit ) {
506 try {
507 maybeAccept( ctorInit->get_ctor(), *this );
508 maybeAccept( ctorInit->get_dtor(), *this );
509 } catch ( SemanticError ) {
510 // no alternatives for the constructor initializer - fallback on C-style initializer
511 // xxx - not sure if this makes a ton of sense - should maybe never be able to have this situation?
512 fallbackInit( ctorInit );
513 return;
514 }
515
516 // found a constructor - can get rid of C-style initializer
517 delete ctorInit->get_init();
518 ctorInit->set_init( NULL );
519
520 // intrinsic single parameter constructors and destructors do nothing. Since this was
521 // implicitly generated, there's no way for it to have side effects, so get rid of it
522 // to clean up generated code.
523 if ( InitTweak::isInstrinsicSingleArgCallStmt( ctorInit->get_ctor() ) ) {
524 delete ctorInit->get_ctor();
525 ctorInit->set_ctor( NULL );
526 }
527 if ( InitTweak::isInstrinsicSingleArgCallStmt( ctorInit->get_ctor() ) ) {
528 delete ctorInit->get_dtor();
529 ctorInit->set_dtor( NULL );
530 }
531 }
532
533 void Resolver::visit( ImplicitCtorDtorStmt * impCtorDtorStmt ) {
534 // before resolving ctor/dtor, need to remove type qualifiers from the first argument (the object being constructed).
535 // Do this through a cast expression to greatly simplify the code.
536 Expression * callExpr = InitTweak::getCtorDtorCall( impCtorDtorStmt );
537 assert( callExpr );
538 Expression *& constructee = InitTweak::getCallArg( callExpr, 0 );
539 Type * type = 0;
540
541 // need to find the type of the first argument, which is unfortunately not uniform since array construction
542 // includes an untyped '+' expression.
543 if ( UntypedExpr * plusExpr = dynamic_cast< UntypedExpr * >( constructee ) ) {
544 // constructee is <array>+<index>
545 // get Variable <array>, then get the base type of the VariableExpr - this is the type that needs to be fixed
546 Expression * arr = InitTweak::getCallArg( plusExpr, 0 );
547 assert( dynamic_cast< VariableExpr * >( arr ) || dynamic_cast< MemberExpr *>( arr ) );
548 assert( arr && arr->get_results().size() == 1 );
549 type = arr->get_results().front()->clone();
550 } else {
551 // otherwise, constructing a plain object, which means the object's address is being taken.
552 // Need to get the type of the VariableExpr object, because the AddressExpr is rebuilt and uses the
553 // type of the VariableExpr to do so.
554 assert( constructee->get_results().size() == 1 );
555 AddressExpr * addrExpr = dynamic_cast< AddressExpr * > ( constructee );
556 assert( addrExpr && addrExpr->get_results().size() == 1 );
557 type = addrExpr->get_results().front()->clone();
558 }
559 // cast to T* with qualifiers removed.
560 // unfortunately, lvalue is considered a qualifier. For AddressExpr to resolve, its argument
561 // must have an lvalue qualified type, so remove all qualifiers except lvalue. If we ever
562 // remove lvalue as a qualifier, this can change to
563 // type->get_qualifiers() = Type::Qualifiers();
564 Type * base = InitTweak::getPointerBase( type );
565 assert( base );
566 base->get_qualifiers() -= Type::Qualifiers(true, true, true, false, true, true);
567 // if pointer has lvalue qualifier, cast won't appear in output
568 type->set_isLvalue( false );
569 constructee = new CastExpr( constructee, type );
570
571 // finally, resolve the ctor/dtor
572 impCtorDtorStmt->get_callStmt()->accept( *this );
573 }
574} // namespace ResolvExpr
575
576// Local Variables: //
577// tab-width: 4 //
578// mode: c++ //
579// compile-command: "make install" //
580// End: //
Note: See TracBrowser for help on using the repository browser.