source: src/ResolvExpr/Resolver.cc@ e04ef3a

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors ctor deferred_resn demangler enum forall-pointer-decay gc_noraii jacob/cs343-translation jenkins-sandbox memory new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since e04ef3a was 7b3f66b, checked in by Rob Schluntz <rschlunt@…>, 9 years ago

Don't construct global extern variables, handle global array construction separately, stub for array initialization list with constructors

  • Property mode set to 100644
File size: 18.1 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Resolver.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 12:17:01 2015
11// Last Modified By : Rob Schluntz
12// Last Modified On : Fri May 13 11:36:40 2016
13// Update Count : 203
14//
15
16#include "Resolver.h"
17#include "AlternativeFinder.h"
18#include "Alternative.h"
19#include "RenameVars.h"
20#include "ResolveTypeof.h"
21#include "SynTree/Statement.h"
22#include "SynTree/Type.h"
23#include "SynTree/Expression.h"
24#include "SynTree/Initializer.h"
25#include "SymTab/Indexer.h"
26#include "Common/utility.h"
27#include "InitTweak/InitTweak.h"
28
29#include <iostream>
30using namespace std;
31
32namespace ResolvExpr {
33 class Resolver : public SymTab::Indexer {
34 public:
35 Resolver() : SymTab::Indexer( false ), switchType( 0 ) {}
36
37 virtual void visit( FunctionDecl *functionDecl );
38 virtual void visit( ObjectDecl *functionDecl );
39 virtual void visit( TypeDecl *typeDecl );
40
41 virtual void visit( ArrayType * at );
42
43 virtual void visit( ExprStmt *exprStmt );
44 virtual void visit( AsmExpr *asmExpr );
45 virtual void visit( AsmStmt *asmStmt );
46 virtual void visit( IfStmt *ifStmt );
47 virtual void visit( WhileStmt *whileStmt );
48 virtual void visit( ForStmt *forStmt );
49 virtual void visit( SwitchStmt *switchStmt );
50 virtual void visit( ChooseStmt *switchStmt );
51 virtual void visit( CaseStmt *caseStmt );
52 virtual void visit( BranchStmt *branchStmt );
53 virtual void visit( ReturnStmt *returnStmt );
54
55 virtual void visit( SingleInit *singleInit );
56 virtual void visit( ListInit *listInit );
57 virtual void visit( ConstructorInit *ctorInit );
58 private:
59 typedef std::list< Initializer * >::iterator InitIterator;
60
61 void resolveAggrInit( AggregateDecl *, InitIterator &, InitIterator & );
62 void resolveSingleAggrInit( Declaration *, InitIterator &, InitIterator & );
63 void fallbackInit( ConstructorInit * ctorInit );
64 std::list< Type * > functionReturn;
65 Type *initContext;
66 Type *switchType;
67 };
68
69 void resolve( std::list< Declaration * > translationUnit ) {
70 Resolver resolver;
71 acceptAll( translationUnit, resolver );
72#if 0
73 resolver.print( cerr );
74 for ( std::list< Declaration * >::iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) {
75 (*i)->print( std::cerr );
76 (*i)->accept( resolver );
77 } // for
78#endif
79 }
80
81 Expression *resolveInVoidContext( Expression *expr, const SymTab::Indexer &indexer ) {
82 TypeEnvironment env;
83 return resolveInVoidContext( expr, indexer, env );
84 }
85
86
87 namespace {
88 void finishExpr( Expression *expr, const TypeEnvironment &env ) {
89 expr->set_env( new TypeSubstitution );
90 env.makeSubstitution( *expr->get_env() );
91 }
92 } // namespace
93
94 Expression *findVoidExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
95 global_renamer.reset();
96 TypeEnvironment env;
97 Expression *newExpr = resolveInVoidContext( untyped, indexer, env );
98 finishExpr( newExpr, env );
99 return newExpr;
100 }
101
102 namespace {
103 Expression *findSingleExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
104 TypeEnvironment env;
105 AlternativeFinder finder( indexer, env );
106 finder.find( untyped );
107#if 0
108 if ( finder.get_alternatives().size() != 1 ) {
109 std::cout << "untyped expr is ";
110 untyped->print( std::cout );
111 std::cout << std::endl << "alternatives are:";
112 for ( std::list< Alternative >::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
113 i->print( std::cout );
114 } // for
115 } // if
116#endif
117 assert( finder.get_alternatives().size() == 1 );
118 Alternative &choice = finder.get_alternatives().front();
119 Expression *newExpr = choice.expr->clone();
120 finishExpr( newExpr, choice.env );
121 return newExpr;
122 }
123
124 bool isIntegralType( Type *type ) {
125 if ( dynamic_cast< EnumInstType * >( type ) ) {
126 return true;
127 } else if ( BasicType *bt = dynamic_cast< BasicType * >( type ) ) {
128 return bt->isInteger();
129 } else {
130 return false;
131 } // if
132 }
133
134 Expression *findIntegralExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
135 TypeEnvironment env;
136 AlternativeFinder finder( indexer, env );
137 finder.find( untyped );
138#if 0
139 if ( finder.get_alternatives().size() != 1 ) {
140 std::cout << "untyped expr is ";
141 untyped->print( std::cout );
142 std::cout << std::endl << "alternatives are:";
143 for ( std::list< Alternative >::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
144 i->print( std::cout );
145 } // for
146 } // if
147#endif
148 Expression *newExpr = 0;
149 const TypeEnvironment *newEnv = 0;
150 for ( AltList::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
151 if ( i->expr->get_results().size() == 1 && isIntegralType( i->expr->get_results().front() ) ) {
152 if ( newExpr ) {
153 throw SemanticError( "Too many interpretations for case control expression", untyped );
154 } else {
155 newExpr = i->expr->clone();
156 newEnv = &i->env;
157 } // if
158 } // if
159 } // for
160 if ( ! newExpr ) {
161 throw SemanticError( "No interpretations for case control expression", untyped );
162 } // if
163 finishExpr( newExpr, *newEnv );
164 return newExpr;
165 }
166
167 }
168
169 void Resolver::visit( ObjectDecl *objectDecl ) {
170 Type *new_type = resolveTypeof( objectDecl->get_type(), *this );
171 objectDecl->set_type( new_type );
172 // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that class-variable
173 // initContext is changed multiple time because the LHS is analysed twice. The second analysis changes
174 // initContext because of a function type can contain object declarations in the return and parameter types. So
175 // each value of initContext is retained, so the type on the first analysis is preserved and used for selecting
176 // the RHS.
177 Type *temp = initContext;
178 initContext = new_type;
179 SymTab::Indexer::visit( objectDecl );
180 initContext = temp;
181 }
182
183 void Resolver::visit( ArrayType * at ) {
184 if ( at->get_dimension() ) {
185 BasicType arrayLenType = BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
186 CastExpr *castExpr = new CastExpr( at->get_dimension(), arrayLenType.clone() );
187 Expression *newExpr = findSingleExpression( castExpr, *this );
188 delete at->get_dimension();
189 at->set_dimension( newExpr );
190 }
191 Visitor::visit( at );
192 }
193
194 void Resolver::visit( TypeDecl *typeDecl ) {
195 if ( typeDecl->get_base() ) {
196 Type *new_type = resolveTypeof( typeDecl->get_base(), *this );
197 typeDecl->set_base( new_type );
198 } // if
199 SymTab::Indexer::visit( typeDecl );
200 }
201
202 void Resolver::visit( FunctionDecl *functionDecl ) {
203#if 0
204 std::cout << "resolver visiting functiondecl ";
205 functionDecl->print( std::cout );
206 std::cout << std::endl;
207#endif
208 Type *new_type = resolveTypeof( functionDecl->get_type(), *this );
209 functionDecl->set_type( new_type );
210 std::list< Type * > oldFunctionReturn = functionReturn;
211 functionReturn.clear();
212 for ( std::list< DeclarationWithType * >::const_iterator i = functionDecl->get_functionType()->get_returnVals().begin(); i != functionDecl->get_functionType()->get_returnVals().end(); ++i ) {
213 functionReturn.push_back( (*i)->get_type() );
214 } // for
215 SymTab::Indexer::visit( functionDecl );
216 functionReturn = oldFunctionReturn;
217 }
218
219 void Resolver::visit( ExprStmt *exprStmt ) {
220 if ( exprStmt->get_expr() ) {
221 Expression *newExpr = findVoidExpression( exprStmt->get_expr(), *this );
222 delete exprStmt->get_expr();
223 exprStmt->set_expr( newExpr );
224 } // if
225 }
226
227 void Resolver::visit( AsmExpr *asmExpr ) {
228 Expression *newExpr = findVoidExpression( asmExpr->get_operand(), *this );
229 delete asmExpr->get_operand();
230 asmExpr->set_operand( newExpr );
231 if ( asmExpr->get_inout() ) {
232 newExpr = findVoidExpression( asmExpr->get_inout(), *this );
233 delete asmExpr->get_inout();
234 asmExpr->set_inout( newExpr );
235 } // if
236 }
237
238 void Resolver::visit( AsmStmt *asmStmt ) {
239 acceptAll( asmStmt->get_input(), *this);
240 acceptAll( asmStmt->get_output(), *this);
241 }
242
243 void Resolver::visit( IfStmt *ifStmt ) {
244 Expression *newExpr = findSingleExpression( ifStmt->get_condition(), *this );
245 delete ifStmt->get_condition();
246 ifStmt->set_condition( newExpr );
247 Visitor::visit( ifStmt );
248 }
249
250 void Resolver::visit( WhileStmt *whileStmt ) {
251 Expression *newExpr = findSingleExpression( whileStmt->get_condition(), *this );
252 delete whileStmt->get_condition();
253 whileStmt->set_condition( newExpr );
254 Visitor::visit( whileStmt );
255 }
256
257 void Resolver::visit( ForStmt *forStmt ) {
258 SymTab::Indexer::visit( forStmt );
259
260 if ( forStmt->get_condition() ) {
261 Expression * newExpr = findSingleExpression( forStmt->get_condition(), *this );
262 delete forStmt->get_condition();
263 forStmt->set_condition( newExpr );
264 } // if
265
266 if ( forStmt->get_increment() ) {
267 Expression * newExpr = findVoidExpression( forStmt->get_increment(), *this );
268 delete forStmt->get_increment();
269 forStmt->set_increment( newExpr );
270 } // if
271 }
272
273 template< typename SwitchClass >
274 void handleSwitchStmt( SwitchClass *switchStmt, SymTab::Indexer &visitor ) {
275 Expression *newExpr;
276 newExpr = findIntegralExpression( switchStmt->get_condition(), visitor );
277 delete switchStmt->get_condition();
278 switchStmt->set_condition( newExpr );
279
280 visitor.Visitor::visit( switchStmt );
281 }
282
283 void Resolver::visit( SwitchStmt *switchStmt ) {
284 handleSwitchStmt( switchStmt, *this );
285 }
286
287 void Resolver::visit( ChooseStmt *switchStmt ) {
288 handleSwitchStmt( switchStmt, *this );
289 }
290
291 void Resolver::visit( CaseStmt *caseStmt ) {
292 Visitor::visit( caseStmt );
293 }
294
295 void Resolver::visit( BranchStmt *branchStmt ) {
296 // must resolve the argument for a computed goto
297 if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement
298 if ( Expression * arg = branchStmt->get_computedTarget() ) {
299 VoidType v = Type::Qualifiers(); // cast to void * for the alternative finder
300 PointerType pt( Type::Qualifiers(), v.clone() );
301 CastExpr * castExpr = new CastExpr( arg, pt.clone() );
302 Expression * newExpr = findSingleExpression( castExpr, *this ); // find best expression
303 branchStmt->set_target( newExpr );
304 } // if
305 } // if
306 }
307
308 void Resolver::visit( ReturnStmt *returnStmt ) {
309 if ( returnStmt->get_expr() ) {
310 CastExpr *castExpr = new CastExpr( returnStmt->get_expr() );
311 cloneAll( functionReturn, castExpr->get_results() );
312 Expression *newExpr = findSingleExpression( castExpr, *this );
313 delete castExpr;
314 returnStmt->set_expr( newExpr );
315 } // if
316 }
317
318 template< typename T >
319 bool isCharType( T t ) {
320 if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) {
321 return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar ||
322 bt->get_kind() == BasicType::UnsignedChar;
323 }
324 return false;
325 }
326
327 void Resolver::visit( SingleInit *singleInit ) {
328 if ( singleInit->get_value() ) {
329#if 0
330 if (NameExpr * ne = dynamic_cast<NameExpr*>(singleInit->get_value())) {
331 string n = ne->get_name();
332 if (n == "0") {
333 initContext = new BasicType(Type::Qualifiers(),
334 BasicType::SignedInt);
335 } else {
336 DeclarationWithType * decl = lookupId( n );
337 initContext = decl->get_type();
338 }
339 } else if (ConstantExpr * e =
340 dynamic_cast<ConstantExpr*>(singleInit->get_value())) {
341 Constant *c = e->get_constant();
342 initContext = c->get_type();
343 } else {
344 assert(0);
345 }
346#endif
347 CastExpr *castExpr = new CastExpr( singleInit->get_value(), initContext->clone() );
348 Expression *newExpr = findSingleExpression( castExpr, *this );
349 delete castExpr;
350 singleInit->set_value( newExpr );
351
352 // check if initializing type is char[]
353 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
354 if ( isCharType( at->get_base() ) ) {
355 // check if the resolved type is char *
356 if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_results().front() ) ) {
357 if ( isCharType( pt->get_base() ) ) {
358 // strip cast if we're initializing a char[] with a char *, e.g. char x[] = "hello";
359 CastExpr *ce = dynamic_cast< CastExpr * >( newExpr );
360 singleInit->set_value( ce->get_arg() );
361 ce->set_arg( NULL );
362 delete ce;
363 }
364 }
365 }
366 }
367 } // if
368// singleInit->get_value()->accept( *this );
369 }
370
371 void Resolver::resolveSingleAggrInit( Declaration * dcl, InitIterator & init, InitIterator & initEnd ) {
372 DeclarationWithType * dt = dynamic_cast< DeclarationWithType * >( dcl );
373 assert( dt );
374 initContext = dt->get_type();
375 try {
376 if ( init == initEnd ) return; // stop when there are no more initializers
377 (*init)->accept( *this );
378 ++init; // made it past an initializer
379 } catch( SemanticError & ) {
380 // need to delve deeper, if you can
381 if ( StructInstType * sit = dynamic_cast< StructInstType * >( dt->get_type() ) ) {
382 resolveAggrInit( sit->get_baseStruct(), init, initEnd );
383 } else if ( UnionInstType * uit = dynamic_cast< UnionInstType * >( dt->get_type() ) ) {
384 resolveAggrInit( uit->get_baseUnion(), init, initEnd );
385 } else {
386 // member is not an aggregate type, so can't go any deeper
387
388 // might need to rethink what is being thrown
389 throw;
390 } // if
391 }
392 }
393
394 void Resolver::resolveAggrInit( AggregateDecl * aggr, InitIterator & init, InitIterator & initEnd ) {
395 if ( StructDecl * st = dynamic_cast< StructDecl * >( aggr ) ) {
396 // want to resolve each initializer to the members of the struct,
397 // but if there are more initializers than members we should stop
398 list< Declaration * >::iterator it = st->get_members().begin();
399 for ( ; it != st->get_members().end(); ++it) {
400 resolveSingleAggrInit( *it, init, initEnd );
401 }
402 } else if ( UnionDecl * un = dynamic_cast< UnionDecl * >( aggr ) ) {
403 // only resolve to the first member of a union
404 resolveSingleAggrInit( *un->get_members().begin(), init, initEnd );
405 } // if
406 }
407
408 void Resolver::visit( ListInit * listInit ) {
409 InitIterator iter = listInit->begin_initializers();
410 InitIterator end = listInit->end_initializers();
411
412 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
413 // resolve each member to the base type of the array
414 for ( ; iter != end; ++iter ) {
415 initContext = at->get_base();
416 (*iter)->accept( *this );
417 } // for
418 } else if ( StructInstType * st = dynamic_cast< StructInstType * >( initContext ) ) {
419 resolveAggrInit( st->get_baseStruct(), iter, end );
420 } else if ( UnionInstType *st = dynamic_cast< UnionInstType * >( initContext ) ) {
421 resolveAggrInit( st->get_baseUnion(), iter, end );
422 } else {
423 // basic types are handled here
424 Visitor::visit( listInit );
425 }
426
427#if 0
428 if ( ArrayType *at = dynamic_cast<ArrayType*>(initContext) ) {
429 std::list<Initializer *>::iterator iter( listInit->begin_initializers() );
430 for ( ; iter != listInit->end_initializers(); ++iter ) {
431 initContext = at->get_base();
432 (*iter)->accept( *this );
433 } // for
434 } else if ( StructInstType *st = dynamic_cast<StructInstType*>(initContext) ) {
435 StructDecl *baseStruct = st->get_baseStruct();
436 std::list<Declaration *>::iterator iter1( baseStruct->get_members().begin() );
437 std::list<Initializer *>::iterator iter2( listInit->begin_initializers() );
438 for ( ; iter1 != baseStruct->get_members().end() && iter2 != listInit->end_initializers(); ++iter2 ) {
439 if ( (*iter2)->get_designators().empty() ) {
440 DeclarationWithType *dt = dynamic_cast<DeclarationWithType *>( *iter1 );
441 initContext = dt->get_type();
442 (*iter2)->accept( *this );
443 ++iter1;
444 } else {
445 StructDecl *st = baseStruct;
446 iter1 = st->get_members().begin();
447 std::list<Expression *>::iterator iter3( (*iter2)->get_designators().begin() );
448 for ( ; iter3 != (*iter2)->get_designators().end(); ++iter3 ) {
449 NameExpr *key = dynamic_cast<NameExpr *>( *iter3 );
450 assert( key );
451 for ( ; iter1 != st->get_members().end(); ++iter1 ) {
452 if ( key->get_name() == (*iter1)->get_name() ) {
453 (*iter1)->print( cout );
454 cout << key->get_name() << endl;
455 ObjectDecl *fred = dynamic_cast<ObjectDecl *>( *iter1 );
456 assert( fred );
457 StructInstType *mary = dynamic_cast<StructInstType*>( fred->get_type() );
458 assert( mary );
459 st = mary->get_baseStruct();
460 iter1 = st->get_members().begin();
461 break;
462 } // if
463 } // for
464 } // for
465 ObjectDecl *fred = dynamic_cast<ObjectDecl *>( *iter1 );
466 assert( fred );
467 initContext = fred->get_type();
468 (*listInit->begin_initializers())->accept( *this );
469 } // if
470 } // for
471 } else if ( UnionInstType *st = dynamic_cast<UnionInstType*>(initContext) ) {
472 DeclarationWithType *dt = dynamic_cast<DeclarationWithType *>( *st->get_baseUnion()->get_members().begin() );
473 initContext = dt->get_type();
474 (*listInit->begin_initializers())->accept( *this );
475 } // if
476#endif
477 }
478
479 // ConstructorInit - fall back on C-style initializer
480 void Resolver::fallbackInit( ConstructorInit * ctorInit ) {
481 // could not find valid constructor, or found an intrinsic constructor
482 // fall back on C-style initializer
483 delete ctorInit->get_ctor();
484 ctorInit->set_ctor( NULL );
485 maybeAccept( ctorInit->get_init(), *this );
486 }
487
488 void Resolver::visit( ConstructorInit *ctorInit ) {
489 try {
490 maybeAccept( ctorInit->get_ctor(), *this );
491 maybeAccept( ctorInit->get_dtor(), *this );
492 } catch ( SemanticError ) {
493 // no alternatives for the constructor initializer - fallback on C-style initializer
494 // xxx- not sure if this makes a ton of sense - should maybe never be able to have this situation?
495 fallbackInit( ctorInit );
496 return;
497 }
498
499 // found a constructor - can get rid of C-style initializer
500 delete ctorInit->get_init();
501 ctorInit->set_init( NULL );
502
503 // intrinsic single parameter constructors and destructors do nothing. Since this was
504 // implicitly generated, there's no way for it to have side effects, so get rid of it
505 // to clean up generated code.
506 if ( InitTweak::isInstrinsicSingleArgCallStmt( ctorInit->get_ctor() ) ) {
507 delete ctorInit->get_ctor();
508 ctorInit->set_ctor( NULL );
509 }
510 if ( InitTweak::isInstrinsicSingleArgCallStmt( ctorInit->get_ctor() ) ) {
511 delete ctorInit->get_dtor();
512 ctorInit->set_dtor( NULL );
513 }
514 }
515} // namespace ResolvExpr
516
517// Local Variables: //
518// tab-width: 4 //
519// mode: c++ //
520// compile-command: "make install" //
521// End: //
Note: See TracBrowser for help on using the repository browser.