source: src/ResolvExpr/Resolver.cc@ d2d50d7

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since d2d50d7 was 8587878e, checked in by Rob Schluntz <rschlunt@…>, 8 years ago

Refactor findIntegralExpression and use it to resolve if/for/while conditions [fixes #76]

  • Property mode set to 100644
File size: 28.0 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Resolver.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 12:17:01 2015
11// Last Modified By : Andrew Beach
12// Last Modified On : Tus Aug 8 16:06:00 2017
13// Update Count : 212
14//
15
16#include <stddef.h> // for NULL
17#include <cassert> // for strict_dynamic_cast, assert
18#include <memory> // for allocator, allocator_traits<...
19#include <tuple> // for get
20#include <vector>
21
22#include "Alternative.h" // for Alternative, AltList
23#include "AlternativeFinder.h" // for AlternativeFinder, resolveIn...
24#include "Common/PassVisitor.h" // for PassVisitor
25#include "Common/SemanticError.h" // for SemanticError
26#include "Common/utility.h" // for ValueGuard, group_iterate
27#include "CurrentObject.h" // for CurrentObject
28#include "InitTweak/GenInit.h"
29#include "InitTweak/InitTweak.h" // for isIntrinsicSingleArgCallStmt
30#include "RenameVars.h" // for RenameVars, global_renamer
31#include "ResolvExpr/TypeEnvironment.h" // for TypeEnvironment
32#include "ResolveTypeof.h" // for resolveTypeof
33#include "Resolver.h"
34#include "SymTab/Autogen.h" // for SizeType
35#include "SymTab/Indexer.h" // for Indexer
36#include "SynTree/Declaration.h" // for ObjectDecl, TypeDecl, Declar...
37#include "SynTree/Expression.h" // for Expression, CastExpr, InitExpr
38#include "SynTree/Initializer.h" // for ConstructorInit, SingleInit
39#include "SynTree/Statement.h" // for ForStmt, Statement, BranchStmt
40#include "SynTree/Type.h" // for Type, BasicType, PointerType
41#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
42#include "SynTree/Visitor.h" // for acceptAll, maybeAccept
43#include "Tuples/Tuples.h"
44#include "typeops.h" // for extractResultType
45#include "Unify.h" // for unify
46
47using namespace std;
48
49namespace ResolvExpr {
50 struct Resolver final : public WithIndexer, public WithGuards, public WithVisitorRef<Resolver>, public WithShortCircuiting, public WithStmtsToAdd {
51 Resolver() {}
52 Resolver( const SymTab::Indexer & other ) {
53 indexer = other;
54 }
55
56 void previsit( FunctionDecl *functionDecl );
57 void postvisit( FunctionDecl *functionDecl );
58 void previsit( ObjectDecl *objectDecll );
59 void previsit( TypeDecl *typeDecl );
60 void previsit( EnumDecl * enumDecl );
61
62 void previsit( ArrayType * at );
63 void previsit( PointerType * at );
64
65 void previsit( ExprStmt *exprStmt );
66 void previsit( AsmExpr *asmExpr );
67 void previsit( AsmStmt *asmStmt );
68 void previsit( IfStmt *ifStmt );
69 void previsit( WhileStmt *whileStmt );
70 void previsit( ForStmt *forStmt );
71 void previsit( SwitchStmt *switchStmt );
72 void previsit( CaseStmt *caseStmt );
73 void previsit( BranchStmt *branchStmt );
74 void previsit( ReturnStmt *returnStmt );
75 void previsit( ThrowStmt *throwStmt );
76 void previsit( CatchStmt *catchStmt );
77 void previsit( WaitForStmt * stmt );
78 void previsit( WithStmt * withStmt );
79
80 void previsit( SingleInit *singleInit );
81 void previsit( ListInit *listInit );
82 void previsit( ConstructorInit *ctorInit );
83 private:
84 typedef std::list< Initializer * >::iterator InitIterator;
85
86 template< typename PtrType >
87 void handlePtrType( PtrType * type );
88
89 void resolveAggrInit( ReferenceToType *, InitIterator &, InitIterator & );
90 void resolveSingleAggrInit( Declaration *, InitIterator &, InitIterator &, TypeSubstitution sub );
91 void fallbackInit( ConstructorInit * ctorInit );
92
93 Type * functionReturn = nullptr;
94 CurrentObject currentObject = nullptr;
95 bool inEnumDecl = false;
96 };
97
98 void resolve( std::list< Declaration * > translationUnit ) {
99 PassVisitor<Resolver> resolver;
100 acceptAll( translationUnit, resolver );
101 }
102
103 void resolveDecl( Declaration * decl, const SymTab::Indexer &indexer ) {
104 PassVisitor<Resolver> resolver( indexer );
105 maybeAccept( decl, resolver );
106 }
107
108 // used in resolveTypeof
109 Expression *resolveInVoidContext( Expression *expr, const SymTab::Indexer &indexer ) {
110 TypeEnvironment env;
111 return resolveInVoidContext( expr, indexer, env );
112 }
113
114 namespace {
115 void finishExpr( Expression *expr, const TypeEnvironment &env, TypeSubstitution * oldenv = nullptr ) {
116 expr->env = oldenv ? oldenv->clone() : new TypeSubstitution;
117 env.makeSubstitution( *expr->get_env() );
118 }
119
120 void removeExtraneousCast( Expression *& expr, const SymTab::Indexer & indexer ) {
121 if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( expr ) ) {
122 if ( ResolvExpr::typesCompatible( castExpr->arg->result, castExpr->result, indexer ) ) {
123 // cast is to the same type as its argument, so it's unnecessary -- remove it
124 expr = castExpr->arg;
125 castExpr->arg = nullptr;
126 std::swap( expr->env, castExpr->env );
127 delete castExpr;
128 }
129 }
130 }
131 } // namespace
132
133 void findVoidExpression( Expression *& untyped, const SymTab::Indexer &indexer ) {
134 global_renamer.reset();
135 TypeEnvironment env;
136 Expression *newExpr = resolveInVoidContext( untyped, indexer, env );
137 finishExpr( newExpr, env, untyped->env );
138 delete untyped;
139 untyped = newExpr;
140 }
141
142 void findSingleExpression( Expression *&untyped, const SymTab::Indexer &indexer ) {
143 if ( ! untyped ) return;
144 TypeEnvironment env;
145 AlternativeFinder finder( indexer, env );
146 finder.find( untyped );
147 #if 0
148 if ( finder.get_alternatives().size() != 1 ) {
149 std::cerr << "untyped expr is ";
150 untyped->print( std::cerr );
151 std::cerr << std::endl << "alternatives are:";
152 for ( const Alternative & alt : finder.get_alternatives() ) {
153 alt.print( std::cerr );
154 } // for
155 } // if
156 #endif
157 assertf( finder.get_alternatives().size() == 1, "findSingleExpression: must have exactly one alternative at the end: (%zd) %s", finder.get_alternatives().size(), toString( untyped ).c_str() );
158 Alternative &choice = finder.get_alternatives().front();
159 Expression *newExpr = choice.expr->clone();
160 finishExpr( newExpr, choice.env, untyped->env );
161 delete untyped;
162 untyped = newExpr;
163 }
164
165 void findSingleExpression( Expression *& untyped, Type * type, const SymTab::Indexer & indexer ) {
166 assert( untyped && type );
167 untyped = new CastExpr( untyped, type );
168 findSingleExpression( untyped, indexer );
169 removeExtraneousCast( untyped, indexer );
170 }
171
172 namespace {
173 /// resolve `untyped` to the expression whose type satisfies `pred` with the lowest cost; kindStr is used for providing better error messages
174 template<typename Pred>
175 void findKindExpression(Expression *& untyped, const SymTab::Indexer & indexer, const std::string & kindStr, Pred pred) {
176 TypeEnvironment env;
177 AlternativeFinder finder( indexer, env );
178 finder.findWithAdjustment( untyped );
179
180 AltList candidates;
181 for ( Alternative & alt : finder.get_alternatives() ) {
182 if ( pred( alt.expr->result ) ) {
183 candidates.push_back( std::move( alt ) );
184 }
185 }
186
187 // choose the lowest cost expression among the candidates
188 AltList winners;
189 findMinCost( candidates.begin(), candidates.end(), back_inserter( winners ) );
190 if ( winners.size() == 0 ) {
191 throw SemanticError( "No reasonable alternatives for " + kindStr + " expression: ", untyped );
192 } else if ( winners.size() != 1 ) {
193 std::ostringstream stream;
194 stream << "Cannot choose between " << winners.size() << " alternatives for " + kindStr + " expression\n";
195 untyped->print( stream );
196 stream << "Alternatives are:\n";
197 printAlts( winners, stream, 1 );
198 throw SemanticError( stream.str() );
199 }
200
201 // there is one unambiguous interpretation - move the expression into the with statement
202 Alternative & alt = winners.front();
203 finishExpr( alt.expr, alt.env, untyped->env );
204 delete untyped;
205 untyped = alt.expr;
206 alt.expr = nullptr;
207 }
208
209 bool isIntegralType( Type *type ) {
210 if ( dynamic_cast< EnumInstType * >( type ) ) {
211 return true;
212 } else if ( BasicType *bt = dynamic_cast< BasicType * >( type ) ) {
213 return bt->isInteger();
214 } else if ( dynamic_cast< ZeroType* >( type ) != nullptr || dynamic_cast< OneType* >( type ) != nullptr ) {
215 return true;
216 } else {
217 return false;
218 } // if
219 }
220
221 void findIntegralExpression( Expression *& untyped, const SymTab::Indexer &indexer ) {
222 findKindExpression( untyped, indexer, "condition", isIntegralType );
223 }
224 }
225
226 void Resolver::previsit( ObjectDecl *objectDecl ) {
227 Type *new_type = resolveTypeof( objectDecl->get_type(), indexer );
228 objectDecl->set_type( new_type );
229 // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that class-variable
230 // initContext is changed multiple time because the LHS is analysed twice. The second analysis changes
231 // initContext because of a function type can contain object declarations in the return and parameter types. So
232 // each value of initContext is retained, so the type on the first analysis is preserved and used for selecting
233 // the RHS.
234 GuardValue( currentObject );
235 currentObject = CurrentObject( objectDecl->get_type() );
236 if ( inEnumDecl && dynamic_cast< EnumInstType * >( objectDecl->get_type() ) ) {
237 // enumerator initializers should not use the enum type to initialize, since
238 // the enum type is still incomplete at this point. Use signed int instead.
239 currentObject = CurrentObject( new BasicType( Type::Qualifiers(), BasicType::SignedInt ) );
240 }
241 }
242
243 template< typename PtrType >
244 void Resolver::handlePtrType( PtrType * type ) {
245 if ( type->get_dimension() ) {
246 findSingleExpression( type->dimension, SymTab::SizeType->clone(), indexer );
247 }
248 }
249
250 void Resolver::previsit( ArrayType * at ) {
251 handlePtrType( at );
252 }
253
254 void Resolver::previsit( PointerType * pt ) {
255 handlePtrType( pt );
256 }
257
258 void Resolver::previsit( TypeDecl *typeDecl ) {
259 if ( typeDecl->get_base() ) {
260 Type *new_type = resolveTypeof( typeDecl->get_base(), indexer );
261 typeDecl->set_base( new_type );
262 } // if
263 }
264
265 void Resolver::previsit( FunctionDecl *functionDecl ) {
266#if 0
267 std::cerr << "resolver visiting functiondecl ";
268 functionDecl->print( std::cerr );
269 std::cerr << std::endl;
270#endif
271 Type *new_type = resolveTypeof( functionDecl->get_type(), indexer );
272 functionDecl->set_type( new_type );
273 GuardValue( functionReturn );
274 functionReturn = ResolvExpr::extractResultType( functionDecl->get_functionType() );
275 }
276
277 void Resolver::postvisit( FunctionDecl *functionDecl ) {
278 // default value expressions have an environment which shouldn't be there and trips up later passes.
279 // xxx - it might be necessary to somehow keep the information from this environment, but I can't currently
280 // see how it's useful.
281 for ( Declaration * d : functionDecl->get_functionType()->get_parameters() ) {
282 if ( ObjectDecl * obj = dynamic_cast< ObjectDecl * >( d ) ) {
283 if ( SingleInit * init = dynamic_cast< SingleInit * >( obj->get_init() ) ) {
284 delete init->get_value()->get_env();
285 init->get_value()->set_env( nullptr );
286 }
287 }
288 }
289 }
290
291 void Resolver::previsit( EnumDecl * ) {
292 // in case we decide to allow nested enums
293 GuardValue( inEnumDecl );
294 inEnumDecl = true;
295 }
296
297 void Resolver::previsit( ExprStmt *exprStmt ) {
298 visit_children = false;
299 assertf( exprStmt->expr, "ExprStmt has null Expression in resolver" );
300 findVoidExpression( exprStmt->expr, indexer );
301 }
302
303 void Resolver::previsit( AsmExpr *asmExpr ) {
304 visit_children = false;
305 findVoidExpression( asmExpr->operand, indexer );
306 if ( asmExpr->get_inout() ) {
307 findVoidExpression( asmExpr->inout, indexer );
308 } // if
309 }
310
311 void Resolver::previsit( AsmStmt *asmStmt ) {
312 visit_children = false;
313 acceptAll( asmStmt->get_input(), *visitor );
314 acceptAll( asmStmt->get_output(), *visitor );
315 }
316
317 void Resolver::previsit( IfStmt *ifStmt ) {
318 findIntegralExpression( ifStmt->condition, indexer );
319 }
320
321 void Resolver::previsit( WhileStmt *whileStmt ) {
322 findIntegralExpression( whileStmt->condition, indexer );
323 }
324
325 void Resolver::previsit( ForStmt *forStmt ) {
326 if ( forStmt->condition ) {
327 findIntegralExpression( forStmt->condition, indexer );
328 } // if
329
330 if ( forStmt->increment ) {
331 findVoidExpression( forStmt->increment, indexer );
332 } // if
333 }
334
335 void Resolver::previsit( SwitchStmt *switchStmt ) {
336 GuardValue( currentObject );
337 findIntegralExpression( switchStmt->condition, indexer );
338
339 currentObject = CurrentObject( switchStmt->condition->result );
340 }
341
342 void Resolver::previsit( CaseStmt *caseStmt ) {
343 if ( caseStmt->get_condition() ) {
344 std::list< InitAlternative > initAlts = currentObject.getOptions();
345 assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral expression." );
346 // must remove cast from case statement because RangeExpr cannot be cast.
347 Expression * newExpr = new CastExpr( caseStmt->condition, initAlts.front().type->clone() );
348 findSingleExpression( newExpr, indexer );
349 CastExpr * castExpr = strict_dynamic_cast< CastExpr * >( newExpr );
350 caseStmt->condition = castExpr->arg;
351 castExpr->arg = nullptr;
352 delete castExpr;
353 }
354 }
355
356 void Resolver::previsit( BranchStmt *branchStmt ) {
357 visit_children = false;
358 // must resolve the argument for a computed goto
359 if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement
360 if ( branchStmt->computedTarget ) {
361 // computed goto argument is void *
362 findSingleExpression( branchStmt->computedTarget, new PointerType( Type::Qualifiers(), new VoidType( Type::Qualifiers() ) ), indexer );
363 } // if
364 } // if
365 }
366
367 void Resolver::previsit( ReturnStmt *returnStmt ) {
368 visit_children = false;
369 if ( returnStmt->expr ) {
370 findSingleExpression( returnStmt->expr, functionReturn->clone(), indexer );
371 } // if
372 }
373
374 void Resolver::previsit( ThrowStmt *throwStmt ) {
375 visit_children = false;
376 // TODO: Replace *exception type with &exception type.
377 if ( throwStmt->get_expr() ) {
378 StructDecl * exception_decl =
379 indexer.lookupStruct( "__cfaabi_ehm__base_exception_t" );
380 assert( exception_decl );
381 Type * exceptType = new PointerType( noQualifiers, new StructInstType( noQualifiers, exception_decl ) );
382 findSingleExpression( throwStmt->expr, exceptType, indexer );
383 }
384 }
385
386 void Resolver::previsit( CatchStmt *catchStmt ) {
387 if ( catchStmt->cond ) {
388 findSingleExpression( catchStmt->cond, new BasicType( noQualifiers, BasicType::Bool ), indexer );
389 }
390 }
391
392 template< typename iterator_t >
393 inline bool advance_to_mutex( iterator_t & it, const iterator_t & end ) {
394 while( it != end && !(*it)->get_type()->get_mutex() ) {
395 it++;
396 }
397
398 return it != end;
399 }
400
401 void Resolver::previsit( WaitForStmt * stmt ) {
402 visit_children = false;
403
404 // Resolve all clauses first
405 for( auto& clause : stmt->clauses ) {
406
407 TypeEnvironment env;
408 AlternativeFinder funcFinder( indexer, env );
409
410 // Find all alternatives for a function in canonical form
411 funcFinder.findWithAdjustment( clause.target.function );
412
413 if ( funcFinder.get_alternatives().empty() ) {
414 stringstream ss;
415 ss << "Use of undeclared indentifier '";
416 ss << strict_dynamic_cast<NameExpr*>( clause.target.function )->name;
417 ss << "' in call to waitfor";
418 throw SemanticError( ss.str() );
419 }
420
421 // Find all alternatives for all arguments in canonical form
422 std::vector< AlternativeFinder > argAlternatives;
423 funcFinder.findSubExprs( clause.target.arguments.begin(), clause.target.arguments.end(), back_inserter( argAlternatives ) );
424
425 // List all combinations of arguments
426 std::vector< AltList > possibilities;
427 combos( argAlternatives.begin(), argAlternatives.end(), back_inserter( possibilities ) );
428
429 AltList func_candidates;
430 std::vector< AltList > args_candidates;
431
432 // For every possible function :
433 // try matching the arguments to the parameters
434 // not the other way around because we have more arguments than parameters
435 SemanticError errors;
436 for ( Alternative & func : funcFinder.get_alternatives() ) {
437 try {
438 PointerType * pointer = dynamic_cast< PointerType* >( func.expr->get_result()->stripReferences() );
439 if( !pointer ) {
440 throw SemanticError( "candidate not viable: not a pointer type\n", func.expr->get_result() );
441 }
442
443 FunctionType * function = dynamic_cast< FunctionType* >( pointer->get_base() );
444 if( !function ) {
445 throw SemanticError( "candidate not viable: not a function type\n", pointer->get_base() );
446 }
447
448
449 {
450 auto param = function->parameters.begin();
451 auto param_end = function->parameters.end();
452
453 if( !advance_to_mutex( param, param_end ) ) {
454 throw SemanticError("candidate function not viable: no mutex parameters\n", function);
455 }
456 }
457
458 Alternative newFunc( func );
459 // Strip reference from function
460 referenceToRvalueConversion( newFunc.expr );
461
462 // For all the set of arguments we have try to match it with the parameter of the current function alternative
463 for ( auto & argsList : possibilities ) {
464
465 try {
466 // Declare data structures need for resolution
467 OpenVarSet openVars;
468 AssertionSet resultNeed, resultHave;
469 TypeEnvironment resultEnv;
470
471 // Load type variables from arguemnts into one shared space
472 simpleCombineEnvironments( argsList.begin(), argsList.end(), resultEnv );
473
474 // Make sure we don't widen any existing bindings
475 for ( auto & i : resultEnv ) {
476 i.allowWidening = false;
477 }
478
479 // Find any unbound type variables
480 resultEnv.extractOpenVars( openVars );
481
482 auto param = function->parameters.begin();
483 auto param_end = function->parameters.end();
484
485 // For every arguments of its set, check if it matches one of the parameter
486 // The order is important
487 for( auto & arg : argsList ) {
488
489 // Ignore non-mutex arguments
490 if( !advance_to_mutex( param, param_end ) ) {
491 // We ran out of parameters but still have arguments
492 // this function doesn't match
493 throw SemanticError("candidate function not viable: too many mutex arguments\n", function);
494 }
495
496 // Check if the argument matches the parameter type in the current scope
497 if( ! unify( (*param)->get_type(), arg.expr->get_result(), resultEnv, resultNeed, resultHave, openVars, this->indexer ) ) {
498 // Type doesn't match
499 stringstream ss;
500 ss << "candidate function not viable: no known convertion from '";
501 arg.expr->get_result()->print( ss );
502 ss << "' to '";
503 (*param)->get_type()->print( ss );
504 ss << "'\n";
505 throw SemanticError(ss.str(), function);
506 }
507
508 param++;
509 }
510
511 // All arguments match !
512
513 // Check if parameters are missing
514 if( advance_to_mutex( param, param_end ) ) {
515 // We ran out of arguments but still have parameters left
516 // this function doesn't match
517 throw SemanticError("candidate function not viable: too few mutex arguments\n", function);
518 }
519
520 // All parameters match !
521
522 // Finish the expressions to tie in the proper environments
523 finishExpr( newFunc.expr, resultEnv );
524 for( Alternative & alt : argsList ) {
525 finishExpr( alt.expr, resultEnv );
526 }
527
528 // This is a match store it and save it for later
529 func_candidates.push_back( newFunc );
530 args_candidates.push_back( argsList );
531
532 }
533 catch( SemanticError &e ) {
534 errors.append( e );
535 }
536 }
537 }
538 catch( SemanticError &e ) {
539 errors.append( e );
540 }
541 }
542
543 // Make sure we got the right number of arguments
544 if( func_candidates.empty() ) { SemanticError top( "No alternatives for function in call to waitfor" ); top.append( errors ); throw top; }
545 if( args_candidates.empty() ) { SemanticError top( "No alternatives for arguments in call to waitfor" ); top.append( errors ); throw top; }
546 if( func_candidates.size() > 1 ) { SemanticError top( "Ambiguous function in call to waitfor" ); top.append( errors ); throw top; }
547 if( args_candidates.size() > 1 ) { SemanticError top( "Ambiguous arguments in call to waitfor" ); top.append( errors ); throw top; }
548
549
550 // Swap the results from the alternative with the unresolved values.
551 // Alternatives will handle deletion on destruction
552 std::swap( clause.target.function, func_candidates.front().expr );
553 for( auto arg_pair : group_iterate( clause.target.arguments, args_candidates.front() ) ) {
554 std::swap ( std::get<0>( arg_pair), std::get<1>( arg_pair).expr );
555 }
556
557 // Resolve the conditions as if it were an IfStmt
558 // Resolve the statments normally
559 findSingleExpression( clause.condition, this->indexer );
560 clause.statement->accept( *visitor );
561 }
562
563
564 if( stmt->timeout.statement ) {
565 // Resolve the timeout as an size_t for now
566 // Resolve the conditions as if it were an IfStmt
567 // Resolve the statments normally
568 findSingleExpression( stmt->timeout.time, new BasicType( noQualifiers, BasicType::LongLongUnsignedInt ), this->indexer );
569 findSingleExpression( stmt->timeout.condition, this->indexer );
570 stmt->timeout.statement->accept( *visitor );
571 }
572
573 if( stmt->orelse.statement ) {
574 // Resolve the conditions as if it were an IfStmt
575 // Resolve the statments normally
576 findSingleExpression( stmt->orelse.condition, this->indexer );
577 stmt->orelse.statement->accept( *visitor );
578 }
579 }
580
581 bool isStructOrUnion( Type * t ) {
582 t = t->stripReferences();
583 return dynamic_cast< StructInstType * >( t ) || dynamic_cast< UnionInstType * >( t );
584 }
585
586
587 void Resolver::previsit( WithStmt * withStmt ) {
588 for ( Expression *& expr : withStmt->exprs ) {
589 // only struct- and union-typed expressions are viable candidates
590 findKindExpression( expr, indexer, "with statement", isStructOrUnion );
591
592 // if with expression might be impure, create a temporary so that it is evaluated once
593 if ( Tuples::maybeImpure( expr ) ) {
594 static UniqueName tmpNamer( "_with_tmp_" );
595 ObjectDecl * tmp = ObjectDecl::newObject( tmpNamer.newName(), expr->result->clone(), new SingleInit( expr ) );
596 expr = new VariableExpr( tmp );
597 stmtsToAddBefore.push_back( new DeclStmt( tmp ) );
598 if ( InitTweak::isConstructable( tmp->type ) ) {
599 // generate ctor/dtor and resolve them
600 tmp->init = InitTweak::genCtorInit( tmp );
601 tmp->accept( *visitor );
602 }
603 }
604 }
605 }
606
607 template< typename T >
608 bool isCharType( T t ) {
609 if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) {
610 return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar ||
611 bt->get_kind() == BasicType::UnsignedChar;
612 }
613 return false;
614 }
615
616 void Resolver::previsit( SingleInit *singleInit ) {
617 visit_children = false;
618 // resolve initialization using the possibilities as determined by the currentObject cursor
619 Expression * newExpr = new UntypedInitExpr( singleInit->value, currentObject.getOptions() );
620 findSingleExpression( newExpr, indexer );
621 InitExpr * initExpr = strict_dynamic_cast< InitExpr * >( newExpr );
622
623 // move cursor to the object that is actually initialized
624 currentObject.setNext( initExpr->get_designation() );
625
626 // discard InitExpr wrapper and retain relevant pieces
627 newExpr = initExpr->expr;
628 initExpr->expr = nullptr;
629 std::swap( initExpr->env, newExpr->env );
630 std::swap( initExpr->inferParams, newExpr->inferParams ) ;
631 delete initExpr;
632
633 // get the actual object's type (may not exactly match what comes back from the resolver due to conversions)
634 Type * initContext = currentObject.getCurrentType();
635
636 removeExtraneousCast( newExpr, indexer );
637
638 // check if actual object's type is char[]
639 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
640 if ( isCharType( at->get_base() ) ) {
641 // check if the resolved type is char *
642 if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_result() ) ) {
643 if ( isCharType( pt->get_base() ) ) {
644 if ( CastExpr *ce = dynamic_cast< CastExpr * >( newExpr ) ) {
645 // strip cast if we're initializing a char[] with a char *, e.g. char x[] = "hello";
646 newExpr = ce->get_arg();
647 ce->set_arg( nullptr );
648 std::swap( ce->env, newExpr->env );
649 delete ce;
650 }
651 }
652 }
653 }
654 }
655
656 // set initializer expr to resolved express
657 singleInit->value = newExpr;
658
659 // move cursor to next object in preparation for next initializer
660 currentObject.increment();
661 }
662
663 void Resolver::previsit( ListInit * listInit ) {
664 visit_children = false;
665 // move cursor into brace-enclosed initializer-list
666 currentObject.enterListInit();
667 // xxx - fix this so that the list isn't copied, iterator should be used to change current element
668 std::list<Designation *> newDesignations;
669 for ( auto p : group_iterate(listInit->get_designations(), listInit->get_initializers()) ) {
670 // iterate designations and initializers in pairs, moving the cursor to the current designated object and resolving
671 // the initializer against that object.
672 Designation * des = std::get<0>(p);
673 Initializer * init = std::get<1>(p);
674 newDesignations.push_back( currentObject.findNext( des ) );
675 init->accept( *visitor );
676 }
677 // set the set of 'resolved' designations and leave the brace-enclosed initializer-list
678 listInit->get_designations() = newDesignations; // xxx - memory management
679 currentObject.exitListInit();
680
681 // xxx - this part has not be folded into CurrentObject yet
682 // } else if ( TypeInstType * tt = dynamic_cast< TypeInstType * >( initContext ) ) {
683 // Type * base = tt->get_baseType()->get_base();
684 // if ( base ) {
685 // // know the implementation type, so try using that as the initContext
686 // ObjectDecl tmpObj( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, base->clone(), nullptr );
687 // currentObject = &tmpObj;
688 // visit( listInit );
689 // } else {
690 // // missing implementation type -- might be an unknown type variable, so try proceeding with the current init context
691 // Parent::visit( listInit );
692 // }
693 // } else {
694 }
695
696 // ConstructorInit - fall back on C-style initializer
697 void Resolver::fallbackInit( ConstructorInit * ctorInit ) {
698 // could not find valid constructor, or found an intrinsic constructor
699 // fall back on C-style initializer
700 delete ctorInit->get_ctor();
701 ctorInit->set_ctor( NULL );
702 delete ctorInit->get_dtor();
703 ctorInit->set_dtor( NULL );
704 maybeAccept( ctorInit->get_init(), *visitor );
705 }
706
707 // needs to be callable from outside the resolver, so this is a standalone function
708 void resolveCtorInit( ConstructorInit * ctorInit, const SymTab::Indexer & indexer ) {
709 assert( ctorInit );
710 PassVisitor<Resolver> resolver( indexer );
711 ctorInit->accept( resolver );
712 }
713
714 void resolveStmtExpr( StmtExpr * stmtExpr, const SymTab::Indexer & indexer ) {
715 assert( stmtExpr );
716 PassVisitor<Resolver> resolver( indexer );
717 stmtExpr->accept( resolver );
718 }
719
720 void Resolver::previsit( ConstructorInit *ctorInit ) {
721 visit_children = false;
722 // xxx - fallback init has been removed => remove fallbackInit function and remove complexity from FixInit and remove C-init from ConstructorInit
723 maybeAccept( ctorInit->get_ctor(), *visitor );
724 maybeAccept( ctorInit->get_dtor(), *visitor );
725
726 // found a constructor - can get rid of C-style initializer
727 delete ctorInit->get_init();
728 ctorInit->set_init( NULL );
729
730 // intrinsic single parameter constructors and destructors do nothing. Since this was
731 // implicitly generated, there's no way for it to have side effects, so get rid of it
732 // to clean up generated code.
733 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->get_ctor() ) ) {
734 delete ctorInit->get_ctor();
735 ctorInit->set_ctor( NULL );
736 }
737
738 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->get_dtor() ) ) {
739 delete ctorInit->get_dtor();
740 ctorInit->set_dtor( NULL );
741 }
742
743 // xxx - todo -- what about arrays?
744 // if ( dtor == NULL && InitTweak::isIntrinsicCallStmt( ctorInit->get_ctor() ) ) {
745 // // can reduce the constructor down to a SingleInit using the
746 // // second argument from the ctor call, since
747 // delete ctorInit->get_ctor();
748 // ctorInit->set_ctor( NULL );
749
750 // Expression * arg =
751 // ctorInit->set_init( new SingleInit( arg ) );
752 // }
753 }
754} // namespace ResolvExpr
755
756// Local Variables: //
757// tab-width: 4 //
758// mode: c++ //
759// compile-command: "make install" //
760// End: //
Note: See TracBrowser for help on using the repository browser.