source: src/ResolvExpr/Resolver.cc@ b10c621c

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since b10c621c was 08da53d, checked in by Rob Schluntz <rschlunt@…>, 8 years ago

Refactor findSingleExpr and remove unnecessary resolver-generated casts

  • Property mode set to 100644
File size: 26.2 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Resolver.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 12:17:01 2015
11// Last Modified By : Andrew Beach
12// Last Modified On : Tus Aug 8 16:06:00 2017
13// Update Count : 212
14//
15
16#include <stddef.h> // for NULL
17#include <cassert> // for strict_dynamic_cast, assert
18#include <memory> // for allocator, allocator_traits<...
19#include <tuple> // for get
20
21#include "Alternative.h" // for Alternative, AltList
22#include "AlternativeFinder.h" // for AlternativeFinder, resolveIn...
23#include "Common/PassVisitor.h" // for PassVisitor
24#include "Common/SemanticError.h" // for SemanticError
25#include "Common/utility.h" // for ValueGuard, group_iterate
26#include "CurrentObject.h" // for CurrentObject
27#include "InitTweak/InitTweak.h" // for isIntrinsicSingleArgCallStmt
28#include "RenameVars.h" // for RenameVars, global_renamer
29#include "ResolvExpr/TypeEnvironment.h" // for TypeEnvironment
30#include "ResolveTypeof.h" // for resolveTypeof
31#include "Resolver.h"
32#include "SymTab/Autogen.h" // for SizeType
33#include "SymTab/Indexer.h" // for Indexer
34#include "SynTree/Declaration.h" // for ObjectDecl, TypeDecl, Declar...
35#include "SynTree/Expression.h" // for Expression, CastExpr, InitExpr
36#include "SynTree/Initializer.h" // for ConstructorInit, SingleInit
37#include "SynTree/Statement.h" // for ForStmt, Statement, BranchStmt
38#include "SynTree/Type.h" // for Type, BasicType, PointerType
39#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
40#include "SynTree/Visitor.h" // for acceptAll, maybeAccept
41#include "typeops.h" // for extractResultType
42#include "Unify.h" // for unify
43
44using namespace std;
45
46namespace ResolvExpr {
47 struct Resolver final : public WithIndexer, public WithGuards, public WithVisitorRef<Resolver>, public WithShortCircuiting {
48 Resolver() {}
49 Resolver( const SymTab::Indexer & other ) {
50 indexer = other;
51 }
52
53 void previsit( FunctionDecl *functionDecl );
54 void postvisit( FunctionDecl *functionDecl );
55 void previsit( ObjectDecl *objectDecll );
56 void previsit( TypeDecl *typeDecl );
57 void previsit( EnumDecl * enumDecl );
58
59 void previsit( ArrayType * at );
60 void previsit( PointerType * at );
61
62 void previsit( ExprStmt *exprStmt );
63 void previsit( AsmExpr *asmExpr );
64 void previsit( AsmStmt *asmStmt );
65 void previsit( IfStmt *ifStmt );
66 void previsit( WhileStmt *whileStmt );
67 void previsit( ForStmt *forStmt );
68 void previsit( SwitchStmt *switchStmt );
69 void previsit( CaseStmt *caseStmt );
70 void previsit( BranchStmt *branchStmt );
71 void previsit( ReturnStmt *returnStmt );
72 void previsit( ThrowStmt *throwStmt );
73 void previsit( CatchStmt *catchStmt );
74 void previsit( WaitForStmt * stmt );
75
76 void previsit( SingleInit *singleInit );
77 void previsit( ListInit *listInit );
78 void previsit( ConstructorInit *ctorInit );
79 private:
80 typedef std::list< Initializer * >::iterator InitIterator;
81
82 template< typename PtrType >
83 void handlePtrType( PtrType * type );
84
85 void resolveAggrInit( ReferenceToType *, InitIterator &, InitIterator & );
86 void resolveSingleAggrInit( Declaration *, InitIterator &, InitIterator &, TypeSubstitution sub );
87 void fallbackInit( ConstructorInit * ctorInit );
88
89 Type * functionReturn = nullptr;
90 CurrentObject currentObject = nullptr;
91 bool inEnumDecl = false;
92 };
93
94 void resolve( std::list< Declaration * > translationUnit ) {
95 PassVisitor<Resolver> resolver;
96 acceptAll( translationUnit, resolver );
97 }
98
99 void resolveDecl( Declaration * decl, const SymTab::Indexer &indexer ) {
100 PassVisitor<Resolver> resolver( indexer );
101 maybeAccept( decl, resolver );
102 }
103
104 // used in resolveTypeof
105 Expression *resolveInVoidContext( Expression *expr, const SymTab::Indexer &indexer ) {
106 TypeEnvironment env;
107 return resolveInVoidContext( expr, indexer, env );
108 }
109
110 namespace {
111 void finishExpr( Expression *expr, const TypeEnvironment &env, TypeSubstitution * oldenv = nullptr ) {
112 expr->env = oldenv ? oldenv->clone() : new TypeSubstitution;
113 env.makeSubstitution( *expr->get_env() );
114 }
115 } // namespace
116
117 void findVoidExpression( Expression *& untyped, const SymTab::Indexer &indexer ) {
118 global_renamer.reset();
119 TypeEnvironment env;
120 Expression *newExpr = resolveInVoidContext( untyped, indexer, env );
121 finishExpr( newExpr, env, untyped->env );
122 delete untyped;
123 untyped = newExpr;
124 }
125
126 void findSingleExpression( Expression *&untyped, const SymTab::Indexer &indexer ) {
127 if ( ! untyped ) return;
128 TypeEnvironment env;
129 AlternativeFinder finder( indexer, env );
130 finder.find( untyped );
131 #if 0
132 if ( finder.get_alternatives().size() != 1 ) {
133 std::cerr << "untyped expr is ";
134 untyped->print( std::cerr );
135 std::cerr << std::endl << "alternatives are:";
136 for ( const Alternative & alt : finder.get_alternatives() ) {
137 alt.print( std::cerr );
138 } // for
139 } // if
140 #endif
141 assertf( finder.get_alternatives().size() == 1, "findSingleExpression: must have exactly one alternative at the end." );
142 Alternative &choice = finder.get_alternatives().front();
143 Expression *newExpr = choice.expr->clone();
144 finishExpr( newExpr, choice.env, untyped->env );
145 delete untyped;
146 untyped = newExpr;
147 }
148
149 void findSingleExpression( Expression *& untyped, Type * type, const SymTab::Indexer & indexer ) {
150 assert( untyped && type );
151 untyped = new CastExpr( untyped, type );
152 findSingleExpression( untyped, indexer );
153 if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( untyped ) ) {
154 if ( ResolvExpr::typesCompatible( castExpr->arg->result, castExpr->result, indexer ) ) {
155 // cast is to the same type as its argument, so it's unnecessary -- remove it
156 untyped = castExpr->arg;
157 castExpr->arg = nullptr;
158 delete castExpr;
159 }
160 }
161 }
162
163 namespace {
164 bool isIntegralType( Type *type ) {
165 if ( dynamic_cast< EnumInstType * >( type ) ) {
166 return true;
167 } else if ( BasicType *bt = dynamic_cast< BasicType * >( type ) ) {
168 return bt->isInteger();
169 } else if ( dynamic_cast< ZeroType* >( type ) != nullptr || dynamic_cast< OneType* >( type ) != nullptr ) {
170 return true;
171 } else {
172 return false;
173 } // if
174 }
175
176 void findIntegralExpression( Expression *& untyped, const SymTab::Indexer &indexer ) {
177 TypeEnvironment env;
178 AlternativeFinder finder( indexer, env );
179 finder.find( untyped );
180#if 0
181 if ( finder.get_alternatives().size() != 1 ) {
182 std::cout << "untyped expr is ";
183 untyped->print( std::cout );
184 std::cout << std::endl << "alternatives are:";
185 for ( std::list< Alternative >::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
186 i->print( std::cout );
187 } // for
188 } // if
189#endif
190 Expression *newExpr = 0;
191 const TypeEnvironment *newEnv = 0;
192 for ( AltList::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
193 if ( i->expr->get_result()->size() == 1 && isIntegralType( i->expr->get_result() ) ) {
194 if ( newExpr ) {
195 throw SemanticError( "Too many interpretations for case control expression", untyped );
196 } else {
197 newExpr = i->expr->clone();
198 newEnv = &i->env;
199 } // if
200 } // if
201 } // for
202 if ( ! newExpr ) {
203 throw SemanticError( "No interpretations for case control expression", untyped );
204 } // if
205 finishExpr( newExpr, *newEnv, untyped->env );
206 delete untyped;
207 untyped = newExpr;
208 }
209
210 }
211
212 void Resolver::previsit( ObjectDecl *objectDecl ) {
213 Type *new_type = resolveTypeof( objectDecl->get_type(), indexer );
214 objectDecl->set_type( new_type );
215 // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that class-variable
216 // initContext is changed multiple time because the LHS is analysed twice. The second analysis changes
217 // initContext because of a function type can contain object declarations in the return and parameter types. So
218 // each value of initContext is retained, so the type on the first analysis is preserved and used for selecting
219 // the RHS.
220 GuardValue( currentObject );
221 currentObject = CurrentObject( objectDecl->get_type() );
222 if ( inEnumDecl && dynamic_cast< EnumInstType * >( objectDecl->get_type() ) ) {
223 // enumerator initializers should not use the enum type to initialize, since
224 // the enum type is still incomplete at this point. Use signed int instead.
225 currentObject = CurrentObject( new BasicType( Type::Qualifiers(), BasicType::SignedInt ) );
226 }
227 }
228
229 template< typename PtrType >
230 void Resolver::handlePtrType( PtrType * type ) {
231 if ( type->get_dimension() ) {
232 findSingleExpression( type->dimension, SymTab::SizeType->clone(), indexer );
233 }
234 }
235
236 void Resolver::previsit( ArrayType * at ) {
237 handlePtrType( at );
238 }
239
240 void Resolver::previsit( PointerType * pt ) {
241 handlePtrType( pt );
242 }
243
244 void Resolver::previsit( TypeDecl *typeDecl ) {
245 if ( typeDecl->get_base() ) {
246 Type *new_type = resolveTypeof( typeDecl->get_base(), indexer );
247 typeDecl->set_base( new_type );
248 } // if
249 }
250
251 void Resolver::previsit( FunctionDecl *functionDecl ) {
252#if 0
253 std::cerr << "resolver visiting functiondecl ";
254 functionDecl->print( std::cerr );
255 std::cerr << std::endl;
256#endif
257 Type *new_type = resolveTypeof( functionDecl->get_type(), indexer );
258 functionDecl->set_type( new_type );
259 GuardValue( functionReturn );
260 functionReturn = ResolvExpr::extractResultType( functionDecl->get_functionType() );
261 }
262
263 void Resolver::postvisit( FunctionDecl *functionDecl ) {
264 // default value expressions have an environment which shouldn't be there and trips up later passes.
265 // xxx - it might be necessary to somehow keep the information from this environment, but I can't currently
266 // see how it's useful.
267 for ( Declaration * d : functionDecl->get_functionType()->get_parameters() ) {
268 if ( ObjectDecl * obj = dynamic_cast< ObjectDecl * >( d ) ) {
269 if ( SingleInit * init = dynamic_cast< SingleInit * >( obj->get_init() ) ) {
270 delete init->get_value()->get_env();
271 init->get_value()->set_env( nullptr );
272 }
273 }
274 }
275 }
276
277 void Resolver::previsit( EnumDecl * ) {
278 // in case we decide to allow nested enums
279 GuardValue( inEnumDecl );
280 inEnumDecl = true;
281 }
282
283 void Resolver::previsit( ExprStmt *exprStmt ) {
284 visit_children = false;
285 assertf( exprStmt->expr, "ExprStmt has null Expression in resolver" );
286 findVoidExpression( exprStmt->expr, indexer );
287 }
288
289 void Resolver::previsit( AsmExpr *asmExpr ) {
290 visit_children = false;
291 findVoidExpression( asmExpr->operand, indexer );
292 if ( asmExpr->get_inout() ) {
293 findVoidExpression( asmExpr->inout, indexer );
294 } // if
295 }
296
297 void Resolver::previsit( AsmStmt *asmStmt ) {
298 visit_children = false;
299 acceptAll( asmStmt->get_input(), *visitor );
300 acceptAll( asmStmt->get_output(), *visitor );
301 }
302
303 void Resolver::previsit( IfStmt *ifStmt ) {
304 findSingleExpression( ifStmt->condition, indexer );
305 }
306
307 void Resolver::previsit( WhileStmt *whileStmt ) {
308 findSingleExpression( whileStmt->condition, indexer );
309 }
310
311 void Resolver::previsit( ForStmt *forStmt ) {
312 if ( forStmt->condition ) {
313 findSingleExpression( forStmt->condition, indexer );
314 } // if
315
316 if ( forStmt->increment ) {
317 findVoidExpression( forStmt->increment, indexer );
318 } // if
319 }
320
321 void Resolver::previsit( SwitchStmt *switchStmt ) {
322 GuardValue( currentObject );
323 findIntegralExpression( switchStmt->condition, indexer );
324
325 currentObject = CurrentObject( switchStmt->condition->result );
326 }
327
328 void Resolver::previsit( CaseStmt *caseStmt ) {
329 if ( caseStmt->get_condition() ) {
330 std::list< InitAlternative > initAlts = currentObject.getOptions();
331 assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral expression." );
332 // must remove cast from case statement because RangeExpr cannot be cast.
333 Expression * newExpr = new CastExpr( caseStmt->condition, initAlts.front().type->clone() );
334 findSingleExpression( newExpr, indexer );
335 CastExpr * castExpr = strict_dynamic_cast< CastExpr * >( newExpr );
336 caseStmt->condition = castExpr->arg;
337 castExpr->arg = nullptr;
338 delete castExpr;
339 }
340 }
341
342 void Resolver::previsit( BranchStmt *branchStmt ) {
343 visit_children = false;
344 // must resolve the argument for a computed goto
345 if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement
346 if ( branchStmt->computedTarget ) {
347 // computed goto argument is void *
348 findSingleExpression( branchStmt->computedTarget, new PointerType( Type::Qualifiers(), new VoidType( Type::Qualifiers() ) ), indexer );
349 } // if
350 } // if
351 }
352
353 void Resolver::previsit( ReturnStmt *returnStmt ) {
354 visit_children = false;
355 if ( returnStmt->expr ) {
356 findSingleExpression( returnStmt->expr, functionReturn->clone(), indexer );
357 } // if
358 }
359
360 void Resolver::previsit( ThrowStmt *throwStmt ) {
361 visit_children = false;
362 // TODO: Replace *exception type with &exception type.
363 if ( throwStmt->get_expr() ) {
364 StructDecl * exception_decl =
365 indexer.lookupStruct( "__cfaehm__base_exception_t" );
366 assert( exception_decl );
367 Type * exceptType = new PointerType( noQualifiers, new StructInstType( noQualifiers, exception_decl ) );
368 findSingleExpression( throwStmt->expr, exceptType, indexer );
369 }
370 }
371
372 void Resolver::previsit( CatchStmt *catchStmt ) {
373 if ( catchStmt->cond ) {
374 findSingleExpression( catchStmt->cond, new BasicType( noQualifiers, BasicType::Bool ), indexer );
375 }
376 }
377
378 template< typename iterator_t >
379 inline bool advance_to_mutex( iterator_t & it, const iterator_t & end ) {
380 while( it != end && !(*it)->get_type()->get_mutex() ) {
381 it++;
382 }
383
384 return it != end;
385 }
386
387 void Resolver::previsit( WaitForStmt * stmt ) {
388 visit_children = false;
389
390 // Resolve all clauses first
391 for( auto& clause : stmt->clauses ) {
392
393 TypeEnvironment env;
394 AlternativeFinder funcFinder( indexer, env );
395
396 // Find all alternatives for a function in canonical form
397 funcFinder.findWithAdjustment( clause.target.function );
398
399 if ( funcFinder.get_alternatives().empty() ) {
400 stringstream ss;
401 ss << "Use of undeclared indentifier '";
402 ss << strict_dynamic_cast<NameExpr*>( clause.target.function )->name;
403 ss << "' in call to waitfor";
404 throw SemanticError( ss.str() );
405 }
406
407 // Find all alternatives for all arguments in canonical form
408 std::list< AlternativeFinder > argAlternatives;
409 funcFinder.findSubExprs( clause.target.arguments.begin(), clause.target.arguments.end(), back_inserter( argAlternatives ) );
410
411 // List all combinations of arguments
412 std::list< AltList > possibilities;
413 combos( argAlternatives.begin(), argAlternatives.end(), back_inserter( possibilities ) );
414
415 AltList func_candidates;
416 std::vector< AltList > args_candidates;
417
418 // For every possible function :
419 // try matching the arguments to the parameters
420 // not the other way around because we have more arguments than parameters
421 SemanticError errors;
422 for ( Alternative & func : funcFinder.get_alternatives() ) {
423 try {
424 PointerType * pointer = dynamic_cast< PointerType* >( func.expr->get_result()->stripReferences() );
425 if( !pointer ) {
426 throw SemanticError( "candidate not viable: not a pointer type\n", func.expr->get_result() );
427 }
428
429 FunctionType * function = dynamic_cast< FunctionType* >( pointer->get_base() );
430 if( !function ) {
431 throw SemanticError( "candidate not viable: not a function type\n", pointer->get_base() );
432 }
433
434
435 {
436 auto param = function->parameters.begin();
437 auto param_end = function->parameters.end();
438
439 if( !advance_to_mutex( param, param_end ) ) {
440 throw SemanticError("candidate function not viable: no mutex parameters\n", function);
441 }
442 }
443
444 Alternative newFunc( func );
445 // Strip reference from function
446 referenceToRvalueConversion( newFunc.expr );
447
448 // For all the set of arguments we have try to match it with the parameter of the current function alternative
449 for ( auto & argsList : possibilities ) {
450
451 try {
452 // Declare data structures need for resolution
453 OpenVarSet openVars;
454 AssertionSet resultNeed, resultHave;
455 TypeEnvironment resultEnv;
456
457 // Load type variables from arguemnts into one shared space
458 simpleCombineEnvironments( argsList.begin(), argsList.end(), resultEnv );
459
460 // Make sure we don't widen any existing bindings
461 for ( auto & i : resultEnv ) {
462 i.allowWidening = false;
463 }
464
465 // Find any unbound type variables
466 resultEnv.extractOpenVars( openVars );
467
468 auto param = function->parameters.begin();
469 auto param_end = function->parameters.end();
470
471 // For every arguments of its set, check if it matches one of the parameter
472 // The order is important
473 for( auto & arg : argsList ) {
474
475 // Ignore non-mutex arguments
476 if( !advance_to_mutex( param, param_end ) ) {
477 // We ran out of parameters but still have arguments
478 // this function doesn't match
479 throw SemanticError("candidate function not viable: too many mutex arguments\n", function);
480 }
481
482 // Check if the argument matches the parameter type in the current scope
483 if( ! unify( (*param)->get_type(), arg.expr->get_result(), resultEnv, resultNeed, resultHave, openVars, this->indexer ) ) {
484 // Type doesn't match
485 stringstream ss;
486 ss << "candidate function not viable: no known convertion from '";
487 arg.expr->get_result()->print( ss );
488 ss << "' to '";
489 (*param)->get_type()->print( ss );
490 ss << "'\n";
491 throw SemanticError(ss.str(), function);
492 }
493
494 param++;
495 }
496
497 // All arguments match !
498
499 // Check if parameters are missing
500 if( advance_to_mutex( param, param_end ) ) {
501 // We ran out of arguments but still have parameters left
502 // this function doesn't match
503 throw SemanticError("candidate function not viable: too few mutex arguments\n", function);
504 }
505
506 // All parameters match !
507
508 // Finish the expressions to tie in the proper environments
509 finishExpr( newFunc.expr, resultEnv );
510 for( Alternative & alt : argsList ) {
511 finishExpr( alt.expr, resultEnv );
512 }
513
514 // This is a match store it and save it for later
515 func_candidates.push_back( newFunc );
516 args_candidates.push_back( argsList );
517
518 }
519 catch( SemanticError &e ) {
520 errors.append( e );
521 }
522 }
523 }
524 catch( SemanticError &e ) {
525 errors.append( e );
526 }
527 }
528
529 // Make sure we got the right number of arguments
530 if( func_candidates.empty() ) { SemanticError top( "No alternatives for function in call to waitfor" ); top.append( errors ); throw top; }
531 if( args_candidates.empty() ) { SemanticError top( "No alternatives for arguments in call to waitfor" ); top.append( errors ); throw top; }
532 if( func_candidates.size() > 1 ) { SemanticError top( "Ambiguous function in call to waitfor" ); top.append( errors ); throw top; }
533 if( args_candidates.size() > 1 ) { SemanticError top( "Ambiguous arguments in call to waitfor" ); top.append( errors ); throw top; }
534
535
536 // Swap the results from the alternative with the unresolved values.
537 // Alternatives will handle deletion on destruction
538 std::swap( clause.target.function, func_candidates.front().expr );
539 for( auto arg_pair : group_iterate( clause.target.arguments, args_candidates.front() ) ) {
540 std::swap ( std::get<0>( arg_pair), std::get<1>( arg_pair).expr );
541 }
542
543 // Resolve the conditions as if it were an IfStmt
544 // Resolve the statments normally
545 findSingleExpression( clause.condition, this->indexer );
546 clause.statement->accept( *visitor );
547 }
548
549
550 if( stmt->timeout.statement ) {
551 // Resolve the timeout as an size_t for now
552 // Resolve the conditions as if it were an IfStmt
553 // Resolve the statments normally
554 findSingleExpression( stmt->timeout.time, new BasicType( noQualifiers, BasicType::LongLongUnsignedInt ), this->indexer );
555 findSingleExpression( stmt->timeout.condition, this->indexer );
556 stmt->timeout.statement->accept( *visitor );
557 }
558
559 if( stmt->orelse.statement ) {
560 // Resolve the conditions as if it were an IfStmt
561 // Resolve the statments normally
562 findSingleExpression( stmt->orelse.condition, this->indexer );
563 stmt->orelse.statement->accept( *visitor );
564 }
565 }
566
567 template< typename T >
568 bool isCharType( T t ) {
569 if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) {
570 return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar ||
571 bt->get_kind() == BasicType::UnsignedChar;
572 }
573 return false;
574 }
575
576 void Resolver::previsit( SingleInit *singleInit ) {
577 visit_children = false;
578 // resolve initialization using the possibilities as determined by the currentObject cursor
579 Expression * newExpr = new UntypedInitExpr( singleInit->get_value(), currentObject.getOptions() );
580 findSingleExpression( newExpr, indexer );
581 InitExpr * initExpr = strict_dynamic_cast< InitExpr * >( newExpr );
582
583 // move cursor to the object that is actually initialized
584 currentObject.setNext( initExpr->get_designation() );
585
586 // discard InitExpr wrapper and retain relevant pieces
587 newExpr = initExpr->expr;
588 initExpr->expr = nullptr;
589 std::swap( initExpr->env, newExpr->env );
590 delete initExpr;
591
592 // get the actual object's type (may not exactly match what comes back from the resolver due to conversions)
593 Type * initContext = currentObject.getCurrentType();
594
595 // check if actual object's type is char[]
596 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
597 if ( isCharType( at->get_base() ) ) {
598 // check if the resolved type is char *
599 if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_result() ) ) {
600 if ( isCharType( pt->get_base() ) ) {
601 // strip cast if we're initializing a char[] with a char *, e.g. char x[] = "hello";
602 CastExpr *ce = strict_dynamic_cast< CastExpr * >( newExpr );
603 newExpr = ce->get_arg();
604 ce->set_arg( nullptr );
605 delete ce;
606 }
607 }
608 }
609 }
610
611 // set initializer expr to resolved express
612 singleInit->set_value( newExpr );
613
614 // move cursor to next object in preparation for next initializer
615 currentObject.increment();
616 }
617
618 void Resolver::previsit( ListInit * listInit ) {
619 visit_children = false;
620 // move cursor into brace-enclosed initializer-list
621 currentObject.enterListInit();
622 // xxx - fix this so that the list isn't copied, iterator should be used to change current element
623 std::list<Designation *> newDesignations;
624 for ( auto p : group_iterate(listInit->get_designations(), listInit->get_initializers()) ) {
625 // iterate designations and initializers in pairs, moving the cursor to the current designated object and resolving
626 // the initializer against that object.
627 Designation * des = std::get<0>(p);
628 Initializer * init = std::get<1>(p);
629 newDesignations.push_back( currentObject.findNext( des ) );
630 init->accept( *visitor );
631 }
632 // set the set of 'resolved' designations and leave the brace-enclosed initializer-list
633 listInit->get_designations() = newDesignations; // xxx - memory management
634 currentObject.exitListInit();
635
636 // xxx - this part has not be folded into CurrentObject yet
637 // } else if ( TypeInstType * tt = dynamic_cast< TypeInstType * >( initContext ) ) {
638 // Type * base = tt->get_baseType()->get_base();
639 // if ( base ) {
640 // // know the implementation type, so try using that as the initContext
641 // ObjectDecl tmpObj( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, base->clone(), nullptr );
642 // currentObject = &tmpObj;
643 // visit( listInit );
644 // } else {
645 // // missing implementation type -- might be an unknown type variable, so try proceeding with the current init context
646 // Parent::visit( listInit );
647 // }
648 // } else {
649 }
650
651 // ConstructorInit - fall back on C-style initializer
652 void Resolver::fallbackInit( ConstructorInit * ctorInit ) {
653 // could not find valid constructor, or found an intrinsic constructor
654 // fall back on C-style initializer
655 delete ctorInit->get_ctor();
656 ctorInit->set_ctor( NULL );
657 delete ctorInit->get_dtor();
658 ctorInit->set_dtor( NULL );
659 maybeAccept( ctorInit->get_init(), *visitor );
660 }
661
662 // needs to be callable from outside the resolver, so this is a standalone function
663 void resolveCtorInit( ConstructorInit * ctorInit, const SymTab::Indexer & indexer ) {
664 assert( ctorInit );
665 PassVisitor<Resolver> resolver( indexer );
666 ctorInit->accept( resolver );
667 }
668
669 void resolveStmtExpr( StmtExpr * stmtExpr, const SymTab::Indexer & indexer ) {
670 assert( stmtExpr );
671 PassVisitor<Resolver> resolver( indexer );
672 stmtExpr->accept( resolver );
673 }
674
675 void Resolver::previsit( ConstructorInit *ctorInit ) {
676 visit_children = false;
677 // xxx - fallback init has been removed => remove fallbackInit function and remove complexity from FixInit and remove C-init from ConstructorInit
678 maybeAccept( ctorInit->get_ctor(), *visitor );
679 maybeAccept( ctorInit->get_dtor(), *visitor );
680
681 // found a constructor - can get rid of C-style initializer
682 delete ctorInit->get_init();
683 ctorInit->set_init( NULL );
684
685 // intrinsic single parameter constructors and destructors do nothing. Since this was
686 // implicitly generated, there's no way for it to have side effects, so get rid of it
687 // to clean up generated code.
688 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->get_ctor() ) ) {
689 delete ctorInit->get_ctor();
690 ctorInit->set_ctor( NULL );
691 }
692
693 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->get_dtor() ) ) {
694 delete ctorInit->get_dtor();
695 ctorInit->set_dtor( NULL );
696 }
697
698 // xxx - todo -- what about arrays?
699 // if ( dtor == NULL && InitTweak::isIntrinsicCallStmt( ctorInit->get_ctor() ) ) {
700 // // can reduce the constructor down to a SingleInit using the
701 // // second argument from the ctor call, since
702 // delete ctorInit->get_ctor();
703 // ctorInit->set_ctor( NULL );
704
705 // Expression * arg =
706 // ctorInit->set_init( new SingleInit( arg ) );
707 // }
708 }
709} // namespace ResolvExpr
710
711// Local Variables: //
712// tab-width: 4 //
713// mode: c++ //
714// compile-command: "make install" //
715// End: //
Note: See TracBrowser for help on using the repository browser.