source: src/ResolvExpr/Resolver.cc@ b0d9ff7

ADT ast-experimental pthread-emulation qualifiedEnum
Last change on this file since b0d9ff7 was 9e23b446, checked in by Fangren Yu <f37yu@…>, 3 years ago

add specialize pass

  • Property mode set to 100644
File size: 77.6 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Resolver.cc --
8//
9// Author : Aaron B. Moss
10// Created On : Sun May 17 12:17:01 2015
11// Last Modified By : Andrew Beach
12// Last Modified On : Wed Apr 20 10:41:00 2022
13// Update Count : 248
14//
15
16#include <cassert> // for strict_dynamic_cast, assert
17#include <memory> // for allocator, allocator_traits<...
18#include <tuple> // for get
19#include <vector> // for vector
20
21#include "Alternative.h" // for Alternative, AltList
22#include "AlternativeFinder.h" // for AlternativeFinder, resolveIn...
23#include "Candidate.hpp"
24#include "CandidateFinder.hpp"
25#include "CurrentObject.h" // for CurrentObject
26#include "RenameVars.h" // for RenameVars, global_renamer
27#include "Resolver.h"
28#include "ResolveTypeof.h"
29#include "ResolvMode.h" // for ResolvMode
30#include "typeops.h" // for extractResultType
31#include "Unify.h" // for unify
32#include "CompilationState.h"
33#include "AST/Chain.hpp"
34#include "AST/Decl.hpp"
35#include "AST/Init.hpp"
36#include "AST/Pass.hpp"
37#include "AST/Print.hpp"
38#include "AST/SymbolTable.hpp"
39#include "AST/Type.hpp"
40#include "Common/PassVisitor.h" // for PassVisitor
41#include "Common/SemanticError.h" // for SemanticError
42#include "Common/Stats/ResolveTime.h" // for ResolveTime::start(), ResolveTime::stop()
43#include "Common/utility.h" // for ValueGuard, group_iterate
44#include "InitTweak/GenInit.h"
45#include "InitTweak/InitTweak.h" // for isIntrinsicSingleArgCallStmt
46#include "ResolvExpr/TypeEnvironment.h" // for TypeEnvironment
47#include "SymTab/Autogen.h" // for SizeType
48#include "SymTab/Indexer.h" // for Indexer
49#include "SymTab/Mangler.h" // for Mangler
50#include "SynTree/Declaration.h" // for ObjectDecl, TypeDecl, Declar...
51#include "SynTree/Expression.h" // for Expression, CastExpr, InitExpr
52#include "SynTree/Initializer.h" // for ConstructorInit, SingleInit
53#include "SynTree/Statement.h" // for ForStmt, Statement, BranchStmt
54#include "SynTree/Type.h" // for Type, BasicType, PointerType
55#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
56#include "SynTree/Visitor.h" // for acceptAll, maybeAccept
57#include "Tuples/Tuples.h"
58#include "Validate/FindSpecialDecls.h" // for SizeType
59
60using namespace std;
61
62namespace ResolvExpr {
63 struct Resolver_old final : public WithIndexer, public WithGuards, public WithVisitorRef<Resolver_old>, public WithShortCircuiting, public WithStmtsToAdd {
64 Resolver_old() {}
65 Resolver_old( const SymTab::Indexer & other ) {
66 indexer = other;
67 }
68
69 void previsit( FunctionDecl * functionDecl );
70 void postvisit( FunctionDecl * functionDecl );
71 void previsit( ObjectDecl * objectDecll );
72 void previsit( EnumDecl * enumDecl );
73 void previsit( StaticAssertDecl * assertDecl );
74
75 void previsit( ArrayType * at );
76 void previsit( PointerType * at );
77
78 void previsit( ExprStmt * exprStmt );
79 void previsit( AsmExpr * asmExpr );
80 void previsit( AsmStmt * asmStmt );
81 void previsit( IfStmt * ifStmt );
82 void previsit( WhileDoStmt * whileDoStmt );
83 void previsit( ForStmt * forStmt );
84 void previsit( SwitchStmt * switchStmt );
85 void previsit( CaseStmt * caseStmt );
86 void previsit( BranchStmt * branchStmt );
87 void previsit( ReturnStmt * returnStmt );
88 void previsit( ThrowStmt * throwStmt );
89 void previsit( CatchStmt * catchStmt );
90 void postvisit( CatchStmt * catchStmt );
91 void previsit( WaitForStmt * stmt );
92
93 void previsit( SingleInit * singleInit );
94 void previsit( ListInit * listInit );
95 void previsit( ConstructorInit * ctorInit );
96 private:
97 typedef std::list< Initializer * >::iterator InitIterator;
98
99 template< typename PtrType >
100 void handlePtrType( PtrType * type );
101
102 void fallbackInit( ConstructorInit * ctorInit );
103
104 Type * functionReturn = nullptr;
105 CurrentObject currentObject = nullptr;
106 bool inEnumDecl = false;
107 };
108
109 struct ResolveWithExprs : public WithIndexer, public WithGuards, public WithVisitorRef<ResolveWithExprs>, public WithShortCircuiting, public WithStmtsToAdd {
110 void previsit( FunctionDecl * );
111 void previsit( WithStmt * );
112
113 void resolveWithExprs( std::list< Expression * > & withExprs, std::list< Statement * > & newStmts );
114 };
115
116 void resolve( std::list< Declaration * > translationUnit ) {
117 PassVisitor<Resolver_old> resolver;
118 acceptAll( translationUnit, resolver );
119 }
120
121 void resolveDecl( Declaration * decl, const SymTab::Indexer & indexer ) {
122 PassVisitor<Resolver_old> resolver( indexer );
123 maybeAccept( decl, resolver );
124 }
125
126 namespace {
127 struct DeleteFinder_old : public WithShortCircuiting {
128 DeletedExpr * delExpr = nullptr;
129 void previsit( DeletedExpr * expr ) {
130 if ( delExpr ) visit_children = false;
131 else delExpr = expr;
132 }
133
134 void previsit( Expression * ) {
135 if ( delExpr ) visit_children = false;
136 }
137 };
138 }
139
140 DeletedExpr * findDeletedExpr( Expression * expr ) {
141 PassVisitor<DeleteFinder_old> finder;
142 expr->accept( finder );
143 return finder.pass.delExpr;
144 }
145
146 namespace {
147 struct StripCasts_old {
148 Expression * postmutate( CastExpr * castExpr ) {
149 if ( castExpr->isGenerated && ResolvExpr::typesCompatible( castExpr->arg->result, castExpr->result, SymTab::Indexer() ) ) {
150 // generated cast is to the same type as its argument, so it's unnecessary -- remove it
151 Expression * expr = castExpr->arg;
152 castExpr->arg = nullptr;
153 std::swap( expr->env, castExpr->env );
154 return expr;
155 }
156 return castExpr;
157 }
158
159 static void strip( Expression *& expr ) {
160 PassVisitor<StripCasts_old> stripper;
161 expr = expr->acceptMutator( stripper );
162 }
163 };
164
165 void finishExpr( Expression *& expr, const TypeEnvironment & env, TypeSubstitution * oldenv = nullptr ) {
166 expr->env = oldenv ? oldenv->clone() : new TypeSubstitution;
167 env.makeSubstitution( *expr->env );
168 StripCasts_old::strip( expr ); // remove unnecessary casts that may be buried in an expression
169 }
170
171 void removeExtraneousCast( Expression *& expr, const SymTab::Indexer & indexer ) {
172 if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( expr ) ) {
173 if ( typesCompatible( castExpr->arg->result, castExpr->result, indexer ) ) {
174 // cast is to the same type as its argument, so it's unnecessary -- remove it
175 expr = castExpr->arg;
176 castExpr->arg = nullptr;
177 std::swap( expr->env, castExpr->env );
178 delete castExpr;
179 }
180 }
181 }
182 } // namespace
183
184 namespace {
185 void findUnfinishedKindExpression(Expression * untyped, Alternative & alt, const SymTab::Indexer & indexer, const std::string & kindStr, std::function<bool(const Alternative &)> pred, ResolvMode mode = ResolvMode{} ) {
186 assertf( untyped, "expected a non-null expression." );
187
188 // xxx - this isn't thread-safe, but should work until we parallelize the resolver
189 static unsigned recursion_level = 0;
190
191 ++recursion_level;
192 TypeEnvironment env;
193 AlternativeFinder finder( indexer, env );
194 finder.find( untyped, recursion_level == 1 ? mode.atTopLevel() : mode );
195 --recursion_level;
196
197 #if 0
198 if ( finder.get_alternatives().size() != 1 ) {
199 std::cerr << "untyped expr is ";
200 untyped->print( std::cerr );
201 std::cerr << std::endl << "alternatives are:";
202 for ( const Alternative & alt : finder.get_alternatives() ) {
203 alt.print( std::cerr );
204 } // for
205 } // if
206 #endif
207
208 // produce filtered list of alternatives
209 AltList candidates;
210 for ( Alternative & alt : finder.get_alternatives() ) {
211 if ( pred( alt ) ) {
212 candidates.push_back( std::move( alt ) );
213 }
214 }
215
216 // produce invalid error if no candidates
217 if ( candidates.empty() ) {
218 SemanticError( untyped, toString( "No reasonable alternatives for ", kindStr, (kindStr != "" ? " " : ""), "expression: ") );
219 }
220
221 // search for cheapest candidate
222 AltList winners;
223 bool seen_undeleted = false;
224 for ( unsigned i = 0; i < candidates.size(); ++i ) {
225 int c = winners.empty() ? -1 : candidates[i].cost.compare( winners.front().cost );
226
227 if ( c > 0 ) continue; // skip more expensive than winner
228
229 if ( c < 0 ) {
230 // reset on new cheapest
231 seen_undeleted = ! findDeletedExpr( candidates[i].expr );
232 winners.clear();
233 } else /* if ( c == 0 ) */ {
234 if ( findDeletedExpr( candidates[i].expr ) ) {
235 // skip deleted expression if already seen one equivalent-cost not
236 if ( seen_undeleted ) continue;
237 } else if ( ! seen_undeleted ) {
238 // replace list of equivalent-cost deleted expressions with one non-deleted
239 winners.clear();
240 seen_undeleted = true;
241 }
242 }
243
244 winners.emplace_back( std::move( candidates[i] ) );
245 }
246
247 // promote alternative.cvtCost to .cost
248 // xxx - I don't know why this is done, but I'm keeping the behaviour from findMinCost
249 for ( Alternative& winner : winners ) {
250 winner.cost = winner.cvtCost;
251 }
252
253 // produce ambiguous errors, if applicable
254 if ( winners.size() != 1 ) {
255 std::ostringstream stream;
256 stream << "Cannot choose between " << winners.size() << " alternatives for " << kindStr << (kindStr != "" ? " " : "") << "expression\n";
257 untyped->print( stream );
258 stream << " Alternatives are:\n";
259 printAlts( winners, stream, 1 );
260 SemanticError( untyped->location, stream.str() );
261 }
262
263 // single selected choice
264 Alternative& choice = winners.front();
265
266 // fail on only expression deleted
267 if ( ! seen_undeleted ) {
268 SemanticError( untyped->location, choice.expr, "Unique best alternative includes deleted identifier in " );
269 }
270
271 // xxx - check for ambiguous expressions
272
273 // output selected choice
274 alt = std::move( choice );
275 }
276
277 /// resolve `untyped` to the expression whose alternative satisfies `pred` with the lowest cost; kindStr is used for providing better error messages
278 void findKindExpression(Expression *& untyped, const SymTab::Indexer & indexer, const std::string & kindStr, std::function<bool(const Alternative &)> pred, ResolvMode mode = ResolvMode{}) {
279 if ( ! untyped ) return;
280 Alternative choice;
281 findUnfinishedKindExpression( untyped, choice, indexer, kindStr, pred, mode );
282 finishExpr( choice.expr, choice.env, untyped->env );
283 delete untyped;
284 untyped = choice.expr;
285 choice.expr = nullptr;
286 }
287
288 bool standardAlternativeFilter( const Alternative & ) {
289 // currently don't need to filter, under normal circumstances.
290 // in the future, this may be useful for removing deleted expressions
291 return true;
292 }
293 } // namespace
294
295 // used in resolveTypeof
296 Expression * resolveInVoidContext( Expression * expr, const SymTab::Indexer & indexer ) {
297 TypeEnvironment env;
298 return resolveInVoidContext( expr, indexer, env );
299 }
300
301 Expression * resolveInVoidContext( Expression * expr, const SymTab::Indexer & indexer, TypeEnvironment & env ) {
302 // it's a property of the language that a cast expression has either 1 or 0 interpretations; if it has 0
303 // interpretations, an exception has already been thrown.
304 assertf( expr, "expected a non-null expression." );
305
306 CastExpr * untyped = new CastExpr( expr ); // cast to void
307 untyped->location = expr->location;
308
309 // set up and resolve expression cast to void
310 Alternative choice;
311 findUnfinishedKindExpression( untyped, choice, indexer, "", standardAlternativeFilter, ResolvMode::withAdjustment() );
312 CastExpr * castExpr = strict_dynamic_cast< CastExpr * >( choice.expr );
313 assert( castExpr );
314 env = std::move( choice.env );
315
316 // clean up resolved expression
317 Expression * ret = castExpr->arg;
318 castExpr->arg = nullptr;
319
320 // unlink the arg so that it isn't deleted twice at the end of the program
321 untyped->arg = nullptr;
322 return ret;
323 }
324
325 void findVoidExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
326 resetTyVarRenaming();
327 TypeEnvironment env;
328 Expression * newExpr = resolveInVoidContext( untyped, indexer, env );
329 finishExpr( newExpr, env, untyped->env );
330 delete untyped;
331 untyped = newExpr;
332 }
333
334 void findSingleExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
335 findKindExpression( untyped, indexer, "", standardAlternativeFilter );
336 }
337
338 void findSingleExpression( Expression *& untyped, Type * type, const SymTab::Indexer & indexer ) {
339 assert( untyped && type );
340 // transfer location to generated cast for error purposes
341 CodeLocation location = untyped->location;
342 untyped = new CastExpr( untyped, type );
343 untyped->location = location;
344 findSingleExpression( untyped, indexer );
345 removeExtraneousCast( untyped, indexer );
346 }
347
348 namespace {
349 bool isIntegralType( const Alternative & alt ) {
350 Type * type = alt.expr->result;
351 if ( dynamic_cast< EnumInstType * >( type ) ) {
352 return true;
353 } else if ( BasicType * bt = dynamic_cast< BasicType * >( type ) ) {
354 return bt->isInteger();
355 } else if ( dynamic_cast< ZeroType* >( type ) != nullptr || dynamic_cast< OneType* >( type ) != nullptr ) {
356 return true;
357 } else {
358 return false;
359 } // if
360 }
361
362 void findIntegralExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
363 findKindExpression( untyped, indexer, "condition", isIntegralType );
364 }
365 }
366
367
368 bool isStructOrUnion( const Alternative & alt ) {
369 Type * t = alt.expr->result->stripReferences();
370 return dynamic_cast< StructInstType * >( t ) || dynamic_cast< UnionInstType * >( t );
371 }
372
373 void resolveWithExprs( std::list< Declaration * > & translationUnit ) {
374 PassVisitor<ResolveWithExprs> resolver;
375 acceptAll( translationUnit, resolver );
376 }
377
378 void ResolveWithExprs::resolveWithExprs( std::list< Expression * > & withExprs, std::list< Statement * > & newStmts ) {
379 for ( Expression *& expr : withExprs ) {
380 // only struct- and union-typed expressions are viable candidates
381 findKindExpression( expr, indexer, "with statement", isStructOrUnion );
382
383 // if with expression might be impure, create a temporary so that it is evaluated once
384 if ( Tuples::maybeImpure( expr ) ) {
385 static UniqueName tmpNamer( "_with_tmp_" );
386 ObjectDecl * tmp = ObjectDecl::newObject( tmpNamer.newName(), expr->result->clone(), new SingleInit( expr ) );
387 expr = new VariableExpr( tmp );
388 newStmts.push_back( new DeclStmt( tmp ) );
389 if ( InitTweak::isConstructable( tmp->type ) ) {
390 // generate ctor/dtor and resolve them
391 tmp->init = InitTweak::genCtorInit( tmp );
392 tmp->accept( *visitor );
393 }
394 }
395 }
396 }
397
398 void ResolveWithExprs::previsit( WithStmt * withStmt ) {
399 resolveWithExprs( withStmt->exprs, stmtsToAddBefore );
400 }
401
402 void ResolveWithExprs::previsit( FunctionDecl * functionDecl ) {
403 {
404 // resolve with-exprs with parameters in scope and add any newly generated declarations to the
405 // front of the function body.
406 auto guard = makeFuncGuard( [this]() { indexer.enterScope(); }, [this](){ indexer.leaveScope(); } );
407 indexer.addFunctionType( functionDecl->type );
408 std::list< Statement * > newStmts;
409 resolveWithExprs( functionDecl->withExprs, newStmts );
410 if ( functionDecl->statements ) {
411 functionDecl->statements->kids.splice( functionDecl->statements->kids.begin(), newStmts );
412 } else {
413 assertf( functionDecl->withExprs.empty() && newStmts.empty(), "Function %s without a body has with-clause and/or generated with declarations.", functionDecl->name.c_str() );
414 }
415 }
416 }
417
418 void Resolver_old::previsit( ObjectDecl * objectDecl ) {
419 // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that
420 // class-variable initContext is changed multiple time because the LHS is analysed twice.
421 // The second analysis changes initContext because of a function type can contain object
422 // declarations in the return and parameter types. So each value of initContext is
423 // retained, so the type on the first analysis is preserved and used for selecting the RHS.
424 GuardValue( currentObject );
425 currentObject = CurrentObject( objectDecl->get_type() );
426 if ( inEnumDecl && dynamic_cast< EnumInstType * >( objectDecl->get_type() ) ) {
427 // enumerator initializers should not use the enum type to initialize, since
428 // the enum type is still incomplete at this point. Use signed int instead.
429 // TODO: BasicType::SignedInt may not longer be true
430 currentObject = CurrentObject( new BasicType( Type::Qualifiers(), BasicType::SignedInt ) );
431 }
432 }
433
434 template< typename PtrType >
435 void Resolver_old::handlePtrType( PtrType * type ) {
436 if ( type->get_dimension() ) {
437 findSingleExpression( type->dimension, Validate::SizeType->clone(), indexer );
438 }
439 }
440
441 void Resolver_old::previsit( ArrayType * at ) {
442 handlePtrType( at );
443 }
444
445 void Resolver_old::previsit( PointerType * pt ) {
446 handlePtrType( pt );
447 }
448
449 void Resolver_old::previsit( FunctionDecl * functionDecl ) {
450#if 0
451 std::cerr << "resolver visiting functiondecl ";
452 functionDecl->print( std::cerr );
453 std::cerr << std::endl;
454#endif
455 GuardValue( functionReturn );
456 functionReturn = ResolvExpr::extractResultType( functionDecl->type );
457 }
458
459 void Resolver_old::postvisit( FunctionDecl * functionDecl ) {
460 // default value expressions have an environment which shouldn't be there and trips up
461 // later passes.
462 // xxx - it might be necessary to somehow keep the information from this environment, but I
463 // can't currently see how it's useful.
464 for ( Declaration * d : functionDecl->type->parameters ) {
465 if ( ObjectDecl * obj = dynamic_cast< ObjectDecl * >( d ) ) {
466 if ( SingleInit * init = dynamic_cast< SingleInit * >( obj->init ) ) {
467 delete init->value->env;
468 init->value->env = nullptr;
469 }
470 }
471 }
472 }
473
474 void Resolver_old::previsit( EnumDecl * ) {
475 // in case we decide to allow nested enums
476 GuardValue( inEnumDecl );
477 inEnumDecl = true;
478 }
479
480 void Resolver_old::previsit( StaticAssertDecl * assertDecl ) {
481 findIntegralExpression( assertDecl->condition, indexer );
482 }
483
484 void Resolver_old::previsit( ExprStmt * exprStmt ) {
485 visit_children = false;
486 assertf( exprStmt->expr, "ExprStmt has null Expression in resolver" );
487 findVoidExpression( exprStmt->expr, indexer );
488 }
489
490 void Resolver_old::previsit( AsmExpr * asmExpr ) {
491 visit_children = false;
492 findVoidExpression( asmExpr->operand, indexer );
493 }
494
495 void Resolver_old::previsit( AsmStmt * asmStmt ) {
496 visit_children = false;
497 acceptAll( asmStmt->get_input(), *visitor );
498 acceptAll( asmStmt->get_output(), *visitor );
499 }
500
501 void Resolver_old::previsit( IfStmt * ifStmt ) {
502 findIntegralExpression( ifStmt->condition, indexer );
503 }
504
505 void Resolver_old::previsit( WhileDoStmt * whileDoStmt ) {
506 findIntegralExpression( whileDoStmt->condition, indexer );
507 }
508
509 void Resolver_old::previsit( ForStmt * forStmt ) {
510 if ( forStmt->condition ) {
511 findIntegralExpression( forStmt->condition, indexer );
512 } // if
513
514 if ( forStmt->increment ) {
515 findVoidExpression( forStmt->increment, indexer );
516 } // if
517 }
518
519 void Resolver_old::previsit( SwitchStmt * switchStmt ) {
520 GuardValue( currentObject );
521 findIntegralExpression( switchStmt->condition, indexer );
522
523 currentObject = CurrentObject( switchStmt->condition->result );
524 }
525
526 void Resolver_old::previsit( CaseStmt * caseStmt ) {
527 if ( caseStmt->condition ) {
528 std::list< InitAlternative > initAlts = currentObject.getOptions();
529 assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral expression." );
530 // must remove cast from case statement because RangeExpr cannot be cast.
531 Expression * newExpr = new CastExpr( caseStmt->condition, initAlts.front().type->clone() );
532 findSingleExpression( newExpr, indexer );
533 // case condition cannot have a cast in C, so it must be removed, regardless of whether it performs a conversion.
534 // Ideally we would perform the conversion internally here.
535 if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( newExpr ) ) {
536 newExpr = castExpr->arg;
537 castExpr->arg = nullptr;
538 std::swap( newExpr->env, castExpr->env );
539 delete castExpr;
540 }
541 caseStmt->condition = newExpr;
542 }
543 }
544
545 void Resolver_old::previsit( BranchStmt * branchStmt ) {
546 visit_children = false;
547 // must resolve the argument for a computed goto
548 if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement
549 if ( branchStmt->computedTarget ) {
550 // computed goto argument is void *
551 findSingleExpression( branchStmt->computedTarget, new PointerType( Type::Qualifiers(), new VoidType( Type::Qualifiers() ) ), indexer );
552 } // if
553 } // if
554 }
555
556 void Resolver_old::previsit( ReturnStmt * returnStmt ) {
557 visit_children = false;
558 if ( returnStmt->expr ) {
559 findSingleExpression( returnStmt->expr, functionReturn->clone(), indexer );
560 } // if
561 }
562
563 void Resolver_old::previsit( ThrowStmt * throwStmt ) {
564 visit_children = false;
565 // TODO: Replace *exception type with &exception type.
566 if ( throwStmt->get_expr() ) {
567 const StructDecl * exception_decl = indexer.lookupStruct( "__cfaehm_base_exception_t" );
568 assert( exception_decl );
569 Type * exceptType = new PointerType( noQualifiers, new StructInstType( noQualifiers, const_cast<StructDecl *>(exception_decl) ) );
570 findSingleExpression( throwStmt->expr, exceptType, indexer );
571 }
572 }
573
574 void Resolver_old::previsit( CatchStmt * catchStmt ) {
575 // Until we are very sure this invarent (ifs that move between passes have then)
576 // holds, check it. This allows a check for when to decode the mangling.
577 if ( IfStmt * ifStmt = dynamic_cast<IfStmt *>( catchStmt->body ) ) {
578 assert( ifStmt->then );
579 }
580 // Encode the catchStmt so the condition can see the declaration.
581 if ( catchStmt->cond ) {
582 IfStmt * ifStmt = new IfStmt( catchStmt->cond, nullptr, catchStmt->body );
583 catchStmt->cond = nullptr;
584 catchStmt->body = ifStmt;
585 }
586 }
587
588 void Resolver_old::postvisit( CatchStmt * catchStmt ) {
589 // Decode the catchStmt so everything is stored properly.
590 IfStmt * ifStmt = dynamic_cast<IfStmt *>( catchStmt->body );
591 if ( nullptr != ifStmt && nullptr == ifStmt->then ) {
592 assert( ifStmt->condition );
593 assert( ifStmt->else_ );
594 catchStmt->cond = ifStmt->condition;
595 catchStmt->body = ifStmt->else_;
596 ifStmt->condition = nullptr;
597 ifStmt->else_ = nullptr;
598 delete ifStmt;
599 }
600 }
601
602 template< typename iterator_t >
603 inline bool advance_to_mutex( iterator_t & it, const iterator_t & end ) {
604 while( it != end && !(*it)->get_type()->get_mutex() ) {
605 it++;
606 }
607
608 return it != end;
609 }
610
611 void Resolver_old::previsit( WaitForStmt * stmt ) {
612 visit_children = false;
613
614 // Resolve all clauses first
615 for( auto& clause : stmt->clauses ) {
616
617 TypeEnvironment env;
618 AlternativeFinder funcFinder( indexer, env );
619
620 // Find all alternatives for a function in canonical form
621 funcFinder.findWithAdjustment( clause.target.function );
622
623 if ( funcFinder.get_alternatives().empty() ) {
624 stringstream ss;
625 ss << "Use of undeclared indentifier '";
626 ss << strict_dynamic_cast<NameExpr*>( clause.target.function )->name;
627 ss << "' in call to waitfor";
628 SemanticError( stmt->location, ss.str() );
629 }
630
631 if(clause.target.arguments.empty()) {
632 SemanticError( stmt->location, "Waitfor clause must have at least one mutex parameter");
633 }
634
635 // Find all alternatives for all arguments in canonical form
636 std::vector< AlternativeFinder > argAlternatives;
637 funcFinder.findSubExprs( clause.target.arguments.begin(), clause.target.arguments.end(), back_inserter( argAlternatives ) );
638
639 // List all combinations of arguments
640 std::vector< AltList > possibilities;
641 combos( argAlternatives.begin(), argAlternatives.end(), back_inserter( possibilities ) );
642
643 AltList func_candidates;
644 std::vector< AltList > args_candidates;
645
646 // For every possible function :
647 // try matching the arguments to the parameters
648 // not the other way around because we have more arguments than parameters
649 SemanticErrorException errors;
650 for ( Alternative & func : funcFinder.get_alternatives() ) {
651 try {
652 PointerType * pointer = dynamic_cast< PointerType* >( func.expr->get_result()->stripReferences() );
653 if( !pointer ) {
654 SemanticError( func.expr->get_result(), "candidate not viable: not a pointer type\n" );
655 }
656
657 FunctionType * function = dynamic_cast< FunctionType* >( pointer->get_base() );
658 if( !function ) {
659 SemanticError( pointer->get_base(), "candidate not viable: not a function type\n" );
660 }
661
662
663 {
664 auto param = function->parameters.begin();
665 auto param_end = function->parameters.end();
666
667 if( !advance_to_mutex( param, param_end ) ) {
668 SemanticError(function, "candidate function not viable: no mutex parameters\n");
669 }
670 }
671
672 Alternative newFunc( func );
673 // Strip reference from function
674 referenceToRvalueConversion( newFunc.expr, newFunc.cost );
675
676 // For all the set of arguments we have try to match it with the parameter of the current function alternative
677 for ( auto & argsList : possibilities ) {
678
679 try {
680 // Declare data structures need for resolution
681 OpenVarSet openVars;
682 AssertionSet resultNeed, resultHave;
683 TypeEnvironment resultEnv( func.env );
684 makeUnifiableVars( function, openVars, resultNeed );
685 // add all type variables as open variables now so that those not used in the parameter
686 // list are still considered open.
687 resultEnv.add( function->forall );
688
689 // Load type variables from arguemnts into one shared space
690 simpleCombineEnvironments( argsList.begin(), argsList.end(), resultEnv );
691
692 // Make sure we don't widen any existing bindings
693 resultEnv.forbidWidening();
694
695 // Find any unbound type variables
696 resultEnv.extractOpenVars( openVars );
697
698 auto param = function->parameters.begin();
699 auto param_end = function->parameters.end();
700
701 int n_mutex_param = 0;
702
703 // For every arguments of its set, check if it matches one of the parameter
704 // The order is important
705 for( auto & arg : argsList ) {
706
707 // Ignore non-mutex arguments
708 if( !advance_to_mutex( param, param_end ) ) {
709 // We ran out of parameters but still have arguments
710 // this function doesn't match
711 SemanticError( function, toString("candidate function not viable: too many mutex arguments, expected ", n_mutex_param, "\n" ));
712 }
713
714 n_mutex_param++;
715
716 // Check if the argument matches the parameter type in the current scope
717 if( ! unify( arg.expr->get_result(), (*param)->get_type(), resultEnv, resultNeed, resultHave, openVars, this->indexer ) ) {
718 // Type doesn't match
719 stringstream ss;
720 ss << "candidate function not viable: no known convertion from '";
721 (*param)->get_type()->print( ss );
722 ss << "' to '";
723 arg.expr->get_result()->print( ss );
724 ss << "' with env '";
725 resultEnv.print(ss);
726 ss << "'\n";
727 SemanticError( function, ss.str() );
728 }
729
730 param++;
731 }
732
733 // All arguments match !
734
735 // Check if parameters are missing
736 if( advance_to_mutex( param, param_end ) ) {
737 do {
738 n_mutex_param++;
739 param++;
740 } while( advance_to_mutex( param, param_end ) );
741
742 // We ran out of arguments but still have parameters left
743 // this function doesn't match
744 SemanticError( function, toString("candidate function not viable: too few mutex arguments, expected ", n_mutex_param, "\n" ));
745 }
746
747 // All parameters match !
748
749 // Finish the expressions to tie in the proper environments
750 finishExpr( newFunc.expr, resultEnv );
751 for( Alternative & alt : argsList ) {
752 finishExpr( alt.expr, resultEnv );
753 }
754
755 // This is a match store it and save it for later
756 func_candidates.push_back( newFunc );
757 args_candidates.push_back( argsList );
758
759 }
760 catch( SemanticErrorException & e ) {
761 errors.append( e );
762 }
763 }
764 }
765 catch( SemanticErrorException & e ) {
766 errors.append( e );
767 }
768 }
769
770 // Make sure we got the right number of arguments
771 if( func_candidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for function in call to waitfor" ); top.append( errors ); throw top; }
772 if( args_candidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for arguments in call to waitfor" ); top.append( errors ); throw top; }
773 if( func_candidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous function in call to waitfor" ); top.append( errors ); throw top; }
774 if( args_candidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous arguments in call to waitfor" ); top.append( errors ); throw top; }
775 // TODO: need to use findDeletedExpr to ensure no deleted identifiers are used.
776
777 // Swap the results from the alternative with the unresolved values.
778 // Alternatives will handle deletion on destruction
779 std::swap( clause.target.function, func_candidates.front().expr );
780 for( auto arg_pair : group_iterate( clause.target.arguments, args_candidates.front() ) ) {
781 std::swap ( std::get<0>( arg_pair), std::get<1>( arg_pair).expr );
782 }
783
784 // Resolve the conditions as if it were an IfStmt
785 // Resolve the statments normally
786 findSingleExpression( clause.condition, this->indexer );
787 clause.statement->accept( *visitor );
788 }
789
790
791 if( stmt->timeout.statement ) {
792 // Resolve the timeout as an size_t for now
793 // Resolve the conditions as if it were an IfStmt
794 // Resolve the statments normally
795 findSingleExpression( stmt->timeout.time, new BasicType( noQualifiers, BasicType::LongLongUnsignedInt ), this->indexer );
796 findSingleExpression( stmt->timeout.condition, this->indexer );
797 stmt->timeout.statement->accept( *visitor );
798 }
799
800 if( stmt->orelse.statement ) {
801 // Resolve the conditions as if it were an IfStmt
802 // Resolve the statments normally
803 findSingleExpression( stmt->orelse.condition, this->indexer );
804 stmt->orelse.statement->accept( *visitor );
805 }
806 }
807
808 bool isCharType( Type * t ) {
809 if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) {
810 return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar ||
811 bt->get_kind() == BasicType::UnsignedChar;
812 }
813 return false;
814 }
815
816 void Resolver_old::previsit( SingleInit * singleInit ) {
817 visit_children = false;
818 // resolve initialization using the possibilities as determined by the currentObject cursor
819 Expression * newExpr = new UntypedInitExpr( singleInit->value, currentObject.getOptions() );
820 findSingleExpression( newExpr, indexer );
821 InitExpr * initExpr = strict_dynamic_cast< InitExpr * >( newExpr );
822
823 // move cursor to the object that is actually initialized
824 currentObject.setNext( initExpr->get_designation() );
825
826 // discard InitExpr wrapper and retain relevant pieces
827 newExpr = initExpr->expr;
828 initExpr->expr = nullptr;
829 std::swap( initExpr->env, newExpr->env );
830 // InitExpr may have inferParams in the case where the expression specializes a function
831 // pointer, and newExpr may already have inferParams of its own, so a simple swap is not
832 // sufficient.
833 newExpr->spliceInferParams( initExpr );
834 delete initExpr;
835
836 // get the actual object's type (may not exactly match what comes back from the resolver
837 // due to conversions)
838 Type * initContext = currentObject.getCurrentType();
839
840 removeExtraneousCast( newExpr, indexer );
841
842 // check if actual object's type is char[]
843 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
844 if ( isCharType( at->get_base() ) ) {
845 // check if the resolved type is char *
846 if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_result() ) ) {
847 if ( isCharType( pt->get_base() ) ) {
848 if ( CastExpr * ce = dynamic_cast< CastExpr * >( newExpr ) ) {
849 // strip cast if we're initializing a char[] with a char *,
850 // e.g. char x[] = "hello";
851 newExpr = ce->get_arg();
852 ce->set_arg( nullptr );
853 std::swap( ce->env, newExpr->env );
854 delete ce;
855 }
856 }
857 }
858 }
859 }
860
861 // set initializer expr to resolved express
862 singleInit->value = newExpr;
863
864 // move cursor to next object in preparation for next initializer
865 currentObject.increment();
866 }
867
868 void Resolver_old::previsit( ListInit * listInit ) {
869 visit_children = false;
870 // move cursor into brace-enclosed initializer-list
871 currentObject.enterListInit();
872 // xxx - fix this so that the list isn't copied, iterator should be used to change current
873 // element
874 std::list<Designation *> newDesignations;
875 for ( auto p : group_iterate(listInit->get_designations(), listInit->get_initializers()) ) {
876 // iterate designations and initializers in pairs, moving the cursor to the current
877 // designated object and resolving the initializer against that object.
878 Designation * des = std::get<0>(p);
879 Initializer * init = std::get<1>(p);
880 newDesignations.push_back( currentObject.findNext( des ) );
881 init->accept( *visitor );
882 }
883 // set the set of 'resolved' designations and leave the brace-enclosed initializer-list
884 listInit->get_designations() = newDesignations; // xxx - memory management
885 currentObject.exitListInit();
886
887 // xxx - this part has not be folded into CurrentObject yet
888 // } else if ( TypeInstType * tt = dynamic_cast< TypeInstType * >( initContext ) ) {
889 // Type * base = tt->get_baseType()->get_base();
890 // if ( base ) {
891 // // know the implementation type, so try using that as the initContext
892 // ObjectDecl tmpObj( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, base->clone(), nullptr );
893 // currentObject = &tmpObj;
894 // visit( listInit );
895 // } else {
896 // // missing implementation type -- might be an unknown type variable, so try proceeding with the current init context
897 // Parent::visit( listInit );
898 // }
899 // } else {
900 }
901
902 // ConstructorInit - fall back on C-style initializer
903 void Resolver_old::fallbackInit( ConstructorInit * ctorInit ) {
904 // could not find valid constructor, or found an intrinsic constructor
905 // fall back on C-style initializer
906 delete ctorInit->get_ctor();
907 ctorInit->set_ctor( nullptr );
908 delete ctorInit->get_dtor();
909 ctorInit->set_dtor( nullptr );
910 maybeAccept( ctorInit->get_init(), *visitor );
911 }
912
913 // needs to be callable from outside the resolver, so this is a standalone function
914 void resolveCtorInit( ConstructorInit * ctorInit, const SymTab::Indexer & indexer ) {
915 assert( ctorInit );
916 PassVisitor<Resolver_old> resolver( indexer );
917 ctorInit->accept( resolver );
918 }
919
920 void resolveStmtExpr( StmtExpr * stmtExpr, const SymTab::Indexer & indexer ) {
921 assert( stmtExpr );
922 PassVisitor<Resolver_old> resolver( indexer );
923 stmtExpr->accept( resolver );
924 stmtExpr->computeResult();
925 // xxx - aggregate the environments from all statements? Possibly in AlternativeFinder instead?
926 }
927
928 void Resolver_old::previsit( ConstructorInit * ctorInit ) {
929 visit_children = false;
930 // xxx - fallback init has been removed => remove fallbackInit function and remove complexity from FixInit and remove C-init from ConstructorInit
931 maybeAccept( ctorInit->ctor, *visitor );
932 maybeAccept( ctorInit->dtor, *visitor );
933
934 // found a constructor - can get rid of C-style initializer
935 delete ctorInit->init;
936 ctorInit->init = nullptr;
937
938 // intrinsic single parameter constructors and destructors do nothing. Since this was
939 // implicitly generated, there's no way for it to have side effects, so get rid of it
940 // to clean up generated code.
941 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->ctor ) ) {
942 delete ctorInit->ctor;
943 ctorInit->ctor = nullptr;
944 }
945
946 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->dtor ) ) {
947 delete ctorInit->dtor;
948 ctorInit->dtor = nullptr;
949 }
950
951 // xxx - todo -- what about arrays?
952 // if ( dtor == nullptr && InitTweak::isIntrinsicCallStmt( ctorInit->get_ctor() ) ) {
953 // // can reduce the constructor down to a SingleInit using the
954 // // second argument from the ctor call, since
955 // delete ctorInit->get_ctor();
956 // ctorInit->set_ctor( nullptr );
957
958 // Expression * arg =
959 // ctorInit->set_init( new SingleInit( arg ) );
960 // }
961 }
962
963 ///////////////////////////////////////////////////////////////////////////
964 //
965 // *** NEW RESOLVER ***
966 //
967 ///////////////////////////////////////////////////////////////////////////
968
969 namespace {
970 /// Finds deleted expressions in an expression tree
971 struct DeleteFinder_new final : public ast::WithShortCircuiting, public ast::WithVisitorRef<DeleteFinder_new> {
972 const ast::DeletedExpr * result = nullptr;
973
974 void previsit( const ast::DeletedExpr * expr ) {
975 if ( result ) { visit_children = false; }
976 else { result = expr; }
977 }
978
979 void previsit( const ast::Expr * expr ) {
980 if ( result ) { visit_children = false; }
981 if (expr->inferred.hasParams()) {
982 for (auto & imp : expr->inferred.inferParams() ) {
983 imp.second.expr->accept(*visitor);
984 }
985 }
986 }
987 };
988 } // anonymous namespace
989 /// Check if this expression is or includes a deleted expression
990 const ast::DeletedExpr * findDeletedExpr( const ast::Expr * expr ) {
991 return ast::Pass<DeleteFinder_new>::read( expr );
992 }
993
994 namespace {
995 /// always-accept candidate filter
996 bool anyCandidate( const Candidate & ) { return true; }
997
998 /// Calls the CandidateFinder and finds the single best candidate
999 CandidateRef findUnfinishedKindExpression(
1000 const ast::Expr * untyped, const ResolveContext & context, const std::string & kind,
1001 std::function<bool(const Candidate &)> pred = anyCandidate, ResolvMode mode = {}
1002 ) {
1003 if ( ! untyped ) return nullptr;
1004
1005 // xxx - this isn't thread-safe, but should work until we parallelize the resolver
1006 static unsigned recursion_level = 0;
1007
1008 ++recursion_level;
1009 ast::TypeEnvironment env;
1010 CandidateFinder finder( context, env );
1011 finder.find( untyped, recursion_level == 1 ? mode.atTopLevel() : mode );
1012 --recursion_level;
1013
1014 // produce a filtered list of candidates
1015 CandidateList candidates;
1016 for ( auto & cand : finder.candidates ) {
1017 if ( pred( *cand ) ) { candidates.emplace_back( cand ); }
1018 }
1019
1020 // produce invalid error if no candidates
1021 if ( candidates.empty() ) {
1022 SemanticError( untyped,
1023 toString( "No reasonable alternatives for ", kind, (kind != "" ? " " : ""),
1024 "expression: ") );
1025 }
1026
1027 // search for cheapest candidate
1028 CandidateList winners;
1029 bool seen_undeleted = false;
1030 for ( CandidateRef & cand : candidates ) {
1031 int c = winners.empty() ? -1 : cand->cost.compare( winners.front()->cost );
1032
1033 if ( c > 0 ) continue; // skip more expensive than winner
1034
1035 if ( c < 0 ) {
1036 // reset on new cheapest
1037 seen_undeleted = ! findDeletedExpr( cand->expr );
1038 winners.clear();
1039 } else /* if ( c == 0 ) */ {
1040 if ( findDeletedExpr( cand->expr ) ) {
1041 // skip deleted expression if already seen one equivalent-cost not
1042 if ( seen_undeleted ) continue;
1043 } else if ( ! seen_undeleted ) {
1044 // replace list of equivalent-cost deleted expressions with one non-deleted
1045 winners.clear();
1046 seen_undeleted = true;
1047 }
1048 }
1049
1050 winners.emplace_back( std::move( cand ) );
1051 }
1052
1053 // promote candidate.cvtCost to .cost
1054 promoteCvtCost( winners );
1055
1056 // produce ambiguous errors, if applicable
1057 if ( winners.size() != 1 ) {
1058 std::ostringstream stream;
1059 stream << "Cannot choose between " << winners.size() << " alternatives for "
1060 << kind << (kind != "" ? " " : "") << "expression\n";
1061 ast::print( stream, untyped );
1062 stream << " Alternatives are:\n";
1063 print( stream, winners, 1 );
1064 SemanticError( untyped->location, stream.str() );
1065 }
1066
1067 // single selected choice
1068 CandidateRef & choice = winners.front();
1069
1070 // fail on only expression deleted
1071 if ( ! seen_undeleted ) {
1072 SemanticError( untyped->location, choice->expr.get(), "Unique best alternative "
1073 "includes deleted identifier in " );
1074 }
1075
1076 return std::move( choice );
1077 }
1078
1079 /// Strips extraneous casts out of an expression
1080 struct StripCasts_new final {
1081 const ast::Expr * postvisit( const ast::CastExpr * castExpr ) {
1082 if (
1083 castExpr->isGenerated == ast::GeneratedCast
1084 && typesCompatible( castExpr->arg->result, castExpr->result )
1085 ) {
1086 // generated cast is the same type as its argument, remove it after keeping env
1087 return ast::mutate_field(
1088 castExpr->arg.get(), &ast::Expr::env, castExpr->env );
1089 }
1090 return castExpr;
1091 }
1092
1093 static void strip( ast::ptr< ast::Expr > & expr ) {
1094 ast::Pass< StripCasts_new > stripper;
1095 expr = expr->accept( stripper );
1096 }
1097 };
1098
1099 /// Swaps argument into expression pointer, saving original environment
1100 void swap_and_save_env( ast::ptr< ast::Expr > & expr, const ast::Expr * newExpr ) {
1101 ast::ptr< ast::TypeSubstitution > env = expr->env;
1102 expr.set_and_mutate( newExpr )->env = env;
1103 }
1104
1105 /// Removes cast to type of argument (unlike StripCasts, also handles non-generated casts)
1106 void removeExtraneousCast( ast::ptr<ast::Expr> & expr, const ast::SymbolTable & symtab ) {
1107 if ( const ast::CastExpr * castExpr = expr.as< ast::CastExpr >() ) {
1108 if ( typesCompatible( castExpr->arg->result, castExpr->result, symtab ) ) {
1109 // cast is to the same type as its argument, remove it
1110 swap_and_save_env( expr, castExpr->arg );
1111 }
1112 }
1113 }
1114
1115
1116 } // anonymous namespace
1117/// Establish post-resolver invariants for expressions
1118 void finishExpr(
1119 ast::ptr< ast::Expr > & expr, const ast::TypeEnvironment & env,
1120 const ast::TypeSubstitution * oldenv = nullptr
1121 ) {
1122 // set up new type substitution for expression
1123 ast::ptr< ast::TypeSubstitution > newenv =
1124 oldenv ? oldenv : new ast::TypeSubstitution{};
1125 env.writeToSubstitution( *newenv.get_and_mutate() );
1126 expr.get_and_mutate()->env = std::move( newenv );
1127 // remove unncecessary casts
1128 StripCasts_new::strip( expr );
1129 }
1130
1131 ast::ptr< ast::Expr > resolveInVoidContext(
1132 const ast::Expr * expr, const ResolveContext & context,
1133 ast::TypeEnvironment & env
1134 ) {
1135 assertf( expr, "expected a non-null expression" );
1136
1137 // set up and resolve expression cast to void
1138 ast::ptr< ast::CastExpr > untyped = new ast::CastExpr{ expr };
1139 CandidateRef choice = findUnfinishedKindExpression(
1140 untyped, context, "", anyCandidate, ResolvMode::withAdjustment() );
1141
1142 // a cast expression has either 0 or 1 interpretations (by language rules);
1143 // if 0, an exception has already been thrown, and this code will not run
1144 const ast::CastExpr * castExpr = choice->expr.strict_as< ast::CastExpr >();
1145 env = std::move( choice->env );
1146
1147 return castExpr->arg;
1148 }
1149
1150 /// Resolve `untyped` to the expression whose candidate is the best match for a `void`
1151 /// context.
1152 ast::ptr< ast::Expr > findVoidExpression(
1153 const ast::Expr * untyped, const ResolveContext & context
1154 ) {
1155 ast::TypeEnvironment env;
1156 ast::ptr< ast::Expr > newExpr = resolveInVoidContext( untyped, context, env );
1157 finishExpr( newExpr, env, untyped->env );
1158 return newExpr;
1159 }
1160
1161 namespace {
1162
1163
1164 /// resolve `untyped` to the expression whose candidate satisfies `pred` with the
1165 /// lowest cost, returning the resolved version
1166 ast::ptr< ast::Expr > findKindExpression(
1167 const ast::Expr * untyped, const ResolveContext & context,
1168 std::function<bool(const Candidate &)> pred = anyCandidate,
1169 const std::string & kind = "", ResolvMode mode = {}
1170 ) {
1171 if ( ! untyped ) return {};
1172 CandidateRef choice =
1173 findUnfinishedKindExpression( untyped, context, kind, pred, mode );
1174 ResolvExpr::finishExpr( choice->expr, choice->env, untyped->env );
1175 return std::move( choice->expr );
1176 }
1177
1178 /// Resolve `untyped` to the single expression whose candidate is the best match
1179 ast::ptr< ast::Expr > findSingleExpression(
1180 const ast::Expr * untyped, const ResolveContext & context
1181 ) {
1182 Stats::ResolveTime::start( untyped );
1183 auto res = findKindExpression( untyped, context );
1184 Stats::ResolveTime::stop();
1185 return res;
1186 }
1187 } // anonymous namespace
1188
1189 ast::ptr< ast::Expr > findSingleExpression(
1190 const ast::Expr * untyped, const ast::Type * type,
1191 const ResolveContext & context
1192 ) {
1193 assert( untyped && type );
1194 ast::ptr< ast::Expr > castExpr = new ast::CastExpr{ untyped, type };
1195 ast::ptr< ast::Expr > newExpr = findSingleExpression( castExpr, context );
1196 removeExtraneousCast( newExpr, context.symtab );
1197 return newExpr;
1198 }
1199
1200 namespace {
1201 bool structOrUnion( const Candidate & i ) {
1202 const ast::Type * t = i.expr->result->stripReferences();
1203 return dynamic_cast< const ast::StructInstType * >( t ) || dynamic_cast< const ast::UnionInstType * >( t );
1204 }
1205 /// Predicate for "Candidate has integral type"
1206 bool hasIntegralType( const Candidate & i ) {
1207 const ast::Type * type = i.expr->result;
1208
1209 if ( auto bt = dynamic_cast< const ast::BasicType * >( type ) ) {
1210 return bt->isInteger();
1211 } else if (
1212 dynamic_cast< const ast::EnumInstType * >( type )
1213 || dynamic_cast< const ast::ZeroType * >( type )
1214 || dynamic_cast< const ast::OneType * >( type )
1215 ) {
1216 return true;
1217 } else return false;
1218 }
1219
1220 /// Resolve `untyped` as an integral expression, returning the resolved version
1221 ast::ptr< ast::Expr > findIntegralExpression(
1222 const ast::Expr * untyped, const ResolveContext & context
1223 ) {
1224 return findKindExpression( untyped, context, hasIntegralType, "condition" );
1225 }
1226
1227 /// check if a type is a character type
1228 bool isCharType( const ast::Type * t ) {
1229 if ( auto bt = dynamic_cast< const ast::BasicType * >( t ) ) {
1230 return bt->kind == ast::BasicType::Char
1231 || bt->kind == ast::BasicType::SignedChar
1232 || bt->kind == ast::BasicType::UnsignedChar;
1233 }
1234 return false;
1235 }
1236
1237 /// Advance a type itertor to the next mutex parameter
1238 template<typename Iter>
1239 inline bool nextMutex( Iter & it, const Iter & end ) {
1240 while ( it != end && ! (*it)->is_mutex() ) { ++it; }
1241 return it != end;
1242 }
1243 }
1244
1245 class Resolver_new final
1246 : public ast::WithSymbolTable, public ast::WithGuards,
1247 public ast::WithVisitorRef<Resolver_new>, public ast::WithShortCircuiting,
1248 public ast::WithStmtsToAdd<> {
1249
1250 ast::ptr< ast::Type > functionReturn = nullptr;
1251 ast::CurrentObject currentObject;
1252 // for work previously in GenInit
1253 static InitTweak::ManagedTypes_new managedTypes;
1254 ResolveContext context;
1255
1256 bool inEnumDecl = false;
1257
1258 public:
1259 static size_t traceId;
1260 Resolver_new( const ast::TranslationGlobal & global ) :
1261 context{ symtab, global } {}
1262 Resolver_new( const ResolveContext & context ) :
1263 ast::WithSymbolTable{ context.symtab },
1264 context{ symtab, context.global } {}
1265
1266 const ast::FunctionDecl * previsit( const ast::FunctionDecl * );
1267 const ast::FunctionDecl * postvisit( const ast::FunctionDecl * );
1268 const ast::ObjectDecl * previsit( const ast::ObjectDecl * );
1269 void previsit( const ast::AggregateDecl * );
1270 void previsit( const ast::StructDecl * );
1271 void previsit( const ast::EnumDecl * );
1272 const ast::StaticAssertDecl * previsit( const ast::StaticAssertDecl * );
1273
1274 const ast::ArrayType * previsit( const ast::ArrayType * );
1275 const ast::PointerType * previsit( const ast::PointerType * );
1276
1277 const ast::ExprStmt * previsit( const ast::ExprStmt * );
1278 const ast::AsmExpr * previsit( const ast::AsmExpr * );
1279 const ast::AsmStmt * previsit( const ast::AsmStmt * );
1280 const ast::IfStmt * previsit( const ast::IfStmt * );
1281 const ast::WhileDoStmt * previsit( const ast::WhileDoStmt * );
1282 const ast::ForStmt * previsit( const ast::ForStmt * );
1283 const ast::SwitchStmt * previsit( const ast::SwitchStmt * );
1284 const ast::CaseClause * previsit( const ast::CaseClause * );
1285 const ast::BranchStmt * previsit( const ast::BranchStmt * );
1286 const ast::ReturnStmt * previsit( const ast::ReturnStmt * );
1287 const ast::ThrowStmt * previsit( const ast::ThrowStmt * );
1288 const ast::CatchClause * previsit( const ast::CatchClause * );
1289 const ast::CatchClause * postvisit( const ast::CatchClause * );
1290 const ast::WaitForStmt * previsit( const ast::WaitForStmt * );
1291 const ast::WithStmt * previsit( const ast::WithStmt * );
1292
1293 const ast::SingleInit * previsit( const ast::SingleInit * );
1294 const ast::ListInit * previsit( const ast::ListInit * );
1295 const ast::ConstructorInit * previsit( const ast::ConstructorInit * );
1296
1297 void resolveWithExprs(std::vector<ast::ptr<ast::Expr>> & exprs, std::list<ast::ptr<ast::Stmt>> & stmtsToAdd);
1298
1299 void beginScope() { managedTypes.beginScope(); }
1300 void endScope() { managedTypes.endScope(); }
1301 bool on_error(ast::ptr<ast::Decl> & decl);
1302 };
1303 // size_t Resolver_new::traceId = Stats::Heap::new_stacktrace_id("Resolver");
1304
1305 InitTweak::ManagedTypes_new Resolver_new::managedTypes;
1306
1307 void resolve( ast::TranslationUnit& translationUnit ) {
1308 ast::Pass< Resolver_new >::run( translationUnit, translationUnit.global );
1309 }
1310
1311 ast::ptr< ast::Init > resolveCtorInit(
1312 const ast::ConstructorInit * ctorInit, const ResolveContext & context
1313 ) {
1314 assert( ctorInit );
1315 ast::Pass< Resolver_new > resolver( context );
1316 return ctorInit->accept( resolver );
1317 }
1318
1319 const ast::Expr * resolveStmtExpr(
1320 const ast::StmtExpr * stmtExpr, const ResolveContext & context
1321 ) {
1322 assert( stmtExpr );
1323 ast::Pass< Resolver_new > resolver( context );
1324 auto ret = mutate(stmtExpr->accept(resolver));
1325 strict_dynamic_cast< ast::StmtExpr * >( ret )->computeResult();
1326 return ret;
1327 }
1328
1329 namespace {
1330 const ast::Attribute * handleAttribute(const CodeLocation & loc, const ast::Attribute * attr, const ResolveContext & context) {
1331 std::string name = attr->normalizedName();
1332 if (name == "constructor" || name == "destructor") {
1333 if (attr->params.size() == 1) {
1334 auto arg = attr->params.front();
1335 auto resolved = ResolvExpr::findSingleExpression( arg, new ast::BasicType( ast::BasicType::LongLongSignedInt ), context );
1336 auto result = eval(arg);
1337
1338 auto mutAttr = mutate(attr);
1339 mutAttr->params.front() = resolved;
1340 if (! result.second) {
1341 SemanticWarning(loc, Warning::GccAttributes,
1342 toCString( name, " priorities must be integers from 0 to 65535 inclusive: ", arg ) );
1343 }
1344 else {
1345 auto priority = result.first;
1346 if (priority < 101) {
1347 SemanticWarning(loc, Warning::GccAttributes,
1348 toCString( name, " priorities from 0 to 100 are reserved for the implementation" ) );
1349 } else if (priority < 201 && ! buildingLibrary()) {
1350 SemanticWarning(loc, Warning::GccAttributes,
1351 toCString( name, " priorities from 101 to 200 are reserved for the implementation" ) );
1352 }
1353 }
1354 return mutAttr;
1355 } else if (attr->params.size() > 1) {
1356 SemanticWarning(loc, Warning::GccAttributes, toCString( "too many arguments to ", name, " attribute" ) );
1357 } else {
1358 SemanticWarning(loc, Warning::GccAttributes, toCString( "too few arguments to ", name, " attribute" ) );
1359 }
1360 }
1361 return attr;
1362 }
1363 }
1364
1365 const ast::FunctionDecl * Resolver_new::previsit( const ast::FunctionDecl * functionDecl ) {
1366 GuardValue( functionReturn );
1367
1368 assert (functionDecl->unique());
1369 if (!functionDecl->has_body() && !functionDecl->withExprs.empty()) {
1370 SemanticError(functionDecl->location, functionDecl, "Function without body has with declarations");
1371 }
1372
1373 if (!functionDecl->isTypeFixed) {
1374 auto mutDecl = mutate(functionDecl);
1375 auto mutType = mutDecl->type.get_and_mutate();
1376
1377 for (auto & attr: mutDecl->attributes) {
1378 attr = handleAttribute(mutDecl->location, attr, context );
1379 }
1380
1381 // handle assertions
1382
1383 symtab.enterScope();
1384 mutType->forall.clear();
1385 mutType->assertions.clear();
1386 for (auto & typeParam : mutDecl->type_params) {
1387 symtab.addType(typeParam);
1388 mutType->forall.emplace_back(new ast::TypeInstType(typeParam));
1389 }
1390 for (auto & asst : mutDecl->assertions) {
1391 asst = fixObjectType(asst.strict_as<ast::ObjectDecl>(), context);
1392 symtab.addId(asst);
1393 mutType->assertions.emplace_back(new ast::VariableExpr(functionDecl->location, asst));
1394 }
1395
1396 // temporarily adds params to symbol table.
1397 // actual scoping rules for params and withexprs differ - see Pass::visit(FunctionDecl)
1398
1399 std::vector<ast::ptr<ast::Type>> paramTypes;
1400 std::vector<ast::ptr<ast::Type>> returnTypes;
1401
1402 for (auto & param : mutDecl->params) {
1403 param = fixObjectType(param.strict_as<ast::ObjectDecl>(), context);
1404 symtab.addId(param);
1405 paramTypes.emplace_back(param->get_type());
1406 }
1407 for (auto & ret : mutDecl->returns) {
1408 ret = fixObjectType(ret.strict_as<ast::ObjectDecl>(), context);
1409 returnTypes.emplace_back(ret->get_type());
1410 }
1411 // since function type in decl is just a view of param types, need to update that as well
1412 mutType->params = std::move(paramTypes);
1413 mutType->returns = std::move(returnTypes);
1414
1415 auto renamedType = strict_dynamic_cast<const ast::FunctionType *>(renameTyVars(mutType, RenameMode::GEN_EXPR_ID));
1416
1417 std::list<ast::ptr<ast::Stmt>> newStmts;
1418 resolveWithExprs (mutDecl->withExprs, newStmts);
1419
1420 if (mutDecl->stmts) {
1421 auto mutStmt = mutDecl->stmts.get_and_mutate();
1422 mutStmt->kids.splice(mutStmt->kids.begin(), std::move(newStmts));
1423 mutDecl->stmts = mutStmt;
1424 }
1425
1426 symtab.leaveScope();
1427
1428 mutDecl->type = renamedType;
1429 mutDecl->mangleName = Mangle::mangle(mutDecl);
1430 mutDecl->isTypeFixed = true;
1431 functionDecl = mutDecl;
1432 }
1433 managedTypes.handleDWT(functionDecl);
1434
1435 functionReturn = extractResultType( functionDecl->type );
1436 return functionDecl;
1437 }
1438
1439 const ast::FunctionDecl * Resolver_new::postvisit( const ast::FunctionDecl * functionDecl ) {
1440 // default value expressions have an environment which shouldn't be there and trips up
1441 // later passes.
1442 assert( functionDecl->unique() );
1443 ast::FunctionType * mutType = mutate( functionDecl->type.get() );
1444
1445 for ( unsigned i = 0 ; i < mutType->params.size() ; ++i ) {
1446 if ( const ast::ObjectDecl * obj = mutType->params[i].as< ast::ObjectDecl >() ) {
1447 if ( const ast::SingleInit * init = obj->init.as< ast::SingleInit >() ) {
1448 if ( init->value->env == nullptr ) continue;
1449 // clone initializer minus the initializer environment
1450 auto mutParam = mutate( mutType->params[i].strict_as< ast::ObjectDecl >() );
1451 auto mutInit = mutate( mutParam->init.strict_as< ast::SingleInit >() );
1452 auto mutValue = mutate( mutInit->value.get() );
1453
1454 mutValue->env = nullptr;
1455 mutInit->value = mutValue;
1456 mutParam->init = mutInit;
1457 mutType->params[i] = mutParam;
1458
1459 assert( ! mutType->params[i].strict_as< ast::ObjectDecl >()->init.strict_as< ast::SingleInit >()->value->env);
1460 }
1461 }
1462 }
1463 mutate_field(functionDecl, &ast::FunctionDecl::type, mutType);
1464 return functionDecl;
1465 }
1466
1467 const ast::ObjectDecl * Resolver_new::previsit( const ast::ObjectDecl * objectDecl ) {
1468 // To handle initialization of routine pointers [e.g. int (*fp)(int) = foo()],
1469 // class-variable `initContext` is changed multiple times because the LHS is analyzed
1470 // twice. The second analysis changes `initContext` because a function type can contain
1471 // object declarations in the return and parameter types. Therefore each value of
1472 // `initContext` is retained so the type on the first analysis is preserved and used for
1473 // selecting the RHS.
1474 GuardValue( currentObject );
1475
1476 if ( inEnumDecl && dynamic_cast< const ast::EnumInstType * >( objectDecl->get_type() ) ) {
1477 // enumerator initializers should not use the enum type to initialize, since the
1478 // enum type is still incomplete at this point. Use `int` instead.
1479
1480 if (dynamic_cast< const ast::EnumInstType * >( objectDecl->get_type() )->base->base) {
1481 objectDecl = fixObjectType( objectDecl, context );
1482 const ast::Type * enumBase = (dynamic_cast< const ast::EnumInstType * >( objectDecl->get_type() )->base->base.get());
1483 currentObject = ast::CurrentObject{
1484 objectDecl->location,
1485 enumBase
1486 };
1487 } else {
1488 objectDecl = fixObjectType( objectDecl, context );
1489 currentObject = ast::CurrentObject{
1490 objectDecl->location, new ast::BasicType{ ast::BasicType::SignedInt } };
1491 }
1492
1493 }
1494 else {
1495 if (!objectDecl->isTypeFixed) {
1496 auto newDecl = fixObjectType(objectDecl, context);
1497 auto mutDecl = mutate(newDecl);
1498
1499 // generate CtorInit wrapper when necessary.
1500 // in certain cases, fixObjectType is called before reaching
1501 // this object in visitor pass, thus disabling CtorInit codegen.
1502 // this happens on aggregate members and function parameters.
1503 if ( InitTweak::tryConstruct( mutDecl ) && ( managedTypes.isManaged( mutDecl ) || ((! isInFunction() || mutDecl->storage.is_static ) && ! InitTweak::isConstExpr( mutDecl->init ) ) ) ) {
1504 // constructed objects cannot be designated
1505 if ( InitTweak::isDesignated( mutDecl->init ) ) SemanticError( mutDecl, "Cannot include designations in the initializer for a managed Object. If this is really what you want, then initialize with @=.\n" );
1506 // constructed objects should not have initializers nested too deeply
1507 if ( ! InitTweak::checkInitDepth( mutDecl ) ) SemanticError( mutDecl, "Managed object's initializer is too deep " );
1508
1509 mutDecl->init = InitTweak::genCtorInit( mutDecl->location, mutDecl );
1510 }
1511
1512 objectDecl = mutDecl;
1513 }
1514 currentObject = ast::CurrentObject{ objectDecl->location, objectDecl->get_type() };
1515 }
1516
1517 return objectDecl;
1518 }
1519
1520 void Resolver_new::previsit( const ast::AggregateDecl * _aggDecl ) {
1521 auto aggDecl = mutate(_aggDecl);
1522 assertf(aggDecl == _aggDecl, "type declarations must be unique");
1523
1524 for (auto & member: aggDecl->members) {
1525 // nested type decls are hoisted already. no need to do anything
1526 if (auto obj = member.as<ast::ObjectDecl>()) {
1527 member = fixObjectType(obj, context);
1528 }
1529 }
1530 }
1531
1532 void Resolver_new::previsit( const ast::StructDecl * structDecl ) {
1533 previsit(static_cast<const ast::AggregateDecl *>(structDecl));
1534 managedTypes.handleStruct(structDecl);
1535 }
1536
1537 void Resolver_new::previsit( const ast::EnumDecl * ) {
1538 // in case we decide to allow nested enums
1539 GuardValue( inEnumDecl );
1540 inEnumDecl = true;
1541 // don't need to fix types for enum fields
1542 }
1543
1544
1545 const ast::StaticAssertDecl * Resolver_new::previsit(
1546 const ast::StaticAssertDecl * assertDecl
1547 ) {
1548 return ast::mutate_field(
1549 assertDecl, &ast::StaticAssertDecl::cond,
1550 findIntegralExpression( assertDecl->cond, context ) );
1551 }
1552
1553 template< typename PtrType >
1554 const PtrType * handlePtrType( const PtrType * type, const ResolveContext & context ) {
1555 if ( type->dimension ) {
1556 ast::ptr< ast::Type > sizeType = context.global.sizeType;
1557 ast::ptr< ast::Expr > dimension = findSingleExpression( type->dimension, sizeType, context );
1558 assertf(dimension->env->empty(), "array dimension expr has nonempty env");
1559 dimension.get_and_mutate()->env = nullptr;
1560 ast::mutate_field(
1561 type, &PtrType::dimension,
1562 dimension);
1563 }
1564 return type;
1565 }
1566
1567 const ast::ArrayType * Resolver_new::previsit( const ast::ArrayType * at ) {
1568 return handlePtrType( at, context );
1569 }
1570
1571 const ast::PointerType * Resolver_new::previsit( const ast::PointerType * pt ) {
1572 return handlePtrType( pt, context );
1573 }
1574
1575 const ast::ExprStmt * Resolver_new::previsit( const ast::ExprStmt * exprStmt ) {
1576 visit_children = false;
1577 assertf( exprStmt->expr, "ExprStmt has null expression in resolver" );
1578
1579 return ast::mutate_field(
1580 exprStmt, &ast::ExprStmt::expr, findVoidExpression( exprStmt->expr, context ) );
1581 }
1582
1583 const ast::AsmExpr * Resolver_new::previsit( const ast::AsmExpr * asmExpr ) {
1584 visit_children = false;
1585
1586 asmExpr = ast::mutate_field(
1587 asmExpr, &ast::AsmExpr::operand, findVoidExpression( asmExpr->operand, context ) );
1588
1589 return asmExpr;
1590 }
1591
1592 const ast::AsmStmt * Resolver_new::previsit( const ast::AsmStmt * asmStmt ) {
1593 visitor->maybe_accept( asmStmt, &ast::AsmStmt::input );
1594 visitor->maybe_accept( asmStmt, &ast::AsmStmt::output );
1595 visit_children = false;
1596 return asmStmt;
1597 }
1598
1599 const ast::IfStmt * Resolver_new::previsit( const ast::IfStmt * ifStmt ) {
1600 return ast::mutate_field(
1601 ifStmt, &ast::IfStmt::cond, findIntegralExpression( ifStmt->cond, context ) );
1602 }
1603
1604 const ast::WhileDoStmt * Resolver_new::previsit( const ast::WhileDoStmt * whileDoStmt ) {
1605 return ast::mutate_field(
1606 whileDoStmt, &ast::WhileDoStmt::cond, findIntegralExpression( whileDoStmt->cond, context ) );
1607 }
1608
1609 const ast::ForStmt * Resolver_new::previsit( const ast::ForStmt * forStmt ) {
1610 if ( forStmt->cond ) {
1611 forStmt = ast::mutate_field(
1612 forStmt, &ast::ForStmt::cond, findIntegralExpression( forStmt->cond, context ) );
1613 }
1614
1615 if ( forStmt->inc ) {
1616 forStmt = ast::mutate_field(
1617 forStmt, &ast::ForStmt::inc, findVoidExpression( forStmt->inc, context ) );
1618 }
1619
1620 return forStmt;
1621 }
1622
1623 const ast::SwitchStmt * Resolver_new::previsit( const ast::SwitchStmt * switchStmt ) {
1624 GuardValue( currentObject );
1625 switchStmt = ast::mutate_field(
1626 switchStmt, &ast::SwitchStmt::cond,
1627 findIntegralExpression( switchStmt->cond, context ) );
1628 currentObject = ast::CurrentObject{ switchStmt->location, switchStmt->cond->result };
1629 return switchStmt;
1630 }
1631
1632 const ast::CaseClause * Resolver_new::previsit( const ast::CaseClause * caseStmt ) {
1633 if ( caseStmt->cond ) {
1634 std::deque< ast::InitAlternative > initAlts = currentObject.getOptions();
1635 assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral "
1636 "expression." );
1637
1638 ast::ptr< ast::Expr > untyped =
1639 new ast::CastExpr{ caseStmt->location, caseStmt->cond, initAlts.front().type };
1640 ast::ptr< ast::Expr > newExpr = findSingleExpression( untyped, context );
1641
1642 // case condition cannot have a cast in C, so it must be removed here, regardless of
1643 // whether it would perform a conversion.
1644 if ( const ast::CastExpr * castExpr = newExpr.as< ast::CastExpr >() ) {
1645 swap_and_save_env( newExpr, castExpr->arg );
1646 }
1647
1648 caseStmt = ast::mutate_field( caseStmt, &ast::CaseClause::cond, newExpr );
1649 }
1650 return caseStmt;
1651 }
1652
1653 const ast::BranchStmt * Resolver_new::previsit( const ast::BranchStmt * branchStmt ) {
1654 visit_children = false;
1655 // must resolve the argument of a computed goto
1656 if ( branchStmt->kind == ast::BranchStmt::Goto && branchStmt->computedTarget ) {
1657 // computed goto argument is void*
1658 ast::ptr< ast::Type > target = new ast::PointerType{ new ast::VoidType{} };
1659 branchStmt = ast::mutate_field(
1660 branchStmt, &ast::BranchStmt::computedTarget,
1661 findSingleExpression( branchStmt->computedTarget, target, context ) );
1662 }
1663 return branchStmt;
1664 }
1665
1666 const ast::ReturnStmt * Resolver_new::previsit( const ast::ReturnStmt * returnStmt ) {
1667 visit_children = false;
1668 if ( returnStmt->expr ) {
1669 returnStmt = ast::mutate_field(
1670 returnStmt, &ast::ReturnStmt::expr,
1671 findSingleExpression( returnStmt->expr, functionReturn, context ) );
1672 }
1673 return returnStmt;
1674 }
1675
1676 const ast::ThrowStmt * Resolver_new::previsit( const ast::ThrowStmt * throwStmt ) {
1677 visit_children = false;
1678 if ( throwStmt->expr ) {
1679 const ast::StructDecl * exceptionDecl =
1680 symtab.lookupStruct( "__cfaehm_base_exception_t" );
1681 assert( exceptionDecl );
1682 ast::ptr< ast::Type > exceptType =
1683 new ast::PointerType{ new ast::StructInstType{ exceptionDecl } };
1684 throwStmt = ast::mutate_field(
1685 throwStmt, &ast::ThrowStmt::expr,
1686 findSingleExpression( throwStmt->expr, exceptType, context ) );
1687 }
1688 return throwStmt;
1689 }
1690
1691 const ast::CatchClause * Resolver_new::previsit( const ast::CatchClause * catchClause ) {
1692 // Until we are very sure this invarent (ifs that move between passes have then)
1693 // holds, check it. This allows a check for when to decode the mangling.
1694 if ( auto ifStmt = catchClause->body.as<ast::IfStmt>() ) {
1695 assert( ifStmt->then );
1696 }
1697 // Encode the catchStmt so the condition can see the declaration.
1698 if ( catchClause->cond ) {
1699 ast::CatchClause * clause = mutate( catchClause );
1700 clause->body = new ast::IfStmt( clause->location, clause->cond, nullptr, clause->body );
1701 clause->cond = nullptr;
1702 return clause;
1703 }
1704 return catchClause;
1705 }
1706
1707 const ast::CatchClause * Resolver_new::postvisit( const ast::CatchClause * catchClause ) {
1708 // Decode the catchStmt so everything is stored properly.
1709 const ast::IfStmt * ifStmt = catchClause->body.as<ast::IfStmt>();
1710 if ( nullptr != ifStmt && nullptr == ifStmt->then ) {
1711 assert( ifStmt->cond );
1712 assert( ifStmt->else_ );
1713 ast::CatchClause * clause = ast::mutate( catchClause );
1714 clause->cond = ifStmt->cond;
1715 clause->body = ifStmt->else_;
1716 // ifStmt should be implicately deleted here.
1717 return clause;
1718 }
1719 return catchClause;
1720 }
1721
1722 const ast::WaitForStmt * Resolver_new::previsit( const ast::WaitForStmt * stmt ) {
1723 visit_children = false;
1724
1725 // Resolve all clauses first
1726 for ( unsigned i = 0; i < stmt->clauses.size(); ++i ) {
1727 const ast::WaitForClause & clause = *stmt->clauses[i];
1728
1729 ast::TypeEnvironment env;
1730 CandidateFinder funcFinder( context, env );
1731
1732 // Find all candidates for a function in canonical form
1733 funcFinder.find( clause.target_func, ResolvMode::withAdjustment() );
1734
1735 if ( funcFinder.candidates.empty() ) {
1736 stringstream ss;
1737 ss << "Use of undeclared indentifier '";
1738 ss << clause.target_func.strict_as< ast::NameExpr >()->name;
1739 ss << "' in call to waitfor";
1740 SemanticError( stmt->location, ss.str() );
1741 }
1742
1743 if ( clause.target_args.empty() ) {
1744 SemanticError( stmt->location,
1745 "Waitfor clause must have at least one mutex parameter");
1746 }
1747
1748 // Find all alternatives for all arguments in canonical form
1749 std::vector< CandidateFinder > argFinders =
1750 funcFinder.findSubExprs( clause.target_args );
1751
1752 // List all combinations of arguments
1753 std::vector< CandidateList > possibilities;
1754 combos( argFinders.begin(), argFinders.end(), back_inserter( possibilities ) );
1755
1756 // For every possible function:
1757 // * try matching the arguments to the parameters, not the other way around because
1758 // more arguments than parameters
1759 CandidateList funcCandidates;
1760 std::vector< CandidateList > argsCandidates;
1761 SemanticErrorException errors;
1762 for ( CandidateRef & func : funcFinder.candidates ) {
1763 try {
1764 auto pointerType = dynamic_cast< const ast::PointerType * >(
1765 func->expr->result->stripReferences() );
1766 if ( ! pointerType ) {
1767 SemanticError( stmt->location, func->expr->result.get(),
1768 "candidate not viable: not a pointer type\n" );
1769 }
1770
1771 auto funcType = pointerType->base.as< ast::FunctionType >();
1772 if ( ! funcType ) {
1773 SemanticError( stmt->location, func->expr->result.get(),
1774 "candidate not viable: not a function type\n" );
1775 }
1776
1777 {
1778 auto param = funcType->params.begin();
1779 auto paramEnd = funcType->params.end();
1780
1781 if( ! nextMutex( param, paramEnd ) ) {
1782 SemanticError( stmt->location, funcType,
1783 "candidate function not viable: no mutex parameters\n");
1784 }
1785 }
1786
1787 CandidateRef func2{ new Candidate{ *func } };
1788 // strip reference from function
1789 func2->expr = referenceToRvalueConversion( func->expr, func2->cost );
1790
1791 // Each argument must be matched with a parameter of the current candidate
1792 for ( auto & argsList : possibilities ) {
1793 try {
1794 // Declare data structures needed for resolution
1795 ast::OpenVarSet open;
1796 ast::AssertionSet need, have;
1797 ast::TypeEnvironment resultEnv{ func->env };
1798 // Add all type variables as open so that those not used in the
1799 // parameter list are still considered open
1800 resultEnv.add( funcType->forall );
1801
1802 // load type variables from arguments into one shared space
1803 for ( auto & arg : argsList ) {
1804 resultEnv.simpleCombine( arg->env );
1805 }
1806
1807 // Make sure we don't widen any existing bindings
1808 resultEnv.forbidWidening();
1809
1810 // Find any unbound type variables
1811 resultEnv.extractOpenVars( open );
1812
1813 auto param = funcType->params.begin();
1814 auto paramEnd = funcType->params.end();
1815
1816 unsigned n_mutex_param = 0;
1817
1818 // For every argument of its set, check if it matches one of the
1819 // parameters. The order is important
1820 for ( auto & arg : argsList ) {
1821 // Ignore non-mutex arguments
1822 if ( ! nextMutex( param, paramEnd ) ) {
1823 // We ran out of parameters but still have arguments.
1824 // This function doesn't match
1825 SemanticError( stmt->location, funcType,
1826 toString("candidate function not viable: too many mutex "
1827 "arguments, expected ", n_mutex_param, "\n" ) );
1828 }
1829
1830 ++n_mutex_param;
1831
1832 // Check if the argument matches the parameter type in the current
1833 // scope
1834 // ast::ptr< ast::Type > paramType = (*param)->get_type();
1835 if (
1836 ! unify(
1837 arg->expr->result, *param, resultEnv, need, have, open,
1838 symtab )
1839 ) {
1840 // Type doesn't match
1841 stringstream ss;
1842 ss << "candidate function not viable: no known conversion "
1843 "from '";
1844 ast::print( ss, *param );
1845 ss << "' to '";
1846 ast::print( ss, arg->expr->result );
1847 ss << "' with env '";
1848 ast::print( ss, resultEnv );
1849 ss << "'\n";
1850 SemanticError( stmt->location, funcType, ss.str() );
1851 }
1852
1853 ++param;
1854 }
1855
1856 // All arguments match!
1857
1858 // Check if parameters are missing
1859 if ( nextMutex( param, paramEnd ) ) {
1860 do {
1861 ++n_mutex_param;
1862 ++param;
1863 } while ( nextMutex( param, paramEnd ) );
1864
1865 // We ran out of arguments but still have parameters left; this
1866 // function doesn't match
1867 SemanticError( stmt->location, funcType,
1868 toString( "candidate function not viable: too few mutex "
1869 "arguments, expected ", n_mutex_param, "\n" ) );
1870 }
1871
1872 // All parameters match!
1873
1874 // Finish the expressions to tie in proper environments
1875 finishExpr( func2->expr, resultEnv );
1876 for ( CandidateRef & arg : argsList ) {
1877 finishExpr( arg->expr, resultEnv );
1878 }
1879
1880 // This is a match, store it and save it for later
1881 funcCandidates.emplace_back( std::move( func2 ) );
1882 argsCandidates.emplace_back( std::move( argsList ) );
1883
1884 } catch ( SemanticErrorException & e ) {
1885 errors.append( e );
1886 }
1887 }
1888 } catch ( SemanticErrorException & e ) {
1889 errors.append( e );
1890 }
1891 }
1892
1893 // Make sure correct number of arguments
1894 if( funcCandidates.empty() ) {
1895 SemanticErrorException top( stmt->location,
1896 "No alternatives for function in call to waitfor" );
1897 top.append( errors );
1898 throw top;
1899 }
1900
1901 if( argsCandidates.empty() ) {
1902 SemanticErrorException top( stmt->location,
1903 "No alternatives for arguments in call to waitfor" );
1904 top.append( errors );
1905 throw top;
1906 }
1907
1908 if( funcCandidates.size() > 1 ) {
1909 SemanticErrorException top( stmt->location,
1910 "Ambiguous function in call to waitfor" );
1911 top.append( errors );
1912 throw top;
1913 }
1914 if( argsCandidates.size() > 1 ) {
1915 SemanticErrorException top( stmt->location,
1916 "Ambiguous arguments in call to waitfor" );
1917 top.append( errors );
1918 throw top;
1919 }
1920 // TODO: need to use findDeletedExpr to ensure no deleted identifiers are used.
1921
1922 // build new clause
1923 auto clause2 = new ast::WaitForClause( clause.location );
1924
1925 clause2->target_func = funcCandidates.front()->expr;
1926
1927 clause2->target_args.reserve( clause.target_args.size() );
1928 const ast::StructDecl * decl_monitor = symtab.lookupStruct( "monitor$" );
1929 for ( auto arg : argsCandidates.front() ) {
1930 const auto & loc = stmt->location;
1931
1932 ast::Expr * init = new ast::CastExpr( loc,
1933 new ast::UntypedExpr( loc,
1934 new ast::NameExpr( loc, "get_monitor" ),
1935 { arg->expr }
1936 ),
1937 new ast::PointerType(
1938 new ast::StructInstType(
1939 decl_monitor
1940 )
1941 )
1942 );
1943
1944 clause2->target_args.emplace_back( findSingleExpression( init, context ) );
1945 }
1946
1947 // Resolve the conditions as if it were an IfStmt, statements normally
1948 clause2->cond = findSingleExpression( clause.cond, context );
1949 clause2->stmt = clause.stmt->accept( *visitor );
1950
1951 // set results into stmt
1952 auto n = mutate( stmt );
1953 n->clauses[i] = clause2;
1954 stmt = n;
1955 }
1956
1957 if ( stmt->timeout_stmt ) {
1958 // resolve the timeout as a size_t, the conditions like IfStmt, and stmts normally
1959 ast::ptr< ast::Type > target =
1960 new ast::BasicType{ ast::BasicType::LongLongUnsignedInt };
1961 auto timeout_time = findSingleExpression( stmt->timeout_time, target, context );
1962 auto timeout_cond = findSingleExpression( stmt->timeout_cond, context );
1963 auto timeout_stmt = stmt->timeout_stmt->accept( *visitor );
1964
1965 // set results into stmt
1966 auto n = mutate( stmt );
1967 n->timeout_time = std::move( timeout_time );
1968 n->timeout_cond = std::move( timeout_cond );
1969 n->timeout_stmt = std::move( timeout_stmt );
1970 stmt = n;
1971 }
1972
1973 if ( stmt->else_stmt ) {
1974 // resolve the condition like IfStmt, stmts normally
1975 auto else_cond = findSingleExpression( stmt->else_cond, context );
1976 auto else_stmt = stmt->else_stmt->accept( *visitor );
1977
1978 // set results into stmt
1979 auto n = mutate( stmt );
1980 n->else_cond = std::move( else_cond );
1981 n->else_stmt = std::move( else_stmt );
1982 stmt = n;
1983 }
1984
1985 return stmt;
1986 }
1987
1988 const ast::WithStmt * Resolver_new::previsit( const ast::WithStmt * withStmt ) {
1989 auto mutStmt = mutate(withStmt);
1990 resolveWithExprs(mutStmt->exprs, stmtsToAddBefore);
1991 return mutStmt;
1992 }
1993
1994 void Resolver_new::resolveWithExprs(std::vector<ast::ptr<ast::Expr>> & exprs, std::list<ast::ptr<ast::Stmt>> & stmtsToAdd) {
1995 for (auto & expr : exprs) {
1996 // only struct- and union-typed expressions are viable candidates
1997 expr = findKindExpression( expr, context, structOrUnion, "with expression" );
1998
1999 // if with expression might be impure, create a temporary so that it is evaluated once
2000 if ( Tuples::maybeImpure( expr ) ) {
2001 static UniqueName tmpNamer( "_with_tmp_" );
2002 const CodeLocation loc = expr->location;
2003 auto tmp = new ast::ObjectDecl(loc, tmpNamer.newName(), expr->result, new ast::SingleInit(loc, expr ) );
2004 expr = new ast::VariableExpr( loc, tmp );
2005 stmtsToAdd.push_back( new ast::DeclStmt(loc, tmp ) );
2006 if ( InitTweak::isConstructable( tmp->type ) ) {
2007 // generate ctor/dtor and resolve them
2008 tmp->init = InitTweak::genCtorInit( loc, tmp );
2009 }
2010 // since tmp is freshly created, this should modify tmp in-place
2011 tmp->accept( *visitor );
2012 }
2013 else if (expr->env && expr->env->empty()) {
2014 expr = ast::mutate_field(expr.get(), &ast::Expr::env, nullptr);
2015 }
2016 }
2017 }
2018
2019
2020 const ast::SingleInit * Resolver_new::previsit( const ast::SingleInit * singleInit ) {
2021 visit_children = false;
2022 // resolve initialization using the possibilities as determined by the `currentObject`
2023 // cursor.
2024 ast::ptr< ast::Expr > untyped = new ast::UntypedInitExpr{
2025 singleInit->location, singleInit->value, currentObject.getOptions() };
2026 ast::ptr<ast::Expr> newExpr = findSingleExpression( untyped, context );
2027 const ast::InitExpr * initExpr = newExpr.strict_as< ast::InitExpr >();
2028
2029 // move cursor to the object that is actually initialized
2030 currentObject.setNext( initExpr->designation );
2031
2032 // discard InitExpr wrapper and retain relevant pieces.
2033 // `initExpr` may have inferred params in the case where the expression specialized a
2034 // function pointer, and newExpr may already have inferParams of its own, so a simple
2035 // swap is not sufficient
2036 ast::Expr::InferUnion inferred = initExpr->inferred;
2037 swap_and_save_env( newExpr, initExpr->expr );
2038 newExpr.get_and_mutate()->inferred.splice( std::move(inferred) );
2039
2040 // get the actual object's type (may not exactly match what comes back from the resolver
2041 // due to conversions)
2042 const ast::Type * initContext = currentObject.getCurrentType();
2043
2044 removeExtraneousCast( newExpr, symtab );
2045
2046 // check if actual object's type is char[]
2047 if ( auto at = dynamic_cast< const ast::ArrayType * >( initContext ) ) {
2048 if ( isCharType( at->base ) ) {
2049 // check if the resolved type is char*
2050 if ( auto pt = newExpr->result.as< ast::PointerType >() ) {
2051 if ( isCharType( pt->base ) ) {
2052 // strip cast if we're initializing a char[] with a char*
2053 // e.g. char x[] = "hello"
2054 if ( auto ce = newExpr.as< ast::CastExpr >() ) {
2055 swap_and_save_env( newExpr, ce->arg );
2056 }
2057 }
2058 }
2059 }
2060 }
2061
2062 // move cursor to next object in preparation for next initializer
2063 currentObject.increment();
2064
2065 // set initializer expression to resolved expression
2066 return ast::mutate_field( singleInit, &ast::SingleInit::value, std::move(newExpr) );
2067 }
2068
2069 const ast::ListInit * Resolver_new::previsit( const ast::ListInit * listInit ) {
2070 // move cursor into brace-enclosed initializer-list
2071 currentObject.enterListInit( listInit->location );
2072
2073 assert( listInit->designations.size() == listInit->initializers.size() );
2074 for ( unsigned i = 0; i < listInit->designations.size(); ++i ) {
2075 // iterate designations and initializers in pairs, moving the cursor to the current
2076 // designated object and resolving the initializer against that object
2077 listInit = ast::mutate_field_index(
2078 listInit, &ast::ListInit::designations, i,
2079 currentObject.findNext( listInit->designations[i] ) );
2080 listInit = ast::mutate_field_index(
2081 listInit, &ast::ListInit::initializers, i,
2082 listInit->initializers[i]->accept( *visitor ) );
2083 }
2084
2085 // move cursor out of brace-enclosed initializer-list
2086 currentObject.exitListInit();
2087
2088 visit_children = false;
2089 return listInit;
2090 }
2091
2092 const ast::ConstructorInit * Resolver_new::previsit( const ast::ConstructorInit * ctorInit ) {
2093 visitor->maybe_accept( ctorInit, &ast::ConstructorInit::ctor );
2094 visitor->maybe_accept( ctorInit, &ast::ConstructorInit::dtor );
2095
2096 // found a constructor - can get rid of C-style initializer
2097 // xxx - Rob suggests this field is dead code
2098 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::init, nullptr );
2099
2100 // intrinsic single-parameter constructors and destructors do nothing. Since this was
2101 // implicitly generated, there's no way for it to have side effects, so get rid of it to
2102 // clean up generated code
2103 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->ctor ) ) {
2104 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::ctor, nullptr );
2105 }
2106 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->dtor ) ) {
2107 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::dtor, nullptr );
2108 }
2109
2110 return ctorInit;
2111 }
2112
2113 // suppress error on autogen functions and mark invalid autogen as deleted.
2114 bool Resolver_new::on_error(ast::ptr<ast::Decl> & decl) {
2115 if (auto functionDecl = decl.as<ast::FunctionDecl>()) {
2116 // xxx - can intrinsic gen ever fail?
2117 if (functionDecl->linkage == ast::Linkage::AutoGen) {
2118 auto mutDecl = mutate(functionDecl);
2119 mutDecl->isDeleted = true;
2120 mutDecl->stmts = nullptr;
2121 decl = mutDecl;
2122 return false;
2123 }
2124 }
2125 return true;
2126 }
2127
2128} // namespace ResolvExpr
2129
2130// Local Variables: //
2131// tab-width: 4 //
2132// mode: c++ //
2133// compile-command: "make install" //
2134// End: //
Note: See TracBrowser for help on using the repository browser.