source: src/ResolvExpr/Resolver.cc@ aba20d2

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since aba20d2 was 4b7cce6, checked in by Aaron Moss <a3moss@…>, 6 years ago

Fill in CandidateFinder boilerplate in resolver port

  • Property mode set to 100644
File size: 65.5 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Resolver.cc --
8//
9// Author : Aaron B. Moss
10// Created On : Sun May 17 12:17:01 2015
11// Last Modified By : Aaron B. Moss
12// Last Modified On : Wed May 29 11:00:00 2019
13// Update Count : 241
14//
15
16#include <cassert> // for strict_dynamic_cast, assert
17#include <memory> // for allocator, allocator_traits<...
18#include <tuple> // for get
19#include <vector> // for vector
20
21#include "Alternative.h" // for Alternative, AltList
22#include "AlternativeFinder.h" // for AlternativeFinder, resolveIn...
23#include "Candidate.hpp"
24#include "CandidateFinder.hpp"
25#include "CurrentObject.h" // for CurrentObject
26#include "RenameVars.h" // for RenameVars, global_renamer
27#include "Resolver.h"
28#include "ResolvMode.h" // for ResolvMode
29#include "typeops.h" // for extractResultType
30#include "Unify.h" // for unify
31#include "AST/Chain.hpp"
32#include "AST/Decl.hpp"
33#include "AST/Init.hpp"
34#include "AST/Pass.hpp"
35#include "AST/Print.hpp"
36#include "AST/SymbolTable.hpp"
37#include "AST/Type.hpp"
38#include "Common/PassVisitor.h" // for PassVisitor
39#include "Common/SemanticError.h" // for SemanticError
40#include "Common/utility.h" // for ValueGuard, group_iterate
41#include "InitTweak/GenInit.h"
42#include "InitTweak/InitTweak.h" // for isIntrinsicSingleArgCallStmt
43#include "ResolvExpr/TypeEnvironment.h" // for TypeEnvironment
44#include "SymTab/Autogen.h" // for SizeType
45#include "SymTab/Indexer.h" // for Indexer
46#include "SynTree/Declaration.h" // for ObjectDecl, TypeDecl, Declar...
47#include "SynTree/Expression.h" // for Expression, CastExpr, InitExpr
48#include "SynTree/Initializer.h" // for ConstructorInit, SingleInit
49#include "SynTree/Statement.h" // for ForStmt, Statement, BranchStmt
50#include "SynTree/Type.h" // for Type, BasicType, PointerType
51#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
52#include "SynTree/Visitor.h" // for acceptAll, maybeAccept
53#include "Tuples/Tuples.h"
54#include "Validate/FindSpecialDecls.h" // for SizeType
55
56using namespace std;
57
58namespace ResolvExpr {
59 struct Resolver_old final : public WithIndexer, public WithGuards, public WithVisitorRef<Resolver_old>, public WithShortCircuiting, public WithStmtsToAdd {
60 Resolver_old() {}
61 Resolver_old( const SymTab::Indexer & other ) {
62 indexer = other;
63 }
64
65 void previsit( FunctionDecl * functionDecl );
66 void postvisit( FunctionDecl * functionDecl );
67 void previsit( ObjectDecl * objectDecll );
68 void previsit( EnumDecl * enumDecl );
69 void previsit( StaticAssertDecl * assertDecl );
70
71 void previsit( ArrayType * at );
72 void previsit( PointerType * at );
73
74 void previsit( ExprStmt * exprStmt );
75 void previsit( AsmExpr * asmExpr );
76 void previsit( AsmStmt * asmStmt );
77 void previsit( IfStmt * ifStmt );
78 void previsit( WhileStmt * whileStmt );
79 void previsit( ForStmt * forStmt );
80 void previsit( SwitchStmt * switchStmt );
81 void previsit( CaseStmt * caseStmt );
82 void previsit( BranchStmt * branchStmt );
83 void previsit( ReturnStmt * returnStmt );
84 void previsit( ThrowStmt * throwStmt );
85 void previsit( CatchStmt * catchStmt );
86 void previsit( WaitForStmt * stmt );
87
88 void previsit( SingleInit * singleInit );
89 void previsit( ListInit * listInit );
90 void previsit( ConstructorInit * ctorInit );
91 private:
92 typedef std::list< Initializer * >::iterator InitIterator;
93
94 template< typename PtrType >
95 void handlePtrType( PtrType * type );
96
97 void fallbackInit( ConstructorInit * ctorInit );
98
99 Type * functionReturn = nullptr;
100 CurrentObject currentObject = nullptr;
101 bool inEnumDecl = false;
102 };
103
104 struct ResolveWithExprs : public WithIndexer, public WithGuards, public WithVisitorRef<ResolveWithExprs>, public WithShortCircuiting, public WithStmtsToAdd {
105 void previsit( FunctionDecl * );
106 void previsit( WithStmt * );
107
108 void resolveWithExprs( std::list< Expression * > & withExprs, std::list< Statement * > & newStmts );
109 };
110
111 void resolve( std::list< Declaration * > translationUnit ) {
112 PassVisitor<Resolver_old> resolver;
113 acceptAll( translationUnit, resolver );
114 }
115
116 void resolveDecl( Declaration * decl, const SymTab::Indexer & indexer ) {
117 PassVisitor<Resolver_old> resolver( indexer );
118 maybeAccept( decl, resolver );
119 }
120
121 namespace {
122 struct DeleteFinder_old : public WithShortCircuiting {
123 DeletedExpr * delExpr = nullptr;
124 void previsit( DeletedExpr * expr ) {
125 if ( delExpr ) visit_children = false;
126 else delExpr = expr;
127 }
128
129 void previsit( Expression * ) {
130 if ( delExpr ) visit_children = false;
131 }
132 };
133 }
134
135 DeletedExpr * findDeletedExpr( Expression * expr ) {
136 PassVisitor<DeleteFinder_old> finder;
137 expr->accept( finder );
138 return finder.pass.delExpr;
139 }
140
141 namespace {
142 struct StripCasts_old {
143 Expression * postmutate( CastExpr * castExpr ) {
144 if ( castExpr->isGenerated && ResolvExpr::typesCompatible( castExpr->arg->result, castExpr->result, SymTab::Indexer() ) ) {
145 // generated cast is to the same type as its argument, so it's unnecessary -- remove it
146 Expression * expr = castExpr->arg;
147 castExpr->arg = nullptr;
148 std::swap( expr->env, castExpr->env );
149 return expr;
150 }
151 return castExpr;
152 }
153
154 static void strip( Expression *& expr ) {
155 PassVisitor<StripCasts_old> stripper;
156 expr = expr->acceptMutator( stripper );
157 }
158 };
159
160 void finishExpr( Expression *& expr, const TypeEnvironment & env, TypeSubstitution * oldenv = nullptr ) {
161 expr->env = oldenv ? oldenv->clone() : new TypeSubstitution;
162 env.makeSubstitution( *expr->env );
163 StripCasts_old::strip( expr ); // remove unnecessary casts that may be buried in an expression
164 }
165
166 void removeExtraneousCast( Expression *& expr, const SymTab::Indexer & indexer ) {
167 if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( expr ) ) {
168 if ( typesCompatible( castExpr->arg->result, castExpr->result, indexer ) ) {
169 // cast is to the same type as its argument, so it's unnecessary -- remove it
170 expr = castExpr->arg;
171 castExpr->arg = nullptr;
172 std::swap( expr->env, castExpr->env );
173 delete castExpr;
174 }
175 }
176 }
177 } // namespace
178
179 namespace {
180 void findUnfinishedKindExpression(Expression * untyped, Alternative & alt, const SymTab::Indexer & indexer, const std::string & kindStr, std::function<bool(const Alternative &)> pred, ResolvMode mode = ResolvMode{} ) {
181 assertf( untyped, "expected a non-null expression." );
182
183 // xxx - this isn't thread-safe, but should work until we parallelize the resolver
184 static unsigned recursion_level = 0;
185
186 ++recursion_level;
187 TypeEnvironment env;
188 AlternativeFinder finder( indexer, env );
189 finder.find( untyped, recursion_level == 1 ? mode.atTopLevel() : mode );
190 --recursion_level;
191
192 #if 0
193 if ( finder.get_alternatives().size() != 1 ) {
194 std::cerr << "untyped expr is ";
195 untyped->print( std::cerr );
196 std::cerr << std::endl << "alternatives are:";
197 for ( const Alternative & alt : finder.get_alternatives() ) {
198 alt.print( std::cerr );
199 } // for
200 } // if
201 #endif
202
203 // produce filtered list of alternatives
204 AltList candidates;
205 for ( Alternative & alt : finder.get_alternatives() ) {
206 if ( pred( alt ) ) {
207 candidates.push_back( std::move( alt ) );
208 }
209 }
210
211 // produce invalid error if no candidates
212 if ( candidates.empty() ) {
213 SemanticError( untyped, toString( "No reasonable alternatives for ", kindStr, (kindStr != "" ? " " : ""), "expression: ") );
214 }
215
216 // search for cheapest candidate
217 AltList winners;
218 bool seen_undeleted = false;
219 for ( unsigned i = 0; i < candidates.size(); ++i ) {
220 int c = winners.empty() ? -1 : candidates[i].cost.compare( winners.front().cost );
221
222 if ( c > 0 ) continue; // skip more expensive than winner
223
224 if ( c < 0 ) {
225 // reset on new cheapest
226 seen_undeleted = ! findDeletedExpr( candidates[i].expr );
227 winners.clear();
228 } else /* if ( c == 0 ) */ {
229 if ( findDeletedExpr( candidates[i].expr ) ) {
230 // skip deleted expression if already seen one equivalent-cost not
231 if ( seen_undeleted ) continue;
232 } else if ( ! seen_undeleted ) {
233 // replace list of equivalent-cost deleted expressions with one non-deleted
234 winners.clear();
235 seen_undeleted = true;
236 }
237 }
238
239 winners.emplace_back( std::move( candidates[i] ) );
240 }
241
242 // promote alternative.cvtCost to .cost
243 // xxx - I don't know why this is done, but I'm keeping the behaviour from findMinCost
244 for ( Alternative& winner : winners ) {
245 winner.cost = winner.cvtCost;
246 }
247
248 // produce ambiguous errors, if applicable
249 if ( winners.size() != 1 ) {
250 std::ostringstream stream;
251 stream << "Cannot choose between " << winners.size() << " alternatives for " << kindStr << (kindStr != "" ? " " : "") << "expression\n";
252 untyped->print( stream );
253 stream << " Alternatives are:\n";
254 printAlts( winners, stream, 1 );
255 SemanticError( untyped->location, stream.str() );
256 }
257
258 // single selected choice
259 Alternative& choice = winners.front();
260
261 // fail on only expression deleted
262 if ( ! seen_undeleted ) {
263 SemanticError( untyped->location, choice.expr, "Unique best alternative includes deleted identifier in " );
264 }
265
266 // xxx - check for ambiguous expressions
267
268 // output selected choice
269 alt = std::move( choice );
270 }
271
272 /// resolve `untyped` to the expression whose alternative satisfies `pred` with the lowest cost; kindStr is used for providing better error messages
273 void findKindExpression(Expression *& untyped, const SymTab::Indexer & indexer, const std::string & kindStr, std::function<bool(const Alternative &)> pred, ResolvMode mode = ResolvMode{}) {
274 if ( ! untyped ) return;
275 Alternative choice;
276 findUnfinishedKindExpression( untyped, choice, indexer, kindStr, pred, mode );
277 finishExpr( choice.expr, choice.env, untyped->env );
278 delete untyped;
279 untyped = choice.expr;
280 choice.expr = nullptr;
281 }
282
283 bool standardAlternativeFilter( const Alternative & ) {
284 // currently don't need to filter, under normal circumstances.
285 // in the future, this may be useful for removing deleted expressions
286 return true;
287 }
288 } // namespace
289
290 // used in resolveTypeof
291 Expression * resolveInVoidContext( Expression * expr, const SymTab::Indexer & indexer ) {
292 TypeEnvironment env;
293 return resolveInVoidContext( expr, indexer, env );
294 }
295
296 Expression * resolveInVoidContext( Expression * expr, const SymTab::Indexer & indexer, TypeEnvironment & env ) {
297 // it's a property of the language that a cast expression has either 1 or 0 interpretations; if it has 0
298 // interpretations, an exception has already been thrown.
299 assertf( expr, "expected a non-null expression." );
300
301 CastExpr * untyped = new CastExpr( expr ); // cast to void
302 untyped->location = expr->location;
303
304 // set up and resolve expression cast to void
305 Alternative choice;
306 findUnfinishedKindExpression( untyped, choice, indexer, "", standardAlternativeFilter, ResolvMode::withAdjustment() );
307 CastExpr * castExpr = strict_dynamic_cast< CastExpr * >( choice.expr );
308 assert( castExpr );
309 env = std::move( choice.env );
310
311 // clean up resolved expression
312 Expression * ret = castExpr->arg;
313 castExpr->arg = nullptr;
314
315 // unlink the arg so that it isn't deleted twice at the end of the program
316 untyped->arg = nullptr;
317 return ret;
318 }
319
320 void findVoidExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
321 resetTyVarRenaming();
322 TypeEnvironment env;
323 Expression * newExpr = resolveInVoidContext( untyped, indexer, env );
324 finishExpr( newExpr, env, untyped->env );
325 delete untyped;
326 untyped = newExpr;
327 }
328
329 void findSingleExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
330 findKindExpression( untyped, indexer, "", standardAlternativeFilter );
331 }
332
333 void findSingleExpression( Expression *& untyped, Type * type, const SymTab::Indexer & indexer ) {
334 assert( untyped && type );
335 // transfer location to generated cast for error purposes
336 CodeLocation location = untyped->location;
337 untyped = new CastExpr( untyped, type );
338 untyped->location = location;
339 findSingleExpression( untyped, indexer );
340 removeExtraneousCast( untyped, indexer );
341 }
342
343 namespace {
344 bool isIntegralType( const Alternative & alt ) {
345 Type * type = alt.expr->result;
346 if ( dynamic_cast< EnumInstType * >( type ) ) {
347 return true;
348 } else if ( BasicType * bt = dynamic_cast< BasicType * >( type ) ) {
349 return bt->isInteger();
350 } else if ( dynamic_cast< ZeroType* >( type ) != nullptr || dynamic_cast< OneType* >( type ) != nullptr ) {
351 return true;
352 } else {
353 return false;
354 } // if
355 }
356
357 void findIntegralExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
358 findKindExpression( untyped, indexer, "condition", isIntegralType );
359 }
360 }
361
362
363 bool isStructOrUnion( const Alternative & alt ) {
364 Type * t = alt.expr->result->stripReferences();
365 return dynamic_cast< StructInstType * >( t ) || dynamic_cast< UnionInstType * >( t );
366 }
367
368 void resolveWithExprs( std::list< Declaration * > & translationUnit ) {
369 PassVisitor<ResolveWithExprs> resolver;
370 acceptAll( translationUnit, resolver );
371 }
372
373 void ResolveWithExprs::resolveWithExprs( std::list< Expression * > & withExprs, std::list< Statement * > & newStmts ) {
374 for ( Expression *& expr : withExprs ) {
375 // only struct- and union-typed expressions are viable candidates
376 findKindExpression( expr, indexer, "with statement", isStructOrUnion );
377
378 // if with expression might be impure, create a temporary so that it is evaluated once
379 if ( Tuples::maybeImpure( expr ) ) {
380 static UniqueName tmpNamer( "_with_tmp_" );
381 ObjectDecl * tmp = ObjectDecl::newObject( tmpNamer.newName(), expr->result->clone(), new SingleInit( expr ) );
382 expr = new VariableExpr( tmp );
383 newStmts.push_back( new DeclStmt( tmp ) );
384 if ( InitTweak::isConstructable( tmp->type ) ) {
385 // generate ctor/dtor and resolve them
386 tmp->init = InitTweak::genCtorInit( tmp );
387 tmp->accept( *visitor );
388 }
389 }
390 }
391 }
392
393 void ResolveWithExprs::previsit( WithStmt * withStmt ) {
394 resolveWithExprs( withStmt->exprs, stmtsToAddBefore );
395 }
396
397 void ResolveWithExprs::previsit( FunctionDecl * functionDecl ) {
398 {
399 // resolve with-exprs with parameters in scope and add any newly generated declarations to the
400 // front of the function body.
401 auto guard = makeFuncGuard( [this]() { indexer.enterScope(); }, [this](){ indexer.leaveScope(); } );
402 indexer.addFunctionType( functionDecl->type );
403 std::list< Statement * > newStmts;
404 resolveWithExprs( functionDecl->withExprs, newStmts );
405 if ( functionDecl->statements ) {
406 functionDecl->statements->kids.splice( functionDecl->statements->kids.begin(), newStmts );
407 } else {
408 assertf( functionDecl->withExprs.empty() && newStmts.empty(), "Function %s without a body has with-clause and/or generated with declarations.", functionDecl->name.c_str() );
409 }
410 }
411 }
412
413 void Resolver_old::previsit( ObjectDecl * objectDecl ) {
414 // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that
415 // class-variable initContext is changed multiple time because the LHS is analysed twice.
416 // The second analysis changes initContext because of a function type can contain object
417 // declarations in the return and parameter types. So each value of initContext is
418 // retained, so the type on the first analysis is preserved and used for selecting the RHS.
419 GuardValue( currentObject );
420 currentObject = CurrentObject( objectDecl->get_type() );
421 if ( inEnumDecl && dynamic_cast< EnumInstType * >( objectDecl->get_type() ) ) {
422 // enumerator initializers should not use the enum type to initialize, since
423 // the enum type is still incomplete at this point. Use signed int instead.
424 currentObject = CurrentObject( new BasicType( Type::Qualifiers(), BasicType::SignedInt ) );
425 }
426 }
427
428 template< typename PtrType >
429 void Resolver_old::handlePtrType( PtrType * type ) {
430 if ( type->get_dimension() ) {
431 findSingleExpression( type->dimension, Validate::SizeType->clone(), indexer );
432 }
433 }
434
435 void Resolver_old::previsit( ArrayType * at ) {
436 handlePtrType( at );
437 }
438
439 void Resolver_old::previsit( PointerType * pt ) {
440 handlePtrType( pt );
441 }
442
443 void Resolver_old::previsit( FunctionDecl * functionDecl ) {
444#if 0
445 std::cerr << "resolver visiting functiondecl ";
446 functionDecl->print( std::cerr );
447 std::cerr << std::endl;
448#endif
449 GuardValue( functionReturn );
450 functionReturn = ResolvExpr::extractResultType( functionDecl->type );
451 }
452
453 void Resolver_old::postvisit( FunctionDecl * functionDecl ) {
454 // default value expressions have an environment which shouldn't be there and trips up
455 // later passes.
456 // xxx - it might be necessary to somehow keep the information from this environment, but I
457 // can't currently see how it's useful.
458 for ( Declaration * d : functionDecl->type->parameters ) {
459 if ( ObjectDecl * obj = dynamic_cast< ObjectDecl * >( d ) ) {
460 if ( SingleInit * init = dynamic_cast< SingleInit * >( obj->init ) ) {
461 delete init->value->env;
462 init->value->env = nullptr;
463 }
464 }
465 }
466 }
467
468 void Resolver_old::previsit( EnumDecl * ) {
469 // in case we decide to allow nested enums
470 GuardValue( inEnumDecl );
471 inEnumDecl = true;
472 }
473
474 void Resolver_old::previsit( StaticAssertDecl * assertDecl ) {
475 findIntegralExpression( assertDecl->condition, indexer );
476 }
477
478 void Resolver_old::previsit( ExprStmt * exprStmt ) {
479 visit_children = false;
480 assertf( exprStmt->expr, "ExprStmt has null Expression in resolver" );
481 findVoidExpression( exprStmt->expr, indexer );
482 }
483
484 void Resolver_old::previsit( AsmExpr * asmExpr ) {
485 visit_children = false;
486 findVoidExpression( asmExpr->operand, indexer );
487 if ( asmExpr->get_inout() ) {
488 findVoidExpression( asmExpr->inout, indexer );
489 } // if
490 }
491
492 void Resolver_old::previsit( AsmStmt * asmStmt ) {
493 visit_children = false;
494 acceptAll( asmStmt->get_input(), *visitor );
495 acceptAll( asmStmt->get_output(), *visitor );
496 }
497
498 void Resolver_old::previsit( IfStmt * ifStmt ) {
499 findIntegralExpression( ifStmt->condition, indexer );
500 }
501
502 void Resolver_old::previsit( WhileStmt * whileStmt ) {
503 findIntegralExpression( whileStmt->condition, indexer );
504 }
505
506 void Resolver_old::previsit( ForStmt * forStmt ) {
507 if ( forStmt->condition ) {
508 findIntegralExpression( forStmt->condition, indexer );
509 } // if
510
511 if ( forStmt->increment ) {
512 findVoidExpression( forStmt->increment, indexer );
513 } // if
514 }
515
516 void Resolver_old::previsit( SwitchStmt * switchStmt ) {
517 GuardValue( currentObject );
518 findIntegralExpression( switchStmt->condition, indexer );
519
520 currentObject = CurrentObject( switchStmt->condition->result );
521 }
522
523 void Resolver_old::previsit( CaseStmt * caseStmt ) {
524 if ( caseStmt->condition ) {
525 std::list< InitAlternative > initAlts = currentObject.getOptions();
526 assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral expression." );
527 // must remove cast from case statement because RangeExpr cannot be cast.
528 Expression * newExpr = new CastExpr( caseStmt->condition, initAlts.front().type->clone() );
529 findSingleExpression( newExpr, indexer );
530 // case condition cannot have a cast in C, so it must be removed, regardless of whether it performs a conversion.
531 // Ideally we would perform the conversion internally here.
532 if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( newExpr ) ) {
533 newExpr = castExpr->arg;
534 castExpr->arg = nullptr;
535 std::swap( newExpr->env, castExpr->env );
536 delete castExpr;
537 }
538 caseStmt->condition = newExpr;
539 }
540 }
541
542 void Resolver_old::previsit( BranchStmt * branchStmt ) {
543 visit_children = false;
544 // must resolve the argument for a computed goto
545 if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement
546 if ( branchStmt->computedTarget ) {
547 // computed goto argument is void *
548 findSingleExpression( branchStmt->computedTarget, new PointerType( Type::Qualifiers(), new VoidType( Type::Qualifiers() ) ), indexer );
549 } // if
550 } // if
551 }
552
553 void Resolver_old::previsit( ReturnStmt * returnStmt ) {
554 visit_children = false;
555 if ( returnStmt->expr ) {
556 findSingleExpression( returnStmt->expr, functionReturn->clone(), indexer );
557 } // if
558 }
559
560 void Resolver_old::previsit( ThrowStmt * throwStmt ) {
561 visit_children = false;
562 // TODO: Replace *exception type with &exception type.
563 if ( throwStmt->get_expr() ) {
564 StructDecl * exception_decl =
565 indexer.lookupStruct( "__cfaabi_ehm__base_exception_t" );
566 assert( exception_decl );
567 Type * exceptType = new PointerType( noQualifiers, new StructInstType( noQualifiers, exception_decl ) );
568 findSingleExpression( throwStmt->expr, exceptType, indexer );
569 }
570 }
571
572 void Resolver_old::previsit( CatchStmt * catchStmt ) {
573 if ( catchStmt->cond ) {
574 findSingleExpression( catchStmt->cond, new BasicType( noQualifiers, BasicType::Bool ), indexer );
575 }
576 }
577
578 template< typename iterator_t >
579 inline bool advance_to_mutex( iterator_t & it, const iterator_t & end ) {
580 while( it != end && !(*it)->get_type()->get_mutex() ) {
581 it++;
582 }
583
584 return it != end;
585 }
586
587 void Resolver_old::previsit( WaitForStmt * stmt ) {
588 visit_children = false;
589
590 // Resolve all clauses first
591 for( auto& clause : stmt->clauses ) {
592
593 TypeEnvironment env;
594 AlternativeFinder funcFinder( indexer, env );
595
596 // Find all alternatives for a function in canonical form
597 funcFinder.findWithAdjustment( clause.target.function );
598
599 if ( funcFinder.get_alternatives().empty() ) {
600 stringstream ss;
601 ss << "Use of undeclared indentifier '";
602 ss << strict_dynamic_cast<NameExpr*>( clause.target.function )->name;
603 ss << "' in call to waitfor";
604 SemanticError( stmt->location, ss.str() );
605 }
606
607 if(clause.target.arguments.empty()) {
608 SemanticError( stmt->location, "Waitfor clause must have at least one mutex parameter");
609 }
610
611 // Find all alternatives for all arguments in canonical form
612 std::vector< AlternativeFinder > argAlternatives;
613 funcFinder.findSubExprs( clause.target.arguments.begin(), clause.target.arguments.end(), back_inserter( argAlternatives ) );
614
615 // List all combinations of arguments
616 std::vector< AltList > possibilities;
617 combos( argAlternatives.begin(), argAlternatives.end(), back_inserter( possibilities ) );
618
619 AltList func_candidates;
620 std::vector< AltList > args_candidates;
621
622 // For every possible function :
623 // try matching the arguments to the parameters
624 // not the other way around because we have more arguments than parameters
625 SemanticErrorException errors;
626 for ( Alternative & func : funcFinder.get_alternatives() ) {
627 try {
628 PointerType * pointer = dynamic_cast< PointerType* >( func.expr->get_result()->stripReferences() );
629 if( !pointer ) {
630 SemanticError( func.expr->get_result(), "candidate not viable: not a pointer type\n" );
631 }
632
633 FunctionType * function = dynamic_cast< FunctionType* >( pointer->get_base() );
634 if( !function ) {
635 SemanticError( pointer->get_base(), "candidate not viable: not a function type\n" );
636 }
637
638
639 {
640 auto param = function->parameters.begin();
641 auto param_end = function->parameters.end();
642
643 if( !advance_to_mutex( param, param_end ) ) {
644 SemanticError(function, "candidate function not viable: no mutex parameters\n");
645 }
646 }
647
648 Alternative newFunc( func );
649 // Strip reference from function
650 referenceToRvalueConversion( newFunc.expr, newFunc.cost );
651
652 // For all the set of arguments we have try to match it with the parameter of the current function alternative
653 for ( auto & argsList : possibilities ) {
654
655 try {
656 // Declare data structures need for resolution
657 OpenVarSet openVars;
658 AssertionSet resultNeed, resultHave;
659 TypeEnvironment resultEnv( func.env );
660 makeUnifiableVars( function, openVars, resultNeed );
661 // add all type variables as open variables now so that those not used in the parameter
662 // list are still considered open.
663 resultEnv.add( function->forall );
664
665 // Load type variables from arguemnts into one shared space
666 simpleCombineEnvironments( argsList.begin(), argsList.end(), resultEnv );
667
668 // Make sure we don't widen any existing bindings
669 resultEnv.forbidWidening();
670
671 // Find any unbound type variables
672 resultEnv.extractOpenVars( openVars );
673
674 auto param = function->parameters.begin();
675 auto param_end = function->parameters.end();
676
677 int n_mutex_param = 0;
678
679 // For every arguments of its set, check if it matches one of the parameter
680 // The order is important
681 for( auto & arg : argsList ) {
682
683 // Ignore non-mutex arguments
684 if( !advance_to_mutex( param, param_end ) ) {
685 // We ran out of parameters but still have arguments
686 // this function doesn't match
687 SemanticError( function, toString("candidate function not viable: too many mutex arguments, expected ", n_mutex_param, "\n" ));
688 }
689
690 n_mutex_param++;
691
692 // Check if the argument matches the parameter type in the current scope
693 if( ! unify( arg.expr->get_result(), (*param)->get_type(), resultEnv, resultNeed, resultHave, openVars, this->indexer ) ) {
694 // Type doesn't match
695 stringstream ss;
696 ss << "candidate function not viable: no known convertion from '";
697 (*param)->get_type()->print( ss );
698 ss << "' to '";
699 arg.expr->get_result()->print( ss );
700 ss << "' with env '";
701 resultEnv.print(ss);
702 ss << "'\n";
703 SemanticError( function, ss.str() );
704 }
705
706 param++;
707 }
708
709 // All arguments match !
710
711 // Check if parameters are missing
712 if( advance_to_mutex( param, param_end ) ) {
713 do {
714 n_mutex_param++;
715 param++;
716 } while( advance_to_mutex( param, param_end ) );
717
718 // We ran out of arguments but still have parameters left
719 // this function doesn't match
720 SemanticError( function, toString("candidate function not viable: too few mutex arguments, expected ", n_mutex_param, "\n" ));
721 }
722
723 // All parameters match !
724
725 // Finish the expressions to tie in the proper environments
726 finishExpr( newFunc.expr, resultEnv );
727 for( Alternative & alt : argsList ) {
728 finishExpr( alt.expr, resultEnv );
729 }
730
731 // This is a match store it and save it for later
732 func_candidates.push_back( newFunc );
733 args_candidates.push_back( argsList );
734
735 }
736 catch( SemanticErrorException & e ) {
737 errors.append( e );
738 }
739 }
740 }
741 catch( SemanticErrorException & e ) {
742 errors.append( e );
743 }
744 }
745
746 // Make sure we got the right number of arguments
747 if( func_candidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for function in call to waitfor" ); top.append( errors ); throw top; }
748 if( args_candidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for arguments in call to waitfor" ); top.append( errors ); throw top; }
749 if( func_candidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous function in call to waitfor" ); top.append( errors ); throw top; }
750 if( args_candidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous arguments in call to waitfor" ); top.append( errors ); throw top; }
751 // TODO: need to use findDeletedExpr to ensure no deleted identifiers are used.
752
753 // Swap the results from the alternative with the unresolved values.
754 // Alternatives will handle deletion on destruction
755 std::swap( clause.target.function, func_candidates.front().expr );
756 for( auto arg_pair : group_iterate( clause.target.arguments, args_candidates.front() ) ) {
757 std::swap ( std::get<0>( arg_pair), std::get<1>( arg_pair).expr );
758 }
759
760 // Resolve the conditions as if it were an IfStmt
761 // Resolve the statments normally
762 findSingleExpression( clause.condition, this->indexer );
763 clause.statement->accept( *visitor );
764 }
765
766
767 if( stmt->timeout.statement ) {
768 // Resolve the timeout as an size_t for now
769 // Resolve the conditions as if it were an IfStmt
770 // Resolve the statments normally
771 findSingleExpression( stmt->timeout.time, new BasicType( noQualifiers, BasicType::LongLongUnsignedInt ), this->indexer );
772 findSingleExpression( stmt->timeout.condition, this->indexer );
773 stmt->timeout.statement->accept( *visitor );
774 }
775
776 if( stmt->orelse.statement ) {
777 // Resolve the conditions as if it were an IfStmt
778 // Resolve the statments normally
779 findSingleExpression( stmt->orelse.condition, this->indexer );
780 stmt->orelse.statement->accept( *visitor );
781 }
782 }
783
784 bool isCharType( Type * t ) {
785 if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) {
786 return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar ||
787 bt->get_kind() == BasicType::UnsignedChar;
788 }
789 return false;
790 }
791
792 void Resolver_old::previsit( SingleInit * singleInit ) {
793 visit_children = false;
794 // resolve initialization using the possibilities as determined by the currentObject cursor
795 Expression * newExpr = new UntypedInitExpr( singleInit->value, currentObject.getOptions() );
796 findSingleExpression( newExpr, indexer );
797 InitExpr * initExpr = strict_dynamic_cast< InitExpr * >( newExpr );
798
799 // move cursor to the object that is actually initialized
800 currentObject.setNext( initExpr->get_designation() );
801
802 // discard InitExpr wrapper and retain relevant pieces
803 newExpr = initExpr->expr;
804 initExpr->expr = nullptr;
805 std::swap( initExpr->env, newExpr->env );
806 // InitExpr may have inferParams in the case where the expression specializes a function
807 // pointer, and newExpr may already have inferParams of its own, so a simple swap is not
808 // sufficient.
809 newExpr->spliceInferParams( initExpr );
810 delete initExpr;
811
812 // get the actual object's type (may not exactly match what comes back from the resolver
813 // due to conversions)
814 Type * initContext = currentObject.getCurrentType();
815
816 removeExtraneousCast( newExpr, indexer );
817
818 // check if actual object's type is char[]
819 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
820 if ( isCharType( at->get_base() ) ) {
821 // check if the resolved type is char *
822 if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_result() ) ) {
823 if ( isCharType( pt->get_base() ) ) {
824 if ( CastExpr * ce = dynamic_cast< CastExpr * >( newExpr ) ) {
825 // strip cast if we're initializing a char[] with a char *,
826 // e.g. char x[] = "hello";
827 newExpr = ce->get_arg();
828 ce->set_arg( nullptr );
829 std::swap( ce->env, newExpr->env );
830 delete ce;
831 }
832 }
833 }
834 }
835 }
836
837 // set initializer expr to resolved express
838 singleInit->value = newExpr;
839
840 // move cursor to next object in preparation for next initializer
841 currentObject.increment();
842 }
843
844 void Resolver_old::previsit( ListInit * listInit ) {
845 visit_children = false;
846 // move cursor into brace-enclosed initializer-list
847 currentObject.enterListInit();
848 // xxx - fix this so that the list isn't copied, iterator should be used to change current
849 // element
850 std::list<Designation *> newDesignations;
851 for ( auto p : group_iterate(listInit->get_designations(), listInit->get_initializers()) ) {
852 // iterate designations and initializers in pairs, moving the cursor to the current
853 // designated object and resolving the initializer against that object.
854 Designation * des = std::get<0>(p);
855 Initializer * init = std::get<1>(p);
856 newDesignations.push_back( currentObject.findNext( des ) );
857 init->accept( *visitor );
858 }
859 // set the set of 'resolved' designations and leave the brace-enclosed initializer-list
860 listInit->get_designations() = newDesignations; // xxx - memory management
861 currentObject.exitListInit();
862
863 // xxx - this part has not be folded into CurrentObject yet
864 // } else if ( TypeInstType * tt = dynamic_cast< TypeInstType * >( initContext ) ) {
865 // Type * base = tt->get_baseType()->get_base();
866 // if ( base ) {
867 // // know the implementation type, so try using that as the initContext
868 // ObjectDecl tmpObj( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, base->clone(), nullptr );
869 // currentObject = &tmpObj;
870 // visit( listInit );
871 // } else {
872 // // missing implementation type -- might be an unknown type variable, so try proceeding with the current init context
873 // Parent::visit( listInit );
874 // }
875 // } else {
876 }
877
878 // ConstructorInit - fall back on C-style initializer
879 void Resolver_old::fallbackInit( ConstructorInit * ctorInit ) {
880 // could not find valid constructor, or found an intrinsic constructor
881 // fall back on C-style initializer
882 delete ctorInit->get_ctor();
883 ctorInit->set_ctor( nullptr );
884 delete ctorInit->get_dtor();
885 ctorInit->set_dtor( nullptr );
886 maybeAccept( ctorInit->get_init(), *visitor );
887 }
888
889 // needs to be callable from outside the resolver, so this is a standalone function
890 void resolveCtorInit( ConstructorInit * ctorInit, const SymTab::Indexer & indexer ) {
891 assert( ctorInit );
892 PassVisitor<Resolver_old> resolver( indexer );
893 ctorInit->accept( resolver );
894 }
895
896 void resolveStmtExpr( StmtExpr * stmtExpr, const SymTab::Indexer & indexer ) {
897 assert( stmtExpr );
898 PassVisitor<Resolver_old> resolver( indexer );
899 stmtExpr->accept( resolver );
900 stmtExpr->computeResult();
901 // xxx - aggregate the environments from all statements? Possibly in AlternativeFinder instead?
902 }
903
904 void Resolver_old::previsit( ConstructorInit * ctorInit ) {
905 visit_children = false;
906 // xxx - fallback init has been removed => remove fallbackInit function and remove complexity from FixInit and remove C-init from ConstructorInit
907 maybeAccept( ctorInit->ctor, *visitor );
908 maybeAccept( ctorInit->dtor, *visitor );
909
910 // found a constructor - can get rid of C-style initializer
911 delete ctorInit->init;
912 ctorInit->init = nullptr;
913
914 // intrinsic single parameter constructors and destructors do nothing. Since this was
915 // implicitly generated, there's no way for it to have side effects, so get rid of it
916 // to clean up generated code.
917 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->ctor ) ) {
918 delete ctorInit->ctor;
919 ctorInit->ctor = nullptr;
920 }
921
922 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->dtor ) ) {
923 delete ctorInit->dtor;
924 ctorInit->dtor = nullptr;
925 }
926
927 // xxx - todo -- what about arrays?
928 // if ( dtor == nullptr && InitTweak::isIntrinsicCallStmt( ctorInit->get_ctor() ) ) {
929 // // can reduce the constructor down to a SingleInit using the
930 // // second argument from the ctor call, since
931 // delete ctorInit->get_ctor();
932 // ctorInit->set_ctor( nullptr );
933
934 // Expression * arg =
935 // ctorInit->set_init( new SingleInit( arg ) );
936 // }
937 }
938
939 ///////////////////////////////////////////////////////////////////////////
940 //
941 // *** NEW RESOLVER ***
942 //
943 ///////////////////////////////////////////////////////////////////////////
944
945 namespace {
946 /// Finds deleted expressions in an expression tree
947 struct DeleteFinder_new final : public ast::WithShortCircuiting {
948 const ast::DeletedExpr * delExpr = nullptr;
949
950 void previsit( const ast::DeletedExpr * expr ) {
951 if ( delExpr ) { visit_children = false; }
952 else { delExpr = expr; }
953 }
954
955 void previsit( const ast::Expr * ) {
956 if ( delExpr ) { visit_children = false; }
957 }
958 };
959 } // anonymous namespace
960
961 /// Check if this expression is or includes a deleted expression
962 const ast::DeletedExpr * findDeletedExpr( const ast::Expr * expr ) {
963 ast::Pass<DeleteFinder_new> finder;
964 expr->accept( finder );
965 return finder.pass.delExpr;
966 }
967
968 namespace {
969 /// always-accept candidate filter
970 bool anyCandidate( const Candidate & ) { return true; }
971
972 /// Calls the CandidateFinder and finds the single best candidate
973 CandidateRef findUnfinishedKindExpression(
974 const ast::Expr * untyped, const ast::SymbolTable & symtab, const std::string & kind,
975 std::function<bool(const Candidate &)> pred = anyCandidate, ResolvMode mode = {}
976 ) {
977 if ( ! untyped ) return nullptr;
978
979 // xxx - this isn't thread-safe, but should work until we parallelize the resolver
980 static unsigned recursion_level = 0;
981
982 ++recursion_level;
983 ast::TypeEnvironment env;
984 CandidateFinder finder{ symtab, env };
985 finder.find( untyped, recursion_level == 1 ? mode.atTopLevel() : mode );
986 --recursion_level;
987
988 // produce a filtered list of candidates
989 CandidateList candidates;
990 for ( auto & cand : finder.candidates ) {
991 if ( pred( *cand ) ) { candidates.emplace_back( cand ); }
992 }
993
994 // produce invalid error if no candidates
995 if ( candidates.empty() ) {
996 SemanticError( untyped,
997 toString( "No reasonable alternatives for ", kind, (kind != "" ? " " : ""),
998 "expression: ") );
999 }
1000
1001 // search for cheapest candidate
1002 CandidateList winners;
1003 bool seen_undeleted = false;
1004 for ( CandidateRef & cand : candidates ) {
1005 int c = winners.empty() ? -1 : cand->cost.compare( winners.front()->cost );
1006
1007 if ( c > 0 ) continue; // skip more expensive than winner
1008
1009 if ( c < 0 ) {
1010 // reset on new cheapest
1011 seen_undeleted = ! findDeletedExpr( cand->expr );
1012 winners.clear();
1013 } else /* if ( c == 0 ) */ {
1014 if ( findDeletedExpr( cand->expr ) ) {
1015 // skip deleted expression if already seen one equivalent-cost not
1016 if ( seen_undeleted ) continue;
1017 } else if ( ! seen_undeleted ) {
1018 // replace list of equivalent-cost deleted expressions with one non-deleted
1019 winners.clear();
1020 seen_undeleted = true;
1021 }
1022 }
1023
1024 winners.emplace_back( std::move( cand ) );
1025 }
1026
1027 // promote candidate.cvtCost to .cost
1028 promoteCvtCost( winners );
1029
1030 // produce ambiguous errors, if applicable
1031 if ( winners.size() != 1 ) {
1032 std::ostringstream stream;
1033 stream << "Cannot choose between " << winners.size() << " alternatives for "
1034 << kind << (kind != "" ? " " : "") << "expression\n";
1035 ast::print( stream, untyped );
1036 stream << " Alternatives are:\n";
1037 print( stream, winners, 1 );
1038 SemanticError( untyped->location, stream.str() );
1039 }
1040
1041 // single selected choice
1042 CandidateRef & choice = winners.front();
1043
1044 // fail on only expression deleted
1045 if ( ! seen_undeleted ) {
1046 SemanticError( untyped->location, choice->expr.get(), "Unique best alternative "
1047 "includes deleted identifier in " );
1048 }
1049
1050 return std::move( choice );
1051 }
1052
1053 /// Strips extraneous casts out of an expression
1054 struct StripCasts_new final {
1055 const ast::Expr * postmutate( const ast::CastExpr * castExpr ) {
1056 if (
1057 castExpr->isGenerated
1058 && typesCompatible( castExpr->arg->result, castExpr->result )
1059 ) {
1060 // generated cast is the same type as its argument, remove it after keeping env
1061 return ast::mutate_field(
1062 castExpr->arg.get(), &ast::Expr::env, castExpr->env );
1063 }
1064 return castExpr;
1065 }
1066
1067 static void strip( ast::ptr< ast::Expr > & expr ) {
1068 ast::Pass< StripCasts_new > stripper;
1069 expr = expr->accept( stripper );
1070 }
1071 };
1072
1073 /// Swaps argument into expression pointer, saving original environment
1074 void swap_and_save_env( ast::ptr< ast::Expr > & expr, const ast::Expr * newExpr ) {
1075 ast::ptr< ast::TypeSubstitution > env = expr->env;
1076 expr.set_and_mutate( newExpr )->env = env;
1077 }
1078
1079 /// Removes cast to type of argument (unlike StripCasts, also handles non-generated casts)
1080 void removeExtraneousCast( ast::ptr<ast::Expr> & expr, const ast::SymbolTable & symtab ) {
1081 if ( const ast::CastExpr * castExpr = expr.as< ast::CastExpr >() ) {
1082 if ( typesCompatible( castExpr->arg->result, castExpr->result, symtab ) ) {
1083 // cast is to the same type as its argument, remove it
1084 swap_and_save_env( expr, castExpr->arg );
1085 }
1086 }
1087 }
1088
1089 /// Establish post-resolver invariants for expressions
1090 void finishExpr(
1091 ast::ptr< ast::Expr > & expr, const ast::TypeEnvironment & env,
1092 const ast::TypeSubstitution * oldenv = nullptr
1093 ) {
1094 // set up new type substitution for expression
1095 ast::ptr< ast::TypeSubstitution > newenv =
1096 oldenv ? oldenv : new ast::TypeSubstitution{};
1097 env.writeToSubstitution( *newenv.get_and_mutate() );
1098 expr.get_and_mutate()->env = std::move( newenv );
1099 // remove unncecessary casts
1100 StripCasts_new::strip( expr );
1101 }
1102 } // anonymous namespace
1103
1104
1105 ast::ptr< ast::Expr > resolveInVoidContext(
1106 const ast::Expr * expr, const ast::SymbolTable & symtab, ast::TypeEnvironment & env
1107 ) {
1108 assertf( expr, "expected a non-null expression" );
1109
1110 // set up and resolve expression cast to void
1111 ast::CastExpr * untyped = new ast::CastExpr{ expr->location, expr };
1112 CandidateRef choice = findUnfinishedKindExpression(
1113 untyped, symtab, "", anyCandidate, ResolvMode::withAdjustment() );
1114
1115 // a cast expression has either 0 or 1 interpretations (by language rules);
1116 // if 0, an exception has already been thrown, and this code will not run
1117 const ast::CastExpr * castExpr = choice->expr.strict_as< ast::CastExpr >();
1118 env = std::move( choice->env );
1119
1120 return castExpr->arg;
1121 }
1122
1123 namespace {
1124 /// Resolve `untyped` to the expression whose candidate is the best match for a `void`
1125 /// context.
1126 ast::ptr< ast::Expr > findVoidExpression(
1127 const ast::Expr * untyped, const ast::SymbolTable & symtab
1128 ) {
1129 resetTyVarRenaming();
1130 ast::TypeEnvironment env;
1131 ast::ptr< ast::Expr > newExpr = resolveInVoidContext( untyped, symtab, env );
1132 finishExpr( newExpr, env, untyped->env );
1133 return newExpr;
1134 }
1135
1136 /// resolve `untyped` to the expression whose candidate satisfies `pred` with the
1137 /// lowest cost, returning the resolved version
1138 ast::ptr< ast::Expr > findKindExpression(
1139 const ast::Expr * untyped, const ast::SymbolTable & symtab,
1140 std::function<bool(const Candidate &)> pred = anyCandidate,
1141 const std::string & kind = "", ResolvMode mode = {}
1142 ) {
1143 if ( ! untyped ) return {};
1144 CandidateRef choice =
1145 findUnfinishedKindExpression( untyped, symtab, kind, pred, mode );
1146 finishExpr( choice->expr, choice->env, untyped->env );
1147 return std::move( choice->expr );
1148 }
1149
1150 /// Resolve `untyped` to the single expression whose candidate is the best match
1151 ast::ptr< ast::Expr > findSingleExpression(
1152 const ast::Expr * untyped, const ast::SymbolTable & symtab
1153 ) {
1154 return findKindExpression( untyped, symtab );
1155 }
1156
1157 /// Resolve `untyped` to the single expression whose candidate is the best match for the
1158 /// given type.
1159 ast::ptr< ast::Expr > findSingleExpression(
1160 const ast::Expr * untyped, const ast::Type * type, const ast::SymbolTable & symtab
1161 ) {
1162 assert( untyped && type );
1163 ast::ptr< ast::Expr > castExpr = new ast::CastExpr{ untyped->location, untyped, type };
1164 ast::ptr< ast::Expr > newExpr = findSingleExpression( castExpr, symtab );
1165 removeExtraneousCast( newExpr, symtab );
1166 return newExpr;
1167 }
1168
1169 /// Predicate for "Candidate has integral type"
1170 bool hasIntegralType( const Candidate & i ) {
1171 const ast::Type * type = i.expr->result;
1172
1173 if ( auto bt = dynamic_cast< const ast::BasicType * >( type ) ) {
1174 return bt->isInteger();
1175 } else if (
1176 dynamic_cast< const ast::EnumInstType * >( type )
1177 || dynamic_cast< const ast::ZeroType * >( type )
1178 || dynamic_cast< const ast::OneType * >( type )
1179 ) {
1180 return true;
1181 } else return false;
1182 }
1183
1184 /// Resolve `untyped` as an integral expression, returning the resolved version
1185 ast::ptr< ast::Expr > findIntegralExpression(
1186 const ast::Expr * untyped, const ast::SymbolTable & symtab
1187 ) {
1188 return findKindExpression( untyped, symtab, hasIntegralType, "condition" );
1189 }
1190
1191 /// check if a type is a character type
1192 bool isCharType( const ast::Type * t ) {
1193 if ( auto bt = dynamic_cast< const ast::BasicType * >( t ) ) {
1194 return bt->kind == ast::BasicType::Char
1195 || bt->kind == ast::BasicType::SignedChar
1196 || bt->kind == ast::BasicType::UnsignedChar;
1197 }
1198 return false;
1199 }
1200
1201 /// Advance a type itertor to the next mutex parameter
1202 template<typename Iter>
1203 inline bool nextMutex( Iter & it, const Iter & end ) {
1204 while ( it != end && ! (*it)->get_type()->is_mutex() ) { ++it; }
1205 return it != end;
1206 }
1207 }
1208
1209 class Resolver_new final
1210 : public ast::WithSymbolTable, public ast::WithGuards,
1211 public ast::WithVisitorRef<Resolver_new>, public ast::WithShortCircuiting,
1212 public ast::WithStmtsToAdd<> {
1213
1214 ast::ptr< ast::Type > functionReturn = nullptr;
1215 ast::CurrentObject currentObject;
1216 bool inEnumDecl = false;
1217
1218 public:
1219 Resolver_new() = default;
1220 Resolver_new( const ast::SymbolTable & syms ) { symtab = syms; }
1221
1222 void previsit( const ast::FunctionDecl * );
1223 const ast::FunctionDecl * postvisit( const ast::FunctionDecl * );
1224 void previsit( const ast::ObjectDecl * );
1225 void previsit( const ast::EnumDecl * );
1226 const ast::StaticAssertDecl * previsit( const ast::StaticAssertDecl * );
1227
1228 void previsit( const ast::ArrayType * );
1229 void previsit( const ast::PointerType * );
1230
1231 const ast::ExprStmt * previsit( const ast::ExprStmt * );
1232 const ast::AsmExpr * previsit( const ast::AsmExpr * );
1233 const ast::AsmStmt * previsit( const ast::AsmStmt * );
1234 const ast::IfStmt * previsit( const ast::IfStmt * );
1235 const ast::WhileStmt * previsit( const ast::WhileStmt * );
1236 const ast::ForStmt * previsit( const ast::ForStmt * );
1237 const ast::SwitchStmt * previsit( const ast::SwitchStmt * );
1238 const ast::CaseStmt * previsit( const ast::CaseStmt * );
1239 const ast::BranchStmt * previsit( const ast::BranchStmt * );
1240 const ast::ReturnStmt * previsit( const ast::ReturnStmt * );
1241 const ast::ThrowStmt * previsit( const ast::ThrowStmt * );
1242 const ast::CatchStmt * previsit( const ast::CatchStmt * );
1243 const ast::WaitForStmt * previsit( const ast::WaitForStmt * );
1244
1245 const ast::SingleInit * previsit( const ast::SingleInit * );
1246 const ast::ListInit * previsit( const ast::ListInit * );
1247 const ast::ConstructorInit * previsit( const ast::ConstructorInit * );
1248 };
1249
1250 void resolve( std::list< ast::ptr<ast::Decl> >& translationUnit ) {
1251 ast::Pass<Resolver_new> resolver;
1252 accept_all( translationUnit, resolver );
1253 }
1254
1255 void Resolver_new::previsit( const ast::FunctionDecl * functionDecl ) {
1256 GuardValue( functionReturn );
1257 functionReturn = extractResultType( functionDecl->type );
1258 }
1259
1260 const ast::FunctionDecl * Resolver_new::postvisit( const ast::FunctionDecl * functionDecl ) {
1261 // default value expressions have an environment which shouldn't be there and trips up
1262 // later passes.
1263 ast::ptr< ast::FunctionDecl > ret = functionDecl;
1264 for ( unsigned i = 0; i < functionDecl->type->params.size(); ++i ) {
1265 const ast::ptr<ast::DeclWithType> & d = functionDecl->type->params[i];
1266
1267 if ( const ast::ObjectDecl * obj = d.as< ast::ObjectDecl >() ) {
1268 if ( const ast::SingleInit * init = obj->init.as< ast::SingleInit >() ) {
1269 if ( init->value->env == nullptr ) continue;
1270 // clone initializer minus the initializer environment
1271 ast::chain_mutate( ret )
1272 ( &ast::FunctionDecl::type )
1273 ( &ast::FunctionType::params )[i]
1274 ( &ast::ObjectDecl::init )
1275 ( &ast::SingleInit::value )->env = nullptr;
1276
1277 assert( functionDecl != ret.get() || functionDecl->unique() );
1278 assert( ! ret->type->params[i].strict_as< ast::ObjectDecl >()->init.strict_as< ast::SingleInit >()->value->env );
1279 }
1280 }
1281 }
1282 return ret.get();
1283 }
1284
1285 void Resolver_new::previsit( const ast::ObjectDecl * objectDecl ) {
1286 // To handle initialization of routine pointers [e.g. int (*fp)(int) = foo()],
1287 // class-variable `initContext` is changed multiple times because the LHS is analyzed
1288 // twice. The second analysis changes `initContext` because a function type can contain
1289 // object declarations in the return and parameter types. Therefore each value of
1290 // `initContext` is retained so the type on the first analysis is preserved and used for
1291 // selecting the RHS.
1292 GuardValue( currentObject );
1293 currentObject = ast::CurrentObject{ objectDecl->location, objectDecl->get_type() };
1294 if ( inEnumDecl && dynamic_cast< const ast::EnumInstType * >( objectDecl->get_type() ) ) {
1295 // enumerator initializers should not use the enum type to initialize, since the
1296 // enum type is still incomplete at this point. Use `int` instead.
1297 currentObject = ast::CurrentObject{
1298 objectDecl->location, new ast::BasicType{ ast::BasicType::SignedInt } };
1299 }
1300 }
1301
1302 void Resolver_new::previsit( const ast::EnumDecl * ) {
1303 // in case we decide to allow nested enums
1304 GuardValue( inEnumDecl );
1305 inEnumDecl = false;
1306 }
1307
1308 const ast::StaticAssertDecl * Resolver_new::previsit(
1309 const ast::StaticAssertDecl * assertDecl
1310 ) {
1311 return ast::mutate_field(
1312 assertDecl, &ast::StaticAssertDecl::cond,
1313 findIntegralExpression( assertDecl->cond, symtab ) );
1314 }
1315
1316 template< typename PtrType >
1317 void handlePtrType( const PtrType * type, const ast::SymbolTable & symtab ) {
1318 #warning unimplemented; needs support for new Validate::SizeType global
1319 (void)type; (void)symtab;
1320 assert( false );
1321 }
1322
1323 void Resolver_new::previsit( const ast::ArrayType * at ) {
1324 handlePtrType( at, symtab );
1325 }
1326
1327 void Resolver_new::previsit( const ast::PointerType * pt ) {
1328 handlePtrType( pt, symtab );
1329 }
1330
1331 const ast::ExprStmt * Resolver_new::previsit( const ast::ExprStmt * exprStmt ) {
1332 visit_children = false;
1333 assertf( exprStmt->expr, "ExprStmt has null expression in resolver" );
1334
1335 return ast::mutate_field(
1336 exprStmt, &ast::ExprStmt::expr, findVoidExpression( exprStmt->expr, symtab ) );
1337 }
1338
1339 const ast::AsmExpr * Resolver_new::previsit( const ast::AsmExpr * asmExpr ) {
1340 visit_children = false;
1341
1342 asmExpr = ast::mutate_field(
1343 asmExpr, &ast::AsmExpr::operand, findVoidExpression( asmExpr->operand, symtab ) );
1344
1345 if ( asmExpr->inout ) {
1346 asmExpr = ast::mutate_field(
1347 asmExpr, &ast::AsmExpr::inout, findVoidExpression( asmExpr->inout, symtab ) );
1348 }
1349
1350 return asmExpr;
1351 }
1352
1353 const ast::AsmStmt * Resolver_new::previsit( const ast::AsmStmt * asmStmt ) {
1354 visitor->maybe_accept( asmStmt, &ast::AsmStmt::input );
1355 visitor->maybe_accept( asmStmt, &ast::AsmStmt::output );
1356 visit_children = false;
1357 return asmStmt;
1358 }
1359
1360 const ast::IfStmt * Resolver_new::previsit( const ast::IfStmt * ifStmt ) {
1361 return ast::mutate_field(
1362 ifStmt, &ast::IfStmt::cond, findIntegralExpression( ifStmt->cond, symtab ) );
1363 }
1364
1365 const ast::WhileStmt * Resolver_new::previsit( const ast::WhileStmt * whileStmt ) {
1366 return ast::mutate_field(
1367 whileStmt, &ast::WhileStmt::cond, findIntegralExpression( whileStmt->cond, symtab ) );
1368 }
1369
1370 const ast::ForStmt * Resolver_new::previsit( const ast::ForStmt * forStmt ) {
1371 if ( forStmt->cond ) {
1372 forStmt = ast::mutate_field(
1373 forStmt, &ast::ForStmt::cond, findIntegralExpression( forStmt->cond, symtab ) );
1374 }
1375
1376 if ( forStmt->inc ) {
1377 forStmt = ast::mutate_field(
1378 forStmt, &ast::ForStmt::inc, findVoidExpression( forStmt->inc, symtab ) );
1379 }
1380
1381 return forStmt;
1382 }
1383
1384 const ast::SwitchStmt * Resolver_new::previsit( const ast::SwitchStmt * switchStmt ) {
1385 GuardValue( currentObject );
1386 switchStmt = ast::mutate_field(
1387 switchStmt, &ast::SwitchStmt::cond,
1388 findIntegralExpression( switchStmt->cond, symtab ) );
1389 currentObject = ast::CurrentObject{ switchStmt->location, switchStmt->cond->result };
1390 return switchStmt;
1391 }
1392
1393 const ast::CaseStmt * Resolver_new::previsit( const ast::CaseStmt * caseStmt ) {
1394 if ( caseStmt->cond ) {
1395 std::deque< ast::InitAlternative > initAlts = currentObject.getOptions();
1396 assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral "
1397 "expression." );
1398
1399 ast::ptr< ast::Expr > untyped =
1400 new ast::CastExpr{ caseStmt->location, caseStmt->cond, initAlts.front().type };
1401 ast::ptr< ast::Expr > newExpr = findSingleExpression( untyped, symtab );
1402
1403 // case condition cannot have a cast in C, so it must be removed here, regardless of
1404 // whether it would perform a conversion.
1405 if ( const ast::CastExpr * castExpr = newExpr.as< ast::CastExpr >() ) {
1406 swap_and_save_env( newExpr, castExpr->arg );
1407 }
1408
1409 caseStmt = ast::mutate_field( caseStmt, &ast::CaseStmt::cond, newExpr );
1410 }
1411 return caseStmt;
1412 }
1413
1414 const ast::BranchStmt * Resolver_new::previsit( const ast::BranchStmt * branchStmt ) {
1415 visit_children = false;
1416 // must resolve the argument of a computed goto
1417 if ( branchStmt->kind == ast::BranchStmt::Goto && branchStmt->computedTarget ) {
1418 // computed goto argument is void*
1419 ast::ptr< ast::Type > target = new ast::PointerType{ new ast::VoidType{} };
1420 branchStmt = ast::mutate_field(
1421 branchStmt, &ast::BranchStmt::computedTarget,
1422 findSingleExpression( branchStmt->computedTarget, target, symtab ) );
1423 }
1424 return branchStmt;
1425 }
1426
1427 const ast::ReturnStmt * Resolver_new::previsit( const ast::ReturnStmt * returnStmt ) {
1428 visit_children = false;
1429 if ( returnStmt->expr ) {
1430 returnStmt = ast::mutate_field(
1431 returnStmt, &ast::ReturnStmt::expr,
1432 findSingleExpression( returnStmt->expr, functionReturn, symtab ) );
1433 }
1434 return returnStmt;
1435 }
1436
1437 const ast::ThrowStmt * Resolver_new::previsit( const ast::ThrowStmt * throwStmt ) {
1438 visit_children = false;
1439 if ( throwStmt->expr ) {
1440 const ast::StructDecl * exceptionDecl =
1441 symtab.lookupStruct( "__cfaabi_ehm__base_exception_t" );
1442 assert( exceptionDecl );
1443 ast::ptr< ast::Type > exceptType =
1444 new ast::PointerType{ new ast::StructInstType{ exceptionDecl } };
1445 throwStmt = ast::mutate_field(
1446 throwStmt, &ast::ThrowStmt::expr,
1447 findSingleExpression( throwStmt->expr, exceptType, symtab ) );
1448 }
1449 return throwStmt;
1450 }
1451
1452 const ast::CatchStmt * Resolver_new::previsit( const ast::CatchStmt * catchStmt ) {
1453 if ( catchStmt->cond ) {
1454 ast::ptr< ast::Type > boolType = new ast::BasicType{ ast::BasicType::Bool };
1455 catchStmt = ast::mutate_field(
1456 catchStmt, &ast::CatchStmt::cond,
1457 findSingleExpression( catchStmt->cond, boolType, symtab ) );
1458 }
1459 return catchStmt;
1460 }
1461
1462 const ast::WaitForStmt * Resolver_new::previsit( const ast::WaitForStmt * stmt ) {
1463 visit_children = false;
1464
1465 // Resolve all clauses first
1466 for ( unsigned i = 0; i < stmt->clauses.size(); ++i ) {
1467 const ast::WaitForStmt::Clause & clause = stmt->clauses[i];
1468
1469 ast::TypeEnvironment env;
1470 CandidateFinder funcFinder{ symtab, env };
1471
1472 // Find all candidates for a function in canonical form
1473 funcFinder.find( clause.target.func, ResolvMode::withAdjustment() );
1474
1475 if ( funcFinder.candidates.empty() ) {
1476 stringstream ss;
1477 ss << "Use of undeclared indentifier '";
1478 ss << clause.target.func.strict_as< ast::NameExpr >()->name;
1479 ss << "' in call to waitfor";
1480 SemanticError( stmt->location, ss.str() );
1481 }
1482
1483 if ( clause.target.args.empty() ) {
1484 SemanticError( stmt->location,
1485 "Waitfor clause must have at least one mutex parameter");
1486 }
1487
1488 // Find all alternatives for all arguments in canonical form
1489 std::vector< CandidateFinder > argFinders =
1490 funcFinder.findSubExprs( clause.target.args );
1491
1492 // List all combinations of arguments
1493 std::vector< CandidateList > possibilities;
1494 combos( argFinders.begin(), argFinders.end(), back_inserter( possibilities ) );
1495
1496 // For every possible function:
1497 // * try matching the arguments to the parameters, not the other way around because
1498 // more arguments than parameters
1499 CandidateList funcCandidates;
1500 std::vector< CandidateList > argsCandidates;
1501 SemanticErrorException errors;
1502 for ( CandidateRef & func : funcFinder.candidates ) {
1503 try {
1504 auto pointerType = dynamic_cast< const ast::PointerType * >(
1505 func->expr->result->stripReferences() );
1506 if ( ! pointerType ) {
1507 SemanticError( stmt->location, func->expr->result.get(),
1508 "candidate not viable: not a pointer type\n" );
1509 }
1510
1511 auto funcType = pointerType->base.as< ast::FunctionType >();
1512 if ( ! funcType ) {
1513 SemanticError( stmt->location, func->expr->result.get(),
1514 "candidate not viable: not a function type\n" );
1515 }
1516
1517 {
1518 auto param = funcType->params.begin();
1519 auto paramEnd = funcType->params.end();
1520
1521 if( ! nextMutex( param, paramEnd ) ) {
1522 SemanticError( stmt->location, funcType,
1523 "candidate function not viable: no mutex parameters\n");
1524 }
1525 }
1526
1527 CandidateRef func2{ new Candidate{ *func } };
1528 // strip reference from function
1529 func2->expr = referenceToRvalueConversion( func->expr, func2->cost );
1530
1531 // Each argument must be matched with a parameter of the current candidate
1532 for ( auto & argsList : possibilities ) {
1533 try {
1534 // Declare data structures needed for resolution
1535 ast::OpenVarSet open;
1536 ast::AssertionSet need, have;
1537 ast::TypeEnvironment resultEnv{ func->env };
1538 // Add all type variables as open so that those not used in the
1539 // parameter list are still considered open
1540 resultEnv.add( funcType->forall );
1541
1542 // load type variables from arguments into one shared space
1543 for ( auto & arg : argsList ) {
1544 resultEnv.simpleCombine( arg->env );
1545 }
1546
1547 // Make sure we don't widen any existing bindings
1548 resultEnv.forbidWidening();
1549
1550 // Find any unbound type variables
1551 resultEnv.extractOpenVars( open );
1552
1553 auto param = funcType->params.begin();
1554 auto paramEnd = funcType->params.end();
1555
1556 unsigned n_mutex_param = 0;
1557
1558 // For every argument of its set, check if it matches one of the
1559 // parameters. The order is important
1560 for ( auto & arg : argsList ) {
1561 // Ignore non-mutex arguments
1562 if ( ! nextMutex( param, paramEnd ) ) {
1563 // We ran out of parameters but still have arguments.
1564 // This function doesn't match
1565 SemanticError( stmt->location, funcType,
1566 toString("candidate function not viable: too many mutex "
1567 "arguments, expected ", n_mutex_param, "\n" ) );
1568 }
1569
1570 ++n_mutex_param;
1571
1572 // Check if the argument matches the parameter type in the current
1573 // scope
1574 ast::ptr< ast::Type > paramType = (*param)->get_type();
1575 if (
1576 ! unify(
1577 arg->expr->result, paramType, resultEnv, need, have, open,
1578 symtab )
1579 ) {
1580 // Type doesn't match
1581 stringstream ss;
1582 ss << "candidate function not viable: no known conversion "
1583 "from '";
1584 ast::print( ss, (*param)->get_type() );
1585 ss << "' to '";
1586 ast::print( ss, arg->expr->result );
1587 ss << "' with env '";
1588 ast::print( ss, resultEnv );
1589 ss << "'\n";
1590 SemanticError( stmt->location, funcType, ss.str() );
1591 }
1592
1593 ++param;
1594 }
1595
1596 // All arguments match!
1597
1598 // Check if parameters are missing
1599 if ( nextMutex( param, paramEnd ) ) {
1600 do {
1601 ++n_mutex_param;
1602 ++param;
1603 } while ( nextMutex( param, paramEnd ) );
1604
1605 // We ran out of arguments but still have parameters left; this
1606 // function doesn't match
1607 SemanticError( stmt->location, funcType,
1608 toString( "candidate function not viable: too few mutex "
1609 "arguments, expected ", n_mutex_param, "\n" ) );
1610 }
1611
1612 // All parameters match!
1613
1614 // Finish the expressions to tie in proper environments
1615 finishExpr( func2->expr, resultEnv );
1616 for ( CandidateRef & arg : argsList ) {
1617 finishExpr( arg->expr, resultEnv );
1618 }
1619
1620 // This is a match, store it and save it for later
1621 funcCandidates.emplace_back( std::move( func2 ) );
1622 argsCandidates.emplace_back( std::move( argsList ) );
1623
1624 } catch ( SemanticErrorException & e ) {
1625 errors.append( e );
1626 }
1627 }
1628 } catch ( SemanticErrorException & e ) {
1629 errors.append( e );
1630 }
1631 }
1632
1633 // Make sure correct number of arguments
1634 if( funcCandidates.empty() ) {
1635 SemanticErrorException top( stmt->location,
1636 "No alternatives for function in call to waitfor" );
1637 top.append( errors );
1638 throw top;
1639 }
1640
1641 if( argsCandidates.empty() ) {
1642 SemanticErrorException top( stmt->location,
1643 "No alternatives for arguments in call to waitfor" );
1644 top.append( errors );
1645 throw top;
1646 }
1647
1648 if( funcCandidates.size() > 1 ) {
1649 SemanticErrorException top( stmt->location,
1650 "Ambiguous function in call to waitfor" );
1651 top.append( errors );
1652 throw top;
1653 }
1654 if( argsCandidates.size() > 1 ) {
1655 SemanticErrorException top( stmt->location,
1656 "Ambiguous arguments in call to waitfor" );
1657 top.append( errors );
1658 throw top;
1659 }
1660 // TODO: need to use findDeletedExpr to ensure no deleted identifiers are used.
1661
1662 // build new clause
1663 ast::WaitForStmt::Clause clause2;
1664
1665 clause2.target.func = funcCandidates.front()->expr;
1666
1667 clause2.target.args.reserve( clause.target.args.size() );
1668 for ( auto arg : argsCandidates.front() ) {
1669 clause2.target.args.emplace_back( std::move( arg->expr ) );
1670 }
1671
1672 // Resolve the conditions as if it were an IfStmt, statements normally
1673 clause2.cond = findSingleExpression( clause.cond, symtab );
1674 clause2.stmt = clause.stmt->accept( *visitor );
1675
1676 // set results into stmt
1677 auto n = mutate( stmt );
1678 n->clauses[i] = std::move( clause2 );
1679 stmt = n;
1680 }
1681
1682 if ( stmt->timeout.stmt ) {
1683 // resolve the timeout as a size_t, the conditions like IfStmt, and stmts normally
1684 ast::WaitForStmt::Timeout timeout2;
1685
1686 ast::ptr< ast::Type > target =
1687 new ast::BasicType{ ast::BasicType::LongLongUnsignedInt };
1688 timeout2.time = findSingleExpression( stmt->timeout.time, target, symtab );
1689 timeout2.cond = findSingleExpression( stmt->timeout.cond, symtab );
1690 timeout2.stmt = stmt->timeout.stmt->accept( *visitor );
1691
1692 // set results into stmt
1693 auto n = mutate( stmt );
1694 n->timeout = std::move( timeout2 );
1695 stmt = n;
1696 }
1697
1698 if ( stmt->orElse.stmt ) {
1699 // resolve the condition like IfStmt, stmts normally
1700 ast::WaitForStmt::OrElse orElse2;
1701
1702 orElse2.cond = findSingleExpression( stmt->orElse.cond, symtab );
1703 orElse2.stmt = stmt->orElse.stmt->accept( *visitor );
1704
1705 // set results into stmt
1706 auto n = mutate( stmt );
1707 n->orElse = std::move( orElse2 );
1708 stmt = n;
1709 }
1710
1711 return stmt;
1712 }
1713
1714
1715
1716 const ast::SingleInit * Resolver_new::previsit( const ast::SingleInit * singleInit ) {
1717 visit_children = false;
1718 // resolve initialization using the possibilities as determined by the `currentObject`
1719 // cursor.
1720 ast::ptr< ast::Expr > untyped = new ast::UntypedInitExpr{
1721 singleInit->location, singleInit->value, currentObject.getOptions() };
1722 ast::ptr<ast::Expr> newExpr = findSingleExpression( untyped, symtab );
1723 const ast::InitExpr * initExpr = newExpr.strict_as< ast::InitExpr >();
1724
1725 // move cursor to the object that is actually initialized
1726 currentObject.setNext( initExpr->designation );
1727
1728 // discard InitExpr wrapper and retain relevant pieces.
1729 // `initExpr` may have inferred params in the case where the expression specialized a
1730 // function pointer, and newExpr may already have inferParams of its own, so a simple
1731 // swap is not sufficient
1732 ast::Expr::InferUnion inferred = initExpr->inferred;
1733 swap_and_save_env( newExpr, initExpr->expr );
1734 newExpr.get_and_mutate()->inferred.splice( std::move(inferred) );
1735
1736 // get the actual object's type (may not exactly match what comes back from the resolver
1737 // due to conversions)
1738 const ast::Type * initContext = currentObject.getCurrentType();
1739
1740 removeExtraneousCast( newExpr, symtab );
1741
1742 // check if actual object's type is char[]
1743 if ( auto at = dynamic_cast< const ast::ArrayType * >( initContext ) ) {
1744 if ( isCharType( at->base ) ) {
1745 // check if the resolved type is char*
1746 if ( auto pt = newExpr->result.as< ast::PointerType >() ) {
1747 if ( isCharType( pt->base ) ) {
1748 // strip cast if we're initializing a char[] with a char*
1749 // e.g. char x[] = "hello"
1750 if ( auto ce = newExpr.as< ast::CastExpr >() ) {
1751 swap_and_save_env( newExpr, ce->arg );
1752 }
1753 }
1754 }
1755 }
1756 }
1757
1758 // move cursor to next object in preparation for next initializer
1759 currentObject.increment();
1760
1761 // set initializer expression to resolved expression
1762 return ast::mutate_field( singleInit, &ast::SingleInit::value, std::move(newExpr) );
1763 }
1764
1765 const ast::ListInit * Resolver_new::previsit( const ast::ListInit * listInit ) {
1766 // move cursor into brace-enclosed initializer-list
1767 currentObject.enterListInit( listInit->location );
1768
1769 assert( listInit->designations.size() == listInit->initializers.size() );
1770 for ( unsigned i = 0; i < listInit->designations.size(); ++i ) {
1771 // iterate designations and initializers in pairs, moving the cursor to the current
1772 // designated object and resolving the initializer against that object
1773 listInit = ast::mutate_field_index(
1774 listInit, &ast::ListInit::designations, i,
1775 currentObject.findNext( listInit->designations[i] ) );
1776 listInit = ast::mutate_field_index(
1777 listInit, &ast::ListInit::initializers, i,
1778 listInit->initializers[i]->accept( *visitor ) );
1779 }
1780
1781 // move cursor out of brace-enclosed initializer-list
1782 currentObject.exitListInit();
1783
1784 visit_children = false;
1785 return listInit;
1786 }
1787
1788 const ast::ConstructorInit * Resolver_new::previsit( const ast::ConstructorInit * ctorInit ) {
1789 visitor->maybe_accept( ctorInit, &ast::ConstructorInit::ctor );
1790 visitor->maybe_accept( ctorInit, &ast::ConstructorInit::dtor );
1791
1792 // found a constructor - can get rid of C-style initializer
1793 // xxx - Rob suggests this field is dead code
1794 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::init, nullptr );
1795
1796 // intrinsic single-parameter constructors and destructors do nothing. Since this was
1797 // implicitly generated, there's no way for it to have side effects, so get rid of it to
1798 // clean up generated code
1799 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->ctor ) ) {
1800 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::ctor, nullptr );
1801 }
1802 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->dtor ) ) {
1803 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::dtor, nullptr );
1804 }
1805
1806 return ctorInit;
1807 }
1808
1809} // namespace ResolvExpr
1810
1811// Local Variables: //
1812// tab-width: 4 //
1813// mode: c++ //
1814// compile-command: "make install" //
1815// End: //
Note: See TracBrowser for help on using the repository browser.