source: src/ResolvExpr/Resolver.cc@ 8a62d04

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 8a62d04 was bd4f2e9, checked in by Aaron Moss <a3moss@…>, 8 years ago

Switch AltList to std::vector from std::list

  • Property mode set to 100644
File size: 26.5 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Resolver.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 12:17:01 2015
11// Last Modified By : Andrew Beach
12// Last Modified On : Tus Aug 8 16:06:00 2017
13// Update Count : 212
14//
15
16#include <stddef.h> // for NULL
17#include <cassert> // for strict_dynamic_cast, assert
18#include <memory> // for allocator, allocator_traits<...
19#include <tuple> // for get
20#include <vector>
21
22#include "Alternative.h" // for Alternative, AltList
23#include "AlternativeFinder.h" // for AlternativeFinder, resolveIn...
24#include "Common/PassVisitor.h" // for PassVisitor
25#include "Common/SemanticError.h" // for SemanticError
26#include "Common/utility.h" // for ValueGuard, group_iterate
27#include "CurrentObject.h" // for CurrentObject
28#include "InitTweak/InitTweak.h" // for isIntrinsicSingleArgCallStmt
29#include "RenameVars.h" // for RenameVars, global_renamer
30#include "ResolvExpr/TypeEnvironment.h" // for TypeEnvironment
31#include "ResolveTypeof.h" // for resolveTypeof
32#include "Resolver.h"
33#include "SymTab/Autogen.h" // for SizeType
34#include "SymTab/Indexer.h" // for Indexer
35#include "SynTree/Declaration.h" // for ObjectDecl, TypeDecl, Declar...
36#include "SynTree/Expression.h" // for Expression, CastExpr, InitExpr
37#include "SynTree/Initializer.h" // for ConstructorInit, SingleInit
38#include "SynTree/Statement.h" // for ForStmt, Statement, BranchStmt
39#include "SynTree/Type.h" // for Type, BasicType, PointerType
40#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
41#include "SynTree/Visitor.h" // for acceptAll, maybeAccept
42#include "typeops.h" // for extractResultType
43#include "Unify.h" // for unify
44
45using namespace std;
46
47namespace ResolvExpr {
48 struct Resolver final : public WithIndexer, public WithGuards, public WithVisitorRef<Resolver>, public WithShortCircuiting {
49 Resolver() {}
50 Resolver( const SymTab::Indexer & other ) {
51 indexer = other;
52 }
53
54 void previsit( FunctionDecl *functionDecl );
55 void postvisit( FunctionDecl *functionDecl );
56 void previsit( ObjectDecl *objectDecll );
57 void previsit( TypeDecl *typeDecl );
58 void previsit( EnumDecl * enumDecl );
59
60 void previsit( ArrayType * at );
61 void previsit( PointerType * at );
62
63 void previsit( ExprStmt *exprStmt );
64 void previsit( AsmExpr *asmExpr );
65 void previsit( AsmStmt *asmStmt );
66 void previsit( IfStmt *ifStmt );
67 void previsit( WhileStmt *whileStmt );
68 void previsit( ForStmt *forStmt );
69 void previsit( SwitchStmt *switchStmt );
70 void previsit( CaseStmt *caseStmt );
71 void previsit( BranchStmt *branchStmt );
72 void previsit( ReturnStmt *returnStmt );
73 void previsit( ThrowStmt *throwStmt );
74 void previsit( CatchStmt *catchStmt );
75 void previsit( WaitForStmt * stmt );
76
77 void previsit( SingleInit *singleInit );
78 void previsit( ListInit *listInit );
79 void previsit( ConstructorInit *ctorInit );
80 private:
81 typedef std::list< Initializer * >::iterator InitIterator;
82
83 template< typename PtrType >
84 void handlePtrType( PtrType * type );
85
86 void resolveAggrInit( ReferenceToType *, InitIterator &, InitIterator & );
87 void resolveSingleAggrInit( Declaration *, InitIterator &, InitIterator &, TypeSubstitution sub );
88 void fallbackInit( ConstructorInit * ctorInit );
89
90 Type * functionReturn = nullptr;
91 CurrentObject currentObject = nullptr;
92 bool inEnumDecl = false;
93 };
94
95 void resolve( std::list< Declaration * > translationUnit ) {
96 PassVisitor<Resolver> resolver;
97 acceptAll( translationUnit, resolver );
98 }
99
100 void resolveDecl( Declaration * decl, const SymTab::Indexer &indexer ) {
101 PassVisitor<Resolver> resolver( indexer );
102 maybeAccept( decl, resolver );
103 }
104
105 // used in resolveTypeof
106 Expression *resolveInVoidContext( Expression *expr, const SymTab::Indexer &indexer ) {
107 TypeEnvironment env;
108 return resolveInVoidContext( expr, indexer, env );
109 }
110
111 namespace {
112 void finishExpr( Expression *expr, const TypeEnvironment &env, TypeSubstitution * oldenv = nullptr ) {
113 expr->env = oldenv ? oldenv->clone() : new TypeSubstitution;
114 env.makeSubstitution( *expr->get_env() );
115 }
116
117 void removeExtraneousCast( Expression *& expr, const SymTab::Indexer & indexer ) {
118 if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( expr ) ) {
119 if ( ResolvExpr::typesCompatible( castExpr->arg->result, castExpr->result, indexer ) ) {
120 // cast is to the same type as its argument, so it's unnecessary -- remove it
121 expr = castExpr->arg;
122 castExpr->arg = nullptr;
123 std::swap( expr->env, castExpr->env );
124 delete castExpr;
125 }
126 }
127 }
128 } // namespace
129
130 void findVoidExpression( Expression *& untyped, const SymTab::Indexer &indexer ) {
131 global_renamer.reset();
132 TypeEnvironment env;
133 Expression *newExpr = resolveInVoidContext( untyped, indexer, env );
134 finishExpr( newExpr, env, untyped->env );
135 delete untyped;
136 untyped = newExpr;
137 }
138
139 void findSingleExpression( Expression *&untyped, const SymTab::Indexer &indexer ) {
140 if ( ! untyped ) return;
141 TypeEnvironment env;
142 AlternativeFinder finder( indexer, env );
143 finder.find( untyped );
144 #if 0
145 if ( finder.get_alternatives().size() != 1 ) {
146 std::cerr << "untyped expr is ";
147 untyped->print( std::cerr );
148 std::cerr << std::endl << "alternatives are:";
149 for ( const Alternative & alt : finder.get_alternatives() ) {
150 alt.print( std::cerr );
151 } // for
152 } // if
153 #endif
154 assertf( finder.get_alternatives().size() == 1, "findSingleExpression: must have exactly one alternative at the end." );
155 Alternative &choice = finder.get_alternatives().front();
156 Expression *newExpr = choice.expr->clone();
157 finishExpr( newExpr, choice.env, untyped->env );
158 delete untyped;
159 untyped = newExpr;
160 }
161
162 void findSingleExpression( Expression *& untyped, Type * type, const SymTab::Indexer & indexer ) {
163 assert( untyped && type );
164 untyped = new CastExpr( untyped, type );
165 findSingleExpression( untyped, indexer );
166 removeExtraneousCast( untyped, indexer );
167 }
168
169 namespace {
170 bool isIntegralType( Type *type ) {
171 if ( dynamic_cast< EnumInstType * >( type ) ) {
172 return true;
173 } else if ( BasicType *bt = dynamic_cast< BasicType * >( type ) ) {
174 return bt->isInteger();
175 } else if ( dynamic_cast< ZeroType* >( type ) != nullptr || dynamic_cast< OneType* >( type ) != nullptr ) {
176 return true;
177 } else {
178 return false;
179 } // if
180 }
181
182 void findIntegralExpression( Expression *& untyped, const SymTab::Indexer &indexer ) {
183 TypeEnvironment env;
184 AlternativeFinder finder( indexer, env );
185 finder.find( untyped );
186#if 0
187 if ( finder.get_alternatives().size() != 1 ) {
188 std::cout << "untyped expr is ";
189 untyped->print( std::cout );
190 std::cout << std::endl << "alternatives are:";
191 for ( std::list< Alternative >::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
192 i->print( std::cout );
193 } // for
194 } // if
195#endif
196 Expression *newExpr = 0;
197 const TypeEnvironment *newEnv = 0;
198 for ( AltList::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
199 if ( i->expr->get_result()->size() == 1 && isIntegralType( i->expr->get_result() ) ) {
200 if ( newExpr ) {
201 throw SemanticError( "Too many interpretations for case control expression", untyped );
202 } else {
203 newExpr = i->expr->clone();
204 newEnv = &i->env;
205 } // if
206 } // if
207 } // for
208 if ( ! newExpr ) {
209 throw SemanticError( "No interpretations for case control expression", untyped );
210 } // if
211 finishExpr( newExpr, *newEnv, untyped->env );
212 delete untyped;
213 untyped = newExpr;
214 }
215
216 }
217
218 void Resolver::previsit( ObjectDecl *objectDecl ) {
219 Type *new_type = resolveTypeof( objectDecl->get_type(), indexer );
220 objectDecl->set_type( new_type );
221 // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that class-variable
222 // initContext is changed multiple time because the LHS is analysed twice. The second analysis changes
223 // initContext because of a function type can contain object declarations in the return and parameter types. So
224 // each value of initContext is retained, so the type on the first analysis is preserved and used for selecting
225 // the RHS.
226 GuardValue( currentObject );
227 currentObject = CurrentObject( objectDecl->get_type() );
228 if ( inEnumDecl && dynamic_cast< EnumInstType * >( objectDecl->get_type() ) ) {
229 // enumerator initializers should not use the enum type to initialize, since
230 // the enum type is still incomplete at this point. Use signed int instead.
231 currentObject = CurrentObject( new BasicType( Type::Qualifiers(), BasicType::SignedInt ) );
232 }
233 }
234
235 template< typename PtrType >
236 void Resolver::handlePtrType( PtrType * type ) {
237 if ( type->get_dimension() ) {
238 findSingleExpression( type->dimension, SymTab::SizeType->clone(), indexer );
239 }
240 }
241
242 void Resolver::previsit( ArrayType * at ) {
243 handlePtrType( at );
244 }
245
246 void Resolver::previsit( PointerType * pt ) {
247 handlePtrType( pt );
248 }
249
250 void Resolver::previsit( TypeDecl *typeDecl ) {
251 if ( typeDecl->get_base() ) {
252 Type *new_type = resolveTypeof( typeDecl->get_base(), indexer );
253 typeDecl->set_base( new_type );
254 } // if
255 }
256
257 void Resolver::previsit( FunctionDecl *functionDecl ) {
258#if 0
259 std::cerr << "resolver visiting functiondecl ";
260 functionDecl->print( std::cerr );
261 std::cerr << std::endl;
262#endif
263 Type *new_type = resolveTypeof( functionDecl->get_type(), indexer );
264 functionDecl->set_type( new_type );
265 GuardValue( functionReturn );
266 functionReturn = ResolvExpr::extractResultType( functionDecl->get_functionType() );
267 }
268
269 void Resolver::postvisit( FunctionDecl *functionDecl ) {
270 // default value expressions have an environment which shouldn't be there and trips up later passes.
271 // xxx - it might be necessary to somehow keep the information from this environment, but I can't currently
272 // see how it's useful.
273 for ( Declaration * d : functionDecl->get_functionType()->get_parameters() ) {
274 if ( ObjectDecl * obj = dynamic_cast< ObjectDecl * >( d ) ) {
275 if ( SingleInit * init = dynamic_cast< SingleInit * >( obj->get_init() ) ) {
276 delete init->get_value()->get_env();
277 init->get_value()->set_env( nullptr );
278 }
279 }
280 }
281 }
282
283 void Resolver::previsit( EnumDecl * ) {
284 // in case we decide to allow nested enums
285 GuardValue( inEnumDecl );
286 inEnumDecl = true;
287 }
288
289 void Resolver::previsit( ExprStmt *exprStmt ) {
290 visit_children = false;
291 assertf( exprStmt->expr, "ExprStmt has null Expression in resolver" );
292 findVoidExpression( exprStmt->expr, indexer );
293 }
294
295 void Resolver::previsit( AsmExpr *asmExpr ) {
296 visit_children = false;
297 findVoidExpression( asmExpr->operand, indexer );
298 if ( asmExpr->get_inout() ) {
299 findVoidExpression( asmExpr->inout, indexer );
300 } // if
301 }
302
303 void Resolver::previsit( AsmStmt *asmStmt ) {
304 visit_children = false;
305 acceptAll( asmStmt->get_input(), *visitor );
306 acceptAll( asmStmt->get_output(), *visitor );
307 }
308
309 void Resolver::previsit( IfStmt *ifStmt ) {
310 findSingleExpression( ifStmt->condition, indexer );
311 }
312
313 void Resolver::previsit( WhileStmt *whileStmt ) {
314 findSingleExpression( whileStmt->condition, indexer );
315 }
316
317 void Resolver::previsit( ForStmt *forStmt ) {
318 if ( forStmt->condition ) {
319 findSingleExpression( forStmt->condition, indexer );
320 } // if
321
322 if ( forStmt->increment ) {
323 findVoidExpression( forStmt->increment, indexer );
324 } // if
325 }
326
327 void Resolver::previsit( SwitchStmt *switchStmt ) {
328 GuardValue( currentObject );
329 findIntegralExpression( switchStmt->condition, indexer );
330
331 currentObject = CurrentObject( switchStmt->condition->result );
332 }
333
334 void Resolver::previsit( CaseStmt *caseStmt ) {
335 if ( caseStmt->get_condition() ) {
336 std::list< InitAlternative > initAlts = currentObject.getOptions();
337 assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral expression." );
338 // must remove cast from case statement because RangeExpr cannot be cast.
339 Expression * newExpr = new CastExpr( caseStmt->condition, initAlts.front().type->clone() );
340 findSingleExpression( newExpr, indexer );
341 CastExpr * castExpr = strict_dynamic_cast< CastExpr * >( newExpr );
342 caseStmt->condition = castExpr->arg;
343 castExpr->arg = nullptr;
344 delete castExpr;
345 }
346 }
347
348 void Resolver::previsit( BranchStmt *branchStmt ) {
349 visit_children = false;
350 // must resolve the argument for a computed goto
351 if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement
352 if ( branchStmt->computedTarget ) {
353 // computed goto argument is void *
354 findSingleExpression( branchStmt->computedTarget, new PointerType( Type::Qualifiers(), new VoidType( Type::Qualifiers() ) ), indexer );
355 } // if
356 } // if
357 }
358
359 void Resolver::previsit( ReturnStmt *returnStmt ) {
360 visit_children = false;
361 if ( returnStmt->expr ) {
362 findSingleExpression( returnStmt->expr, functionReturn->clone(), indexer );
363 } // if
364 }
365
366 void Resolver::previsit( ThrowStmt *throwStmt ) {
367 visit_children = false;
368 // TODO: Replace *exception type with &exception type.
369 if ( throwStmt->get_expr() ) {
370 StructDecl * exception_decl =
371 indexer.lookupStruct( "__cfaehm__base_exception_t" );
372 assert( exception_decl );
373 Type * exceptType = new PointerType( noQualifiers, new StructInstType( noQualifiers, exception_decl ) );
374 findSingleExpression( throwStmt->expr, exceptType, indexer );
375 }
376 }
377
378 void Resolver::previsit( CatchStmt *catchStmt ) {
379 if ( catchStmt->cond ) {
380 findSingleExpression( catchStmt->cond, new BasicType( noQualifiers, BasicType::Bool ), indexer );
381 }
382 }
383
384 template< typename iterator_t >
385 inline bool advance_to_mutex( iterator_t & it, const iterator_t & end ) {
386 while( it != end && !(*it)->get_type()->get_mutex() ) {
387 it++;
388 }
389
390 return it != end;
391 }
392
393 void Resolver::previsit( WaitForStmt * stmt ) {
394 visit_children = false;
395
396 // Resolve all clauses first
397 for( auto& clause : stmt->clauses ) {
398
399 TypeEnvironment env;
400 AlternativeFinder funcFinder( indexer, env );
401
402 // Find all alternatives for a function in canonical form
403 funcFinder.findWithAdjustment( clause.target.function );
404
405 if ( funcFinder.get_alternatives().empty() ) {
406 stringstream ss;
407 ss << "Use of undeclared indentifier '";
408 ss << strict_dynamic_cast<NameExpr*>( clause.target.function )->name;
409 ss << "' in call to waitfor";
410 throw SemanticError( ss.str() );
411 }
412
413 // Find all alternatives for all arguments in canonical form
414 std::vector< AlternativeFinder > argAlternatives;
415 funcFinder.findSubExprs( clause.target.arguments.begin(), clause.target.arguments.end(), back_inserter( argAlternatives ) );
416
417 // List all combinations of arguments
418 std::vector< AltList > possibilities;
419 combos( argAlternatives.begin(), argAlternatives.end(), back_inserter( possibilities ) );
420
421 AltList func_candidates;
422 std::vector< AltList > args_candidates;
423
424 // For every possible function :
425 // try matching the arguments to the parameters
426 // not the other way around because we have more arguments than parameters
427 SemanticError errors;
428 for ( Alternative & func : funcFinder.get_alternatives() ) {
429 try {
430 PointerType * pointer = dynamic_cast< PointerType* >( func.expr->get_result()->stripReferences() );
431 if( !pointer ) {
432 throw SemanticError( "candidate not viable: not a pointer type\n", func.expr->get_result() );
433 }
434
435 FunctionType * function = dynamic_cast< FunctionType* >( pointer->get_base() );
436 if( !function ) {
437 throw SemanticError( "candidate not viable: not a function type\n", pointer->get_base() );
438 }
439
440
441 {
442 auto param = function->parameters.begin();
443 auto param_end = function->parameters.end();
444
445 if( !advance_to_mutex( param, param_end ) ) {
446 throw SemanticError("candidate function not viable: no mutex parameters\n", function);
447 }
448 }
449
450 Alternative newFunc( func );
451 // Strip reference from function
452 referenceToRvalueConversion( newFunc.expr );
453
454 // For all the set of arguments we have try to match it with the parameter of the current function alternative
455 for ( auto & argsList : possibilities ) {
456
457 try {
458 // Declare data structures need for resolution
459 OpenVarSet openVars;
460 AssertionSet resultNeed, resultHave;
461 TypeEnvironment resultEnv;
462
463 // Load type variables from arguemnts into one shared space
464 simpleCombineEnvironments( argsList.begin(), argsList.end(), resultEnv );
465
466 // Make sure we don't widen any existing bindings
467 for ( auto & i : resultEnv ) {
468 i.allowWidening = false;
469 }
470
471 // Find any unbound type variables
472 resultEnv.extractOpenVars( openVars );
473
474 auto param = function->parameters.begin();
475 auto param_end = function->parameters.end();
476
477 // For every arguments of its set, check if it matches one of the parameter
478 // The order is important
479 for( auto & arg : argsList ) {
480
481 // Ignore non-mutex arguments
482 if( !advance_to_mutex( param, param_end ) ) {
483 // We ran out of parameters but still have arguments
484 // this function doesn't match
485 throw SemanticError("candidate function not viable: too many mutex arguments\n", function);
486 }
487
488 // Check if the argument matches the parameter type in the current scope
489 if( ! unify( (*param)->get_type(), arg.expr->get_result(), resultEnv, resultNeed, resultHave, openVars, this->indexer ) ) {
490 // Type doesn't match
491 stringstream ss;
492 ss << "candidate function not viable: no known convertion from '";
493 arg.expr->get_result()->print( ss );
494 ss << "' to '";
495 (*param)->get_type()->print( ss );
496 ss << "'\n";
497 throw SemanticError(ss.str(), function);
498 }
499
500 param++;
501 }
502
503 // All arguments match !
504
505 // Check if parameters are missing
506 if( advance_to_mutex( param, param_end ) ) {
507 // We ran out of arguments but still have parameters left
508 // this function doesn't match
509 throw SemanticError("candidate function not viable: too few mutex arguments\n", function);
510 }
511
512 // All parameters match !
513
514 // Finish the expressions to tie in the proper environments
515 finishExpr( newFunc.expr, resultEnv );
516 for( Alternative & alt : argsList ) {
517 finishExpr( alt.expr, resultEnv );
518 }
519
520 // This is a match store it and save it for later
521 func_candidates.push_back( newFunc );
522 args_candidates.push_back( argsList );
523
524 }
525 catch( SemanticError &e ) {
526 errors.append( e );
527 }
528 }
529 }
530 catch( SemanticError &e ) {
531 errors.append( e );
532 }
533 }
534
535 // Make sure we got the right number of arguments
536 if( func_candidates.empty() ) { SemanticError top( "No alternatives for function in call to waitfor" ); top.append( errors ); throw top; }
537 if( args_candidates.empty() ) { SemanticError top( "No alternatives for arguments in call to waitfor" ); top.append( errors ); throw top; }
538 if( func_candidates.size() > 1 ) { SemanticError top( "Ambiguous function in call to waitfor" ); top.append( errors ); throw top; }
539 if( args_candidates.size() > 1 ) { SemanticError top( "Ambiguous arguments in call to waitfor" ); top.append( errors ); throw top; }
540
541
542 // Swap the results from the alternative with the unresolved values.
543 // Alternatives will handle deletion on destruction
544 std::swap( clause.target.function, func_candidates.front().expr );
545 for( auto arg_pair : group_iterate( clause.target.arguments, args_candidates.front() ) ) {
546 std::swap ( std::get<0>( arg_pair), std::get<1>( arg_pair).expr );
547 }
548
549 // Resolve the conditions as if it were an IfStmt
550 // Resolve the statments normally
551 findSingleExpression( clause.condition, this->indexer );
552 clause.statement->accept( *visitor );
553 }
554
555
556 if( stmt->timeout.statement ) {
557 // Resolve the timeout as an size_t for now
558 // Resolve the conditions as if it were an IfStmt
559 // Resolve the statments normally
560 findSingleExpression( stmt->timeout.time, new BasicType( noQualifiers, BasicType::LongLongUnsignedInt ), this->indexer );
561 findSingleExpression( stmt->timeout.condition, this->indexer );
562 stmt->timeout.statement->accept( *visitor );
563 }
564
565 if( stmt->orelse.statement ) {
566 // Resolve the conditions as if it were an IfStmt
567 // Resolve the statments normally
568 findSingleExpression( stmt->orelse.condition, this->indexer );
569 stmt->orelse.statement->accept( *visitor );
570 }
571 }
572
573 template< typename T >
574 bool isCharType( T t ) {
575 if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) {
576 return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar ||
577 bt->get_kind() == BasicType::UnsignedChar;
578 }
579 return false;
580 }
581
582 void Resolver::previsit( SingleInit *singleInit ) {
583 visit_children = false;
584 // resolve initialization using the possibilities as determined by the currentObject cursor
585 Expression * newExpr = new UntypedInitExpr( singleInit->value, currentObject.getOptions() );
586 findSingleExpression( newExpr, indexer );
587 InitExpr * initExpr = strict_dynamic_cast< InitExpr * >( newExpr );
588
589 // move cursor to the object that is actually initialized
590 currentObject.setNext( initExpr->get_designation() );
591
592 // discard InitExpr wrapper and retain relevant pieces
593 newExpr = initExpr->expr;
594 initExpr->expr = nullptr;
595 std::swap( initExpr->env, newExpr->env );
596 std::swap( initExpr->inferParams, newExpr->inferParams ) ;
597 delete initExpr;
598
599 // get the actual object's type (may not exactly match what comes back from the resolver due to conversions)
600 Type * initContext = currentObject.getCurrentType();
601
602 removeExtraneousCast( newExpr, indexer );
603
604 // check if actual object's type is char[]
605 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
606 if ( isCharType( at->get_base() ) ) {
607 // check if the resolved type is char *
608 if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_result() ) ) {
609 if ( isCharType( pt->get_base() ) ) {
610 if ( CastExpr *ce = dynamic_cast< CastExpr * >( newExpr ) ) {
611 // strip cast if we're initializing a char[] with a char *, e.g. char x[] = "hello";
612 newExpr = ce->get_arg();
613 ce->set_arg( nullptr );
614 std::swap( ce->env, newExpr->env );
615 delete ce;
616 }
617 }
618 }
619 }
620 }
621
622 // set initializer expr to resolved express
623 singleInit->value = newExpr;
624
625 // move cursor to next object in preparation for next initializer
626 currentObject.increment();
627 }
628
629 void Resolver::previsit( ListInit * listInit ) {
630 visit_children = false;
631 // move cursor into brace-enclosed initializer-list
632 currentObject.enterListInit();
633 // xxx - fix this so that the list isn't copied, iterator should be used to change current element
634 std::list<Designation *> newDesignations;
635 for ( auto p : group_iterate(listInit->get_designations(), listInit->get_initializers()) ) {
636 // iterate designations and initializers in pairs, moving the cursor to the current designated object and resolving
637 // the initializer against that object.
638 Designation * des = std::get<0>(p);
639 Initializer * init = std::get<1>(p);
640 newDesignations.push_back( currentObject.findNext( des ) );
641 init->accept( *visitor );
642 }
643 // set the set of 'resolved' designations and leave the brace-enclosed initializer-list
644 listInit->get_designations() = newDesignations; // xxx - memory management
645 currentObject.exitListInit();
646
647 // xxx - this part has not be folded into CurrentObject yet
648 // } else if ( TypeInstType * tt = dynamic_cast< TypeInstType * >( initContext ) ) {
649 // Type * base = tt->get_baseType()->get_base();
650 // if ( base ) {
651 // // know the implementation type, so try using that as the initContext
652 // ObjectDecl tmpObj( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, base->clone(), nullptr );
653 // currentObject = &tmpObj;
654 // visit( listInit );
655 // } else {
656 // // missing implementation type -- might be an unknown type variable, so try proceeding with the current init context
657 // Parent::visit( listInit );
658 // }
659 // } else {
660 }
661
662 // ConstructorInit - fall back on C-style initializer
663 void Resolver::fallbackInit( ConstructorInit * ctorInit ) {
664 // could not find valid constructor, or found an intrinsic constructor
665 // fall back on C-style initializer
666 delete ctorInit->get_ctor();
667 ctorInit->set_ctor( NULL );
668 delete ctorInit->get_dtor();
669 ctorInit->set_dtor( NULL );
670 maybeAccept( ctorInit->get_init(), *visitor );
671 }
672
673 // needs to be callable from outside the resolver, so this is a standalone function
674 void resolveCtorInit( ConstructorInit * ctorInit, const SymTab::Indexer & indexer ) {
675 assert( ctorInit );
676 PassVisitor<Resolver> resolver( indexer );
677 ctorInit->accept( resolver );
678 }
679
680 void resolveStmtExpr( StmtExpr * stmtExpr, const SymTab::Indexer & indexer ) {
681 assert( stmtExpr );
682 PassVisitor<Resolver> resolver( indexer );
683 stmtExpr->accept( resolver );
684 }
685
686 void Resolver::previsit( ConstructorInit *ctorInit ) {
687 visit_children = false;
688 // xxx - fallback init has been removed => remove fallbackInit function and remove complexity from FixInit and remove C-init from ConstructorInit
689 maybeAccept( ctorInit->get_ctor(), *visitor );
690 maybeAccept( ctorInit->get_dtor(), *visitor );
691
692 // found a constructor - can get rid of C-style initializer
693 delete ctorInit->get_init();
694 ctorInit->set_init( NULL );
695
696 // intrinsic single parameter constructors and destructors do nothing. Since this was
697 // implicitly generated, there's no way for it to have side effects, so get rid of it
698 // to clean up generated code.
699 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->get_ctor() ) ) {
700 delete ctorInit->get_ctor();
701 ctorInit->set_ctor( NULL );
702 }
703
704 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->get_dtor() ) ) {
705 delete ctorInit->get_dtor();
706 ctorInit->set_dtor( NULL );
707 }
708
709 // xxx - todo -- what about arrays?
710 // if ( dtor == NULL && InitTweak::isIntrinsicCallStmt( ctorInit->get_ctor() ) ) {
711 // // can reduce the constructor down to a SingleInit using the
712 // // second argument from the ctor call, since
713 // delete ctorInit->get_ctor();
714 // ctorInit->set_ctor( NULL );
715
716 // Expression * arg =
717 // ctorInit->set_init( new SingleInit( arg ) );
718 // }
719 }
720} // namespace ResolvExpr
721
722// Local Variables: //
723// tab-width: 4 //
724// mode: c++ //
725// compile-command: "make install" //
726// End: //
Note: See TracBrowser for help on using the repository browser.