source: src/ResolvExpr/Resolver.cc@ 74e5a3aa

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 74e5a3aa was 5f5083e, checked in by Thierry Delisle <tdelisle@…>, 9 years ago

Fixed a few warnings in tuples

  • Property mode set to 100644
File size: 20.2 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Resolver.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 12:17:01 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Tue Jul 12 17:45:42 2016
13// Update Count : 204
14//
15
16#include "Resolver.h"
17#include "AlternativeFinder.h"
18#include "Alternative.h"
19#include "RenameVars.h"
20#include "ResolveTypeof.h"
21#include "typeops.h"
22#include "SynTree/Statement.h"
23#include "SynTree/Type.h"
24#include "SynTree/Expression.h"
25#include "SynTree/Initializer.h"
26#include "SymTab/Indexer.h"
27#include "SymTab/Autogen.h"
28#include "Common/utility.h"
29#include "InitTweak/InitTweak.h"
30
31#include <iostream>
32using namespace std;
33
34namespace ResolvExpr {
35 class Resolver final : public SymTab::Indexer {
36 public:
37 Resolver() : SymTab::Indexer( false ) {}
38
39 using SymTab::Indexer::visit;
40 virtual void visit( FunctionDecl *functionDecl ) override;
41 virtual void visit( ObjectDecl *functionDecl ) override;
42 virtual void visit( TypeDecl *typeDecl ) override;
43 virtual void visit( EnumDecl * enumDecl ) override;
44
45 virtual void visit( ArrayType * at ) override;
46 virtual void visit( PointerType * at ) override;
47
48 virtual void visit( ExprStmt *exprStmt ) override;
49 virtual void visit( AsmExpr *asmExpr ) override;
50 virtual void visit( AsmStmt *asmStmt ) override;
51 virtual void visit( IfStmt *ifStmt ) override;
52 virtual void visit( WhileStmt *whileStmt ) override;
53 virtual void visit( ForStmt *forStmt ) override;
54 virtual void visit( SwitchStmt *switchStmt ) override;
55 virtual void visit( CaseStmt *caseStmt ) override;
56 virtual void visit( BranchStmt *branchStmt ) override;
57 virtual void visit( ReturnStmt *returnStmt ) override;
58
59 virtual void visit( SingleInit *singleInit ) override;
60 virtual void visit( ListInit *listInit ) override;
61 virtual void visit( ConstructorInit *ctorInit ) override;
62 private:
63 typedef std::list< Initializer * >::iterator InitIterator;
64
65 template< typename PtrType >
66 void handlePtrType( PtrType * type );
67
68 void resolveAggrInit( AggregateDecl *, InitIterator &, InitIterator & );
69 void resolveSingleAggrInit( Declaration *, InitIterator &, InitIterator & );
70 void fallbackInit( ConstructorInit * ctorInit );
71
72 Type * functionReturn = nullptr;
73 Type *initContext = nullptr;
74 bool inEnumDecl = false;
75 };
76
77 void resolve( std::list< Declaration * > translationUnit ) {
78 Resolver resolver;
79 acceptAll( translationUnit, resolver );
80#if 0
81 resolver.print( cerr );
82 for ( std::list< Declaration * >::iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) {
83 (*i)->print( std::cerr );
84 (*i)->accept( resolver );
85 } // for
86#endif
87 }
88
89 Expression *resolveInVoidContext( Expression *expr, const SymTab::Indexer &indexer ) {
90 TypeEnvironment env;
91 return resolveInVoidContext( expr, indexer, env );
92 }
93
94
95 namespace {
96 void finishExpr( Expression *expr, const TypeEnvironment &env ) {
97 expr->set_env( new TypeSubstitution );
98 env.makeSubstitution( *expr->get_env() );
99 }
100 } // namespace
101
102 Expression *findVoidExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
103 global_renamer.reset();
104 TypeEnvironment env;
105 Expression *newExpr = resolveInVoidContext( untyped, indexer, env );
106 finishExpr( newExpr, env );
107 return newExpr;
108 }
109
110 namespace {
111 Expression *findSingleExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
112 TypeEnvironment env;
113 AlternativeFinder finder( indexer, env );
114 finder.find( untyped );
115#if 0
116 if ( finder.get_alternatives().size() != 1 ) {
117 std::cout << "untyped expr is ";
118 untyped->print( std::cout );
119 std::cout << std::endl << "alternatives are:";
120 for ( std::list< Alternative >::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
121 i->print( std::cout );
122 } // for
123 } // if
124#endif
125 assert( finder.get_alternatives().size() == 1 );
126 Alternative &choice = finder.get_alternatives().front();
127 Expression *newExpr = choice.expr->clone();
128 finishExpr( newExpr, choice.env );
129 return newExpr;
130 }
131
132 bool isIntegralType( Type *type ) {
133 if ( dynamic_cast< EnumInstType * >( type ) ) {
134 return true;
135 } else if ( BasicType *bt = dynamic_cast< BasicType * >( type ) ) {
136 return bt->isInteger();
137 } else if ( dynamic_cast< ZeroType* >( type ) != nullptr || dynamic_cast< OneType* >( type ) != nullptr ) {
138 return true;
139 } else {
140 return false;
141 } // if
142 }
143
144 Expression *findIntegralExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
145 TypeEnvironment env;
146 AlternativeFinder finder( indexer, env );
147 finder.find( untyped );
148#if 0
149 if ( finder.get_alternatives().size() != 1 ) {
150 std::cout << "untyped expr is ";
151 untyped->print( std::cout );
152 std::cout << std::endl << "alternatives are:";
153 for ( std::list< Alternative >::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
154 i->print( std::cout );
155 } // for
156 } // if
157#endif
158 Expression *newExpr = 0;
159 const TypeEnvironment *newEnv = 0;
160 for ( AltList::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
161 if ( i->expr->get_result()->size() == 1 && isIntegralType( i->expr->get_result() ) ) {
162 if ( newExpr ) {
163 throw SemanticError( "Too many interpretations for case control expression", untyped );
164 } else {
165 newExpr = i->expr->clone();
166 newEnv = &i->env;
167 } // if
168 } // if
169 } // for
170 if ( ! newExpr ) {
171 throw SemanticError( "No interpretations for case control expression", untyped );
172 } // if
173 finishExpr( newExpr, *newEnv );
174 return newExpr;
175 }
176
177 }
178
179 void Resolver::visit( ObjectDecl *objectDecl ) {
180 Type *new_type = resolveTypeof( objectDecl->get_type(), *this );
181 objectDecl->set_type( new_type );
182 // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that class-variable
183 // initContext is changed multiple time because the LHS is analysed twice. The second analysis changes
184 // initContext because of a function type can contain object declarations in the return and parameter types. So
185 // each value of initContext is retained, so the type on the first analysis is preserved and used for selecting
186 // the RHS.
187 Type *temp = initContext;
188 initContext = new_type;
189 if ( inEnumDecl && dynamic_cast< EnumInstType * >( initContext ) ) {
190 // enumerator initializers should not use the enum type to initialize, since
191 // the enum type is still incomplete at this point. Use signed int instead.
192 initContext = new BasicType( Type::Qualifiers(), BasicType::SignedInt );
193 }
194 SymTab::Indexer::visit( objectDecl );
195 if ( inEnumDecl && dynamic_cast< EnumInstType * >( initContext ) ) {
196 // delete newly created signed int type
197 delete initContext;
198 }
199 initContext = temp;
200 }
201
202 template< typename PtrType >
203 void Resolver::handlePtrType( PtrType * type ) {
204 if ( type->get_dimension() ) {
205 CastExpr *castExpr = new CastExpr( type->get_dimension(), SymTab::SizeType->clone() );
206 Expression *newExpr = findSingleExpression( castExpr, *this );
207 delete type->get_dimension();
208 type->set_dimension( newExpr );
209 }
210 }
211
212 void Resolver::visit( ArrayType * at ) {
213 handlePtrType( at );
214 Visitor::visit( at );
215 }
216
217 void Resolver::visit( PointerType * pt ) {
218 handlePtrType( pt );
219 Visitor::visit( pt );
220 }
221
222 void Resolver::visit( TypeDecl *typeDecl ) {
223 if ( typeDecl->get_base() ) {
224 Type *new_type = resolveTypeof( typeDecl->get_base(), *this );
225 typeDecl->set_base( new_type );
226 } // if
227 SymTab::Indexer::visit( typeDecl );
228 }
229
230 void Resolver::visit( FunctionDecl *functionDecl ) {
231#if 0
232 std::cout << "resolver visiting functiondecl ";
233 functionDecl->print( std::cout );
234 std::cout << std::endl;
235#endif
236 Type *new_type = resolveTypeof( functionDecl->get_type(), *this );
237 functionDecl->set_type( new_type );
238 ValueGuard< Type * > oldFunctionReturn( functionReturn );
239 functionReturn = ResolvExpr::extractResultType( functionDecl->get_functionType() );
240 SymTab::Indexer::visit( functionDecl );
241 }
242
243 void Resolver::visit( EnumDecl * enumDecl ) {
244 // in case we decide to allow nested enums
245 bool oldInEnumDecl = inEnumDecl;
246 inEnumDecl = true;
247 SymTab::Indexer::visit( enumDecl );
248 inEnumDecl = oldInEnumDecl;
249 }
250
251 void Resolver::visit( ExprStmt *exprStmt ) {
252 if ( exprStmt->get_expr() ) {
253 Expression *newExpr = findVoidExpression( exprStmt->get_expr(), *this );
254 delete exprStmt->get_expr();
255 exprStmt->set_expr( newExpr );
256 } // if
257 }
258
259 void Resolver::visit( AsmExpr *asmExpr ) {
260 Expression *newExpr = findVoidExpression( asmExpr->get_operand(), *this );
261 delete asmExpr->get_operand();
262 asmExpr->set_operand( newExpr );
263 if ( asmExpr->get_inout() ) {
264 newExpr = findVoidExpression( asmExpr->get_inout(), *this );
265 delete asmExpr->get_inout();
266 asmExpr->set_inout( newExpr );
267 } // if
268 }
269
270 void Resolver::visit( AsmStmt *asmStmt ) {
271 acceptAll( asmStmt->get_input(), *this);
272 acceptAll( asmStmt->get_output(), *this);
273 }
274
275 void Resolver::visit( IfStmt *ifStmt ) {
276 Expression *newExpr = findSingleExpression( ifStmt->get_condition(), *this );
277 delete ifStmt->get_condition();
278 ifStmt->set_condition( newExpr );
279 Visitor::visit( ifStmt );
280 }
281
282 void Resolver::visit( WhileStmt *whileStmt ) {
283 Expression *newExpr = findSingleExpression( whileStmt->get_condition(), *this );
284 delete whileStmt->get_condition();
285 whileStmt->set_condition( newExpr );
286 Visitor::visit( whileStmt );
287 }
288
289 void Resolver::visit( ForStmt *forStmt ) {
290 SymTab::Indexer::visit( forStmt );
291
292 if ( forStmt->get_condition() ) {
293 Expression * newExpr = findSingleExpression( forStmt->get_condition(), *this );
294 delete forStmt->get_condition();
295 forStmt->set_condition( newExpr );
296 } // if
297
298 if ( forStmt->get_increment() ) {
299 Expression * newExpr = findVoidExpression( forStmt->get_increment(), *this );
300 delete forStmt->get_increment();
301 forStmt->set_increment( newExpr );
302 } // if
303 }
304
305 template< typename SwitchClass >
306 void handleSwitchStmt( SwitchClass *switchStmt, SymTab::Indexer &visitor ) {
307 Expression *newExpr;
308 newExpr = findIntegralExpression( switchStmt->get_condition(), visitor );
309 delete switchStmt->get_condition();
310 switchStmt->set_condition( newExpr );
311
312 visitor.Visitor::visit( switchStmt );
313 }
314
315 void Resolver::visit( SwitchStmt *switchStmt ) {
316 handleSwitchStmt( switchStmt, *this );
317 }
318
319 void Resolver::visit( CaseStmt *caseStmt ) {
320 Visitor::visit( caseStmt );
321 }
322
323 void Resolver::visit( BranchStmt *branchStmt ) {
324 // must resolve the argument for a computed goto
325 if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement
326 if ( Expression * arg = branchStmt->get_computedTarget() ) {
327 VoidType v = Type::Qualifiers(); // cast to void * for the alternative finder
328 PointerType pt( Type::Qualifiers(), v.clone() );
329 CastExpr * castExpr = new CastExpr( arg, pt.clone() );
330 Expression * newExpr = findSingleExpression( castExpr, *this ); // find best expression
331 branchStmt->set_target( newExpr );
332 } // if
333 } // if
334 }
335
336 void Resolver::visit( ReturnStmt *returnStmt ) {
337 if ( returnStmt->get_expr() ) {
338 CastExpr *castExpr = new CastExpr( returnStmt->get_expr(), functionReturn->clone() );
339 Expression *newExpr = findSingleExpression( castExpr, *this );
340 delete castExpr;
341 returnStmt->set_expr( newExpr );
342 } // if
343 }
344
345 template< typename T >
346 bool isCharType( T t ) {
347 if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) {
348 return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar ||
349 bt->get_kind() == BasicType::UnsignedChar;
350 }
351 return false;
352 }
353
354 void Resolver::visit( SingleInit *singleInit ) {
355 if ( singleInit->get_value() ) {
356#if 0
357 if (NameExpr * ne = dynamic_cast<NameExpr*>(singleInit->get_value())) {
358 string n = ne->get_name();
359 if (n == "0") {
360 initContext = new BasicType(Type::Qualifiers(),
361 BasicType::SignedInt);
362 } else {
363 DeclarationWithType * decl = lookupId( n );
364 initContext = decl->get_type();
365 }
366 } else if (ConstantExpr * e =
367 dynamic_cast<ConstantExpr*>(singleInit->get_value())) {
368 Constant *c = e->get_constant();
369 initContext = c->get_type();
370 } else {
371 assert(0);
372 }
373#endif
374 CastExpr *castExpr = new CastExpr( singleInit->get_value(), initContext->clone() );
375 Expression *newExpr = findSingleExpression( castExpr, *this );
376 delete castExpr;
377 singleInit->set_value( newExpr );
378
379 // check if initializing type is char[]
380 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
381 if ( isCharType( at->get_base() ) ) {
382 // check if the resolved type is char *
383 if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_result() ) ) {
384 if ( isCharType( pt->get_base() ) ) {
385 // strip cast if we're initializing a char[] with a char *, e.g. char x[] = "hello";
386 CastExpr *ce = dynamic_cast< CastExpr * >( newExpr );
387 singleInit->set_value( ce->get_arg() );
388 ce->set_arg( NULL );
389 delete ce;
390 }
391 }
392 }
393 }
394 } // if
395// singleInit->get_value()->accept( *this );
396 }
397
398 void Resolver::resolveSingleAggrInit( Declaration * dcl, InitIterator & init, InitIterator & initEnd ) {
399 DeclarationWithType * dt = dynamic_cast< DeclarationWithType * >( dcl );
400 assert( dt );
401 initContext = dt->get_type();
402 try {
403 if ( init == initEnd ) return; // stop when there are no more initializers
404 (*init)->accept( *this );
405 ++init; // made it past an initializer
406 } catch( SemanticError & ) {
407 // need to delve deeper, if you can
408 if ( StructInstType * sit = dynamic_cast< StructInstType * >( dt->get_type() ) ) {
409 resolveAggrInit( sit->get_baseStruct(), init, initEnd );
410 } else if ( UnionInstType * uit = dynamic_cast< UnionInstType * >( dt->get_type() ) ) {
411 resolveAggrInit( uit->get_baseUnion(), init, initEnd );
412 } else {
413 // member is not an aggregate type, so can't go any deeper
414
415 // might need to rethink what is being thrown
416 throw;
417 } // if
418 }
419 }
420
421 void Resolver::resolveAggrInit( AggregateDecl * aggr, InitIterator & init, InitIterator & initEnd ) {
422 if ( StructDecl * st = dynamic_cast< StructDecl * >( aggr ) ) {
423 // want to resolve each initializer to the members of the struct,
424 // but if there are more initializers than members we should stop
425 list< Declaration * >::iterator it = st->get_members().begin();
426 for ( ; it != st->get_members().end(); ++it) {
427 resolveSingleAggrInit( *it, init, initEnd );
428 }
429 } else if ( UnionDecl * un = dynamic_cast< UnionDecl * >( aggr ) ) {
430 // only resolve to the first member of a union
431 resolveSingleAggrInit( *un->get_members().begin(), init, initEnd );
432 } // if
433 }
434
435 void Resolver::visit( ListInit * listInit ) {
436 InitIterator iter = listInit->begin();
437 InitIterator end = listInit->end();
438
439 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
440 // resolve each member to the base type of the array
441 for ( ; iter != end; ++iter ) {
442 initContext = at->get_base();
443 (*iter)->accept( *this );
444 } // for
445 } else if ( TupleType * tt = dynamic_cast< TupleType * > ( initContext ) ) {
446 for ( Type * t : *tt ) {
447 if ( iter == end ) break;
448 initContext = t;
449 (*iter++)->accept( *this );
450 }
451 } else if ( StructInstType * st = dynamic_cast< StructInstType * >( initContext ) ) {
452 resolveAggrInit( st->get_baseStruct(), iter, end );
453 } else if ( UnionInstType * st = dynamic_cast< UnionInstType * >( initContext ) ) {
454 resolveAggrInit( st->get_baseUnion(), iter, end );
455 } else if ( TypeInstType * tt = dynamic_cast< TypeInstType * >( initContext ) ) {
456 Type * base = tt->get_baseType()->get_base();
457 if ( base ) {
458 // know the implementation type, so try using that as the initContext
459 initContext = base;
460 visit( listInit );
461 } else {
462 // missing implementation type -- might be an unknown type variable, so try proceeding with the current init context
463 Visitor::visit( listInit );
464 }
465 } else {
466 assert( dynamic_cast< BasicType * >( initContext ) || dynamic_cast< PointerType * >( initContext )
467 || dynamic_cast< ZeroType * >( initContext ) || dynamic_cast< OneType * >( initContext ) );
468 // basic types are handled here
469 Visitor::visit( listInit );
470 }
471
472#if 0
473 if ( ArrayType *at = dynamic_cast<ArrayType*>(initContext) ) {
474 std::list<Initializer *>::iterator iter( listInit->begin_initializers() );
475 for ( ; iter != listInit->end_initializers(); ++iter ) {
476 initContext = at->get_base();
477 (*iter)->accept( *this );
478 } // for
479 } else if ( StructInstType *st = dynamic_cast<StructInstType*>(initContext) ) {
480 StructDecl *baseStruct = st->get_baseStruct();
481 std::list<Declaration *>::iterator iter1( baseStruct->get_members().begin() );
482 std::list<Initializer *>::iterator iter2( listInit->begin_initializers() );
483 for ( ; iter1 != baseStruct->get_members().end() && iter2 != listInit->end_initializers(); ++iter2 ) {
484 if ( (*iter2)->get_designators().empty() ) {
485 DeclarationWithType *dt = dynamic_cast<DeclarationWithType *>( *iter1 );
486 initContext = dt->get_type();
487 (*iter2)->accept( *this );
488 ++iter1;
489 } else {
490 StructDecl *st = baseStruct;
491 iter1 = st->get_members().begin();
492 std::list<Expression *>::iterator iter3( (*iter2)->get_designators().begin() );
493 for ( ; iter3 != (*iter2)->get_designators().end(); ++iter3 ) {
494 NameExpr *key = dynamic_cast<NameExpr *>( *iter3 );
495 assert( key );
496 for ( ; iter1 != st->get_members().end(); ++iter1 ) {
497 if ( key->get_name() == (*iter1)->get_name() ) {
498 (*iter1)->print( cout );
499 cout << key->get_name() << endl;
500 ObjectDecl *fred = dynamic_cast<ObjectDecl *>( *iter1 );
501 assert( fred );
502 StructInstType *mary = dynamic_cast<StructInstType*>( fred->get_type() );
503 assert( mary );
504 st = mary->get_baseStruct();
505 iter1 = st->get_members().begin();
506 break;
507 } // if
508 } // for
509 } // for
510 ObjectDecl *fred = dynamic_cast<ObjectDecl *>( *iter1 );
511 assert( fred );
512 initContext = fred->get_type();
513 (*listInit->begin_initializers())->accept( *this );
514 } // if
515 } // for
516 } else if ( UnionInstType *st = dynamic_cast<UnionInstType*>(initContext) ) {
517 DeclarationWithType *dt = dynamic_cast<DeclarationWithType *>( *st->get_baseUnion()->get_members().begin() );
518 initContext = dt->get_type();
519 (*listInit->begin_initializers())->accept( *this );
520 } // if
521#endif
522 }
523
524 // ConstructorInit - fall back on C-style initializer
525 void Resolver::fallbackInit( ConstructorInit * ctorInit ) {
526 // could not find valid constructor, or found an intrinsic constructor
527 // fall back on C-style initializer
528 delete ctorInit->get_ctor();
529 ctorInit->set_ctor( NULL );
530 delete ctorInit->get_dtor();
531 ctorInit->set_dtor( NULL );
532 maybeAccept( ctorInit->get_init(), *this );
533 }
534
535 void Resolver::visit( ConstructorInit *ctorInit ) {
536 // xxx - fallback init has been removed => remove fallbackInit function and remove complexity from FixInit and remove C-init from ConstructorInit
537 maybeAccept( ctorInit->get_ctor(), *this );
538 maybeAccept( ctorInit->get_dtor(), *this );
539
540 // found a constructor - can get rid of C-style initializer
541 delete ctorInit->get_init();
542 ctorInit->set_init( NULL );
543
544 // intrinsic single parameter constructors and destructors do nothing. Since this was
545 // implicitly generated, there's no way for it to have side effects, so get rid of it
546 // to clean up generated code.
547 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->get_ctor() ) ) {
548 delete ctorInit->get_ctor();
549 ctorInit->set_ctor( NULL );
550 }
551
552 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->get_dtor() ) ) {
553 delete ctorInit->get_dtor();
554 ctorInit->set_dtor( NULL );
555 }
556
557 // xxx - todo -- what about arrays?
558 // if ( dtor == NULL && InitTweak::isIntrinsicCallStmt( ctorInit->get_ctor() ) ) {
559 // // can reduce the constructor down to a SingleInit using the
560 // // second argument from the ctor call, since
561 // delete ctorInit->get_ctor();
562 // ctorInit->set_ctor( NULL );
563
564 // Expression * arg =
565 // ctorInit->set_init( new SingleInit( arg ) );
566 // }
567 }
568} // namespace ResolvExpr
569
570// Local Variables: //
571// tab-width: 4 //
572// mode: c++ //
573// compile-command: "make install" //
574// End: //
Note: See TracBrowser for help on using the repository browser.