source: src/ResolvExpr/Resolver.cc@ 1e6ea4e1

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 1e6ea4e1 was 60aaa51d, checked in by Aaron Moss <a3moss@…>, 6 years ago

More resolver porting; mostly CurrentObject

  • Property mode set to 100644
File size: 55.9 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Resolver.cc --
8//
9// Author : Aaron B. Moss
10// Created On : Sun May 17 12:17:01 2015
11// Last Modified By : Aaron B. Moss
12// Last Modified On : Wed May 29 11:00:00 2019
13// Update Count : 241
14//
15
16#include <cassert> // for strict_dynamic_cast, assert
17#include <memory> // for allocator, allocator_traits<...
18#include <tuple> // for get
19#include <vector> // for vector
20
21#include "Alternative.h" // for Alternative, AltList
22#include "AlternativeFinder.h" // for AlternativeFinder, resolveIn...
23#include "Candidate.hpp"
24#include "CandidateFinder.hpp"
25#include "CurrentObject.h" // for CurrentObject
26#include "RenameVars.h" // for RenameVars, global_renamer
27#include "Resolver.h"
28#include "ResolvMode.h" // for ResolvMode
29#include "typeops.h" // for extractResultType
30#include "Unify.h" // for unify
31#include "AST/Chain.hpp"
32#include "AST/Decl.hpp"
33#include "AST/Init.hpp"
34#include "AST/Pass.hpp"
35#include "AST/Print.hpp"
36#include "AST/SymbolTable.hpp"
37#include "Common/PassVisitor.h" // for PassVisitor
38#include "Common/SemanticError.h" // for SemanticError
39#include "Common/utility.h" // for ValueGuard, group_iterate
40#include "InitTweak/GenInit.h"
41#include "InitTweak/InitTweak.h" // for isIntrinsicSingleArgCallStmt
42#include "ResolvExpr/TypeEnvironment.h" // for TypeEnvironment
43#include "SymTab/Autogen.h" // for SizeType
44#include "SymTab/Indexer.h" // for Indexer
45#include "SynTree/Declaration.h" // for ObjectDecl, TypeDecl, Declar...
46#include "SynTree/Expression.h" // for Expression, CastExpr, InitExpr
47#include "SynTree/Initializer.h" // for ConstructorInit, SingleInit
48#include "SynTree/Statement.h" // for ForStmt, Statement, BranchStmt
49#include "SynTree/Type.h" // for Type, BasicType, PointerType
50#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
51#include "SynTree/Visitor.h" // for acceptAll, maybeAccept
52#include "Tuples/Tuples.h"
53#include "Validate/FindSpecialDecls.h" // for SizeType
54
55using namespace std;
56
57namespace ResolvExpr {
58 struct Resolver_old final : public WithIndexer, public WithGuards, public WithVisitorRef<Resolver_old>, public WithShortCircuiting, public WithStmtsToAdd {
59 Resolver_old() {}
60 Resolver_old( const SymTab::Indexer & other ) {
61 indexer = other;
62 }
63
64 void previsit( FunctionDecl * functionDecl );
65 void postvisit( FunctionDecl * functionDecl );
66 void previsit( ObjectDecl * objectDecll );
67 void previsit( EnumDecl * enumDecl );
68 void previsit( StaticAssertDecl * assertDecl );
69
70 void previsit( ArrayType * at );
71 void previsit( PointerType * at );
72
73 void previsit( ExprStmt * exprStmt );
74 void previsit( AsmExpr * asmExpr );
75 void previsit( AsmStmt * asmStmt );
76 void previsit( IfStmt * ifStmt );
77 void previsit( WhileStmt * whileStmt );
78 void previsit( ForStmt * forStmt );
79 void previsit( SwitchStmt * switchStmt );
80 void previsit( CaseStmt * caseStmt );
81 void previsit( BranchStmt * branchStmt );
82 void previsit( ReturnStmt * returnStmt );
83 void previsit( ThrowStmt * throwStmt );
84 void previsit( CatchStmt * catchStmt );
85 void previsit( WaitForStmt * stmt );
86
87 void previsit( SingleInit * singleInit );
88 void previsit( ListInit * listInit );
89 void previsit( ConstructorInit * ctorInit );
90 private:
91 typedef std::list< Initializer * >::iterator InitIterator;
92
93 template< typename PtrType >
94 void handlePtrType( PtrType * type );
95
96 void fallbackInit( ConstructorInit * ctorInit );
97
98 Type * functionReturn = nullptr;
99 CurrentObject currentObject = nullptr;
100 bool inEnumDecl = false;
101 };
102
103 struct ResolveWithExprs : public WithIndexer, public WithGuards, public WithVisitorRef<ResolveWithExprs>, public WithShortCircuiting, public WithStmtsToAdd {
104 void previsit( FunctionDecl * );
105 void previsit( WithStmt * );
106
107 void resolveWithExprs( std::list< Expression * > & withExprs, std::list< Statement * > & newStmts );
108 };
109
110 void resolve( std::list< Declaration * > translationUnit ) {
111 PassVisitor<Resolver_old> resolver;
112 acceptAll( translationUnit, resolver );
113 }
114
115 void resolveDecl( Declaration * decl, const SymTab::Indexer & indexer ) {
116 PassVisitor<Resolver_old> resolver( indexer );
117 maybeAccept( decl, resolver );
118 }
119
120 namespace {
121 struct DeleteFinder_old : public WithShortCircuiting {
122 DeletedExpr * delExpr = nullptr;
123 void previsit( DeletedExpr * expr ) {
124 if ( delExpr ) visit_children = false;
125 else delExpr = expr;
126 }
127
128 void previsit( Expression * ) {
129 if ( delExpr ) visit_children = false;
130 }
131 };
132 }
133
134 DeletedExpr * findDeletedExpr( Expression * expr ) {
135 PassVisitor<DeleteFinder_old> finder;
136 expr->accept( finder );
137 return finder.pass.delExpr;
138 }
139
140 namespace {
141 struct StripCasts_old {
142 Expression * postmutate( CastExpr * castExpr ) {
143 if ( castExpr->isGenerated && ResolvExpr::typesCompatible( castExpr->arg->result, castExpr->result, SymTab::Indexer() ) ) {
144 // generated cast is to the same type as its argument, so it's unnecessary -- remove it
145 Expression * expr = castExpr->arg;
146 castExpr->arg = nullptr;
147 std::swap( expr->env, castExpr->env );
148 return expr;
149 }
150 return castExpr;
151 }
152
153 static void strip( Expression *& expr ) {
154 PassVisitor<StripCasts_old> stripper;
155 expr = expr->acceptMutator( stripper );
156 }
157 };
158
159 void finishExpr( Expression *& expr, const TypeEnvironment & env, TypeSubstitution * oldenv = nullptr ) {
160 expr->env = oldenv ? oldenv->clone() : new TypeSubstitution;
161 env.makeSubstitution( *expr->env );
162 StripCasts_old::strip( expr ); // remove unnecessary casts that may be buried in an expression
163 }
164
165 void removeExtraneousCast( Expression *& expr, const SymTab::Indexer & indexer ) {
166 if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( expr ) ) {
167 if ( typesCompatible( castExpr->arg->result, castExpr->result, indexer ) ) {
168 // cast is to the same type as its argument, so it's unnecessary -- remove it
169 expr = castExpr->arg;
170 castExpr->arg = nullptr;
171 std::swap( expr->env, castExpr->env );
172 delete castExpr;
173 }
174 }
175 }
176 } // namespace
177
178 namespace {
179 void findUnfinishedKindExpression(Expression * untyped, Alternative & alt, const SymTab::Indexer & indexer, const std::string & kindStr, std::function<bool(const Alternative &)> pred, ResolvMode mode = ResolvMode{} ) {
180 assertf( untyped, "expected a non-null expression." );
181
182 // xxx - this isn't thread-safe, but should work until we parallelize the resolver
183 static unsigned recursion_level = 0;
184
185 ++recursion_level;
186 TypeEnvironment env;
187 AlternativeFinder finder( indexer, env );
188 finder.find( untyped, recursion_level == 1 ? mode.atTopLevel() : mode );
189 --recursion_level;
190
191 #if 0
192 if ( finder.get_alternatives().size() != 1 ) {
193 std::cerr << "untyped expr is ";
194 untyped->print( std::cerr );
195 std::cerr << std::endl << "alternatives are:";
196 for ( const Alternative & alt : finder.get_alternatives() ) {
197 alt.print( std::cerr );
198 } // for
199 } // if
200 #endif
201
202 // produce filtered list of alternatives
203 AltList candidates;
204 for ( Alternative & alt : finder.get_alternatives() ) {
205 if ( pred( alt ) ) {
206 candidates.push_back( std::move( alt ) );
207 }
208 }
209
210 // produce invalid error if no candidates
211 if ( candidates.empty() ) {
212 SemanticError( untyped, toString( "No reasonable alternatives for ", kindStr, (kindStr != "" ? " " : ""), "expression: ") );
213 }
214
215 // search for cheapest candidate
216 AltList winners;
217 bool seen_undeleted = false;
218 for ( unsigned i = 0; i < candidates.size(); ++i ) {
219 int c = winners.empty() ? -1 : candidates[i].cost.compare( winners.front().cost );
220
221 if ( c > 0 ) continue; // skip more expensive than winner
222
223 if ( c < 0 ) {
224 // reset on new cheapest
225 seen_undeleted = ! findDeletedExpr( candidates[i].expr );
226 winners.clear();
227 } else /* if ( c == 0 ) */ {
228 if ( findDeletedExpr( candidates[i].expr ) ) {
229 // skip deleted expression if already seen one equivalent-cost not
230 if ( seen_undeleted ) continue;
231 } else if ( ! seen_undeleted ) {
232 // replace list of equivalent-cost deleted expressions with one non-deleted
233 winners.clear();
234 seen_undeleted = true;
235 }
236 }
237
238 winners.emplace_back( std::move( candidates[i] ) );
239 }
240
241 // promote alternative.cvtCost to .cost
242 // xxx - I don't know why this is done, but I'm keeping the behaviour from findMinCost
243 for ( Alternative& winner : winners ) {
244 winner.cost = winner.cvtCost;
245 }
246
247 // produce ambiguous errors, if applicable
248 if ( winners.size() != 1 ) {
249 std::ostringstream stream;
250 stream << "Cannot choose between " << winners.size() << " alternatives for " << kindStr << (kindStr != "" ? " " : "") << "expression\n";
251 untyped->print( stream );
252 stream << " Alternatives are:\n";
253 printAlts( winners, stream, 1 );
254 SemanticError( untyped->location, stream.str() );
255 }
256
257 // single selected choice
258 Alternative& choice = winners.front();
259
260 // fail on only expression deleted
261 if ( ! seen_undeleted ) {
262 SemanticError( untyped->location, choice.expr, "Unique best alternative includes deleted identifier in " );
263 }
264
265 // xxx - check for ambiguous expressions
266
267 // output selected choice
268 alt = std::move( choice );
269 }
270
271 /// resolve `untyped` to the expression whose alternative satisfies `pred` with the lowest cost; kindStr is used for providing better error messages
272 void findKindExpression(Expression *& untyped, const SymTab::Indexer & indexer, const std::string & kindStr, std::function<bool(const Alternative &)> pred, ResolvMode mode = ResolvMode{}) {
273 if ( ! untyped ) return;
274 Alternative choice;
275 findUnfinishedKindExpression( untyped, choice, indexer, kindStr, pred, mode );
276 finishExpr( choice.expr, choice.env, untyped->env );
277 delete untyped;
278 untyped = choice.expr;
279 choice.expr = nullptr;
280 }
281
282 bool standardAlternativeFilter( const Alternative & ) {
283 // currently don't need to filter, under normal circumstances.
284 // in the future, this may be useful for removing deleted expressions
285 return true;
286 }
287 } // namespace
288
289 // used in resolveTypeof
290 Expression * resolveInVoidContext( Expression * expr, const SymTab::Indexer & indexer ) {
291 TypeEnvironment env;
292 return resolveInVoidContext( expr, indexer, env );
293 }
294
295 Expression * resolveInVoidContext( Expression * expr, const SymTab::Indexer & indexer, TypeEnvironment & env ) {
296 // it's a property of the language that a cast expression has either 1 or 0 interpretations; if it has 0
297 // interpretations, an exception has already been thrown.
298 assertf( expr, "expected a non-null expression." );
299
300 CastExpr * untyped = new CastExpr( expr ); // cast to void
301 untyped->location = expr->location;
302
303 // set up and resolve expression cast to void
304 Alternative choice;
305 findUnfinishedKindExpression( untyped, choice, indexer, "", standardAlternativeFilter, ResolvMode::withAdjustment() );
306 CastExpr * castExpr = strict_dynamic_cast< CastExpr * >( choice.expr );
307 assert( castExpr );
308 env = std::move( choice.env );
309
310 // clean up resolved expression
311 Expression * ret = castExpr->arg;
312 castExpr->arg = nullptr;
313
314 // unlink the arg so that it isn't deleted twice at the end of the program
315 untyped->arg = nullptr;
316 return ret;
317 }
318
319 void findVoidExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
320 resetTyVarRenaming();
321 TypeEnvironment env;
322 Expression * newExpr = resolveInVoidContext( untyped, indexer, env );
323 finishExpr( newExpr, env, untyped->env );
324 delete untyped;
325 untyped = newExpr;
326 }
327
328 void findSingleExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
329 findKindExpression( untyped, indexer, "", standardAlternativeFilter );
330 }
331
332 void findSingleExpression( Expression *& untyped, Type * type, const SymTab::Indexer & indexer ) {
333 assert( untyped && type );
334 // transfer location to generated cast for error purposes
335 CodeLocation location = untyped->location;
336 untyped = new CastExpr( untyped, type );
337 untyped->location = location;
338 findSingleExpression( untyped, indexer );
339 removeExtraneousCast( untyped, indexer );
340 }
341
342 namespace {
343 bool isIntegralType( const Alternative & alt ) {
344 Type * type = alt.expr->result;
345 if ( dynamic_cast< EnumInstType * >( type ) ) {
346 return true;
347 } else if ( BasicType * bt = dynamic_cast< BasicType * >( type ) ) {
348 return bt->isInteger();
349 } else if ( dynamic_cast< ZeroType* >( type ) != nullptr || dynamic_cast< OneType* >( type ) != nullptr ) {
350 return true;
351 } else {
352 return false;
353 } // if
354 }
355
356 void findIntegralExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
357 findKindExpression( untyped, indexer, "condition", isIntegralType );
358 }
359 }
360
361
362 bool isStructOrUnion( const Alternative & alt ) {
363 Type * t = alt.expr->result->stripReferences();
364 return dynamic_cast< StructInstType * >( t ) || dynamic_cast< UnionInstType * >( t );
365 }
366
367 void resolveWithExprs( std::list< Declaration * > & translationUnit ) {
368 PassVisitor<ResolveWithExprs> resolver;
369 acceptAll( translationUnit, resolver );
370 }
371
372 void ResolveWithExprs::resolveWithExprs( std::list< Expression * > & withExprs, std::list< Statement * > & newStmts ) {
373 for ( Expression *& expr : withExprs ) {
374 // only struct- and union-typed expressions are viable candidates
375 findKindExpression( expr, indexer, "with statement", isStructOrUnion );
376
377 // if with expression might be impure, create a temporary so that it is evaluated once
378 if ( Tuples::maybeImpure( expr ) ) {
379 static UniqueName tmpNamer( "_with_tmp_" );
380 ObjectDecl * tmp = ObjectDecl::newObject( tmpNamer.newName(), expr->result->clone(), new SingleInit( expr ) );
381 expr = new VariableExpr( tmp );
382 newStmts.push_back( new DeclStmt( tmp ) );
383 if ( InitTweak::isConstructable( tmp->type ) ) {
384 // generate ctor/dtor and resolve them
385 tmp->init = InitTweak::genCtorInit( tmp );
386 tmp->accept( *visitor );
387 }
388 }
389 }
390 }
391
392 void ResolveWithExprs::previsit( WithStmt * withStmt ) {
393 resolveWithExprs( withStmt->exprs, stmtsToAddBefore );
394 }
395
396 void ResolveWithExprs::previsit( FunctionDecl * functionDecl ) {
397 {
398 // resolve with-exprs with parameters in scope and add any newly generated declarations to the
399 // front of the function body.
400 auto guard = makeFuncGuard( [this]() { indexer.enterScope(); }, [this](){ indexer.leaveScope(); } );
401 indexer.addFunctionType( functionDecl->type );
402 std::list< Statement * > newStmts;
403 resolveWithExprs( functionDecl->withExprs, newStmts );
404 if ( functionDecl->statements ) {
405 functionDecl->statements->kids.splice( functionDecl->statements->kids.begin(), newStmts );
406 } else {
407 assertf( functionDecl->withExprs.empty() && newStmts.empty(), "Function %s without a body has with-clause and/or generated with declarations.", functionDecl->name.c_str() );
408 }
409 }
410 }
411
412 void Resolver_old::previsit( ObjectDecl * objectDecl ) {
413 // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that
414 // class-variable initContext is changed multiple time because the LHS is analysed twice.
415 // The second analysis changes initContext because of a function type can contain object
416 // declarations in the return and parameter types. So each value of initContext is
417 // retained, so the type on the first analysis is preserved and used for selecting the RHS.
418 GuardValue( currentObject );
419 currentObject = CurrentObject( objectDecl->get_type() );
420 if ( inEnumDecl && dynamic_cast< EnumInstType * >( objectDecl->get_type() ) ) {
421 // enumerator initializers should not use the enum type to initialize, since
422 // the enum type is still incomplete at this point. Use signed int instead.
423 currentObject = CurrentObject( new BasicType( Type::Qualifiers(), BasicType::SignedInt ) );
424 }
425 }
426
427 template< typename PtrType >
428 void Resolver_old::handlePtrType( PtrType * type ) {
429 if ( type->get_dimension() ) {
430 findSingleExpression( type->dimension, Validate::SizeType->clone(), indexer );
431 }
432 }
433
434 void Resolver_old::previsit( ArrayType * at ) {
435 handlePtrType( at );
436 }
437
438 void Resolver_old::previsit( PointerType * pt ) {
439 handlePtrType( pt );
440 }
441
442 void Resolver_old::previsit( FunctionDecl * functionDecl ) {
443#if 0
444 std::cerr << "resolver visiting functiondecl ";
445 functionDecl->print( std::cerr );
446 std::cerr << std::endl;
447#endif
448 GuardValue( functionReturn );
449 functionReturn = ResolvExpr::extractResultType( functionDecl->type );
450 }
451
452 void Resolver_old::postvisit( FunctionDecl * functionDecl ) {
453 // default value expressions have an environment which shouldn't be there and trips up
454 // later passes.
455 // xxx - it might be necessary to somehow keep the information from this environment, but I
456 // can't currently see how it's useful.
457 for ( Declaration * d : functionDecl->type->parameters ) {
458 if ( ObjectDecl * obj = dynamic_cast< ObjectDecl * >( d ) ) {
459 if ( SingleInit * init = dynamic_cast< SingleInit * >( obj->init ) ) {
460 delete init->value->env;
461 init->value->env = nullptr;
462 }
463 }
464 }
465 }
466
467 void Resolver_old::previsit( EnumDecl * ) {
468 // in case we decide to allow nested enums
469 GuardValue( inEnumDecl );
470 inEnumDecl = true;
471 }
472
473 void Resolver_old::previsit( StaticAssertDecl * assertDecl ) {
474 findIntegralExpression( assertDecl->condition, indexer );
475 }
476
477 void Resolver_old::previsit( ExprStmt * exprStmt ) {
478 visit_children = false;
479 assertf( exprStmt->expr, "ExprStmt has null Expression in resolver" );
480 findVoidExpression( exprStmt->expr, indexer );
481 }
482
483 void Resolver_old::previsit( AsmExpr * asmExpr ) {
484 visit_children = false;
485 findVoidExpression( asmExpr->operand, indexer );
486 if ( asmExpr->get_inout() ) {
487 findVoidExpression( asmExpr->inout, indexer );
488 } // if
489 }
490
491 void Resolver_old::previsit( AsmStmt * asmStmt ) {
492 visit_children = false;
493 acceptAll( asmStmt->get_input(), *visitor );
494 acceptAll( asmStmt->get_output(), *visitor );
495 }
496
497 void Resolver_old::previsit( IfStmt * ifStmt ) {
498 findIntegralExpression( ifStmt->condition, indexer );
499 }
500
501 void Resolver_old::previsit( WhileStmt * whileStmt ) {
502 findIntegralExpression( whileStmt->condition, indexer );
503 }
504
505 void Resolver_old::previsit( ForStmt * forStmt ) {
506 if ( forStmt->condition ) {
507 findIntegralExpression( forStmt->condition, indexer );
508 } // if
509
510 if ( forStmt->increment ) {
511 findVoidExpression( forStmt->increment, indexer );
512 } // if
513 }
514
515 void Resolver_old::previsit( SwitchStmt * switchStmt ) {
516 GuardValue( currentObject );
517 findIntegralExpression( switchStmt->condition, indexer );
518
519 currentObject = CurrentObject( switchStmt->condition->result );
520 }
521
522 void Resolver_old::previsit( CaseStmt * caseStmt ) {
523 if ( caseStmt->condition ) {
524 std::list< InitAlternative > initAlts = currentObject.getOptions();
525 assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral expression." );
526 // must remove cast from case statement because RangeExpr cannot be cast.
527 Expression * newExpr = new CastExpr( caseStmt->condition, initAlts.front().type->clone() );
528 findSingleExpression( newExpr, indexer );
529 // case condition cannot have a cast in C, so it must be removed, regardless of whether it performs a conversion.
530 // Ideally we would perform the conversion internally here.
531 if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( newExpr ) ) {
532 newExpr = castExpr->arg;
533 castExpr->arg = nullptr;
534 std::swap( newExpr->env, castExpr->env );
535 delete castExpr;
536 }
537 caseStmt->condition = newExpr;
538 }
539 }
540
541 void Resolver_old::previsit( BranchStmt * branchStmt ) {
542 visit_children = false;
543 // must resolve the argument for a computed goto
544 if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement
545 if ( branchStmt->computedTarget ) {
546 // computed goto argument is void *
547 findSingleExpression( branchStmt->computedTarget, new PointerType( Type::Qualifiers(), new VoidType( Type::Qualifiers() ) ), indexer );
548 } // if
549 } // if
550 }
551
552 void Resolver_old::previsit( ReturnStmt * returnStmt ) {
553 visit_children = false;
554 if ( returnStmt->expr ) {
555 findSingleExpression( returnStmt->expr, functionReturn->clone(), indexer );
556 } // if
557 }
558
559 void Resolver_old::previsit( ThrowStmt * throwStmt ) {
560 visit_children = false;
561 // TODO: Replace *exception type with &exception type.
562 if ( throwStmt->get_expr() ) {
563 StructDecl * exception_decl =
564 indexer.lookupStruct( "__cfaabi_ehm__base_exception_t" );
565 assert( exception_decl );
566 Type * exceptType = new PointerType( noQualifiers, new StructInstType( noQualifiers, exception_decl ) );
567 findSingleExpression( throwStmt->expr, exceptType, indexer );
568 }
569 }
570
571 void Resolver_old::previsit( CatchStmt * catchStmt ) {
572 if ( catchStmt->cond ) {
573 findSingleExpression( catchStmt->cond, new BasicType( noQualifiers, BasicType::Bool ), indexer );
574 }
575 }
576
577 template< typename iterator_t >
578 inline bool advance_to_mutex( iterator_t & it, const iterator_t & end ) {
579 while( it != end && !(*it)->get_type()->get_mutex() ) {
580 it++;
581 }
582
583 return it != end;
584 }
585
586 void Resolver_old::previsit( WaitForStmt * stmt ) {
587 visit_children = false;
588
589 // Resolve all clauses first
590 for( auto& clause : stmt->clauses ) {
591
592 TypeEnvironment env;
593 AlternativeFinder funcFinder( indexer, env );
594
595 // Find all alternatives for a function in canonical form
596 funcFinder.findWithAdjustment( clause.target.function );
597
598 if ( funcFinder.get_alternatives().empty() ) {
599 stringstream ss;
600 ss << "Use of undeclared indentifier '";
601 ss << strict_dynamic_cast<NameExpr*>( clause.target.function )->name;
602 ss << "' in call to waitfor";
603 SemanticError( stmt->location, ss.str() );
604 }
605
606 if(clause.target.arguments.empty()) {
607 SemanticError( stmt->location, "Waitfor clause must have at least one mutex parameter");
608 }
609
610 // Find all alternatives for all arguments in canonical form
611 std::vector< AlternativeFinder > argAlternatives;
612 funcFinder.findSubExprs( clause.target.arguments.begin(), clause.target.arguments.end(), back_inserter( argAlternatives ) );
613
614 // List all combinations of arguments
615 std::vector< AltList > possibilities;
616 combos( argAlternatives.begin(), argAlternatives.end(), back_inserter( possibilities ) );
617
618 AltList func_candidates;
619 std::vector< AltList > args_candidates;
620
621 // For every possible function :
622 // try matching the arguments to the parameters
623 // not the other way around because we have more arguments than parameters
624 SemanticErrorException errors;
625 for ( Alternative & func : funcFinder.get_alternatives() ) {
626 try {
627 PointerType * pointer = dynamic_cast< PointerType* >( func.expr->get_result()->stripReferences() );
628 if( !pointer ) {
629 SemanticError( func.expr->get_result(), "candidate not viable: not a pointer type\n" );
630 }
631
632 FunctionType * function = dynamic_cast< FunctionType* >( pointer->get_base() );
633 if( !function ) {
634 SemanticError( pointer->get_base(), "candidate not viable: not a function type\n" );
635 }
636
637
638 {
639 auto param = function->parameters.begin();
640 auto param_end = function->parameters.end();
641
642 if( !advance_to_mutex( param, param_end ) ) {
643 SemanticError(function, "candidate function not viable: no mutex parameters\n");
644 }
645 }
646
647 Alternative newFunc( func );
648 // Strip reference from function
649 referenceToRvalueConversion( newFunc.expr, newFunc.cost );
650
651 // For all the set of arguments we have try to match it with the parameter of the current function alternative
652 for ( auto & argsList : possibilities ) {
653
654 try {
655 // Declare data structures need for resolution
656 OpenVarSet openVars;
657 AssertionSet resultNeed, resultHave;
658 TypeEnvironment resultEnv( func.env );
659 makeUnifiableVars( function, openVars, resultNeed );
660 // add all type variables as open variables now so that those not used in the parameter
661 // list are still considered open.
662 resultEnv.add( function->forall );
663
664 // Load type variables from arguemnts into one shared space
665 simpleCombineEnvironments( argsList.begin(), argsList.end(), resultEnv );
666
667 // Make sure we don't widen any existing bindings
668 resultEnv.forbidWidening();
669
670 // Find any unbound type variables
671 resultEnv.extractOpenVars( openVars );
672
673 auto param = function->parameters.begin();
674 auto param_end = function->parameters.end();
675
676 int n_mutex_param = 0;
677
678 // For every arguments of its set, check if it matches one of the parameter
679 // The order is important
680 for( auto & arg : argsList ) {
681
682 // Ignore non-mutex arguments
683 if( !advance_to_mutex( param, param_end ) ) {
684 // We ran out of parameters but still have arguments
685 // this function doesn't match
686 SemanticError( function, toString("candidate function not viable: too many mutex arguments, expected ", n_mutex_param, "\n" ));
687 }
688
689 n_mutex_param++;
690
691 // Check if the argument matches the parameter type in the current scope
692 if( ! unify( arg.expr->get_result(), (*param)->get_type(), resultEnv, resultNeed, resultHave, openVars, this->indexer ) ) {
693 // Type doesn't match
694 stringstream ss;
695 ss << "candidate function not viable: no known convertion from '";
696 (*param)->get_type()->print( ss );
697 ss << "' to '";
698 arg.expr->get_result()->print( ss );
699 ss << "' with env '";
700 resultEnv.print(ss);
701 ss << "'\n";
702 SemanticError( function, ss.str() );
703 }
704
705 param++;
706 }
707
708 // All arguments match !
709
710 // Check if parameters are missing
711 if( advance_to_mutex( param, param_end ) ) {
712 do {
713 n_mutex_param++;
714 param++;
715 } while( advance_to_mutex( param, param_end ) );
716
717 // We ran out of arguments but still have parameters left
718 // this function doesn't match
719 SemanticError( function, toString("candidate function not viable: too few mutex arguments, expected ", n_mutex_param, "\n" ));
720 }
721
722 // All parameters match !
723
724 // Finish the expressions to tie in the proper environments
725 finishExpr( newFunc.expr, resultEnv );
726 for( Alternative & alt : argsList ) {
727 finishExpr( alt.expr, resultEnv );
728 }
729
730 // This is a match store it and save it for later
731 func_candidates.push_back( newFunc );
732 args_candidates.push_back( argsList );
733
734 }
735 catch( SemanticErrorException & e ) {
736 errors.append( e );
737 }
738 }
739 }
740 catch( SemanticErrorException & e ) {
741 errors.append( e );
742 }
743 }
744
745 // Make sure we got the right number of arguments
746 if( func_candidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for function in call to waitfor" ); top.append( errors ); throw top; }
747 if( args_candidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for arguments in call to waitfor" ); top.append( errors ); throw top; }
748 if( func_candidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous function in call to waitfor" ); top.append( errors ); throw top; }
749 if( args_candidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous arguments in call to waitfor" ); top.append( errors ); throw top; }
750 // TODO: need to use findDeletedExpr to ensure no deleted identifiers are used.
751
752 // Swap the results from the alternative with the unresolved values.
753 // Alternatives will handle deletion on destruction
754 std::swap( clause.target.function, func_candidates.front().expr );
755 for( auto arg_pair : group_iterate( clause.target.arguments, args_candidates.front() ) ) {
756 std::swap ( std::get<0>( arg_pair), std::get<1>( arg_pair).expr );
757 }
758
759 // Resolve the conditions as if it were an IfStmt
760 // Resolve the statments normally
761 findSingleExpression( clause.condition, this->indexer );
762 clause.statement->accept( *visitor );
763 }
764
765
766 if( stmt->timeout.statement ) {
767 // Resolve the timeout as an size_t for now
768 // Resolve the conditions as if it were an IfStmt
769 // Resolve the statments normally
770 findSingleExpression( stmt->timeout.time, new BasicType( noQualifiers, BasicType::LongLongUnsignedInt ), this->indexer );
771 findSingleExpression( stmt->timeout.condition, this->indexer );
772 stmt->timeout.statement->accept( *visitor );
773 }
774
775 if( stmt->orelse.statement ) {
776 // Resolve the conditions as if it were an IfStmt
777 // Resolve the statments normally
778 findSingleExpression( stmt->orelse.condition, this->indexer );
779 stmt->orelse.statement->accept( *visitor );
780 }
781 }
782
783 bool isCharType( Type * t ) {
784 if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) {
785 return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar ||
786 bt->get_kind() == BasicType::UnsignedChar;
787 }
788 return false;
789 }
790
791 void Resolver_old::previsit( SingleInit * singleInit ) {
792 visit_children = false;
793 // resolve initialization using the possibilities as determined by the currentObject cursor
794 Expression * newExpr = new UntypedInitExpr( singleInit->value, currentObject.getOptions() );
795 findSingleExpression( newExpr, indexer );
796 InitExpr * initExpr = strict_dynamic_cast< InitExpr * >( newExpr );
797
798 // move cursor to the object that is actually initialized
799 currentObject.setNext( initExpr->get_designation() );
800
801 // discard InitExpr wrapper and retain relevant pieces
802 newExpr = initExpr->expr;
803 initExpr->expr = nullptr;
804 std::swap( initExpr->env, newExpr->env );
805 // InitExpr may have inferParams in the case where the expression specializes a function
806 // pointer, and newExpr may already have inferParams of its own, so a simple swap is not
807 // sufficient.
808 newExpr->spliceInferParams( initExpr );
809 delete initExpr;
810
811 // get the actual object's type (may not exactly match what comes back from the resolver
812 // due to conversions)
813 Type * initContext = currentObject.getCurrentType();
814
815 removeExtraneousCast( newExpr, indexer );
816
817 // check if actual object's type is char[]
818 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
819 if ( isCharType( at->get_base() ) ) {
820 // check if the resolved type is char *
821 if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_result() ) ) {
822 if ( isCharType( pt->get_base() ) ) {
823 if ( CastExpr * ce = dynamic_cast< CastExpr * >( newExpr ) ) {
824 // strip cast if we're initializing a char[] with a char *,
825 // e.g. char x[] = "hello";
826 newExpr = ce->get_arg();
827 ce->set_arg( nullptr );
828 std::swap( ce->env, newExpr->env );
829 delete ce;
830 }
831 }
832 }
833 }
834 }
835
836 // set initializer expr to resolved express
837 singleInit->value = newExpr;
838
839 // move cursor to next object in preparation for next initializer
840 currentObject.increment();
841 }
842
843 void Resolver_old::previsit( ListInit * listInit ) {
844 visit_children = false;
845 // move cursor into brace-enclosed initializer-list
846 currentObject.enterListInit();
847 // xxx - fix this so that the list isn't copied, iterator should be used to change current
848 // element
849 std::list<Designation *> newDesignations;
850 for ( auto p : group_iterate(listInit->get_designations(), listInit->get_initializers()) ) {
851 // iterate designations and initializers in pairs, moving the cursor to the current
852 // designated object and resolving the initializer against that object.
853 Designation * des = std::get<0>(p);
854 Initializer * init = std::get<1>(p);
855 newDesignations.push_back( currentObject.findNext( des ) );
856 init->accept( *visitor );
857 }
858 // set the set of 'resolved' designations and leave the brace-enclosed initializer-list
859 listInit->get_designations() = newDesignations; // xxx - memory management
860 currentObject.exitListInit();
861
862 // xxx - this part has not be folded into CurrentObject yet
863 // } else if ( TypeInstType * tt = dynamic_cast< TypeInstType * >( initContext ) ) {
864 // Type * base = tt->get_baseType()->get_base();
865 // if ( base ) {
866 // // know the implementation type, so try using that as the initContext
867 // ObjectDecl tmpObj( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, base->clone(), nullptr );
868 // currentObject = &tmpObj;
869 // visit( listInit );
870 // } else {
871 // // missing implementation type -- might be an unknown type variable, so try proceeding with the current init context
872 // Parent::visit( listInit );
873 // }
874 // } else {
875 }
876
877 // ConstructorInit - fall back on C-style initializer
878 void Resolver_old::fallbackInit( ConstructorInit * ctorInit ) {
879 // could not find valid constructor, or found an intrinsic constructor
880 // fall back on C-style initializer
881 delete ctorInit->get_ctor();
882 ctorInit->set_ctor( nullptr );
883 delete ctorInit->get_dtor();
884 ctorInit->set_dtor( nullptr );
885 maybeAccept( ctorInit->get_init(), *visitor );
886 }
887
888 // needs to be callable from outside the resolver, so this is a standalone function
889 void resolveCtorInit( ConstructorInit * ctorInit, const SymTab::Indexer & indexer ) {
890 assert( ctorInit );
891 PassVisitor<Resolver_old> resolver( indexer );
892 ctorInit->accept( resolver );
893 }
894
895 void resolveStmtExpr( StmtExpr * stmtExpr, const SymTab::Indexer & indexer ) {
896 assert( stmtExpr );
897 PassVisitor<Resolver_old> resolver( indexer );
898 stmtExpr->accept( resolver );
899 stmtExpr->computeResult();
900 // xxx - aggregate the environments from all statements? Possibly in AlternativeFinder instead?
901 }
902
903 void Resolver_old::previsit( ConstructorInit * ctorInit ) {
904 visit_children = false;
905 // xxx - fallback init has been removed => remove fallbackInit function and remove complexity from FixInit and remove C-init from ConstructorInit
906 maybeAccept( ctorInit->ctor, *visitor );
907 maybeAccept( ctorInit->dtor, *visitor );
908
909 // found a constructor - can get rid of C-style initializer
910 delete ctorInit->init;
911 ctorInit->init = nullptr;
912
913 // intrinsic single parameter constructors and destructors do nothing. Since this was
914 // implicitly generated, there's no way for it to have side effects, so get rid of it
915 // to clean up generated code.
916 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->ctor ) ) {
917 delete ctorInit->ctor;
918 ctorInit->ctor = nullptr;
919 }
920
921 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->dtor ) ) {
922 delete ctorInit->dtor;
923 ctorInit->dtor = nullptr;
924 }
925
926 // xxx - todo -- what about arrays?
927 // if ( dtor == nullptr && InitTweak::isIntrinsicCallStmt( ctorInit->get_ctor() ) ) {
928 // // can reduce the constructor down to a SingleInit using the
929 // // second argument from the ctor call, since
930 // delete ctorInit->get_ctor();
931 // ctorInit->set_ctor( nullptr );
932
933 // Expression * arg =
934 // ctorInit->set_init( new SingleInit( arg ) );
935 // }
936 }
937
938 ///////////////////////////////////////////////////////////////////////////
939 //
940 // *** NEW RESOLVER ***
941 //
942 ///////////////////////////////////////////////////////////////////////////
943
944 namespace {
945 /// Finds deleted expressions in an expression tree
946 struct DeleteFinder_new final : public ast::WithShortCircuiting {
947 const ast::DeletedExpr * delExpr = nullptr;
948
949 void previsit( const ast::DeletedExpr * expr ) {
950 if ( delExpr ) { visit_children = false; }
951 else { delExpr = expr; }
952 }
953
954 void previsit( const ast::Expr * ) {
955 if ( delExpr ) { visit_children = false; }
956 }
957 };
958
959 /// Check if this expression is or includes a deleted expression
960 const ast::DeletedExpr * findDeletedExpr( const ast::Expr * expr ) {
961 ast::Pass<DeleteFinder_new> finder;
962 expr->accept( finder );
963 return finder.pass.delExpr;
964 }
965
966 /// always-accept candidate filter
967 bool anyCandidate( const Candidate & ) { return true; }
968
969 /// Calls the CandidateFinder and finds the single best candidate
970 CandidateRef findUnfinishedKindExpression(
971 const ast::Expr * untyped, const ast::SymbolTable & symtab, const std::string & kind,
972 std::function<bool(const Candidate &)> pred = anyCandidate, ResolvMode mode = {}
973 ) {
974 if ( ! untyped ) return nullptr;
975
976 // xxx - this isn't thread-safe, but should work until we parallelize the resolver
977 static unsigned recursion_level = 0;
978
979 ++recursion_level;
980 ast::TypeEnvironment env;
981 CandidateFinder finder{ symtab, env };
982 finder.find( untyped, recursion_level == 1 ? mode.atTopLevel() : mode );
983 --recursion_level;
984
985 // produce a filtered list of candidates
986 CandidateList candidates;
987 for ( auto & cand : finder.candidates ) {
988 if ( pred( *cand ) ) { candidates.emplace_back( cand ); }
989 }
990
991 // produce invalid error if no candidates
992 if ( candidates.empty() ) {
993 SemanticError( untyped,
994 toString( "No reasonable alternatives for ", kind, (kind != "" ? " " : ""),
995 "expression: ") );
996 }
997
998 // search for cheapest candidate
999 CandidateList winners;
1000 bool seen_undeleted = false;
1001 for ( CandidateRef & cand : candidates ) {
1002 int c = winners.empty() ? -1 : cand->cost.compare( winners.front()->cost );
1003
1004 if ( c > 0 ) continue; // skip more expensive than winner
1005
1006 if ( c < 0 ) {
1007 // reset on new cheapest
1008 seen_undeleted = ! findDeletedExpr( cand->expr );
1009 winners.clear();
1010 } else /* if ( c == 0 ) */ {
1011 if ( findDeletedExpr( cand->expr ) ) {
1012 // skip deleted expression if already seen one equivalent-cost not
1013 if ( seen_undeleted ) continue;
1014 } else if ( ! seen_undeleted ) {
1015 // replace list of equivalent-cost deleted expressions with one non-deleted
1016 winners.clear();
1017 seen_undeleted = true;
1018 }
1019 }
1020
1021 winners.emplace_back( std::move( cand ) );
1022 }
1023
1024 // promote candidate.cvtCost to .cost
1025 for ( CandidateRef & cand : winners ) {
1026 cand->cost = cand->cvtCost;
1027 }
1028
1029 // produce ambiguous errors, if applicable
1030 if ( winners.size() != 1 ) {
1031 std::ostringstream stream;
1032 stream << "Cannot choose between " << winners.size() << " alternatives for "
1033 << kind << (kind != "" ? " " : "") << "expression\n";
1034 ast::print( stream, untyped );
1035 stream << " Alternatives are:\n";
1036 print( stream, winners, 1 );
1037 SemanticError( untyped->location, stream.str() );
1038 }
1039
1040 // single selected choice
1041 CandidateRef & choice = winners.front();
1042
1043 // fail on only expression deleted
1044 if ( ! seen_undeleted ) {
1045 SemanticError( untyped->location, choice->expr.get(), "Unique best alternative "
1046 "includes deleted identifier in " );
1047 }
1048
1049 return std::move( choice );
1050 }
1051
1052 /// Strips extraneous casts out of an expression
1053 struct StripCasts_new final {
1054 const ast::Expr * postmutate( const ast::CastExpr * castExpr ) {
1055 if (
1056 castExpr->isGenerated
1057 && typesCompatible( castExpr->arg->result, castExpr->result )
1058 ) {
1059 // generated cast is the same type as its argument, remove it after keeping env
1060 return ast::mutate_field(
1061 castExpr->arg.get(), &ast::Expr::env, castExpr->env );
1062 }
1063 return castExpr;
1064 }
1065
1066 static void strip( ast::ptr< ast::Expr > & expr ) {
1067 ast::Pass< StripCasts_new > stripper;
1068 expr = expr->accept( stripper );
1069 }
1070 };
1071
1072 /// Swaps argument into expression pointer, saving original environment
1073 void swap_and_save_env( ast::ptr< ast::Expr > & expr, const ast::Expr * newExpr ) {
1074 ast::ptr< ast::TypeSubstitution > env = expr->env;
1075 expr.set_and_mutate( newExpr )->env = env;
1076 }
1077
1078 /// Removes cast to type of argument (unlike StripCasts, also handles non-generated casts)
1079 void removeExtraneousCast( ast::ptr<ast::Expr> & expr, const ast::SymbolTable & symtab ) {
1080 if ( const ast::CastExpr * castExpr = expr.as< ast::CastExpr >() ) {
1081 if ( typesCompatible( castExpr->arg->result, castExpr->result, symtab ) ) {
1082 // cast is to the same type as its argument, remove it
1083 swap_and_save_env( expr, castExpr->arg );
1084 }
1085 }
1086 }
1087
1088 /// Establish post-resolver invariants for expressions
1089 void finishExpr(
1090 ast::ptr< ast::Expr > & expr, const ast::TypeEnvironment & env,
1091 const ast::TypeSubstitution * oldenv = nullptr
1092 ) {
1093 // set up new type substitution for expression
1094 ast::ptr< ast::TypeSubstitution > newenv =
1095 oldenv ? oldenv : new ast::TypeSubstitution{};
1096 env.writeToSubstitution( *newenv.get_and_mutate() );
1097 expr.get_and_mutate()->env = std::move( newenv );
1098 // remove unncecessary casts
1099 StripCasts_new::strip( expr );
1100 }
1101
1102 /// Find the expression candidate that is the unique best match for `untyped` in a `void`
1103 /// context.
1104 ast::ptr< ast::Expr > resolveInVoidContext(
1105 const ast::Expr * expr, const ast::SymbolTable & symtab, ast::TypeEnvironment & env
1106 ) {
1107 assertf( expr, "expected a non-null expression" );
1108
1109 // set up and resolve expression cast to void
1110 ast::CastExpr * untyped = new ast::CastExpr{ expr->location, expr };
1111 CandidateRef choice = findUnfinishedKindExpression(
1112 untyped, symtab, "", anyCandidate, ResolvMode::withAdjustment() );
1113
1114 // a cast expression has either 0 or 1 interpretations (by language rules);
1115 // if 0, an exception has already been thrown, and this code will not run
1116 const ast::CastExpr * castExpr = choice->expr.strict_as< ast::CastExpr >();
1117 env = std::move( choice->env );
1118
1119 return castExpr->arg;
1120 }
1121
1122 /// Resolve `untyped` to the expression whose candidate is the best match for a `void`
1123 /// context.
1124 ast::ptr< ast::Expr > findVoidExpression(
1125 const ast::Expr * untyped, const ast::SymbolTable & symtab
1126 ) {
1127 resetTyVarRenaming();
1128 ast::TypeEnvironment env;
1129 ast::ptr< ast::Expr > newExpr = resolveInVoidContext( untyped, symtab, env );
1130 finishExpr( newExpr, env, untyped->env );
1131 return newExpr;
1132 }
1133
1134 /// resolve `untyped` to the expression whose candidate satisfies `pred` with the
1135 /// lowest cost, returning the resolved version
1136 ast::ptr< ast::Expr > findKindExpression(
1137 const ast::Expr * untyped, const ast::SymbolTable & symtab,
1138 std::function<bool(const Candidate &)> pred = anyCandidate,
1139 const std::string & kind = "", ResolvMode mode = {}
1140 ) {
1141 if ( ! untyped ) return {};
1142 CandidateRef choice =
1143 findUnfinishedKindExpression( untyped, symtab, kind, pred, mode );
1144 finishExpr( choice->expr, choice->env, untyped->env );
1145 return std::move( choice->expr );
1146 }
1147
1148 /// Resolve `untyped` to the single expression whose candidate is the best match for the
1149 /// given type.
1150 ast::ptr< ast::Expr > findSingleExpression(
1151 const ast::Expr * untyped, const ast::Type * type, const ast::SymbolTable & symtab
1152 ) {
1153 assert( untyped && type );
1154 const ast::Expr * castExpr = new ast::CastExpr{ untyped->location, untyped, type };
1155 ast::ptr< ast::Expr > newExpr = findKindExpression( castExpr, symtab );
1156 removeExtraneousCast( newExpr, symtab );
1157 return newExpr;
1158 }
1159
1160 /// Predicate for "Candidate has integral type"
1161 bool hasIntegralType( const Candidate & i ) {
1162 const ast::Type * type = i.expr->result;
1163
1164 if ( auto bt = dynamic_cast< const ast::BasicType * >( type ) ) {
1165 return bt->isInteger();
1166 } else if (
1167 dynamic_cast< const ast::EnumInstType * >( type )
1168 || dynamic_cast< const ast::ZeroType * >( type )
1169 || dynamic_cast< const ast::OneType * >( type )
1170 ) {
1171 return true;
1172 } else return false;
1173 }
1174
1175 /// Resolve `untyped` as an integral expression, returning the resolved version
1176 ast::ptr< ast::Expr > findIntegralExpression(
1177 const ast::Expr * untyped, const ast::SymbolTable & symtab
1178 ) {
1179 return findKindExpression( untyped, symtab, hasIntegralType, "condition" );
1180 }
1181
1182 /// check if a type is a character type
1183 bool isCharType( const ast::Type * t ) {
1184 if ( auto bt = dynamic_cast< const ast::BasicType * >( t ) ) {
1185 return bt->kind == ast::BasicType::Char
1186 || bt->kind == ast::BasicType::SignedChar
1187 || bt->kind == ast::BasicType::UnsignedChar;
1188 }
1189 return false;
1190 }
1191 }
1192
1193 class Resolver_new final
1194 : public ast::WithSymbolTable, public ast::WithGuards,
1195 public ast::WithVisitorRef<Resolver_new>, public ast::WithShortCircuiting,
1196 public ast::WithStmtsToAdd<> {
1197
1198 ast::ptr< ast::Type > functionReturn = nullptr;
1199 ast::CurrentObject currentObject;
1200 bool inEnumDecl = false;
1201
1202 public:
1203 Resolver_new() = default;
1204 Resolver_new( const ast::SymbolTable & syms ) { symtab = syms; }
1205
1206 void previsit( const ast::FunctionDecl * );
1207 const ast::FunctionDecl * postvisit( const ast::FunctionDecl * );
1208 void previsit( const ast::ObjectDecl * );
1209 void previsit( const ast::EnumDecl * );
1210 const ast::StaticAssertDecl * previsit( const ast::StaticAssertDecl * );
1211
1212 void previsit( const ast::ArrayType * );
1213 void previsit( const ast::PointerType * );
1214
1215 const ast::ExprStmt * previsit( const ast::ExprStmt * );
1216 const ast::AsmExpr * previsit( const ast::AsmExpr * );
1217 const ast::AsmStmt * previsit( const ast::AsmStmt * );
1218 const ast::IfStmt * previsit( const ast::IfStmt * );
1219 const ast::WhileStmt * previsit( const ast::WhileStmt * );
1220 const ast::ForStmt * previsit( const ast::ForStmt * );
1221 const ast::SwitchStmt * previsit( const ast::SwitchStmt * );
1222 const ast::CaseStmt * previsit( const ast::CaseStmt * );
1223 const ast::BranchStmt * previsit( const ast::BranchStmt * );
1224 const ast::ReturnStmt * previsit( const ast::ReturnStmt * );
1225 const ast::ThrowStmt * previsit( const ast::ThrowStmt * );
1226 const ast::CatchStmt * previsit( const ast::CatchStmt * );
1227 void previsit( const ast::WaitForStmt * );
1228
1229 const ast::SingleInit * previsit( const ast::SingleInit * );
1230 const ast::ListInit * previsit( const ast::ListInit * );
1231 void previsit( const ast::ConstructorInit * );
1232 };
1233
1234 void resolve( std::list< ast::ptr<ast::Decl> >& translationUnit ) {
1235 ast::Pass<Resolver_new> resolver;
1236 accept_all( translationUnit, resolver );
1237 }
1238
1239 void Resolver_new::previsit( const ast::FunctionDecl * functionDecl ) {
1240 GuardValue( functionReturn );
1241 functionReturn = extractResultType( functionDecl->type );
1242 }
1243
1244 const ast::FunctionDecl * Resolver_new::postvisit( const ast::FunctionDecl * functionDecl ) {
1245 // default value expressions have an environment which shouldn't be there and trips up
1246 // later passes.
1247 ast::ptr< ast::FunctionDecl > ret = functionDecl;
1248 for ( unsigned i = 0; i < functionDecl->type->params.size(); ++i ) {
1249 const ast::ptr<ast::DeclWithType> & d = functionDecl->type->params[i];
1250
1251 if ( const ast::ObjectDecl * obj = d.as< ast::ObjectDecl >() ) {
1252 if ( const ast::SingleInit * init = obj->init.as< ast::SingleInit >() ) {
1253 if ( init->value->env == nullptr ) continue;
1254 // clone initializer minus the initializer environment
1255 ast::chain_mutate( ret )
1256 ( &ast::FunctionDecl::type )
1257 ( &ast::FunctionType::params )[i]
1258 ( &ast::ObjectDecl::init )
1259 ( &ast::SingleInit::value )->env = nullptr;
1260
1261 assert( functionDecl != ret.get() || functionDecl->unique() );
1262 assert( ! ret->type->params[i].strict_as< ast::ObjectDecl >()->init.strict_as< ast::SingleInit >()->value->env );
1263 }
1264 }
1265 }
1266 return ret.get();
1267 }
1268
1269 void Resolver_new::previsit( const ast::ObjectDecl * objectDecl ) {
1270 // To handle initialization of routine pointers [e.g. int (*fp)(int) = foo()],
1271 // class-variable `initContext` is changed multiple times because the LHS is analyzed
1272 // twice. The second analysis changes `initContext` because a function type can contain
1273 // object declarations in the return and parameter types. Therefore each value of
1274 // `initContext` is retained so the type on the first analysis is preserved and used for
1275 // selecting the RHS.
1276 GuardValue( currentObject );
1277 currentObject = ast::CurrentObject{ objectDecl->location, objectDecl->get_type() };
1278 if ( inEnumDecl && dynamic_cast< const ast::EnumInstType * >( objectDecl->get_type() ) ) {
1279 // enumerator initializers should not use the enum type to initialize, since the
1280 // enum type is still incomplete at this point. Use `int` instead.
1281 currentObject = ast::CurrentObject{
1282 objectDecl->location, new ast::BasicType{ ast::BasicType::SignedInt } };
1283 }
1284 }
1285
1286 void Resolver_new::previsit( const ast::EnumDecl * ) {
1287 // in case we decide to allow nested enums
1288 GuardValue( inEnumDecl );
1289 inEnumDecl = false;
1290 }
1291
1292 const ast::StaticAssertDecl * Resolver_new::previsit(
1293 const ast::StaticAssertDecl * assertDecl
1294 ) {
1295 return ast::mutate_field(
1296 assertDecl, &ast::StaticAssertDecl::cond,
1297 findIntegralExpression( assertDecl->cond, symtab ) );
1298 }
1299
1300 template< typename PtrType >
1301 void handlePtrType( const PtrType * type, const ast::SymbolTable & symtab ) {
1302 #warning unimplemented; needs support for new Validate::SizeType global
1303 (void)type; (void)symtab;
1304 assert( false );
1305 }
1306
1307 void Resolver_new::previsit( const ast::ArrayType * at ) {
1308 handlePtrType( at, symtab );
1309 }
1310
1311 void Resolver_new::previsit( const ast::PointerType * pt ) {
1312 handlePtrType( pt, symtab );
1313 }
1314
1315 const ast::ExprStmt * Resolver_new::previsit( const ast::ExprStmt * exprStmt ) {
1316 visit_children = false;
1317 assertf( exprStmt->expr, "ExprStmt has null expression in resolver" );
1318
1319 return ast::mutate_field(
1320 exprStmt, &ast::ExprStmt::expr, findVoidExpression( exprStmt->expr, symtab ) );
1321 }
1322
1323 const ast::AsmExpr * Resolver_new::previsit( const ast::AsmExpr * asmExpr ) {
1324 visit_children = false;
1325
1326 asmExpr = ast::mutate_field(
1327 asmExpr, &ast::AsmExpr::operand, findVoidExpression( asmExpr->operand, symtab ) );
1328
1329 if ( asmExpr->inout ) {
1330 asmExpr = ast::mutate_field(
1331 asmExpr, &ast::AsmExpr::inout, findVoidExpression( asmExpr->inout, symtab ) );
1332 }
1333
1334 return asmExpr;
1335 }
1336
1337 const ast::AsmStmt * Resolver_new::previsit( const ast::AsmStmt * asmStmt ) {
1338 visitor->maybe_accept( asmStmt, &ast::AsmStmt::input );
1339 visitor->maybe_accept( asmStmt, &ast::AsmStmt::output );
1340 visit_children = false;
1341 return asmStmt;
1342 }
1343
1344 const ast::IfStmt * Resolver_new::previsit( const ast::IfStmt * ifStmt ) {
1345 return ast::mutate_field(
1346 ifStmt, &ast::IfStmt::cond, findIntegralExpression( ifStmt->cond, symtab ) );
1347 }
1348
1349 const ast::WhileStmt * Resolver_new::previsit( const ast::WhileStmt * whileStmt ) {
1350 return ast::mutate_field(
1351 whileStmt, &ast::WhileStmt::cond, findIntegralExpression( whileStmt->cond, symtab ) );
1352 }
1353
1354 const ast::ForStmt * Resolver_new::previsit( const ast::ForStmt * forStmt ) {
1355 if ( forStmt->cond ) {
1356 forStmt = ast::mutate_field(
1357 forStmt, &ast::ForStmt::cond, findIntegralExpression( forStmt->cond, symtab ) );
1358 }
1359
1360 if ( forStmt->inc ) {
1361 forStmt = ast::mutate_field(
1362 forStmt, &ast::ForStmt::inc, findVoidExpression( forStmt->inc, symtab ) );
1363 }
1364
1365 return forStmt;
1366 }
1367
1368 const ast::SwitchStmt * Resolver_new::previsit( const ast::SwitchStmt * switchStmt ) {
1369 GuardValue( currentObject );
1370 switchStmt = ast::mutate_field(
1371 switchStmt, &ast::SwitchStmt::cond,
1372 findIntegralExpression( switchStmt->cond, symtab ) );
1373 currentObject = ast::CurrentObject{ switchStmt->location, switchStmt->cond->result };
1374 return switchStmt;
1375 }
1376
1377 const ast::CaseStmt * Resolver_new::previsit( const ast::CaseStmt * caseStmt ) {
1378 if ( caseStmt->cond ) {
1379 std::deque< ast::InitAlternative > initAlts = currentObject.getOptions();
1380 assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral "
1381 "expression." );
1382
1383 const ast::Expr * untyped =
1384 new ast::CastExpr{ caseStmt->location, caseStmt->cond, initAlts.front().type };
1385 ast::ptr< ast::Expr > newExpr = findKindExpression( untyped, symtab );
1386
1387 // case condition cannot have a cast in C, so it must be removed here, regardless of
1388 // whether it would perform a conversion.
1389 if ( const ast::CastExpr * castExpr = newExpr.as< ast::CastExpr >() ) {
1390 swap_and_save_env( newExpr, castExpr->arg );
1391 }
1392
1393 caseStmt = ast::mutate_field( caseStmt, &ast::CaseStmt::cond, newExpr );
1394 }
1395 return caseStmt;
1396 }
1397
1398 const ast::BranchStmt * Resolver_new::previsit( const ast::BranchStmt * branchStmt ) {
1399 visit_children = false;
1400 // must resolve the argument of a computed goto
1401 if ( branchStmt->kind == ast::BranchStmt::Goto && branchStmt->computedTarget ) {
1402 // computed goto argument is void*
1403 branchStmt = ast::mutate_field(
1404 branchStmt, &ast::BranchStmt::computedTarget,
1405 findSingleExpression(
1406 branchStmt->computedTarget, new ast::PointerType{ new ast::VoidType{} },
1407 symtab ) );
1408 }
1409 return branchStmt;
1410 }
1411
1412 const ast::ReturnStmt * Resolver_new::previsit( const ast::ReturnStmt * returnStmt ) {
1413 visit_children = false;
1414 if ( returnStmt->expr ) {
1415 returnStmt = ast::mutate_field(
1416 returnStmt, &ast::ReturnStmt::expr,
1417 findSingleExpression( returnStmt->expr, functionReturn, symtab ) );
1418 }
1419 return returnStmt;
1420 }
1421
1422 const ast::ThrowStmt * Resolver_new::previsit( const ast::ThrowStmt * throwStmt ) {
1423 visit_children = false;
1424 if ( throwStmt->expr ) {
1425 const ast::StructDecl * exceptionDecl =
1426 symtab.lookupStruct( "__cfaabi_ehm__base_exception_t" );
1427 assert( exceptionDecl );
1428 ast::ptr< ast::Type > exceptType =
1429 new ast::PointerType{ new ast::StructInstType{ exceptionDecl } };
1430 throwStmt = ast::mutate_field(
1431 throwStmt, &ast::ThrowStmt::expr,
1432 findSingleExpression( throwStmt->expr, exceptType, symtab ) );
1433 }
1434 return throwStmt;
1435 }
1436
1437 const ast::CatchStmt * Resolver_new::previsit( const ast::CatchStmt * catchStmt ) {
1438 if ( catchStmt->cond ) {
1439 ast::ptr< ast::Type > boolType = new ast::BasicType{ ast::BasicType::Bool };
1440 catchStmt = ast::mutate_field(
1441 catchStmt, &ast::CatchStmt::cond,
1442 findSingleExpression( catchStmt->cond, boolType, symtab ) );
1443 }
1444 return catchStmt;
1445 }
1446
1447 void Resolver_new::previsit( const ast::WaitForStmt * stmt ) {
1448 #warning unimplemented; Resolver port in progress
1449 (void)stmt;
1450 assert(false);
1451 }
1452
1453
1454
1455 const ast::SingleInit * Resolver_new::previsit( const ast::SingleInit * singleInit ) {
1456 visit_children = false;
1457 // resolve initialization using the possibilities as determined by the `currentObject`
1458 // cursor.
1459 ast::Expr * untyped = new ast::UntypedInitExpr{
1460 singleInit->location, singleInit->value, currentObject.getOptions() };
1461 ast::ptr<ast::Expr> newExpr = findKindExpression( untyped, symtab );
1462 const ast::InitExpr * initExpr = newExpr.strict_as< ast::InitExpr >();
1463
1464 // move cursor to the object that is actually initialized
1465 currentObject.setNext( initExpr->designation );
1466
1467 // discard InitExpr wrapper and retain relevant pieces.
1468 // `initExpr` may have inferred params in the case where the expression specialized a
1469 // function pointer, and newExpr may already have inferParams of its own, so a simple
1470 // swap is not sufficient
1471 ast::Expr::InferUnion inferred = initExpr->inferred;
1472 swap_and_save_env( newExpr, initExpr->expr );
1473 newExpr.get_and_mutate()->inferred.splice( std::move(inferred) );
1474
1475 // get the actual object's type (may not exactly match what comes back from the resolver
1476 // due to conversions)
1477 const ast::Type * initContext = currentObject.getCurrentType();
1478
1479 removeExtraneousCast( newExpr, symtab );
1480
1481 // check if actual object's type is char[]
1482 if ( auto at = dynamic_cast< const ast::ArrayType * >( initContext ) ) {
1483 if ( isCharType( at->base ) ) {
1484 // check if the resolved type is char*
1485 if ( auto pt = newExpr->result.as< ast::PointerType >() ) {
1486 if ( isCharType( pt->base ) ) {
1487 // strip cast if we're initializing a char[] with a char*
1488 // e.g. char x[] = "hello"
1489 if ( auto ce = newExpr.as< ast::CastExpr >() ) {
1490 swap_and_save_env( newExpr, ce->arg );
1491 }
1492 }
1493 }
1494 }
1495 }
1496
1497 // move cursor to next object in preparation for next initializer
1498 currentObject.increment();
1499
1500 // set initializer expression to resolved expression
1501 return ast::mutate_field( singleInit, &ast::SingleInit::value, std::move(newExpr) );
1502 }
1503
1504 const ast::ListInit * Resolver_new::previsit( const ast::ListInit * listInit ) {
1505 // move cursor into brace-enclosed initializer-list
1506 currentObject.enterListInit( listInit->location );
1507
1508 assert( listInit->designations.size() == listInit->initializers.size() );
1509 for ( unsigned i = 0; i < listInit->designations.size(); ++i ) {
1510 // iterate designations and initializers in pairs, moving the cursor to the current
1511 // designated object and resolving the initializer against that object
1512 #warning unimplemented; Resolver port in progress
1513 assert(false);
1514 }
1515
1516 visit_children = false;
1517 return listInit;
1518 }
1519
1520 void Resolver_new::previsit( const ast::ConstructorInit * ctorInit ) {
1521 #warning unimplemented; Resolver port in progress
1522 (void)ctorInit;
1523 assert(false);
1524 }
1525
1526} // namespace ResolvExpr
1527
1528// Local Variables: //
1529// tab-width: 4 //
1530// mode: c++ //
1531// compile-command: "make install" //
1532// End: //
Note: See TracBrowser for help on using the repository browser.