source: src/ResolvExpr/Resolver.cc@ f1b1e4c

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors ctor deferred_resn demangler enum forall-pointer-decay gc_noraii jacob/cs343-translation jenkins-sandbox memory new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since f1b1e4c was f1b1e4c, checked in by Rob Schluntz <rschlunt@…>, 9 years ago

can construct global const objects, except with intrinsic constructors

  • Property mode set to 100644
File size: 20.7 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Resolver.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 12:17:01 2015
11// Last Modified By : Rob Schluntz
12// Last Modified On : Fri May 13 11:36:40 2016
13// Update Count : 203
14//
15
16#include "Resolver.h"
17#include "AlternativeFinder.h"
18#include "Alternative.h"
19#include "RenameVars.h"
20#include "ResolveTypeof.h"
21#include "SynTree/Statement.h"
22#include "SynTree/Type.h"
23#include "SynTree/Expression.h"
24#include "SynTree/Initializer.h"
25#include "SymTab/Indexer.h"
26#include "Common/utility.h"
27#include "InitTweak/InitTweak.h"
28
29#include <iostream>
30using namespace std;
31
32namespace ResolvExpr {
33 class Resolver : public SymTab::Indexer {
34 public:
35 Resolver() : SymTab::Indexer( false ), switchType( 0 ) {}
36
37 virtual void visit( FunctionDecl *functionDecl );
38 virtual void visit( ObjectDecl *functionDecl );
39 virtual void visit( TypeDecl *typeDecl );
40
41 virtual void visit( ArrayType * at );
42
43 virtual void visit( ExprStmt *exprStmt );
44 virtual void visit( AsmExpr *asmExpr );
45 virtual void visit( AsmStmt *asmStmt );
46 virtual void visit( IfStmt *ifStmt );
47 virtual void visit( WhileStmt *whileStmt );
48 virtual void visit( ForStmt *forStmt );
49 virtual void visit( SwitchStmt *switchStmt );
50 virtual void visit( ChooseStmt *switchStmt );
51 virtual void visit( CaseStmt *caseStmt );
52 virtual void visit( BranchStmt *branchStmt );
53 virtual void visit( ReturnStmt *returnStmt );
54 virtual void visit( ImplicitCtorDtorStmt * impCtorDtorStmt );
55
56 virtual void visit( SingleInit *singleInit );
57 virtual void visit( ListInit *listInit );
58 virtual void visit( ConstructorInit *ctorInit );
59 private:
60 typedef std::list< Initializer * >::iterator InitIterator;
61
62 void resolveAggrInit( AggregateDecl *, InitIterator &, InitIterator & );
63 void resolveSingleAggrInit( Declaration *, InitIterator &, InitIterator & );
64 void fallbackInit( ConstructorInit * ctorInit );
65 std::list< Type * > functionReturn;
66 Type *initContext;
67 Type *switchType;
68 };
69
70 void resolve( std::list< Declaration * > translationUnit ) {
71 Resolver resolver;
72 acceptAll( translationUnit, resolver );
73#if 0
74 resolver.print( cerr );
75 for ( std::list< Declaration * >::iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) {
76 (*i)->print( std::cerr );
77 (*i)->accept( resolver );
78 } // for
79#endif
80 }
81
82 Expression *resolveInVoidContext( Expression *expr, const SymTab::Indexer &indexer ) {
83 TypeEnvironment env;
84 return resolveInVoidContext( expr, indexer, env );
85 }
86
87
88 namespace {
89 void finishExpr( Expression *expr, const TypeEnvironment &env ) {
90 expr->set_env( new TypeSubstitution );
91 env.makeSubstitution( *expr->get_env() );
92 }
93 } // namespace
94
95 Expression *findVoidExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
96 global_renamer.reset();
97 TypeEnvironment env;
98 Expression *newExpr = resolveInVoidContext( untyped, indexer, env );
99 finishExpr( newExpr, env );
100 return newExpr;
101 }
102
103 namespace {
104 Expression *findSingleExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
105 TypeEnvironment env;
106 AlternativeFinder finder( indexer, env );
107 finder.find( untyped );
108#if 0
109 if ( finder.get_alternatives().size() != 1 ) {
110 std::cout << "untyped expr is ";
111 untyped->print( std::cout );
112 std::cout << std::endl << "alternatives are:";
113 for ( std::list< Alternative >::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
114 i->print( std::cout );
115 } // for
116 } // if
117#endif
118 assert( finder.get_alternatives().size() == 1 );
119 Alternative &choice = finder.get_alternatives().front();
120 Expression *newExpr = choice.expr->clone();
121 finishExpr( newExpr, choice.env );
122 return newExpr;
123 }
124
125 bool isIntegralType( Type *type ) {
126 if ( dynamic_cast< EnumInstType * >( type ) ) {
127 return true;
128 } else if ( BasicType *bt = dynamic_cast< BasicType * >( type ) ) {
129 return bt->isInteger();
130 } else {
131 return false;
132 } // if
133 }
134
135 Expression *findIntegralExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
136 TypeEnvironment env;
137 AlternativeFinder finder( indexer, env );
138 finder.find( untyped );
139#if 0
140 if ( finder.get_alternatives().size() != 1 ) {
141 std::cout << "untyped expr is ";
142 untyped->print( std::cout );
143 std::cout << std::endl << "alternatives are:";
144 for ( std::list< Alternative >::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
145 i->print( std::cout );
146 } // for
147 } // if
148#endif
149 Expression *newExpr = 0;
150 const TypeEnvironment *newEnv = 0;
151 for ( AltList::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
152 if ( i->expr->get_results().size() == 1 && isIntegralType( i->expr->get_results().front() ) ) {
153 if ( newExpr ) {
154 throw SemanticError( "Too many interpretations for case control expression", untyped );
155 } else {
156 newExpr = i->expr->clone();
157 newEnv = &i->env;
158 } // if
159 } // if
160 } // for
161 if ( ! newExpr ) {
162 throw SemanticError( "No interpretations for case control expression", untyped );
163 } // if
164 finishExpr( newExpr, *newEnv );
165 return newExpr;
166 }
167
168 }
169
170 void Resolver::visit( ObjectDecl *objectDecl ) {
171 Type *new_type = resolveTypeof( objectDecl->get_type(), *this );
172 objectDecl->set_type( new_type );
173 // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that class-variable
174 // initContext is changed multiple time because the LHS is analysed twice. The second analysis changes
175 // initContext because of a function type can contain object declarations in the return and parameter types. So
176 // each value of initContext is retained, so the type on the first analysis is preserved and used for selecting
177 // the RHS.
178 Type *temp = initContext;
179 initContext = new_type;
180 SymTab::Indexer::visit( objectDecl );
181 initContext = temp;
182 }
183
184 void Resolver::visit( ArrayType * at ) {
185 if ( at->get_dimension() ) {
186 BasicType arrayLenType = BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );
187 CastExpr *castExpr = new CastExpr( at->get_dimension(), arrayLenType.clone() );
188 Expression *newExpr = findSingleExpression( castExpr, *this );
189 delete at->get_dimension();
190 at->set_dimension( newExpr );
191 }
192 Visitor::visit( at );
193 }
194
195 void Resolver::visit( TypeDecl *typeDecl ) {
196 if ( typeDecl->get_base() ) {
197 Type *new_type = resolveTypeof( typeDecl->get_base(), *this );
198 typeDecl->set_base( new_type );
199 } // if
200 SymTab::Indexer::visit( typeDecl );
201 }
202
203 void Resolver::visit( FunctionDecl *functionDecl ) {
204#if 0
205 std::cout << "resolver visiting functiondecl ";
206 functionDecl->print( std::cout );
207 std::cout << std::endl;
208#endif
209 Type *new_type = resolveTypeof( functionDecl->get_type(), *this );
210 functionDecl->set_type( new_type );
211 std::list< Type * > oldFunctionReturn = functionReturn;
212 functionReturn.clear();
213 for ( std::list< DeclarationWithType * >::const_iterator i = functionDecl->get_functionType()->get_returnVals().begin(); i != functionDecl->get_functionType()->get_returnVals().end(); ++i ) {
214 functionReturn.push_back( (*i)->get_type() );
215 } // for
216 SymTab::Indexer::visit( functionDecl );
217 functionReturn = oldFunctionReturn;
218 }
219
220 void Resolver::visit( ExprStmt *exprStmt ) {
221 if ( exprStmt->get_expr() ) {
222 Expression *newExpr = findVoidExpression( exprStmt->get_expr(), *this );
223 delete exprStmt->get_expr();
224 exprStmt->set_expr( newExpr );
225 } // if
226 }
227
228 void Resolver::visit( AsmExpr *asmExpr ) {
229 Expression *newExpr = findVoidExpression( asmExpr->get_operand(), *this );
230 delete asmExpr->get_operand();
231 asmExpr->set_operand( newExpr );
232 if ( asmExpr->get_inout() ) {
233 newExpr = findVoidExpression( asmExpr->get_inout(), *this );
234 delete asmExpr->get_inout();
235 asmExpr->set_inout( newExpr );
236 } // if
237 }
238
239 void Resolver::visit( AsmStmt *asmStmt ) {
240 acceptAll( asmStmt->get_input(), *this);
241 acceptAll( asmStmt->get_output(), *this);
242 }
243
244 void Resolver::visit( IfStmt *ifStmt ) {
245 Expression *newExpr = findSingleExpression( ifStmt->get_condition(), *this );
246 delete ifStmt->get_condition();
247 ifStmt->set_condition( newExpr );
248 Visitor::visit( ifStmt );
249 }
250
251 void Resolver::visit( WhileStmt *whileStmt ) {
252 Expression *newExpr = findSingleExpression( whileStmt->get_condition(), *this );
253 delete whileStmt->get_condition();
254 whileStmt->set_condition( newExpr );
255 Visitor::visit( whileStmt );
256 }
257
258 void Resolver::visit( ForStmt *forStmt ) {
259 SymTab::Indexer::visit( forStmt );
260
261 if ( forStmt->get_condition() ) {
262 Expression * newExpr = findSingleExpression( forStmt->get_condition(), *this );
263 delete forStmt->get_condition();
264 forStmt->set_condition( newExpr );
265 } // if
266
267 if ( forStmt->get_increment() ) {
268 Expression * newExpr = findVoidExpression( forStmt->get_increment(), *this );
269 delete forStmt->get_increment();
270 forStmt->set_increment( newExpr );
271 } // if
272 }
273
274 template< typename SwitchClass >
275 void handleSwitchStmt( SwitchClass *switchStmt, SymTab::Indexer &visitor ) {
276 Expression *newExpr;
277 newExpr = findIntegralExpression( switchStmt->get_condition(), visitor );
278 delete switchStmt->get_condition();
279 switchStmt->set_condition( newExpr );
280
281 visitor.Visitor::visit( switchStmt );
282 }
283
284 void Resolver::visit( SwitchStmt *switchStmt ) {
285 handleSwitchStmt( switchStmt, *this );
286 }
287
288 void Resolver::visit( ChooseStmt *switchStmt ) {
289 handleSwitchStmt( switchStmt, *this );
290 }
291
292 void Resolver::visit( CaseStmt *caseStmt ) {
293 Visitor::visit( caseStmt );
294 }
295
296 void Resolver::visit( BranchStmt *branchStmt ) {
297 // must resolve the argument for a computed goto
298 if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement
299 if ( Expression * arg = branchStmt->get_computedTarget() ) {
300 VoidType v = Type::Qualifiers(); // cast to void * for the alternative finder
301 PointerType pt( Type::Qualifiers(), v.clone() );
302 CastExpr * castExpr = new CastExpr( arg, pt.clone() );
303 Expression * newExpr = findSingleExpression( castExpr, *this ); // find best expression
304 branchStmt->set_target( newExpr );
305 } // if
306 } // if
307 }
308
309 void Resolver::visit( ReturnStmt *returnStmt ) {
310 if ( returnStmt->get_expr() ) {
311 CastExpr *castExpr = new CastExpr( returnStmt->get_expr() );
312 cloneAll( functionReturn, castExpr->get_results() );
313 Expression *newExpr = findSingleExpression( castExpr, *this );
314 delete castExpr;
315 returnStmt->set_expr( newExpr );
316 } // if
317 }
318
319 template< typename T >
320 bool isCharType( T t ) {
321 if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) {
322 return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar ||
323 bt->get_kind() == BasicType::UnsignedChar;
324 }
325 return false;
326 }
327
328 void Resolver::visit( SingleInit *singleInit ) {
329 if ( singleInit->get_value() ) {
330#if 0
331 if (NameExpr * ne = dynamic_cast<NameExpr*>(singleInit->get_value())) {
332 string n = ne->get_name();
333 if (n == "0") {
334 initContext = new BasicType(Type::Qualifiers(),
335 BasicType::SignedInt);
336 } else {
337 DeclarationWithType * decl = lookupId( n );
338 initContext = decl->get_type();
339 }
340 } else if (ConstantExpr * e =
341 dynamic_cast<ConstantExpr*>(singleInit->get_value())) {
342 Constant *c = e->get_constant();
343 initContext = c->get_type();
344 } else {
345 assert(0);
346 }
347#endif
348 CastExpr *castExpr = new CastExpr( singleInit->get_value(), initContext->clone() );
349 Expression *newExpr = findSingleExpression( castExpr, *this );
350 delete castExpr;
351 singleInit->set_value( newExpr );
352
353 // check if initializing type is char[]
354 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
355 if ( isCharType( at->get_base() ) ) {
356 // check if the resolved type is char *
357 if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_results().front() ) ) {
358 if ( isCharType( pt->get_base() ) ) {
359 // strip cast if we're initializing a char[] with a char *, e.g. char x[] = "hello";
360 CastExpr *ce = dynamic_cast< CastExpr * >( newExpr );
361 singleInit->set_value( ce->get_arg() );
362 ce->set_arg( NULL );
363 delete ce;
364 }
365 }
366 }
367 }
368 } // if
369// singleInit->get_value()->accept( *this );
370 }
371
372 void Resolver::resolveSingleAggrInit( Declaration * dcl, InitIterator & init, InitIterator & initEnd ) {
373 DeclarationWithType * dt = dynamic_cast< DeclarationWithType * >( dcl );
374 assert( dt );
375 initContext = dt->get_type();
376 try {
377 if ( init == initEnd ) return; // stop when there are no more initializers
378 (*init)->accept( *this );
379 ++init; // made it past an initializer
380 } catch( SemanticError & ) {
381 // need to delve deeper, if you can
382 if ( StructInstType * sit = dynamic_cast< StructInstType * >( dt->get_type() ) ) {
383 resolveAggrInit( sit->get_baseStruct(), init, initEnd );
384 } else if ( UnionInstType * uit = dynamic_cast< UnionInstType * >( dt->get_type() ) ) {
385 resolveAggrInit( uit->get_baseUnion(), init, initEnd );
386 } else {
387 // member is not an aggregate type, so can't go any deeper
388
389 // might need to rethink what is being thrown
390 throw;
391 } // if
392 }
393 }
394
395 void Resolver::resolveAggrInit( AggregateDecl * aggr, InitIterator & init, InitIterator & initEnd ) {
396 if ( StructDecl * st = dynamic_cast< StructDecl * >( aggr ) ) {
397 // want to resolve each initializer to the members of the struct,
398 // but if there are more initializers than members we should stop
399 list< Declaration * >::iterator it = st->get_members().begin();
400 for ( ; it != st->get_members().end(); ++it) {
401 resolveSingleAggrInit( *it, init, initEnd );
402 }
403 } else if ( UnionDecl * un = dynamic_cast< UnionDecl * >( aggr ) ) {
404 // only resolve to the first member of a union
405 resolveSingleAggrInit( *un->get_members().begin(), init, initEnd );
406 } // if
407 }
408
409 void Resolver::visit( ListInit * listInit ) {
410 InitIterator iter = listInit->begin_initializers();
411 InitIterator end = listInit->end_initializers();
412
413 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
414 // resolve each member to the base type of the array
415 for ( ; iter != end; ++iter ) {
416 initContext = at->get_base();
417 (*iter)->accept( *this );
418 } // for
419 } else if ( StructInstType * st = dynamic_cast< StructInstType * >( initContext ) ) {
420 resolveAggrInit( st->get_baseStruct(), iter, end );
421 } else if ( UnionInstType *st = dynamic_cast< UnionInstType * >( initContext ) ) {
422 resolveAggrInit( st->get_baseUnion(), iter, end );
423 } else {
424 // basic types are handled here
425 Visitor::visit( listInit );
426 }
427
428#if 0
429 if ( ArrayType *at = dynamic_cast<ArrayType*>(initContext) ) {
430 std::list<Initializer *>::iterator iter( listInit->begin_initializers() );
431 for ( ; iter != listInit->end_initializers(); ++iter ) {
432 initContext = at->get_base();
433 (*iter)->accept( *this );
434 } // for
435 } else if ( StructInstType *st = dynamic_cast<StructInstType*>(initContext) ) {
436 StructDecl *baseStruct = st->get_baseStruct();
437 std::list<Declaration *>::iterator iter1( baseStruct->get_members().begin() );
438 std::list<Initializer *>::iterator iter2( listInit->begin_initializers() );
439 for ( ; iter1 != baseStruct->get_members().end() && iter2 != listInit->end_initializers(); ++iter2 ) {
440 if ( (*iter2)->get_designators().empty() ) {
441 DeclarationWithType *dt = dynamic_cast<DeclarationWithType *>( *iter1 );
442 initContext = dt->get_type();
443 (*iter2)->accept( *this );
444 ++iter1;
445 } else {
446 StructDecl *st = baseStruct;
447 iter1 = st->get_members().begin();
448 std::list<Expression *>::iterator iter3( (*iter2)->get_designators().begin() );
449 for ( ; iter3 != (*iter2)->get_designators().end(); ++iter3 ) {
450 NameExpr *key = dynamic_cast<NameExpr *>( *iter3 );
451 assert( key );
452 for ( ; iter1 != st->get_members().end(); ++iter1 ) {
453 if ( key->get_name() == (*iter1)->get_name() ) {
454 (*iter1)->print( cout );
455 cout << key->get_name() << endl;
456 ObjectDecl *fred = dynamic_cast<ObjectDecl *>( *iter1 );
457 assert( fred );
458 StructInstType *mary = dynamic_cast<StructInstType*>( fred->get_type() );
459 assert( mary );
460 st = mary->get_baseStruct();
461 iter1 = st->get_members().begin();
462 break;
463 } // if
464 } // for
465 } // for
466 ObjectDecl *fred = dynamic_cast<ObjectDecl *>( *iter1 );
467 assert( fred );
468 initContext = fred->get_type();
469 (*listInit->begin_initializers())->accept( *this );
470 } // if
471 } // for
472 } else if ( UnionInstType *st = dynamic_cast<UnionInstType*>(initContext) ) {
473 DeclarationWithType *dt = dynamic_cast<DeclarationWithType *>( *st->get_baseUnion()->get_members().begin() );
474 initContext = dt->get_type();
475 (*listInit->begin_initializers())->accept( *this );
476 } // if
477#endif
478 }
479
480 // ConstructorInit - fall back on C-style initializer
481 void Resolver::fallbackInit( ConstructorInit * ctorInit ) {
482 // could not find valid constructor, or found an intrinsic constructor
483 // fall back on C-style initializer
484 delete ctorInit->get_ctor();
485 ctorInit->set_ctor( NULL );
486 maybeAccept( ctorInit->get_init(), *this );
487 }
488
489 void Resolver::visit( ConstructorInit *ctorInit ) {
490 try {
491 maybeAccept( ctorInit->get_ctor(), *this );
492 maybeAccept( ctorInit->get_dtor(), *this );
493 } catch ( SemanticError ) {
494 // no alternatives for the constructor initializer - fallback on C-style initializer
495 // xxx - not sure if this makes a ton of sense - should maybe never be able to have this situation?
496 fallbackInit( ctorInit );
497 return;
498 }
499
500 // found a constructor - can get rid of C-style initializer
501 delete ctorInit->get_init();
502 ctorInit->set_init( NULL );
503
504 // intrinsic single parameter constructors and destructors do nothing. Since this was
505 // implicitly generated, there's no way for it to have side effects, so get rid of it
506 // to clean up generated code.
507 if ( InitTweak::isInstrinsicSingleArgCallStmt( ctorInit->get_ctor() ) ) {
508 delete ctorInit->get_ctor();
509 ctorInit->set_ctor( NULL );
510 }
511 if ( InitTweak::isInstrinsicSingleArgCallStmt( ctorInit->get_ctor() ) ) {
512 delete ctorInit->get_dtor();
513 ctorInit->set_dtor( NULL );
514 }
515 }
516
517 void Resolver::visit( ImplicitCtorDtorStmt * impCtorDtorStmt ) {
518 // this code is fairly gross. If VariableExpr didn't have its own results list then this could be cleaned up a bit
519 // by remembering the ObjectDecl in the ImplicitCtorDtorStmt and changing the ObjectDecl's type temporarily, but currently
520 // VariableExprs have their own type list which is manipulated in AlternativeFinder (e.g. in inferRecursive).
521
522 // before resolving ctor/dtor, need to remove type qualifiers from the first argument (the object being constructed)
523 Expression * callExpr = InitTweak::getCtorDtorCall( impCtorDtorStmt );
524 assert( callExpr );
525 Expression * constructee = InitTweak::getCallArg( callExpr, 0 );
526 Type * type = 0;
527 if ( UntypedExpr * plusExpr = dynamic_cast< UntypedExpr * >( constructee ) ) {
528 // constructee is <array>+<index>
529 // get Variable <array>, then get the base type of the VariableExpr - this is the type that needs to be fixed
530 Expression * arr = InitTweak::getCallArg( plusExpr, 0 );
531 assert( dynamic_cast< VariableExpr * >( arr ) );
532 assert( arr && arr->get_results().size() == 1 );
533 ArrayType * arrType = dynamic_cast< ArrayType * >( arr->get_results().front() );
534 assert( arrType );
535 type = arrType->get_base();
536 } else {
537 // otherwise, constructing a plain object, which means the object's address is being taken.
538 // Need to get the type of the VariableExpr object, because the AddressExpr is rebuilt and uses the
539 // type of the VariableExpr to do so.
540 assert( constructee->get_results().size() == 1 );
541 AddressExpr * addrExpr = dynamic_cast< AddressExpr * > ( constructee );
542 assert( addrExpr );
543 VariableExpr * varExpr = dynamic_cast< VariableExpr * >( addrExpr->get_arg() );
544 assert( varExpr && varExpr->get_results().size() == 1 );
545 type = varExpr->get_results().front();
546 }
547 // remember qualifiers so they can be replaced
548 Type::Qualifiers qualifiers = type->get_qualifiers();
549
550 // unfortunately, lvalue is considered a qualifier. For AddressExpr to resolve, its argument
551 // must have an lvalue qualified type, so remove all qualifiers except lvalue. If we ever
552 // remove lvalue as a qualifier, this can change to
553 // type->get_qualifiers() = Type::Qualifiers();
554 type->get_qualifiers() -= Type::Qualifiers(true, true, true, false, true, true);
555
556 // finally, resolve the ctor/dtor
557 impCtorDtorStmt->get_callStmt()->accept( *this );
558
559 // and reset type qualifiers after resolving
560 type->get_qualifiers() = qualifiers;
561 }
562} // namespace ResolvExpr
563
564// Local Variables: //
565// tab-width: 4 //
566// mode: c++ //
567// compile-command: "make install" //
568// End: //
Note: See TracBrowser for help on using the repository browser.