source: src/ResolvExpr/Resolver.cc@ d40555e

ADT ast-experimental
Last change on this file since d40555e was 8f06277, checked in by Andrew Beach <ajbeach@…>, 3 years ago

Some clean-up in Common/utility.h. Deleted some unused declarations and moved others to one of two new headers.

  • Property mode set to 100644
File size: 77.6 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Resolver.cc --
8//
9// Author : Aaron B. Moss
10// Created On : Sun May 17 12:17:01 2015
11// Last Modified By : Andrew Beach
12// Last Modified On : Wed Apr 20 10:41:00 2022
13// Update Count : 248
14//
15
16#include <cassert> // for strict_dynamic_cast, assert
17#include <memory> // for allocator, allocator_traits<...
18#include <tuple> // for get
19#include <vector> // for vector
20
21#include "Alternative.h" // for Alternative, AltList
22#include "AlternativeFinder.h" // for AlternativeFinder, resolveIn...
23#include "Candidate.hpp"
24#include "CandidateFinder.hpp"
25#include "CurrentObject.h" // for CurrentObject
26#include "RenameVars.h" // for RenameVars, global_renamer
27#include "Resolver.h"
28#include "ResolveTypeof.h"
29#include "ResolvMode.h" // for ResolvMode
30#include "typeops.h" // for extractResultType
31#include "Unify.h" // for unify
32#include "CompilationState.h"
33#include "AST/Chain.hpp"
34#include "AST/Decl.hpp"
35#include "AST/Init.hpp"
36#include "AST/Pass.hpp"
37#include "AST/Print.hpp"
38#include "AST/SymbolTable.hpp"
39#include "AST/Type.hpp"
40#include "Common/Eval.h" // for eval
41#include "Common/PassVisitor.h" // for PassVisitor
42#include "Common/SemanticError.h" // for SemanticError
43#include "Common/Stats/ResolveTime.h" // for ResolveTime::start(), ResolveTime::stop()
44#include "Common/utility.h" // for ValueGuard, group_iterate
45#include "InitTweak/GenInit.h"
46#include "InitTweak/InitTweak.h" // for isIntrinsicSingleArgCallStmt
47#include "ResolvExpr/TypeEnvironment.h" // for TypeEnvironment
48#include "SymTab/Autogen.h" // for SizeType
49#include "SymTab/Indexer.h" // for Indexer
50#include "SymTab/Mangler.h" // for Mangler
51#include "SynTree/Declaration.h" // for ObjectDecl, TypeDecl, Declar...
52#include "SynTree/Expression.h" // for Expression, CastExpr, InitExpr
53#include "SynTree/Initializer.h" // for ConstructorInit, SingleInit
54#include "SynTree/Statement.h" // for ForStmt, Statement, BranchStmt
55#include "SynTree/Type.h" // for Type, BasicType, PointerType
56#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
57#include "SynTree/Visitor.h" // for acceptAll, maybeAccept
58#include "Tuples/Tuples.h"
59#include "Validate/FindSpecialDecls.h" // for SizeType
60
61using namespace std;
62
63namespace ResolvExpr {
64 struct Resolver_old final : public WithIndexer, public WithGuards, public WithVisitorRef<Resolver_old>, public WithShortCircuiting, public WithStmtsToAdd {
65 Resolver_old() {}
66 Resolver_old( const SymTab::Indexer & other ) {
67 indexer = other;
68 }
69
70 void previsit( FunctionDecl * functionDecl );
71 void postvisit( FunctionDecl * functionDecl );
72 void previsit( ObjectDecl * objectDecll );
73 void previsit( EnumDecl * enumDecl );
74 void previsit( StaticAssertDecl * assertDecl );
75
76 void previsit( ArrayType * at );
77 void previsit( PointerType * at );
78
79 void previsit( ExprStmt * exprStmt );
80 void previsit( AsmExpr * asmExpr );
81 void previsit( AsmStmt * asmStmt );
82 void previsit( IfStmt * ifStmt );
83 void previsit( WhileDoStmt * whileDoStmt );
84 void previsit( ForStmt * forStmt );
85 void previsit( SwitchStmt * switchStmt );
86 void previsit( CaseStmt * caseStmt );
87 void previsit( BranchStmt * branchStmt );
88 void previsit( ReturnStmt * returnStmt );
89 void previsit( ThrowStmt * throwStmt );
90 void previsit( CatchStmt * catchStmt );
91 void postvisit( CatchStmt * catchStmt );
92 void previsit( WaitForStmt * stmt );
93
94 void previsit( SingleInit * singleInit );
95 void previsit( ListInit * listInit );
96 void previsit( ConstructorInit * ctorInit );
97 private:
98 typedef std::list< Initializer * >::iterator InitIterator;
99
100 template< typename PtrType >
101 void handlePtrType( PtrType * type );
102
103 void fallbackInit( ConstructorInit * ctorInit );
104
105 Type * functionReturn = nullptr;
106 CurrentObject currentObject = nullptr;
107 bool inEnumDecl = false;
108 };
109
110 struct ResolveWithExprs : public WithIndexer, public WithGuards, public WithVisitorRef<ResolveWithExprs>, public WithShortCircuiting, public WithStmtsToAdd {
111 void previsit( FunctionDecl * );
112 void previsit( WithStmt * );
113
114 void resolveWithExprs( std::list< Expression * > & withExprs, std::list< Statement * > & newStmts );
115 };
116
117 void resolve( std::list< Declaration * > translationUnit ) {
118 PassVisitor<Resolver_old> resolver;
119 acceptAll( translationUnit, resolver );
120 }
121
122 void resolveDecl( Declaration * decl, const SymTab::Indexer & indexer ) {
123 PassVisitor<Resolver_old> resolver( indexer );
124 maybeAccept( decl, resolver );
125 }
126
127 namespace {
128 struct DeleteFinder_old : public WithShortCircuiting {
129 DeletedExpr * delExpr = nullptr;
130 void previsit( DeletedExpr * expr ) {
131 if ( delExpr ) visit_children = false;
132 else delExpr = expr;
133 }
134
135 void previsit( Expression * ) {
136 if ( delExpr ) visit_children = false;
137 }
138 };
139 }
140
141 DeletedExpr * findDeletedExpr( Expression * expr ) {
142 PassVisitor<DeleteFinder_old> finder;
143 expr->accept( finder );
144 return finder.pass.delExpr;
145 }
146
147 namespace {
148 struct StripCasts_old {
149 Expression * postmutate( CastExpr * castExpr ) {
150 if ( castExpr->isGenerated && ResolvExpr::typesCompatible( castExpr->arg->result, castExpr->result, SymTab::Indexer() ) ) {
151 // generated cast is to the same type as its argument, so it's unnecessary -- remove it
152 Expression * expr = castExpr->arg;
153 castExpr->arg = nullptr;
154 std::swap( expr->env, castExpr->env );
155 return expr;
156 }
157 return castExpr;
158 }
159
160 static void strip( Expression *& expr ) {
161 PassVisitor<StripCasts_old> stripper;
162 expr = expr->acceptMutator( stripper );
163 }
164 };
165
166 void finishExpr( Expression *& expr, const TypeEnvironment & env, TypeSubstitution * oldenv = nullptr ) {
167 expr->env = oldenv ? oldenv->clone() : new TypeSubstitution;
168 env.makeSubstitution( *expr->env );
169 StripCasts_old::strip( expr ); // remove unnecessary casts that may be buried in an expression
170 }
171
172 void removeExtraneousCast( Expression *& expr, const SymTab::Indexer & indexer ) {
173 if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( expr ) ) {
174 if ( typesCompatible( castExpr->arg->result, castExpr->result, indexer ) ) {
175 // cast is to the same type as its argument, so it's unnecessary -- remove it
176 expr = castExpr->arg;
177 castExpr->arg = nullptr;
178 std::swap( expr->env, castExpr->env );
179 delete castExpr;
180 }
181 }
182 }
183 } // namespace
184
185 namespace {
186 void findUnfinishedKindExpression(Expression * untyped, Alternative & alt, const SymTab::Indexer & indexer, const std::string & kindStr, std::function<bool(const Alternative &)> pred, ResolvMode mode = ResolvMode{} ) {
187 assertf( untyped, "expected a non-null expression." );
188
189 // xxx - this isn't thread-safe, but should work until we parallelize the resolver
190 static unsigned recursion_level = 0;
191
192 ++recursion_level;
193 TypeEnvironment env;
194 AlternativeFinder finder( indexer, env );
195 finder.find( untyped, recursion_level == 1 ? mode.atTopLevel() : mode );
196 --recursion_level;
197
198 #if 0
199 if ( finder.get_alternatives().size() != 1 ) {
200 std::cerr << "untyped expr is ";
201 untyped->print( std::cerr );
202 std::cerr << std::endl << "alternatives are:";
203 for ( const Alternative & alt : finder.get_alternatives() ) {
204 alt.print( std::cerr );
205 } // for
206 } // if
207 #endif
208
209 // produce filtered list of alternatives
210 AltList candidates;
211 for ( Alternative & alt : finder.get_alternatives() ) {
212 if ( pred( alt ) ) {
213 candidates.push_back( std::move( alt ) );
214 }
215 }
216
217 // produce invalid error if no candidates
218 if ( candidates.empty() ) {
219 SemanticError( untyped, toString( "No reasonable alternatives for ", kindStr, (kindStr != "" ? " " : ""), "expression: ") );
220 }
221
222 // search for cheapest candidate
223 AltList winners;
224 bool seen_undeleted = false;
225 for ( unsigned i = 0; i < candidates.size(); ++i ) {
226 int c = winners.empty() ? -1 : candidates[i].cost.compare( winners.front().cost );
227
228 if ( c > 0 ) continue; // skip more expensive than winner
229
230 if ( c < 0 ) {
231 // reset on new cheapest
232 seen_undeleted = ! findDeletedExpr( candidates[i].expr );
233 winners.clear();
234 } else /* if ( c == 0 ) */ {
235 if ( findDeletedExpr( candidates[i].expr ) ) {
236 // skip deleted expression if already seen one equivalent-cost not
237 if ( seen_undeleted ) continue;
238 } else if ( ! seen_undeleted ) {
239 // replace list of equivalent-cost deleted expressions with one non-deleted
240 winners.clear();
241 seen_undeleted = true;
242 }
243 }
244
245 winners.emplace_back( std::move( candidates[i] ) );
246 }
247
248 // promote alternative.cvtCost to .cost
249 // xxx - I don't know why this is done, but I'm keeping the behaviour from findMinCost
250 for ( Alternative& winner : winners ) {
251 winner.cost = winner.cvtCost;
252 }
253
254 // produce ambiguous errors, if applicable
255 if ( winners.size() != 1 ) {
256 std::ostringstream stream;
257 stream << "Cannot choose between " << winners.size() << " alternatives for " << kindStr << (kindStr != "" ? " " : "") << "expression\n";
258 untyped->print( stream );
259 stream << " Alternatives are:\n";
260 printAlts( winners, stream, 1 );
261 SemanticError( untyped->location, stream.str() );
262 }
263
264 // single selected choice
265 Alternative& choice = winners.front();
266
267 // fail on only expression deleted
268 if ( ! seen_undeleted ) {
269 SemanticError( untyped->location, choice.expr, "Unique best alternative includes deleted identifier in " );
270 }
271
272 // xxx - check for ambiguous expressions
273
274 // output selected choice
275 alt = std::move( choice );
276 }
277
278 /// resolve `untyped` to the expression whose alternative satisfies `pred` with the lowest cost; kindStr is used for providing better error messages
279 void findKindExpression(Expression *& untyped, const SymTab::Indexer & indexer, const std::string & kindStr, std::function<bool(const Alternative &)> pred, ResolvMode mode = ResolvMode{}) {
280 if ( ! untyped ) return;
281 Alternative choice;
282 findUnfinishedKindExpression( untyped, choice, indexer, kindStr, pred, mode );
283 finishExpr( choice.expr, choice.env, untyped->env );
284 delete untyped;
285 untyped = choice.expr;
286 choice.expr = nullptr;
287 }
288
289 bool standardAlternativeFilter( const Alternative & ) {
290 // currently don't need to filter, under normal circumstances.
291 // in the future, this may be useful for removing deleted expressions
292 return true;
293 }
294 } // namespace
295
296 // used in resolveTypeof
297 Expression * resolveInVoidContext( Expression * expr, const SymTab::Indexer & indexer ) {
298 TypeEnvironment env;
299 return resolveInVoidContext( expr, indexer, env );
300 }
301
302 Expression * resolveInVoidContext( Expression * expr, const SymTab::Indexer & indexer, TypeEnvironment & env ) {
303 // it's a property of the language that a cast expression has either 1 or 0 interpretations; if it has 0
304 // interpretations, an exception has already been thrown.
305 assertf( expr, "expected a non-null expression." );
306
307 CastExpr * untyped = new CastExpr( expr ); // cast to void
308 untyped->location = expr->location;
309
310 // set up and resolve expression cast to void
311 Alternative choice;
312 findUnfinishedKindExpression( untyped, choice, indexer, "", standardAlternativeFilter, ResolvMode::withAdjustment() );
313 CastExpr * castExpr = strict_dynamic_cast< CastExpr * >( choice.expr );
314 assert( castExpr );
315 env = std::move( choice.env );
316
317 // clean up resolved expression
318 Expression * ret = castExpr->arg;
319 castExpr->arg = nullptr;
320
321 // unlink the arg so that it isn't deleted twice at the end of the program
322 untyped->arg = nullptr;
323 return ret;
324 }
325
326 void findVoidExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
327 resetTyVarRenaming();
328 TypeEnvironment env;
329 Expression * newExpr = resolveInVoidContext( untyped, indexer, env );
330 finishExpr( newExpr, env, untyped->env );
331 delete untyped;
332 untyped = newExpr;
333 }
334
335 void findSingleExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
336 findKindExpression( untyped, indexer, "", standardAlternativeFilter );
337 }
338
339 void findSingleExpression( Expression *& untyped, Type * type, const SymTab::Indexer & indexer ) {
340 assert( untyped && type );
341 // transfer location to generated cast for error purposes
342 CodeLocation location = untyped->location;
343 untyped = new CastExpr( untyped, type );
344 untyped->location = location;
345 findSingleExpression( untyped, indexer );
346 removeExtraneousCast( untyped, indexer );
347 }
348
349 namespace {
350 bool isIntegralType( const Alternative & alt ) {
351 Type * type = alt.expr->result;
352 if ( dynamic_cast< EnumInstType * >( type ) ) {
353 return true;
354 } else if ( BasicType * bt = dynamic_cast< BasicType * >( type ) ) {
355 return bt->isInteger();
356 } else if ( dynamic_cast< ZeroType* >( type ) != nullptr || dynamic_cast< OneType* >( type ) != nullptr ) {
357 return true;
358 } else {
359 return false;
360 } // if
361 }
362
363 void findIntegralExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
364 findKindExpression( untyped, indexer, "condition", isIntegralType );
365 }
366 }
367
368
369 bool isStructOrUnion( const Alternative & alt ) {
370 Type * t = alt.expr->result->stripReferences();
371 return dynamic_cast< StructInstType * >( t ) || dynamic_cast< UnionInstType * >( t );
372 }
373
374 void resolveWithExprs( std::list< Declaration * > & translationUnit ) {
375 PassVisitor<ResolveWithExprs> resolver;
376 acceptAll( translationUnit, resolver );
377 }
378
379 void ResolveWithExprs::resolveWithExprs( std::list< Expression * > & withExprs, std::list< Statement * > & newStmts ) {
380 for ( Expression *& expr : withExprs ) {
381 // only struct- and union-typed expressions are viable candidates
382 findKindExpression( expr, indexer, "with statement", isStructOrUnion );
383
384 // if with expression might be impure, create a temporary so that it is evaluated once
385 if ( Tuples::maybeImpure( expr ) ) {
386 static UniqueName tmpNamer( "_with_tmp_" );
387 ObjectDecl * tmp = ObjectDecl::newObject( tmpNamer.newName(), expr->result->clone(), new SingleInit( expr ) );
388 expr = new VariableExpr( tmp );
389 newStmts.push_back( new DeclStmt( tmp ) );
390 if ( InitTweak::isConstructable( tmp->type ) ) {
391 // generate ctor/dtor and resolve them
392 tmp->init = InitTweak::genCtorInit( tmp );
393 tmp->accept( *visitor );
394 }
395 }
396 }
397 }
398
399 void ResolveWithExprs::previsit( WithStmt * withStmt ) {
400 resolveWithExprs( withStmt->exprs, stmtsToAddBefore );
401 }
402
403 void ResolveWithExprs::previsit( FunctionDecl * functionDecl ) {
404 {
405 // resolve with-exprs with parameters in scope and add any newly generated declarations to the
406 // front of the function body.
407 auto guard = makeFuncGuard( [this]() { indexer.enterScope(); }, [this](){ indexer.leaveScope(); } );
408 indexer.addFunctionType( functionDecl->type );
409 std::list< Statement * > newStmts;
410 resolveWithExprs( functionDecl->withExprs, newStmts );
411 if ( functionDecl->statements ) {
412 functionDecl->statements->kids.splice( functionDecl->statements->kids.begin(), newStmts );
413 } else {
414 assertf( functionDecl->withExprs.empty() && newStmts.empty(), "Function %s without a body has with-clause and/or generated with declarations.", functionDecl->name.c_str() );
415 }
416 }
417 }
418
419 void Resolver_old::previsit( ObjectDecl * objectDecl ) {
420 // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that
421 // class-variable initContext is changed multiple time because the LHS is analysed twice.
422 // The second analysis changes initContext because of a function type can contain object
423 // declarations in the return and parameter types. So each value of initContext is
424 // retained, so the type on the first analysis is preserved and used for selecting the RHS.
425 GuardValue( currentObject );
426 currentObject = CurrentObject( objectDecl->get_type() );
427 if ( inEnumDecl && dynamic_cast< EnumInstType * >( objectDecl->get_type() ) ) {
428 // enumerator initializers should not use the enum type to initialize, since
429 // the enum type is still incomplete at this point. Use signed int instead.
430 // TODO: BasicType::SignedInt may not longer be true
431 currentObject = CurrentObject( new BasicType( Type::Qualifiers(), BasicType::SignedInt ) );
432 }
433 }
434
435 template< typename PtrType >
436 void Resolver_old::handlePtrType( PtrType * type ) {
437 if ( type->get_dimension() ) {
438 findSingleExpression( type->dimension, Validate::SizeType->clone(), indexer );
439 }
440 }
441
442 void Resolver_old::previsit( ArrayType * at ) {
443 handlePtrType( at );
444 }
445
446 void Resolver_old::previsit( PointerType * pt ) {
447 handlePtrType( pt );
448 }
449
450 void Resolver_old::previsit( FunctionDecl * functionDecl ) {
451#if 0
452 std::cerr << "resolver visiting functiondecl ";
453 functionDecl->print( std::cerr );
454 std::cerr << std::endl;
455#endif
456 GuardValue( functionReturn );
457 functionReturn = ResolvExpr::extractResultType( functionDecl->type );
458 }
459
460 void Resolver_old::postvisit( FunctionDecl * functionDecl ) {
461 // default value expressions have an environment which shouldn't be there and trips up
462 // later passes.
463 // xxx - it might be necessary to somehow keep the information from this environment, but I
464 // can't currently see how it's useful.
465 for ( Declaration * d : functionDecl->type->parameters ) {
466 if ( ObjectDecl * obj = dynamic_cast< ObjectDecl * >( d ) ) {
467 if ( SingleInit * init = dynamic_cast< SingleInit * >( obj->init ) ) {
468 delete init->value->env;
469 init->value->env = nullptr;
470 }
471 }
472 }
473 }
474
475 void Resolver_old::previsit( EnumDecl * ) {
476 // in case we decide to allow nested enums
477 GuardValue( inEnumDecl );
478 inEnumDecl = true;
479 }
480
481 void Resolver_old::previsit( StaticAssertDecl * assertDecl ) {
482 findIntegralExpression( assertDecl->condition, indexer );
483 }
484
485 void Resolver_old::previsit( ExprStmt * exprStmt ) {
486 visit_children = false;
487 assertf( exprStmt->expr, "ExprStmt has null Expression in resolver" );
488 findVoidExpression( exprStmt->expr, indexer );
489 }
490
491 void Resolver_old::previsit( AsmExpr * asmExpr ) {
492 visit_children = false;
493 findVoidExpression( asmExpr->operand, indexer );
494 }
495
496 void Resolver_old::previsit( AsmStmt * asmStmt ) {
497 visit_children = false;
498 acceptAll( asmStmt->get_input(), *visitor );
499 acceptAll( asmStmt->get_output(), *visitor );
500 }
501
502 void Resolver_old::previsit( IfStmt * ifStmt ) {
503 findIntegralExpression( ifStmt->condition, indexer );
504 }
505
506 void Resolver_old::previsit( WhileDoStmt * whileDoStmt ) {
507 findIntegralExpression( whileDoStmt->condition, indexer );
508 }
509
510 void Resolver_old::previsit( ForStmt * forStmt ) {
511 if ( forStmt->condition ) {
512 findIntegralExpression( forStmt->condition, indexer );
513 } // if
514
515 if ( forStmt->increment ) {
516 findVoidExpression( forStmt->increment, indexer );
517 } // if
518 }
519
520 void Resolver_old::previsit( SwitchStmt * switchStmt ) {
521 GuardValue( currentObject );
522 findIntegralExpression( switchStmt->condition, indexer );
523
524 currentObject = CurrentObject( switchStmt->condition->result );
525 }
526
527 void Resolver_old::previsit( CaseStmt * caseStmt ) {
528 if ( caseStmt->condition ) {
529 std::list< InitAlternative > initAlts = currentObject.getOptions();
530 assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral expression." );
531 // must remove cast from case statement because RangeExpr cannot be cast.
532 Expression * newExpr = new CastExpr( caseStmt->condition, initAlts.front().type->clone() );
533 findSingleExpression( newExpr, indexer );
534 // case condition cannot have a cast in C, so it must be removed, regardless of whether it performs a conversion.
535 // Ideally we would perform the conversion internally here.
536 if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( newExpr ) ) {
537 newExpr = castExpr->arg;
538 castExpr->arg = nullptr;
539 std::swap( newExpr->env, castExpr->env );
540 delete castExpr;
541 }
542 caseStmt->condition = newExpr;
543 }
544 }
545
546 void Resolver_old::previsit( BranchStmt * branchStmt ) {
547 visit_children = false;
548 // must resolve the argument for a computed goto
549 if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement
550 if ( branchStmt->computedTarget ) {
551 // computed goto argument is void *
552 findSingleExpression( branchStmt->computedTarget, new PointerType( Type::Qualifiers(), new VoidType( Type::Qualifiers() ) ), indexer );
553 } // if
554 } // if
555 }
556
557 void Resolver_old::previsit( ReturnStmt * returnStmt ) {
558 visit_children = false;
559 if ( returnStmt->expr ) {
560 findSingleExpression( returnStmt->expr, functionReturn->clone(), indexer );
561 } // if
562 }
563
564 void Resolver_old::previsit( ThrowStmt * throwStmt ) {
565 visit_children = false;
566 // TODO: Replace *exception type with &exception type.
567 if ( throwStmt->get_expr() ) {
568 const StructDecl * exception_decl = indexer.lookupStruct( "__cfaehm_base_exception_t" );
569 assert( exception_decl );
570 Type * exceptType = new PointerType( noQualifiers, new StructInstType( noQualifiers, const_cast<StructDecl *>(exception_decl) ) );
571 findSingleExpression( throwStmt->expr, exceptType, indexer );
572 }
573 }
574
575 void Resolver_old::previsit( CatchStmt * catchStmt ) {
576 // Until we are very sure this invarent (ifs that move between passes have then)
577 // holds, check it. This allows a check for when to decode the mangling.
578 if ( IfStmt * ifStmt = dynamic_cast<IfStmt *>( catchStmt->body ) ) {
579 assert( ifStmt->then );
580 }
581 // Encode the catchStmt so the condition can see the declaration.
582 if ( catchStmt->cond ) {
583 IfStmt * ifStmt = new IfStmt( catchStmt->cond, nullptr, catchStmt->body );
584 catchStmt->cond = nullptr;
585 catchStmt->body = ifStmt;
586 }
587 }
588
589 void Resolver_old::postvisit( CatchStmt * catchStmt ) {
590 // Decode the catchStmt so everything is stored properly.
591 IfStmt * ifStmt = dynamic_cast<IfStmt *>( catchStmt->body );
592 if ( nullptr != ifStmt && nullptr == ifStmt->then ) {
593 assert( ifStmt->condition );
594 assert( ifStmt->else_ );
595 catchStmt->cond = ifStmt->condition;
596 catchStmt->body = ifStmt->else_;
597 ifStmt->condition = nullptr;
598 ifStmt->else_ = nullptr;
599 delete ifStmt;
600 }
601 }
602
603 template< typename iterator_t >
604 inline bool advance_to_mutex( iterator_t & it, const iterator_t & end ) {
605 while( it != end && !(*it)->get_type()->get_mutex() ) {
606 it++;
607 }
608
609 return it != end;
610 }
611
612 void Resolver_old::previsit( WaitForStmt * stmt ) {
613 visit_children = false;
614
615 // Resolve all clauses first
616 for( auto& clause : stmt->clauses ) {
617
618 TypeEnvironment env;
619 AlternativeFinder funcFinder( indexer, env );
620
621 // Find all alternatives for a function in canonical form
622 funcFinder.findWithAdjustment( clause.target.function );
623
624 if ( funcFinder.get_alternatives().empty() ) {
625 stringstream ss;
626 ss << "Use of undeclared indentifier '";
627 ss << strict_dynamic_cast<NameExpr*>( clause.target.function )->name;
628 ss << "' in call to waitfor";
629 SemanticError( stmt->location, ss.str() );
630 }
631
632 if(clause.target.arguments.empty()) {
633 SemanticError( stmt->location, "Waitfor clause must have at least one mutex parameter");
634 }
635
636 // Find all alternatives for all arguments in canonical form
637 std::vector< AlternativeFinder > argAlternatives;
638 funcFinder.findSubExprs( clause.target.arguments.begin(), clause.target.arguments.end(), back_inserter( argAlternatives ) );
639
640 // List all combinations of arguments
641 std::vector< AltList > possibilities;
642 combos( argAlternatives.begin(), argAlternatives.end(), back_inserter( possibilities ) );
643
644 AltList func_candidates;
645 std::vector< AltList > args_candidates;
646
647 // For every possible function :
648 // try matching the arguments to the parameters
649 // not the other way around because we have more arguments than parameters
650 SemanticErrorException errors;
651 for ( Alternative & func : funcFinder.get_alternatives() ) {
652 try {
653 PointerType * pointer = dynamic_cast< PointerType* >( func.expr->get_result()->stripReferences() );
654 if( !pointer ) {
655 SemanticError( func.expr->get_result(), "candidate not viable: not a pointer type\n" );
656 }
657
658 FunctionType * function = dynamic_cast< FunctionType* >( pointer->get_base() );
659 if( !function ) {
660 SemanticError( pointer->get_base(), "candidate not viable: not a function type\n" );
661 }
662
663
664 {
665 auto param = function->parameters.begin();
666 auto param_end = function->parameters.end();
667
668 if( !advance_to_mutex( param, param_end ) ) {
669 SemanticError(function, "candidate function not viable: no mutex parameters\n");
670 }
671 }
672
673 Alternative newFunc( func );
674 // Strip reference from function
675 referenceToRvalueConversion( newFunc.expr, newFunc.cost );
676
677 // For all the set of arguments we have try to match it with the parameter of the current function alternative
678 for ( auto & argsList : possibilities ) {
679
680 try {
681 // Declare data structures need for resolution
682 OpenVarSet openVars;
683 AssertionSet resultNeed, resultHave;
684 TypeEnvironment resultEnv( func.env );
685 makeUnifiableVars( function, openVars, resultNeed );
686 // add all type variables as open variables now so that those not used in the parameter
687 // list are still considered open.
688 resultEnv.add( function->forall );
689
690 // Load type variables from arguemnts into one shared space
691 simpleCombineEnvironments( argsList.begin(), argsList.end(), resultEnv );
692
693 // Make sure we don't widen any existing bindings
694 resultEnv.forbidWidening();
695
696 // Find any unbound type variables
697 resultEnv.extractOpenVars( openVars );
698
699 auto param = function->parameters.begin();
700 auto param_end = function->parameters.end();
701
702 int n_mutex_param = 0;
703
704 // For every arguments of its set, check if it matches one of the parameter
705 // The order is important
706 for( auto & arg : argsList ) {
707
708 // Ignore non-mutex arguments
709 if( !advance_to_mutex( param, param_end ) ) {
710 // We ran out of parameters but still have arguments
711 // this function doesn't match
712 SemanticError( function, toString("candidate function not viable: too many mutex arguments, expected ", n_mutex_param, "\n" ));
713 }
714
715 n_mutex_param++;
716
717 // Check if the argument matches the parameter type in the current scope
718 if( ! unify( arg.expr->get_result(), (*param)->get_type(), resultEnv, resultNeed, resultHave, openVars, this->indexer ) ) {
719 // Type doesn't match
720 stringstream ss;
721 ss << "candidate function not viable: no known convertion from '";
722 (*param)->get_type()->print( ss );
723 ss << "' to '";
724 arg.expr->get_result()->print( ss );
725 ss << "' with env '";
726 resultEnv.print(ss);
727 ss << "'\n";
728 SemanticError( function, ss.str() );
729 }
730
731 param++;
732 }
733
734 // All arguments match !
735
736 // Check if parameters are missing
737 if( advance_to_mutex( param, param_end ) ) {
738 do {
739 n_mutex_param++;
740 param++;
741 } while( advance_to_mutex( param, param_end ) );
742
743 // We ran out of arguments but still have parameters left
744 // this function doesn't match
745 SemanticError( function, toString("candidate function not viable: too few mutex arguments, expected ", n_mutex_param, "\n" ));
746 }
747
748 // All parameters match !
749
750 // Finish the expressions to tie in the proper environments
751 finishExpr( newFunc.expr, resultEnv );
752 for( Alternative & alt : argsList ) {
753 finishExpr( alt.expr, resultEnv );
754 }
755
756 // This is a match store it and save it for later
757 func_candidates.push_back( newFunc );
758 args_candidates.push_back( argsList );
759
760 }
761 catch( SemanticErrorException & e ) {
762 errors.append( e );
763 }
764 }
765 }
766 catch( SemanticErrorException & e ) {
767 errors.append( e );
768 }
769 }
770
771 // Make sure we got the right number of arguments
772 if( func_candidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for function in call to waitfor" ); top.append( errors ); throw top; }
773 if( args_candidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for arguments in call to waitfor" ); top.append( errors ); throw top; }
774 if( func_candidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous function in call to waitfor" ); top.append( errors ); throw top; }
775 if( args_candidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous arguments in call to waitfor" ); top.append( errors ); throw top; }
776 // TODO: need to use findDeletedExpr to ensure no deleted identifiers are used.
777
778 // Swap the results from the alternative with the unresolved values.
779 // Alternatives will handle deletion on destruction
780 std::swap( clause.target.function, func_candidates.front().expr );
781 for( auto arg_pair : group_iterate( clause.target.arguments, args_candidates.front() ) ) {
782 std::swap ( std::get<0>( arg_pair), std::get<1>( arg_pair).expr );
783 }
784
785 // Resolve the conditions as if it were an IfStmt
786 // Resolve the statments normally
787 findSingleExpression( clause.condition, this->indexer );
788 clause.statement->accept( *visitor );
789 }
790
791
792 if( stmt->timeout.statement ) {
793 // Resolve the timeout as an size_t for now
794 // Resolve the conditions as if it were an IfStmt
795 // Resolve the statments normally
796 findSingleExpression( stmt->timeout.time, new BasicType( noQualifiers, BasicType::LongLongUnsignedInt ), this->indexer );
797 findSingleExpression( stmt->timeout.condition, this->indexer );
798 stmt->timeout.statement->accept( *visitor );
799 }
800
801 if( stmt->orelse.statement ) {
802 // Resolve the conditions as if it were an IfStmt
803 // Resolve the statments normally
804 findSingleExpression( stmt->orelse.condition, this->indexer );
805 stmt->orelse.statement->accept( *visitor );
806 }
807 }
808
809 bool isCharType( Type * t ) {
810 if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) {
811 return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar ||
812 bt->get_kind() == BasicType::UnsignedChar;
813 }
814 return false;
815 }
816
817 void Resolver_old::previsit( SingleInit * singleInit ) {
818 visit_children = false;
819 // resolve initialization using the possibilities as determined by the currentObject cursor
820 Expression * newExpr = new UntypedInitExpr( singleInit->value, currentObject.getOptions() );
821 findSingleExpression( newExpr, indexer );
822 InitExpr * initExpr = strict_dynamic_cast< InitExpr * >( newExpr );
823
824 // move cursor to the object that is actually initialized
825 currentObject.setNext( initExpr->get_designation() );
826
827 // discard InitExpr wrapper and retain relevant pieces
828 newExpr = initExpr->expr;
829 initExpr->expr = nullptr;
830 std::swap( initExpr->env, newExpr->env );
831 // InitExpr may have inferParams in the case where the expression specializes a function
832 // pointer, and newExpr may already have inferParams of its own, so a simple swap is not
833 // sufficient.
834 newExpr->spliceInferParams( initExpr );
835 delete initExpr;
836
837 // get the actual object's type (may not exactly match what comes back from the resolver
838 // due to conversions)
839 Type * initContext = currentObject.getCurrentType();
840
841 removeExtraneousCast( newExpr, indexer );
842
843 // check if actual object's type is char[]
844 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
845 if ( isCharType( at->get_base() ) ) {
846 // check if the resolved type is char *
847 if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_result() ) ) {
848 if ( isCharType( pt->get_base() ) ) {
849 if ( CastExpr * ce = dynamic_cast< CastExpr * >( newExpr ) ) {
850 // strip cast if we're initializing a char[] with a char *,
851 // e.g. char x[] = "hello";
852 newExpr = ce->get_arg();
853 ce->set_arg( nullptr );
854 std::swap( ce->env, newExpr->env );
855 delete ce;
856 }
857 }
858 }
859 }
860 }
861
862 // set initializer expr to resolved express
863 singleInit->value = newExpr;
864
865 // move cursor to next object in preparation for next initializer
866 currentObject.increment();
867 }
868
869 void Resolver_old::previsit( ListInit * listInit ) {
870 visit_children = false;
871 // move cursor into brace-enclosed initializer-list
872 currentObject.enterListInit();
873 // xxx - fix this so that the list isn't copied, iterator should be used to change current
874 // element
875 std::list<Designation *> newDesignations;
876 for ( auto p : group_iterate(listInit->get_designations(), listInit->get_initializers()) ) {
877 // iterate designations and initializers in pairs, moving the cursor to the current
878 // designated object and resolving the initializer against that object.
879 Designation * des = std::get<0>(p);
880 Initializer * init = std::get<1>(p);
881 newDesignations.push_back( currentObject.findNext( des ) );
882 init->accept( *visitor );
883 }
884 // set the set of 'resolved' designations and leave the brace-enclosed initializer-list
885 listInit->get_designations() = newDesignations; // xxx - memory management
886 currentObject.exitListInit();
887
888 // xxx - this part has not be folded into CurrentObject yet
889 // } else if ( TypeInstType * tt = dynamic_cast< TypeInstType * >( initContext ) ) {
890 // Type * base = tt->get_baseType()->get_base();
891 // if ( base ) {
892 // // know the implementation type, so try using that as the initContext
893 // ObjectDecl tmpObj( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, base->clone(), nullptr );
894 // currentObject = &tmpObj;
895 // visit( listInit );
896 // } else {
897 // // missing implementation type -- might be an unknown type variable, so try proceeding with the current init context
898 // Parent::visit( listInit );
899 // }
900 // } else {
901 }
902
903 // ConstructorInit - fall back on C-style initializer
904 void Resolver_old::fallbackInit( ConstructorInit * ctorInit ) {
905 // could not find valid constructor, or found an intrinsic constructor
906 // fall back on C-style initializer
907 delete ctorInit->get_ctor();
908 ctorInit->set_ctor( nullptr );
909 delete ctorInit->get_dtor();
910 ctorInit->set_dtor( nullptr );
911 maybeAccept( ctorInit->get_init(), *visitor );
912 }
913
914 // needs to be callable from outside the resolver, so this is a standalone function
915 void resolveCtorInit( ConstructorInit * ctorInit, const SymTab::Indexer & indexer ) {
916 assert( ctorInit );
917 PassVisitor<Resolver_old> resolver( indexer );
918 ctorInit->accept( resolver );
919 }
920
921 void resolveStmtExpr( StmtExpr * stmtExpr, const SymTab::Indexer & indexer ) {
922 assert( stmtExpr );
923 PassVisitor<Resolver_old> resolver( indexer );
924 stmtExpr->accept( resolver );
925 stmtExpr->computeResult();
926 // xxx - aggregate the environments from all statements? Possibly in AlternativeFinder instead?
927 }
928
929 void Resolver_old::previsit( ConstructorInit * ctorInit ) {
930 visit_children = false;
931 // xxx - fallback init has been removed => remove fallbackInit function and remove complexity from FixInit and remove C-init from ConstructorInit
932 maybeAccept( ctorInit->ctor, *visitor );
933 maybeAccept( ctorInit->dtor, *visitor );
934
935 // found a constructor - can get rid of C-style initializer
936 delete ctorInit->init;
937 ctorInit->init = nullptr;
938
939 // intrinsic single parameter constructors and destructors do nothing. Since this was
940 // implicitly generated, there's no way for it to have side effects, so get rid of it
941 // to clean up generated code.
942 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->ctor ) ) {
943 delete ctorInit->ctor;
944 ctorInit->ctor = nullptr;
945 }
946
947 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->dtor ) ) {
948 delete ctorInit->dtor;
949 ctorInit->dtor = nullptr;
950 }
951
952 // xxx - todo -- what about arrays?
953 // if ( dtor == nullptr && InitTweak::isIntrinsicCallStmt( ctorInit->get_ctor() ) ) {
954 // // can reduce the constructor down to a SingleInit using the
955 // // second argument from the ctor call, since
956 // delete ctorInit->get_ctor();
957 // ctorInit->set_ctor( nullptr );
958
959 // Expression * arg =
960 // ctorInit->set_init( new SingleInit( arg ) );
961 // }
962 }
963
964 ///////////////////////////////////////////////////////////////////////////
965 //
966 // *** NEW RESOLVER ***
967 //
968 ///////////////////////////////////////////////////////////////////////////
969
970 namespace {
971 /// Finds deleted expressions in an expression tree
972 struct DeleteFinder_new final : public ast::WithShortCircuiting, public ast::WithVisitorRef<DeleteFinder_new> {
973 const ast::DeletedExpr * result = nullptr;
974
975 void previsit( const ast::DeletedExpr * expr ) {
976 if ( result ) { visit_children = false; }
977 else { result = expr; }
978 }
979
980 void previsit( const ast::Expr * expr ) {
981 if ( result ) { visit_children = false; }
982 if (expr->inferred.hasParams()) {
983 for (auto & imp : expr->inferred.inferParams() ) {
984 imp.second.expr->accept(*visitor);
985 }
986 }
987 }
988 };
989 } // anonymous namespace
990 /// Check if this expression is or includes a deleted expression
991 const ast::DeletedExpr * findDeletedExpr( const ast::Expr * expr ) {
992 return ast::Pass<DeleteFinder_new>::read( expr );
993 }
994
995 namespace {
996 /// always-accept candidate filter
997 bool anyCandidate( const Candidate & ) { return true; }
998
999 /// Calls the CandidateFinder and finds the single best candidate
1000 CandidateRef findUnfinishedKindExpression(
1001 const ast::Expr * untyped, const ResolveContext & context, const std::string & kind,
1002 std::function<bool(const Candidate &)> pred = anyCandidate, ResolvMode mode = {}
1003 ) {
1004 if ( ! untyped ) return nullptr;
1005
1006 // xxx - this isn't thread-safe, but should work until we parallelize the resolver
1007 static unsigned recursion_level = 0;
1008
1009 ++recursion_level;
1010 ast::TypeEnvironment env;
1011 CandidateFinder finder( context, env );
1012 finder.find( untyped, recursion_level == 1 ? mode.atTopLevel() : mode );
1013 --recursion_level;
1014
1015 // produce a filtered list of candidates
1016 CandidateList candidates;
1017 for ( auto & cand : finder.candidates ) {
1018 if ( pred( *cand ) ) { candidates.emplace_back( cand ); }
1019 }
1020
1021 // produce invalid error if no candidates
1022 if ( candidates.empty() ) {
1023 SemanticError( untyped,
1024 toString( "No reasonable alternatives for ", kind, (kind != "" ? " " : ""),
1025 "expression: ") );
1026 }
1027
1028 // search for cheapest candidate
1029 CandidateList winners;
1030 bool seen_undeleted = false;
1031 for ( CandidateRef & cand : candidates ) {
1032 int c = winners.empty() ? -1 : cand->cost.compare( winners.front()->cost );
1033
1034 if ( c > 0 ) continue; // skip more expensive than winner
1035
1036 if ( c < 0 ) {
1037 // reset on new cheapest
1038 seen_undeleted = ! findDeletedExpr( cand->expr );
1039 winners.clear();
1040 } else /* if ( c == 0 ) */ {
1041 if ( findDeletedExpr( cand->expr ) ) {
1042 // skip deleted expression if already seen one equivalent-cost not
1043 if ( seen_undeleted ) continue;
1044 } else if ( ! seen_undeleted ) {
1045 // replace list of equivalent-cost deleted expressions with one non-deleted
1046 winners.clear();
1047 seen_undeleted = true;
1048 }
1049 }
1050
1051 winners.emplace_back( std::move( cand ) );
1052 }
1053
1054 // promote candidate.cvtCost to .cost
1055 promoteCvtCost( winners );
1056
1057 // produce ambiguous errors, if applicable
1058 if ( winners.size() != 1 ) {
1059 std::ostringstream stream;
1060 stream << "Cannot choose between " << winners.size() << " alternatives for "
1061 << kind << (kind != "" ? " " : "") << "expression\n";
1062 ast::print( stream, untyped );
1063 stream << " Alternatives are:\n";
1064 print( stream, winners, 1 );
1065 SemanticError( untyped->location, stream.str() );
1066 }
1067
1068 // single selected choice
1069 CandidateRef & choice = winners.front();
1070
1071 // fail on only expression deleted
1072 if ( ! seen_undeleted ) {
1073 SemanticError( untyped->location, choice->expr.get(), "Unique best alternative "
1074 "includes deleted identifier in " );
1075 }
1076
1077 return std::move( choice );
1078 }
1079
1080 /// Strips extraneous casts out of an expression
1081 struct StripCasts_new final {
1082 const ast::Expr * postvisit( const ast::CastExpr * castExpr ) {
1083 if (
1084 castExpr->isGenerated == ast::GeneratedCast
1085 && typesCompatible( castExpr->arg->result, castExpr->result )
1086 ) {
1087 // generated cast is the same type as its argument, remove it after keeping env
1088 return ast::mutate_field(
1089 castExpr->arg.get(), &ast::Expr::env, castExpr->env );
1090 }
1091 return castExpr;
1092 }
1093
1094 static void strip( ast::ptr< ast::Expr > & expr ) {
1095 ast::Pass< StripCasts_new > stripper;
1096 expr = expr->accept( stripper );
1097 }
1098 };
1099
1100 /// Swaps argument into expression pointer, saving original environment
1101 void swap_and_save_env( ast::ptr< ast::Expr > & expr, const ast::Expr * newExpr ) {
1102 ast::ptr< ast::TypeSubstitution > env = expr->env;
1103 expr.set_and_mutate( newExpr )->env = env;
1104 }
1105
1106 /// Removes cast to type of argument (unlike StripCasts, also handles non-generated casts)
1107 void removeExtraneousCast( ast::ptr<ast::Expr> & expr, const ast::SymbolTable & symtab ) {
1108 if ( const ast::CastExpr * castExpr = expr.as< ast::CastExpr >() ) {
1109 if ( typesCompatible( castExpr->arg->result, castExpr->result, symtab ) ) {
1110 // cast is to the same type as its argument, remove it
1111 swap_and_save_env( expr, castExpr->arg );
1112 }
1113 }
1114 }
1115
1116
1117 } // anonymous namespace
1118/// Establish post-resolver invariants for expressions
1119 void finishExpr(
1120 ast::ptr< ast::Expr > & expr, const ast::TypeEnvironment & env,
1121 const ast::TypeSubstitution * oldenv = nullptr
1122 ) {
1123 // set up new type substitution for expression
1124 ast::ptr< ast::TypeSubstitution > newenv =
1125 oldenv ? oldenv : new ast::TypeSubstitution{};
1126 env.writeToSubstitution( *newenv.get_and_mutate() );
1127 expr.get_and_mutate()->env = std::move( newenv );
1128 // remove unncecessary casts
1129 StripCasts_new::strip( expr );
1130 }
1131
1132 ast::ptr< ast::Expr > resolveInVoidContext(
1133 const ast::Expr * expr, const ResolveContext & context,
1134 ast::TypeEnvironment & env
1135 ) {
1136 assertf( expr, "expected a non-null expression" );
1137
1138 // set up and resolve expression cast to void
1139 ast::ptr< ast::CastExpr > untyped = new ast::CastExpr{ expr };
1140 CandidateRef choice = findUnfinishedKindExpression(
1141 untyped, context, "", anyCandidate, ResolvMode::withAdjustment() );
1142
1143 // a cast expression has either 0 or 1 interpretations (by language rules);
1144 // if 0, an exception has already been thrown, and this code will not run
1145 const ast::CastExpr * castExpr = choice->expr.strict_as< ast::CastExpr >();
1146 env = std::move( choice->env );
1147
1148 return castExpr->arg;
1149 }
1150
1151 /// Resolve `untyped` to the expression whose candidate is the best match for a `void`
1152 /// context.
1153 ast::ptr< ast::Expr > findVoidExpression(
1154 const ast::Expr * untyped, const ResolveContext & context
1155 ) {
1156 ast::TypeEnvironment env;
1157 ast::ptr< ast::Expr > newExpr = resolveInVoidContext( untyped, context, env );
1158 finishExpr( newExpr, env, untyped->env );
1159 return newExpr;
1160 }
1161
1162 namespace {
1163
1164
1165 /// resolve `untyped` to the expression whose candidate satisfies `pred` with the
1166 /// lowest cost, returning the resolved version
1167 ast::ptr< ast::Expr > findKindExpression(
1168 const ast::Expr * untyped, const ResolveContext & context,
1169 std::function<bool(const Candidate &)> pred = anyCandidate,
1170 const std::string & kind = "", ResolvMode mode = {}
1171 ) {
1172 if ( ! untyped ) return {};
1173 CandidateRef choice =
1174 findUnfinishedKindExpression( untyped, context, kind, pred, mode );
1175 ResolvExpr::finishExpr( choice->expr, choice->env, untyped->env );
1176 return std::move( choice->expr );
1177 }
1178
1179 /// Resolve `untyped` to the single expression whose candidate is the best match
1180 ast::ptr< ast::Expr > findSingleExpression(
1181 const ast::Expr * untyped, const ResolveContext & context
1182 ) {
1183 Stats::ResolveTime::start( untyped );
1184 auto res = findKindExpression( untyped, context );
1185 Stats::ResolveTime::stop();
1186 return res;
1187 }
1188 } // anonymous namespace
1189
1190 ast::ptr< ast::Expr > findSingleExpression(
1191 const ast::Expr * untyped, const ast::Type * type,
1192 const ResolveContext & context
1193 ) {
1194 assert( untyped && type );
1195 ast::ptr< ast::Expr > castExpr = new ast::CastExpr{ untyped, type };
1196 ast::ptr< ast::Expr > newExpr = findSingleExpression( castExpr, context );
1197 removeExtraneousCast( newExpr, context.symtab );
1198 return newExpr;
1199 }
1200
1201 namespace {
1202 bool structOrUnion( const Candidate & i ) {
1203 const ast::Type * t = i.expr->result->stripReferences();
1204 return dynamic_cast< const ast::StructInstType * >( t ) || dynamic_cast< const ast::UnionInstType * >( t );
1205 }
1206 /// Predicate for "Candidate has integral type"
1207 bool hasIntegralType( const Candidate & i ) {
1208 const ast::Type * type = i.expr->result;
1209
1210 if ( auto bt = dynamic_cast< const ast::BasicType * >( type ) ) {
1211 return bt->isInteger();
1212 } else if (
1213 dynamic_cast< const ast::EnumInstType * >( type )
1214 || dynamic_cast< const ast::ZeroType * >( type )
1215 || dynamic_cast< const ast::OneType * >( type )
1216 ) {
1217 return true;
1218 } else return false;
1219 }
1220
1221 /// Resolve `untyped` as an integral expression, returning the resolved version
1222 ast::ptr< ast::Expr > findIntegralExpression(
1223 const ast::Expr * untyped, const ResolveContext & context
1224 ) {
1225 return findKindExpression( untyped, context, hasIntegralType, "condition" );
1226 }
1227
1228 /// check if a type is a character type
1229 bool isCharType( const ast::Type * t ) {
1230 if ( auto bt = dynamic_cast< const ast::BasicType * >( t ) ) {
1231 return bt->kind == ast::BasicType::Char
1232 || bt->kind == ast::BasicType::SignedChar
1233 || bt->kind == ast::BasicType::UnsignedChar;
1234 }
1235 return false;
1236 }
1237
1238 /// Advance a type itertor to the next mutex parameter
1239 template<typename Iter>
1240 inline bool nextMutex( Iter & it, const Iter & end ) {
1241 while ( it != end && ! (*it)->is_mutex() ) { ++it; }
1242 return it != end;
1243 }
1244 }
1245
1246 class Resolver_new final
1247 : public ast::WithSymbolTable, public ast::WithGuards,
1248 public ast::WithVisitorRef<Resolver_new>, public ast::WithShortCircuiting,
1249 public ast::WithStmtsToAdd<> {
1250
1251 ast::ptr< ast::Type > functionReturn = nullptr;
1252 ast::CurrentObject currentObject;
1253 // for work previously in GenInit
1254 static InitTweak::ManagedTypes_new managedTypes;
1255 ResolveContext context;
1256
1257 bool inEnumDecl = false;
1258
1259 public:
1260 static size_t traceId;
1261 Resolver_new( const ast::TranslationGlobal & global ) :
1262 context{ symtab, global } {}
1263 Resolver_new( const ResolveContext & context ) :
1264 ast::WithSymbolTable{ context.symtab },
1265 context{ symtab, context.global } {}
1266
1267 const ast::FunctionDecl * previsit( const ast::FunctionDecl * );
1268 const ast::FunctionDecl * postvisit( const ast::FunctionDecl * );
1269 const ast::ObjectDecl * previsit( const ast::ObjectDecl * );
1270 void previsit( const ast::AggregateDecl * );
1271 void previsit( const ast::StructDecl * );
1272 void previsit( const ast::EnumDecl * );
1273 const ast::StaticAssertDecl * previsit( const ast::StaticAssertDecl * );
1274
1275 const ast::ArrayType * previsit( const ast::ArrayType * );
1276 const ast::PointerType * previsit( const ast::PointerType * );
1277
1278 const ast::ExprStmt * previsit( const ast::ExprStmt * );
1279 const ast::AsmExpr * previsit( const ast::AsmExpr * );
1280 const ast::AsmStmt * previsit( const ast::AsmStmt * );
1281 const ast::IfStmt * previsit( const ast::IfStmt * );
1282 const ast::WhileDoStmt * previsit( const ast::WhileDoStmt * );
1283 const ast::ForStmt * previsit( const ast::ForStmt * );
1284 const ast::SwitchStmt * previsit( const ast::SwitchStmt * );
1285 const ast::CaseClause * previsit( const ast::CaseClause * );
1286 const ast::BranchStmt * previsit( const ast::BranchStmt * );
1287 const ast::ReturnStmt * previsit( const ast::ReturnStmt * );
1288 const ast::ThrowStmt * previsit( const ast::ThrowStmt * );
1289 const ast::CatchClause * previsit( const ast::CatchClause * );
1290 const ast::CatchClause * postvisit( const ast::CatchClause * );
1291 const ast::WaitForStmt * previsit( const ast::WaitForStmt * );
1292 const ast::WithStmt * previsit( const ast::WithStmt * );
1293
1294 const ast::SingleInit * previsit( const ast::SingleInit * );
1295 const ast::ListInit * previsit( const ast::ListInit * );
1296 const ast::ConstructorInit * previsit( const ast::ConstructorInit * );
1297
1298 void resolveWithExprs(std::vector<ast::ptr<ast::Expr>> & exprs, std::list<ast::ptr<ast::Stmt>> & stmtsToAdd);
1299
1300 void beginScope() { managedTypes.beginScope(); }
1301 void endScope() { managedTypes.endScope(); }
1302 bool on_error(ast::ptr<ast::Decl> & decl);
1303 };
1304 // size_t Resolver_new::traceId = Stats::Heap::new_stacktrace_id("Resolver");
1305
1306 InitTweak::ManagedTypes_new Resolver_new::managedTypes;
1307
1308 void resolve( ast::TranslationUnit& translationUnit ) {
1309 ast::Pass< Resolver_new >::run( translationUnit, translationUnit.global );
1310 }
1311
1312 ast::ptr< ast::Init > resolveCtorInit(
1313 const ast::ConstructorInit * ctorInit, const ResolveContext & context
1314 ) {
1315 assert( ctorInit );
1316 ast::Pass< Resolver_new > resolver( context );
1317 return ctorInit->accept( resolver );
1318 }
1319
1320 const ast::Expr * resolveStmtExpr(
1321 const ast::StmtExpr * stmtExpr, const ResolveContext & context
1322 ) {
1323 assert( stmtExpr );
1324 ast::Pass< Resolver_new > resolver( context );
1325 auto ret = mutate(stmtExpr->accept(resolver));
1326 strict_dynamic_cast< ast::StmtExpr * >( ret )->computeResult();
1327 return ret;
1328 }
1329
1330 namespace {
1331 const ast::Attribute * handleAttribute(const CodeLocation & loc, const ast::Attribute * attr, const ResolveContext & context) {
1332 std::string name = attr->normalizedName();
1333 if (name == "constructor" || name == "destructor") {
1334 if (attr->params.size() == 1) {
1335 auto arg = attr->params.front();
1336 auto resolved = ResolvExpr::findSingleExpression( arg, new ast::BasicType( ast::BasicType::LongLongSignedInt ), context );
1337 auto result = eval(arg);
1338
1339 auto mutAttr = mutate(attr);
1340 mutAttr->params.front() = resolved;
1341 if (! result.second) {
1342 SemanticWarning(loc, Warning::GccAttributes,
1343 toCString( name, " priorities must be integers from 0 to 65535 inclusive: ", arg ) );
1344 }
1345 else {
1346 auto priority = result.first;
1347 if (priority < 101) {
1348 SemanticWarning(loc, Warning::GccAttributes,
1349 toCString( name, " priorities from 0 to 100 are reserved for the implementation" ) );
1350 } else if (priority < 201 && ! buildingLibrary()) {
1351 SemanticWarning(loc, Warning::GccAttributes,
1352 toCString( name, " priorities from 101 to 200 are reserved for the implementation" ) );
1353 }
1354 }
1355 return mutAttr;
1356 } else if (attr->params.size() > 1) {
1357 SemanticWarning(loc, Warning::GccAttributes, toCString( "too many arguments to ", name, " attribute" ) );
1358 } else {
1359 SemanticWarning(loc, Warning::GccAttributes, toCString( "too few arguments to ", name, " attribute" ) );
1360 }
1361 }
1362 return attr;
1363 }
1364 }
1365
1366 const ast::FunctionDecl * Resolver_new::previsit( const ast::FunctionDecl * functionDecl ) {
1367 GuardValue( functionReturn );
1368
1369 assert (functionDecl->unique());
1370 if (!functionDecl->has_body() && !functionDecl->withExprs.empty()) {
1371 SemanticError(functionDecl->location, functionDecl, "Function without body has with declarations");
1372 }
1373
1374 if (!functionDecl->isTypeFixed) {
1375 auto mutDecl = mutate(functionDecl);
1376 auto mutType = mutDecl->type.get_and_mutate();
1377
1378 for (auto & attr: mutDecl->attributes) {
1379 attr = handleAttribute(mutDecl->location, attr, context );
1380 }
1381
1382 // handle assertions
1383
1384 symtab.enterScope();
1385 mutType->forall.clear();
1386 mutType->assertions.clear();
1387 for (auto & typeParam : mutDecl->type_params) {
1388 symtab.addType(typeParam);
1389 mutType->forall.emplace_back(new ast::TypeInstType(typeParam));
1390 }
1391 for (auto & asst : mutDecl->assertions) {
1392 asst = fixObjectType(asst.strict_as<ast::ObjectDecl>(), context);
1393 symtab.addId(asst);
1394 mutType->assertions.emplace_back(new ast::VariableExpr(functionDecl->location, asst));
1395 }
1396
1397 // temporarily adds params to symbol table.
1398 // actual scoping rules for params and withexprs differ - see Pass::visit(FunctionDecl)
1399
1400 std::vector<ast::ptr<ast::Type>> paramTypes;
1401 std::vector<ast::ptr<ast::Type>> returnTypes;
1402
1403 for (auto & param : mutDecl->params) {
1404 param = fixObjectType(param.strict_as<ast::ObjectDecl>(), context);
1405 symtab.addId(param);
1406 paramTypes.emplace_back(param->get_type());
1407 }
1408 for (auto & ret : mutDecl->returns) {
1409 ret = fixObjectType(ret.strict_as<ast::ObjectDecl>(), context);
1410 returnTypes.emplace_back(ret->get_type());
1411 }
1412 // since function type in decl is just a view of param types, need to update that as well
1413 mutType->params = std::move(paramTypes);
1414 mutType->returns = std::move(returnTypes);
1415
1416 auto renamedType = strict_dynamic_cast<const ast::FunctionType *>(renameTyVars(mutType, RenameMode::GEN_EXPR_ID));
1417
1418 std::list<ast::ptr<ast::Stmt>> newStmts;
1419 resolveWithExprs (mutDecl->withExprs, newStmts);
1420
1421 if (mutDecl->stmts) {
1422 auto mutStmt = mutDecl->stmts.get_and_mutate();
1423 mutStmt->kids.splice(mutStmt->kids.begin(), std::move(newStmts));
1424 mutDecl->stmts = mutStmt;
1425 }
1426
1427 symtab.leaveScope();
1428
1429 mutDecl->type = renamedType;
1430 mutDecl->mangleName = Mangle::mangle(mutDecl);
1431 mutDecl->isTypeFixed = true;
1432 functionDecl = mutDecl;
1433 }
1434 managedTypes.handleDWT(functionDecl);
1435
1436 functionReturn = extractResultType( functionDecl->type );
1437 return functionDecl;
1438 }
1439
1440 const ast::FunctionDecl * Resolver_new::postvisit( const ast::FunctionDecl * functionDecl ) {
1441 // default value expressions have an environment which shouldn't be there and trips up
1442 // later passes.
1443 assert( functionDecl->unique() );
1444 ast::FunctionType * mutType = mutate( functionDecl->type.get() );
1445
1446 for ( unsigned i = 0 ; i < mutType->params.size() ; ++i ) {
1447 if ( const ast::ObjectDecl * obj = mutType->params[i].as< ast::ObjectDecl >() ) {
1448 if ( const ast::SingleInit * init = obj->init.as< ast::SingleInit >() ) {
1449 if ( init->value->env == nullptr ) continue;
1450 // clone initializer minus the initializer environment
1451 auto mutParam = mutate( mutType->params[i].strict_as< ast::ObjectDecl >() );
1452 auto mutInit = mutate( mutParam->init.strict_as< ast::SingleInit >() );
1453 auto mutValue = mutate( mutInit->value.get() );
1454
1455 mutValue->env = nullptr;
1456 mutInit->value = mutValue;
1457 mutParam->init = mutInit;
1458 mutType->params[i] = mutParam;
1459
1460 assert( ! mutType->params[i].strict_as< ast::ObjectDecl >()->init.strict_as< ast::SingleInit >()->value->env);
1461 }
1462 }
1463 }
1464 mutate_field(functionDecl, &ast::FunctionDecl::type, mutType);
1465 return functionDecl;
1466 }
1467
1468 const ast::ObjectDecl * Resolver_new::previsit( const ast::ObjectDecl * objectDecl ) {
1469 // To handle initialization of routine pointers [e.g. int (*fp)(int) = foo()],
1470 // class-variable `initContext` is changed multiple times because the LHS is analyzed
1471 // twice. The second analysis changes `initContext` because a function type can contain
1472 // object declarations in the return and parameter types. Therefore each value of
1473 // `initContext` is retained so the type on the first analysis is preserved and used for
1474 // selecting the RHS.
1475 GuardValue( currentObject );
1476
1477 if ( inEnumDecl && dynamic_cast< const ast::EnumInstType * >( objectDecl->get_type() ) ) {
1478 // enumerator initializers should not use the enum type to initialize, since the
1479 // enum type is still incomplete at this point. Use `int` instead.
1480
1481 if ( auto enumBase = dynamic_cast< const ast::EnumInstType * >
1482 ( objectDecl->get_type() )->base->base ) {
1483 objectDecl = fixObjectType( objectDecl, context );
1484 currentObject = ast::CurrentObject{
1485 objectDecl->location,
1486 enumBase
1487 };
1488 } else {
1489 objectDecl = fixObjectType( objectDecl, context );
1490 currentObject = ast::CurrentObject{
1491 objectDecl->location, new ast::BasicType{ ast::BasicType::SignedInt } };
1492 }
1493
1494 }
1495 else {
1496 if ( !objectDecl->isTypeFixed ) {
1497 auto newDecl = fixObjectType(objectDecl, context);
1498 auto mutDecl = mutate(newDecl);
1499
1500 // generate CtorInit wrapper when necessary.
1501 // in certain cases, fixObjectType is called before reaching
1502 // this object in visitor pass, thus disabling CtorInit codegen.
1503 // this happens on aggregate members and function parameters.
1504 if ( InitTweak::tryConstruct( mutDecl ) && ( managedTypes.isManaged( mutDecl ) || ((! isInFunction() || mutDecl->storage.is_static ) && ! InitTweak::isConstExpr( mutDecl->init ) ) ) ) {
1505 // constructed objects cannot be designated
1506 if ( InitTweak::isDesignated( mutDecl->init ) ) SemanticError( mutDecl, "Cannot include designations in the initializer for a managed Object. If this is really what you want, then initialize with @=.\n" );
1507 // constructed objects should not have initializers nested too deeply
1508 if ( ! InitTweak::checkInitDepth( mutDecl ) ) SemanticError( mutDecl, "Managed object's initializer is too deep " );
1509
1510 mutDecl->init = InitTweak::genCtorInit( mutDecl->location, mutDecl );
1511 }
1512
1513 objectDecl = mutDecl;
1514 }
1515 currentObject = ast::CurrentObject{ objectDecl->location, objectDecl->get_type() };
1516 }
1517
1518 return objectDecl;
1519 }
1520
1521 void Resolver_new::previsit( const ast::AggregateDecl * _aggDecl ) {
1522 auto aggDecl = mutate(_aggDecl);
1523 assertf(aggDecl == _aggDecl, "type declarations must be unique");
1524
1525 for (auto & member: aggDecl->members) {
1526 // nested type decls are hoisted already. no need to do anything
1527 if (auto obj = member.as<ast::ObjectDecl>()) {
1528 member = fixObjectType(obj, context);
1529 }
1530 }
1531 }
1532
1533 void Resolver_new::previsit( const ast::StructDecl * structDecl ) {
1534 previsit(static_cast<const ast::AggregateDecl *>(structDecl));
1535 managedTypes.handleStruct(structDecl);
1536 }
1537
1538 void Resolver_new::previsit( const ast::EnumDecl * ) {
1539 // in case we decide to allow nested enums
1540 GuardValue( inEnumDecl );
1541 inEnumDecl = true;
1542 // don't need to fix types for enum fields
1543 }
1544
1545 const ast::StaticAssertDecl * Resolver_new::previsit(
1546 const ast::StaticAssertDecl * assertDecl
1547 ) {
1548 return ast::mutate_field(
1549 assertDecl, &ast::StaticAssertDecl::cond,
1550 findIntegralExpression( assertDecl->cond, context ) );
1551 }
1552
1553 template< typename PtrType >
1554 const PtrType * handlePtrType( const PtrType * type, const ResolveContext & context ) {
1555 if ( type->dimension ) {
1556 const ast::Type * sizeType = context.global.sizeType.get();
1557 ast::ptr< ast::Expr > dimension = findSingleExpression( type->dimension, sizeType, context );
1558 assertf(dimension->env->empty(), "array dimension expr has nonempty env");
1559 dimension.get_and_mutate()->env = nullptr;
1560 ast::mutate_field( type, &PtrType::dimension, dimension );
1561 }
1562 return type;
1563 }
1564
1565 const ast::ArrayType * Resolver_new::previsit( const ast::ArrayType * at ) {
1566 return handlePtrType( at, context );
1567 }
1568
1569 const ast::PointerType * Resolver_new::previsit( const ast::PointerType * pt ) {
1570 return handlePtrType( pt, context );
1571 }
1572
1573 const ast::ExprStmt * Resolver_new::previsit( const ast::ExprStmt * exprStmt ) {
1574 visit_children = false;
1575 assertf( exprStmt->expr, "ExprStmt has null expression in resolver" );
1576
1577 return ast::mutate_field(
1578 exprStmt, &ast::ExprStmt::expr, findVoidExpression( exprStmt->expr, context ) );
1579 }
1580
1581 const ast::AsmExpr * Resolver_new::previsit( const ast::AsmExpr * asmExpr ) {
1582 visit_children = false;
1583
1584 asmExpr = ast::mutate_field(
1585 asmExpr, &ast::AsmExpr::operand, findVoidExpression( asmExpr->operand, context ) );
1586
1587 return asmExpr;
1588 }
1589
1590 const ast::AsmStmt * Resolver_new::previsit( const ast::AsmStmt * asmStmt ) {
1591 visitor->maybe_accept( asmStmt, &ast::AsmStmt::input );
1592 visitor->maybe_accept( asmStmt, &ast::AsmStmt::output );
1593 visit_children = false;
1594 return asmStmt;
1595 }
1596
1597 const ast::IfStmt * Resolver_new::previsit( const ast::IfStmt * ifStmt ) {
1598 return ast::mutate_field(
1599 ifStmt, &ast::IfStmt::cond, findIntegralExpression( ifStmt->cond, context ) );
1600 }
1601
1602 const ast::WhileDoStmt * Resolver_new::previsit( const ast::WhileDoStmt * whileDoStmt ) {
1603 return ast::mutate_field(
1604 whileDoStmt, &ast::WhileDoStmt::cond, findIntegralExpression( whileDoStmt->cond, context ) );
1605 }
1606
1607 const ast::ForStmt * Resolver_new::previsit( const ast::ForStmt * forStmt ) {
1608 if ( forStmt->cond ) {
1609 forStmt = ast::mutate_field(
1610 forStmt, &ast::ForStmt::cond, findIntegralExpression( forStmt->cond, context ) );
1611 }
1612
1613 if ( forStmt->inc ) {
1614 forStmt = ast::mutate_field(
1615 forStmt, &ast::ForStmt::inc, findVoidExpression( forStmt->inc, context ) );
1616 }
1617
1618 return forStmt;
1619 }
1620
1621 const ast::SwitchStmt * Resolver_new::previsit( const ast::SwitchStmt * switchStmt ) {
1622 GuardValue( currentObject );
1623 switchStmt = ast::mutate_field(
1624 switchStmt, &ast::SwitchStmt::cond,
1625 findIntegralExpression( switchStmt->cond, context ) );
1626 currentObject = ast::CurrentObject{ switchStmt->location, switchStmt->cond->result };
1627 return switchStmt;
1628 }
1629
1630 const ast::CaseClause * Resolver_new::previsit( const ast::CaseClause * caseStmt ) {
1631 if ( caseStmt->cond ) {
1632 std::deque< ast::InitAlternative > initAlts = currentObject.getOptions();
1633 assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral "
1634 "expression." );
1635
1636 ast::ptr< ast::Expr > untyped =
1637 new ast::CastExpr{ caseStmt->location, caseStmt->cond, initAlts.front().type };
1638 ast::ptr< ast::Expr > newExpr = findSingleExpression( untyped, context );
1639
1640 // case condition cannot have a cast in C, so it must be removed here, regardless of
1641 // whether it would perform a conversion.
1642 if ( const ast::CastExpr * castExpr = newExpr.as< ast::CastExpr >() ) {
1643 swap_and_save_env( newExpr, castExpr->arg );
1644 }
1645
1646 caseStmt = ast::mutate_field( caseStmt, &ast::CaseClause::cond, newExpr );
1647 }
1648 return caseStmt;
1649 }
1650
1651 const ast::BranchStmt * Resolver_new::previsit( const ast::BranchStmt * branchStmt ) {
1652 visit_children = false;
1653 // must resolve the argument of a computed goto
1654 if ( branchStmt->kind == ast::BranchStmt::Goto && branchStmt->computedTarget ) {
1655 // computed goto argument is void*
1656 ast::ptr< ast::Type > target = new ast::PointerType{ new ast::VoidType{} };
1657 branchStmt = ast::mutate_field(
1658 branchStmt, &ast::BranchStmt::computedTarget,
1659 findSingleExpression( branchStmt->computedTarget, target, context ) );
1660 }
1661 return branchStmt;
1662 }
1663
1664 const ast::ReturnStmt * Resolver_new::previsit( const ast::ReturnStmt * returnStmt ) {
1665 visit_children = false;
1666 if ( returnStmt->expr ) {
1667 returnStmt = ast::mutate_field(
1668 returnStmt, &ast::ReturnStmt::expr,
1669 findSingleExpression( returnStmt->expr, functionReturn, context ) );
1670 }
1671 return returnStmt;
1672 }
1673
1674 const ast::ThrowStmt * Resolver_new::previsit( const ast::ThrowStmt * throwStmt ) {
1675 visit_children = false;
1676 if ( throwStmt->expr ) {
1677 const ast::StructDecl * exceptionDecl =
1678 symtab.lookupStruct( "__cfaehm_base_exception_t" );
1679 assert( exceptionDecl );
1680 ast::ptr< ast::Type > exceptType =
1681 new ast::PointerType{ new ast::StructInstType{ exceptionDecl } };
1682 throwStmt = ast::mutate_field(
1683 throwStmt, &ast::ThrowStmt::expr,
1684 findSingleExpression( throwStmt->expr, exceptType, context ) );
1685 }
1686 return throwStmt;
1687 }
1688
1689 const ast::CatchClause * Resolver_new::previsit( const ast::CatchClause * catchClause ) {
1690 // Until we are very sure this invarent (ifs that move between passes have then)
1691 // holds, check it. This allows a check for when to decode the mangling.
1692 if ( auto ifStmt = catchClause->body.as<ast::IfStmt>() ) {
1693 assert( ifStmt->then );
1694 }
1695 // Encode the catchStmt so the condition can see the declaration.
1696 if ( catchClause->cond ) {
1697 ast::CatchClause * clause = mutate( catchClause );
1698 clause->body = new ast::IfStmt( clause->location, clause->cond, nullptr, clause->body );
1699 clause->cond = nullptr;
1700 return clause;
1701 }
1702 return catchClause;
1703 }
1704
1705 const ast::CatchClause * Resolver_new::postvisit( const ast::CatchClause * catchClause ) {
1706 // Decode the catchStmt so everything is stored properly.
1707 const ast::IfStmt * ifStmt = catchClause->body.as<ast::IfStmt>();
1708 if ( nullptr != ifStmt && nullptr == ifStmt->then ) {
1709 assert( ifStmt->cond );
1710 assert( ifStmt->else_ );
1711 ast::CatchClause * clause = ast::mutate( catchClause );
1712 clause->cond = ifStmt->cond;
1713 clause->body = ifStmt->else_;
1714 // ifStmt should be implicately deleted here.
1715 return clause;
1716 }
1717 return catchClause;
1718 }
1719
1720 const ast::WaitForStmt * Resolver_new::previsit( const ast::WaitForStmt * stmt ) {
1721 visit_children = false;
1722
1723 // Resolve all clauses first
1724 for ( unsigned i = 0; i < stmt->clauses.size(); ++i ) {
1725 const ast::WaitForClause & clause = *stmt->clauses[i];
1726
1727 ast::TypeEnvironment env;
1728 CandidateFinder funcFinder( context, env );
1729
1730 // Find all candidates for a function in canonical form
1731 funcFinder.find( clause.target_func, ResolvMode::withAdjustment() );
1732
1733 if ( funcFinder.candidates.empty() ) {
1734 stringstream ss;
1735 ss << "Use of undeclared indentifier '";
1736 ss << clause.target_func.strict_as< ast::NameExpr >()->name;
1737 ss << "' in call to waitfor";
1738 SemanticError( stmt->location, ss.str() );
1739 }
1740
1741 if ( clause.target_args.empty() ) {
1742 SemanticError( stmt->location,
1743 "Waitfor clause must have at least one mutex parameter");
1744 }
1745
1746 // Find all alternatives for all arguments in canonical form
1747 std::vector< CandidateFinder > argFinders =
1748 funcFinder.findSubExprs( clause.target_args );
1749
1750 // List all combinations of arguments
1751 std::vector< CandidateList > possibilities;
1752 combos( argFinders.begin(), argFinders.end(), back_inserter( possibilities ) );
1753
1754 // For every possible function:
1755 // * try matching the arguments to the parameters, not the other way around because
1756 // more arguments than parameters
1757 CandidateList funcCandidates;
1758 std::vector< CandidateList > argsCandidates;
1759 SemanticErrorException errors;
1760 for ( CandidateRef & func : funcFinder.candidates ) {
1761 try {
1762 auto pointerType = dynamic_cast< const ast::PointerType * >(
1763 func->expr->result->stripReferences() );
1764 if ( ! pointerType ) {
1765 SemanticError( stmt->location, func->expr->result.get(),
1766 "candidate not viable: not a pointer type\n" );
1767 }
1768
1769 auto funcType = pointerType->base.as< ast::FunctionType >();
1770 if ( ! funcType ) {
1771 SemanticError( stmt->location, func->expr->result.get(),
1772 "candidate not viable: not a function type\n" );
1773 }
1774
1775 {
1776 auto param = funcType->params.begin();
1777 auto paramEnd = funcType->params.end();
1778
1779 if( ! nextMutex( param, paramEnd ) ) {
1780 SemanticError( stmt->location, funcType,
1781 "candidate function not viable: no mutex parameters\n");
1782 }
1783 }
1784
1785 CandidateRef func2{ new Candidate{ *func } };
1786 // strip reference from function
1787 func2->expr = referenceToRvalueConversion( func->expr, func2->cost );
1788
1789 // Each argument must be matched with a parameter of the current candidate
1790 for ( auto & argsList : possibilities ) {
1791 try {
1792 // Declare data structures needed for resolution
1793 ast::OpenVarSet open;
1794 ast::AssertionSet need, have;
1795 ast::TypeEnvironment resultEnv{ func->env };
1796 // Add all type variables as open so that those not used in the
1797 // parameter list are still considered open
1798 resultEnv.add( funcType->forall );
1799
1800 // load type variables from arguments into one shared space
1801 for ( auto & arg : argsList ) {
1802 resultEnv.simpleCombine( arg->env );
1803 }
1804
1805 // Make sure we don't widen any existing bindings
1806 resultEnv.forbidWidening();
1807
1808 // Find any unbound type variables
1809 resultEnv.extractOpenVars( open );
1810
1811 auto param = funcType->params.begin();
1812 auto paramEnd = funcType->params.end();
1813
1814 unsigned n_mutex_param = 0;
1815
1816 // For every argument of its set, check if it matches one of the
1817 // parameters. The order is important
1818 for ( auto & arg : argsList ) {
1819 // Ignore non-mutex arguments
1820 if ( ! nextMutex( param, paramEnd ) ) {
1821 // We ran out of parameters but still have arguments.
1822 // This function doesn't match
1823 SemanticError( stmt->location, funcType,
1824 toString("candidate function not viable: too many mutex "
1825 "arguments, expected ", n_mutex_param, "\n" ) );
1826 }
1827
1828 ++n_mutex_param;
1829
1830 // Check if the argument matches the parameter type in the current
1831 // scope
1832 // ast::ptr< ast::Type > paramType = (*param)->get_type();
1833 if (
1834 ! unify(
1835 arg->expr->result, *param, resultEnv, need, have, open,
1836 symtab )
1837 ) {
1838 // Type doesn't match
1839 stringstream ss;
1840 ss << "candidate function not viable: no known conversion "
1841 "from '";
1842 ast::print( ss, *param );
1843 ss << "' to '";
1844 ast::print( ss, arg->expr->result );
1845 ss << "' with env '";
1846 ast::print( ss, resultEnv );
1847 ss << "'\n";
1848 SemanticError( stmt->location, funcType, ss.str() );
1849 }
1850
1851 ++param;
1852 }
1853
1854 // All arguments match!
1855
1856 // Check if parameters are missing
1857 if ( nextMutex( param, paramEnd ) ) {
1858 do {
1859 ++n_mutex_param;
1860 ++param;
1861 } while ( nextMutex( param, paramEnd ) );
1862
1863 // We ran out of arguments but still have parameters left; this
1864 // function doesn't match
1865 SemanticError( stmt->location, funcType,
1866 toString( "candidate function not viable: too few mutex "
1867 "arguments, expected ", n_mutex_param, "\n" ) );
1868 }
1869
1870 // All parameters match!
1871
1872 // Finish the expressions to tie in proper environments
1873 finishExpr( func2->expr, resultEnv );
1874 for ( CandidateRef & arg : argsList ) {
1875 finishExpr( arg->expr, resultEnv );
1876 }
1877
1878 // This is a match, store it and save it for later
1879 funcCandidates.emplace_back( std::move( func2 ) );
1880 argsCandidates.emplace_back( std::move( argsList ) );
1881
1882 } catch ( SemanticErrorException & e ) {
1883 errors.append( e );
1884 }
1885 }
1886 } catch ( SemanticErrorException & e ) {
1887 errors.append( e );
1888 }
1889 }
1890
1891 // Make sure correct number of arguments
1892 if( funcCandidates.empty() ) {
1893 SemanticErrorException top( stmt->location,
1894 "No alternatives for function in call to waitfor" );
1895 top.append( errors );
1896 throw top;
1897 }
1898
1899 if( argsCandidates.empty() ) {
1900 SemanticErrorException top( stmt->location,
1901 "No alternatives for arguments in call to waitfor" );
1902 top.append( errors );
1903 throw top;
1904 }
1905
1906 if( funcCandidates.size() > 1 ) {
1907 SemanticErrorException top( stmt->location,
1908 "Ambiguous function in call to waitfor" );
1909 top.append( errors );
1910 throw top;
1911 }
1912 if( argsCandidates.size() > 1 ) {
1913 SemanticErrorException top( stmt->location,
1914 "Ambiguous arguments in call to waitfor" );
1915 top.append( errors );
1916 throw top;
1917 }
1918 // TODO: need to use findDeletedExpr to ensure no deleted identifiers are used.
1919
1920 // build new clause
1921 auto clause2 = new ast::WaitForClause( clause.location );
1922
1923 clause2->target_func = funcCandidates.front()->expr;
1924
1925 clause2->target_args.reserve( clause.target_args.size() );
1926 const ast::StructDecl * decl_monitor = symtab.lookupStruct( "monitor$" );
1927 for ( auto arg : argsCandidates.front() ) {
1928 const auto & loc = stmt->location;
1929
1930 ast::Expr * init = new ast::CastExpr( loc,
1931 new ast::UntypedExpr( loc,
1932 new ast::NameExpr( loc, "get_monitor" ),
1933 { arg->expr }
1934 ),
1935 new ast::PointerType(
1936 new ast::StructInstType(
1937 decl_monitor
1938 )
1939 )
1940 );
1941
1942 clause2->target_args.emplace_back( findSingleExpression( init, context ) );
1943 }
1944
1945 // Resolve the conditions as if it were an IfStmt, statements normally
1946 clause2->cond = findSingleExpression( clause.cond, context );
1947 clause2->stmt = clause.stmt->accept( *visitor );
1948
1949 // set results into stmt
1950 auto n = mutate( stmt );
1951 n->clauses[i] = clause2;
1952 stmt = n;
1953 }
1954
1955 if ( stmt->timeout_stmt ) {
1956 // resolve the timeout as a size_t, the conditions like IfStmt, and stmts normally
1957 ast::ptr< ast::Type > target =
1958 new ast::BasicType{ ast::BasicType::LongLongUnsignedInt };
1959 auto timeout_time = findSingleExpression( stmt->timeout_time, target, context );
1960 auto timeout_cond = findSingleExpression( stmt->timeout_cond, context );
1961 auto timeout_stmt = stmt->timeout_stmt->accept( *visitor );
1962
1963 // set results into stmt
1964 auto n = mutate( stmt );
1965 n->timeout_time = std::move( timeout_time );
1966 n->timeout_cond = std::move( timeout_cond );
1967 n->timeout_stmt = std::move( timeout_stmt );
1968 stmt = n;
1969 }
1970
1971 if ( stmt->else_stmt ) {
1972 // resolve the condition like IfStmt, stmts normally
1973 auto else_cond = findSingleExpression( stmt->else_cond, context );
1974 auto else_stmt = stmt->else_stmt->accept( *visitor );
1975
1976 // set results into stmt
1977 auto n = mutate( stmt );
1978 n->else_cond = std::move( else_cond );
1979 n->else_stmt = std::move( else_stmt );
1980 stmt = n;
1981 }
1982
1983 return stmt;
1984 }
1985
1986 const ast::WithStmt * Resolver_new::previsit( const ast::WithStmt * withStmt ) {
1987 auto mutStmt = mutate(withStmt);
1988 resolveWithExprs(mutStmt->exprs, stmtsToAddBefore);
1989 return mutStmt;
1990 }
1991
1992 void Resolver_new::resolveWithExprs(std::vector<ast::ptr<ast::Expr>> & exprs, std::list<ast::ptr<ast::Stmt>> & stmtsToAdd) {
1993 for (auto & expr : exprs) {
1994 // only struct- and union-typed expressions are viable candidates
1995 expr = findKindExpression( expr, context, structOrUnion, "with expression" );
1996
1997 // if with expression might be impure, create a temporary so that it is evaluated once
1998 if ( Tuples::maybeImpure( expr ) ) {
1999 static UniqueName tmpNamer( "_with_tmp_" );
2000 const CodeLocation loc = expr->location;
2001 auto tmp = new ast::ObjectDecl(loc, tmpNamer.newName(), expr->result, new ast::SingleInit(loc, expr ) );
2002 expr = new ast::VariableExpr( loc, tmp );
2003 stmtsToAdd.push_back( new ast::DeclStmt(loc, tmp ) );
2004 if ( InitTweak::isConstructable( tmp->type ) ) {
2005 // generate ctor/dtor and resolve them
2006 tmp->init = InitTweak::genCtorInit( loc, tmp );
2007 }
2008 // since tmp is freshly created, this should modify tmp in-place
2009 tmp->accept( *visitor );
2010 }
2011 else if (expr->env && expr->env->empty()) {
2012 expr = ast::mutate_field(expr.get(), &ast::Expr::env, nullptr);
2013 }
2014 }
2015 }
2016
2017
2018 const ast::SingleInit * Resolver_new::previsit( const ast::SingleInit * singleInit ) {
2019 visit_children = false;
2020 // resolve initialization using the possibilities as determined by the `currentObject`
2021 // cursor.
2022 ast::ptr< ast::Expr > untyped = new ast::UntypedInitExpr{
2023 singleInit->location, singleInit->value, currentObject.getOptions() };
2024 ast::ptr<ast::Expr> newExpr = findSingleExpression( untyped, context );
2025 const ast::InitExpr * initExpr = newExpr.strict_as< ast::InitExpr >();
2026
2027 // move cursor to the object that is actually initialized
2028 currentObject.setNext( initExpr->designation );
2029
2030 // discard InitExpr wrapper and retain relevant pieces.
2031 // `initExpr` may have inferred params in the case where the expression specialized a
2032 // function pointer, and newExpr may already have inferParams of its own, so a simple
2033 // swap is not sufficient
2034 ast::Expr::InferUnion inferred = initExpr->inferred;
2035 swap_and_save_env( newExpr, initExpr->expr );
2036 newExpr.get_and_mutate()->inferred.splice( std::move(inferred) );
2037
2038 // get the actual object's type (may not exactly match what comes back from the resolver
2039 // due to conversions)
2040 const ast::Type * initContext = currentObject.getCurrentType();
2041
2042 removeExtraneousCast( newExpr, symtab );
2043
2044 // check if actual object's type is char[]
2045 if ( auto at = dynamic_cast< const ast::ArrayType * >( initContext ) ) {
2046 if ( isCharType( at->base ) ) {
2047 // check if the resolved type is char*
2048 if ( auto pt = newExpr->result.as< ast::PointerType >() ) {
2049 if ( isCharType( pt->base ) ) {
2050 // strip cast if we're initializing a char[] with a char*
2051 // e.g. char x[] = "hello"
2052 if ( auto ce = newExpr.as< ast::CastExpr >() ) {
2053 swap_and_save_env( newExpr, ce->arg );
2054 }
2055 }
2056 }
2057 }
2058 }
2059
2060 // move cursor to next object in preparation for next initializer
2061 currentObject.increment();
2062
2063 // set initializer expression to resolved expression
2064 return ast::mutate_field( singleInit, &ast::SingleInit::value, std::move(newExpr) );
2065 }
2066
2067 const ast::ListInit * Resolver_new::previsit( const ast::ListInit * listInit ) {
2068 // move cursor into brace-enclosed initializer-list
2069 currentObject.enterListInit( listInit->location );
2070
2071 assert( listInit->designations.size() == listInit->initializers.size() );
2072 for ( unsigned i = 0; i < listInit->designations.size(); ++i ) {
2073 // iterate designations and initializers in pairs, moving the cursor to the current
2074 // designated object and resolving the initializer against that object
2075 listInit = ast::mutate_field_index(
2076 listInit, &ast::ListInit::designations, i,
2077 currentObject.findNext( listInit->designations[i] ) );
2078 listInit = ast::mutate_field_index(
2079 listInit, &ast::ListInit::initializers, i,
2080 listInit->initializers[i]->accept( *visitor ) );
2081 }
2082
2083 // move cursor out of brace-enclosed initializer-list
2084 currentObject.exitListInit();
2085
2086 visit_children = false;
2087 return listInit;
2088 }
2089
2090 const ast::ConstructorInit * Resolver_new::previsit( const ast::ConstructorInit * ctorInit ) {
2091 visitor->maybe_accept( ctorInit, &ast::ConstructorInit::ctor );
2092 visitor->maybe_accept( ctorInit, &ast::ConstructorInit::dtor );
2093
2094 // found a constructor - can get rid of C-style initializer
2095 // xxx - Rob suggests this field is dead code
2096 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::init, nullptr );
2097
2098 // intrinsic single-parameter constructors and destructors do nothing. Since this was
2099 // implicitly generated, there's no way for it to have side effects, so get rid of it to
2100 // clean up generated code
2101 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->ctor ) ) {
2102 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::ctor, nullptr );
2103 }
2104 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->dtor ) ) {
2105 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::dtor, nullptr );
2106 }
2107
2108 return ctorInit;
2109 }
2110
2111 // suppress error on autogen functions and mark invalid autogen as deleted.
2112 bool Resolver_new::on_error(ast::ptr<ast::Decl> & decl) {
2113 if (auto functionDecl = decl.as<ast::FunctionDecl>()) {
2114 // xxx - can intrinsic gen ever fail?
2115 if (functionDecl->linkage == ast::Linkage::AutoGen) {
2116 auto mutDecl = mutate(functionDecl);
2117 mutDecl->isDeleted = true;
2118 mutDecl->stmts = nullptr;
2119 decl = mutDecl;
2120 return false;
2121 }
2122 }
2123 return true;
2124 }
2125
2126} // namespace ResolvExpr
2127
2128// Local Variables: //
2129// tab-width: 4 //
2130// mode: c++ //
2131// compile-command: "make install" //
2132// End: //
Note: See TracBrowser for help on using the repository browser.