source: src/ResolvExpr/Resolver.cc@ a465caff

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors ctor deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since a465caff was a465caff, checked in by Rob Schluntz <rschlunt@…>, 9 years ago

generate a field constructor for union types and some refactoring

  • Property mode set to 100644
File size: 20.0 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Resolver.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 12:17:01 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Tue Jul 12 17:45:42 2016
13// Update Count : 204
14//
15
16#include "Resolver.h"
17#include "AlternativeFinder.h"
18#include "Alternative.h"
19#include "RenameVars.h"
20#include "ResolveTypeof.h"
21#include "SynTree/Statement.h"
22#include "SynTree/Type.h"
23#include "SynTree/Expression.h"
24#include "SynTree/Initializer.h"
25#include "SymTab/Indexer.h"
26#include "SymTab/Autogen.h"
27#include "Common/utility.h"
28#include "InitTweak/InitTweak.h"
29
30#include <iostream>
31using namespace std;
32
33namespace ResolvExpr {
34 class Resolver : public SymTab::Indexer {
35 public:
36 Resolver() : SymTab::Indexer( false ), switchType( 0 ) {}
37
38 virtual void visit( FunctionDecl *functionDecl );
39 virtual void visit( ObjectDecl *functionDecl );
40 virtual void visit( TypeDecl *typeDecl );
41 virtual void visit( EnumDecl * enumDecl );
42
43 virtual void visit( ArrayType * at );
44 virtual void visit( PointerType * at );
45
46 virtual void visit( ExprStmt *exprStmt );
47 virtual void visit( AsmExpr *asmExpr );
48 virtual void visit( AsmStmt *asmStmt );
49 virtual void visit( IfStmt *ifStmt );
50 virtual void visit( WhileStmt *whileStmt );
51 virtual void visit( ForStmt *forStmt );
52 virtual void visit( SwitchStmt *switchStmt );
53 virtual void visit( CaseStmt *caseStmt );
54 virtual void visit( BranchStmt *branchStmt );
55 virtual void visit( ReturnStmt *returnStmt );
56
57 virtual void visit( SingleInit *singleInit );
58 virtual void visit( ListInit *listInit );
59 virtual void visit( ConstructorInit *ctorInit );
60 private:
61 typedef std::list< Initializer * >::iterator InitIterator;
62
63 template< typename PtrType >
64 void handlePtrType( PtrType * type );
65
66 void resolveAggrInit( AggregateDecl *, InitIterator &, InitIterator & );
67 void resolveSingleAggrInit( Declaration *, InitIterator &, InitIterator & );
68 void fallbackInit( ConstructorInit * ctorInit );
69 std::list< Type * > functionReturn;
70 Type *initContext;
71 Type *switchType;
72 bool inEnumDecl = false;
73 };
74
75 void resolve( std::list< Declaration * > translationUnit ) {
76 Resolver resolver;
77 acceptAll( translationUnit, resolver );
78#if 0
79 resolver.print( cerr );
80 for ( std::list< Declaration * >::iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) {
81 (*i)->print( std::cerr );
82 (*i)->accept( resolver );
83 } // for
84#endif
85 }
86
87 Expression *resolveInVoidContext( Expression *expr, const SymTab::Indexer &indexer ) {
88 TypeEnvironment env;
89 return resolveInVoidContext( expr, indexer, env );
90 }
91
92
93 namespace {
94 void finishExpr( Expression *expr, const TypeEnvironment &env ) {
95 expr->set_env( new TypeSubstitution );
96 env.makeSubstitution( *expr->get_env() );
97 }
98 } // namespace
99
100 Expression *findVoidExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
101 global_renamer.reset();
102 TypeEnvironment env;
103 Expression *newExpr = resolveInVoidContext( untyped, indexer, env );
104 finishExpr( newExpr, env );
105 return newExpr;
106 }
107
108 namespace {
109 Expression *findSingleExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
110 TypeEnvironment env;
111 AlternativeFinder finder( indexer, env );
112 finder.find( untyped );
113#if 0
114 if ( finder.get_alternatives().size() != 1 ) {
115 std::cout << "untyped expr is ";
116 untyped->print( std::cout );
117 std::cout << std::endl << "alternatives are:";
118 for ( std::list< Alternative >::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
119 i->print( std::cout );
120 } // for
121 } // if
122#endif
123 assert( finder.get_alternatives().size() == 1 );
124 Alternative &choice = finder.get_alternatives().front();
125 Expression *newExpr = choice.expr->clone();
126 finishExpr( newExpr, choice.env );
127 return newExpr;
128 }
129
130 bool isIntegralType( Type *type ) {
131 if ( dynamic_cast< EnumInstType * >( type ) ) {
132 return true;
133 } else if ( BasicType *bt = dynamic_cast< BasicType * >( type ) ) {
134 return bt->isInteger();
135 } else {
136 return false;
137 } // if
138 }
139
140 Expression *findIntegralExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
141 TypeEnvironment env;
142 AlternativeFinder finder( indexer, env );
143 finder.find( untyped );
144#if 0
145 if ( finder.get_alternatives().size() != 1 ) {
146 std::cout << "untyped expr is ";
147 untyped->print( std::cout );
148 std::cout << std::endl << "alternatives are:";
149 for ( std::list< Alternative >::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
150 i->print( std::cout );
151 } // for
152 } // if
153#endif
154 Expression *newExpr = 0;
155 const TypeEnvironment *newEnv = 0;
156 for ( AltList::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
157 if ( i->expr->get_results().size() == 1 && isIntegralType( i->expr->get_results().front() ) ) {
158 if ( newExpr ) {
159 throw SemanticError( "Too many interpretations for case control expression", untyped );
160 } else {
161 newExpr = i->expr->clone();
162 newEnv = &i->env;
163 } // if
164 } // if
165 } // for
166 if ( ! newExpr ) {
167 throw SemanticError( "No interpretations for case control expression", untyped );
168 } // if
169 finishExpr( newExpr, *newEnv );
170 return newExpr;
171 }
172
173 }
174
175 void Resolver::visit( ObjectDecl *objectDecl ) {
176 Type *new_type = resolveTypeof( objectDecl->get_type(), *this );
177 objectDecl->set_type( new_type );
178 // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that class-variable
179 // initContext is changed multiple time because the LHS is analysed twice. The second analysis changes
180 // initContext because of a function type can contain object declarations in the return and parameter types. So
181 // each value of initContext is retained, so the type on the first analysis is preserved and used for selecting
182 // the RHS.
183 Type *temp = initContext;
184 initContext = new_type;
185 if ( inEnumDecl && dynamic_cast< EnumInstType * >( initContext ) ) {
186 // enumerator initializers should not use the enum type to initialize, since
187 // the enum type is still incomplete at this point. Use signed int instead.
188 initContext = new BasicType( Type::Qualifiers(), BasicType::SignedInt );
189 }
190 SymTab::Indexer::visit( objectDecl );
191 if ( inEnumDecl && dynamic_cast< EnumInstType * >( initContext ) ) {
192 // delete newly created signed int type
193 delete initContext;
194 }
195 initContext = temp;
196 }
197
198 template< typename PtrType >
199 void Resolver::handlePtrType( PtrType * type ) {
200 if ( type->get_dimension() ) {
201 CastExpr *castExpr = new CastExpr( type->get_dimension(), SymTab::SizeType->clone() );
202 Expression *newExpr = findSingleExpression( castExpr, *this );
203 delete type->get_dimension();
204 type->set_dimension( newExpr );
205 }
206 }
207
208 void Resolver::visit( ArrayType * at ) {
209 handlePtrType( at );
210 Visitor::visit( at );
211 }
212
213 void Resolver::visit( PointerType * pt ) {
214 handlePtrType( pt );
215 Visitor::visit( pt );
216 }
217
218 void Resolver::visit( TypeDecl *typeDecl ) {
219 if ( typeDecl->get_base() ) {
220 Type *new_type = resolveTypeof( typeDecl->get_base(), *this );
221 typeDecl->set_base( new_type );
222 } // if
223 SymTab::Indexer::visit( typeDecl );
224 }
225
226 void Resolver::visit( FunctionDecl *functionDecl ) {
227#if 0
228 std::cout << "resolver visiting functiondecl ";
229 functionDecl->print( std::cout );
230 std::cout << std::endl;
231#endif
232 Type *new_type = resolveTypeof( functionDecl->get_type(), *this );
233 functionDecl->set_type( new_type );
234 std::list< Type * > oldFunctionReturn = functionReturn;
235 functionReturn.clear();
236 for ( std::list< DeclarationWithType * >::const_iterator i = functionDecl->get_functionType()->get_returnVals().begin(); i != functionDecl->get_functionType()->get_returnVals().end(); ++i ) {
237 functionReturn.push_back( (*i)->get_type() );
238 } // for
239 SymTab::Indexer::visit( functionDecl );
240 functionReturn = oldFunctionReturn;
241 }
242
243 void Resolver::visit( EnumDecl * enumDecl ) {
244 // in case we decide to allow nested enums
245 bool oldInEnumDecl = inEnumDecl;
246 inEnumDecl = true;
247 SymTab::Indexer::visit( enumDecl );
248 inEnumDecl = oldInEnumDecl;
249 }
250
251 void Resolver::visit( ExprStmt *exprStmt ) {
252 if ( exprStmt->get_expr() ) {
253 Expression *newExpr = findVoidExpression( exprStmt->get_expr(), *this );
254 delete exprStmt->get_expr();
255 exprStmt->set_expr( newExpr );
256 } // if
257 }
258
259 void Resolver::visit( AsmExpr *asmExpr ) {
260 Expression *newExpr = findVoidExpression( asmExpr->get_operand(), *this );
261 delete asmExpr->get_operand();
262 asmExpr->set_operand( newExpr );
263 if ( asmExpr->get_inout() ) {
264 newExpr = findVoidExpression( asmExpr->get_inout(), *this );
265 delete asmExpr->get_inout();
266 asmExpr->set_inout( newExpr );
267 } // if
268 }
269
270 void Resolver::visit( AsmStmt *asmStmt ) {
271 acceptAll( asmStmt->get_input(), *this);
272 acceptAll( asmStmt->get_output(), *this);
273 }
274
275 void Resolver::visit( IfStmt *ifStmt ) {
276 Expression *newExpr = findSingleExpression( ifStmt->get_condition(), *this );
277 delete ifStmt->get_condition();
278 ifStmt->set_condition( newExpr );
279 Visitor::visit( ifStmt );
280 }
281
282 void Resolver::visit( WhileStmt *whileStmt ) {
283 Expression *newExpr = findSingleExpression( whileStmt->get_condition(), *this );
284 delete whileStmt->get_condition();
285 whileStmt->set_condition( newExpr );
286 Visitor::visit( whileStmt );
287 }
288
289 void Resolver::visit( ForStmt *forStmt ) {
290 SymTab::Indexer::visit( forStmt );
291
292 if ( forStmt->get_condition() ) {
293 Expression * newExpr = findSingleExpression( forStmt->get_condition(), *this );
294 delete forStmt->get_condition();
295 forStmt->set_condition( newExpr );
296 } // if
297
298 if ( forStmt->get_increment() ) {
299 Expression * newExpr = findVoidExpression( forStmt->get_increment(), *this );
300 delete forStmt->get_increment();
301 forStmt->set_increment( newExpr );
302 } // if
303 }
304
305 template< typename SwitchClass >
306 void handleSwitchStmt( SwitchClass *switchStmt, SymTab::Indexer &visitor ) {
307 Expression *newExpr;
308 newExpr = findIntegralExpression( switchStmt->get_condition(), visitor );
309 delete switchStmt->get_condition();
310 switchStmt->set_condition( newExpr );
311
312 visitor.Visitor::visit( switchStmt );
313 }
314
315 void Resolver::visit( SwitchStmt *switchStmt ) {
316 handleSwitchStmt( switchStmt, *this );
317 }
318
319 void Resolver::visit( CaseStmt *caseStmt ) {
320 Visitor::visit( caseStmt );
321 }
322
323 void Resolver::visit( BranchStmt *branchStmt ) {
324 // must resolve the argument for a computed goto
325 if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement
326 if ( Expression * arg = branchStmt->get_computedTarget() ) {
327 VoidType v = Type::Qualifiers(); // cast to void * for the alternative finder
328 PointerType pt( Type::Qualifiers(), v.clone() );
329 CastExpr * castExpr = new CastExpr( arg, pt.clone() );
330 Expression * newExpr = findSingleExpression( castExpr, *this ); // find best expression
331 branchStmt->set_target( newExpr );
332 } // if
333 } // if
334 }
335
336 void Resolver::visit( ReturnStmt *returnStmt ) {
337 if ( returnStmt->get_expr() ) {
338 CastExpr *castExpr = new CastExpr( returnStmt->get_expr() );
339 cloneAll( functionReturn, castExpr->get_results() );
340 Expression *newExpr = findSingleExpression( castExpr, *this );
341 delete castExpr;
342 returnStmt->set_expr( newExpr );
343 } // if
344 }
345
346 template< typename T >
347 bool isCharType( T t ) {
348 if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) {
349 return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar ||
350 bt->get_kind() == BasicType::UnsignedChar;
351 }
352 return false;
353 }
354
355 void Resolver::visit( SingleInit *singleInit ) {
356 if ( singleInit->get_value() ) {
357#if 0
358 if (NameExpr * ne = dynamic_cast<NameExpr*>(singleInit->get_value())) {
359 string n = ne->get_name();
360 if (n == "0") {
361 initContext = new BasicType(Type::Qualifiers(),
362 BasicType::SignedInt);
363 } else {
364 DeclarationWithType * decl = lookupId( n );
365 initContext = decl->get_type();
366 }
367 } else if (ConstantExpr * e =
368 dynamic_cast<ConstantExpr*>(singleInit->get_value())) {
369 Constant *c = e->get_constant();
370 initContext = c->get_type();
371 } else {
372 assert(0);
373 }
374#endif
375 CastExpr *castExpr = new CastExpr( singleInit->get_value(), initContext->clone() );
376 Expression *newExpr = findSingleExpression( castExpr, *this );
377 delete castExpr;
378 singleInit->set_value( newExpr );
379
380 // check if initializing type is char[]
381 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
382 if ( isCharType( at->get_base() ) ) {
383 // check if the resolved type is char *
384 if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_results().front() ) ) {
385 if ( isCharType( pt->get_base() ) ) {
386 // strip cast if we're initializing a char[] with a char *, e.g. char x[] = "hello";
387 CastExpr *ce = dynamic_cast< CastExpr * >( newExpr );
388 singleInit->set_value( ce->get_arg() );
389 ce->set_arg( NULL );
390 delete ce;
391 }
392 }
393 }
394 }
395 } // if
396// singleInit->get_value()->accept( *this );
397 }
398
399 void Resolver::resolveSingleAggrInit( Declaration * dcl, InitIterator & init, InitIterator & initEnd ) {
400 DeclarationWithType * dt = dynamic_cast< DeclarationWithType * >( dcl );
401 assert( dt );
402 initContext = dt->get_type();
403 try {
404 if ( init == initEnd ) return; // stop when there are no more initializers
405 (*init)->accept( *this );
406 ++init; // made it past an initializer
407 } catch( SemanticError & ) {
408 // need to delve deeper, if you can
409 if ( StructInstType * sit = dynamic_cast< StructInstType * >( dt->get_type() ) ) {
410 resolveAggrInit( sit->get_baseStruct(), init, initEnd );
411 } else if ( UnionInstType * uit = dynamic_cast< UnionInstType * >( dt->get_type() ) ) {
412 resolveAggrInit( uit->get_baseUnion(), init, initEnd );
413 } else {
414 // member is not an aggregate type, so can't go any deeper
415
416 // might need to rethink what is being thrown
417 throw;
418 } // if
419 }
420 }
421
422 void Resolver::resolveAggrInit( AggregateDecl * aggr, InitIterator & init, InitIterator & initEnd ) {
423 if ( StructDecl * st = dynamic_cast< StructDecl * >( aggr ) ) {
424 // want to resolve each initializer to the members of the struct,
425 // but if there are more initializers than members we should stop
426 list< Declaration * >::iterator it = st->get_members().begin();
427 for ( ; it != st->get_members().end(); ++it) {
428 resolveSingleAggrInit( *it, init, initEnd );
429 }
430 } else if ( UnionDecl * un = dynamic_cast< UnionDecl * >( aggr ) ) {
431 // only resolve to the first member of a union
432 resolveSingleAggrInit( *un->get_members().begin(), init, initEnd );
433 } // if
434 }
435
436 void Resolver::visit( ListInit * listInit ) {
437 InitIterator iter = listInit->begin();
438 InitIterator end = listInit->end();
439
440 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
441 // resolve each member to the base type of the array
442 for ( ; iter != end; ++iter ) {
443 initContext = at->get_base();
444 (*iter)->accept( *this );
445 } // for
446 } else if ( StructInstType * st = dynamic_cast< StructInstType * >( initContext ) ) {
447 resolveAggrInit( st->get_baseStruct(), iter, end );
448 } else if ( UnionInstType * st = dynamic_cast< UnionInstType * >( initContext ) ) {
449 resolveAggrInit( st->get_baseUnion(), iter, end );
450 } else if ( TypeInstType * tt = dynamic_cast< TypeInstType * >( initContext ) ) {
451 Type * base = tt->get_baseType()->get_base();
452 if ( base ) {
453 // know the implementation type, so try using that as the initContext
454 initContext = base;
455 visit( listInit );
456 } else {
457 // missing implementation type -- might be an unknown type variable, so try proceeding with the current init context
458 Visitor::visit( listInit );
459 }
460 } else {
461 assert( dynamic_cast< BasicType * >( initContext ) || dynamic_cast< PointerType * >( initContext ) );
462 // basic types are handled here
463 Visitor::visit( listInit );
464 }
465
466#if 0
467 if ( ArrayType *at = dynamic_cast<ArrayType*>(initContext) ) {
468 std::list<Initializer *>::iterator iter( listInit->begin_initializers() );
469 for ( ; iter != listInit->end_initializers(); ++iter ) {
470 initContext = at->get_base();
471 (*iter)->accept( *this );
472 } // for
473 } else if ( StructInstType *st = dynamic_cast<StructInstType*>(initContext) ) {
474 StructDecl *baseStruct = st->get_baseStruct();
475 std::list<Declaration *>::iterator iter1( baseStruct->get_members().begin() );
476 std::list<Initializer *>::iterator iter2( listInit->begin_initializers() );
477 for ( ; iter1 != baseStruct->get_members().end() && iter2 != listInit->end_initializers(); ++iter2 ) {
478 if ( (*iter2)->get_designators().empty() ) {
479 DeclarationWithType *dt = dynamic_cast<DeclarationWithType *>( *iter1 );
480 initContext = dt->get_type();
481 (*iter2)->accept( *this );
482 ++iter1;
483 } else {
484 StructDecl *st = baseStruct;
485 iter1 = st->get_members().begin();
486 std::list<Expression *>::iterator iter3( (*iter2)->get_designators().begin() );
487 for ( ; iter3 != (*iter2)->get_designators().end(); ++iter3 ) {
488 NameExpr *key = dynamic_cast<NameExpr *>( *iter3 );
489 assert( key );
490 for ( ; iter1 != st->get_members().end(); ++iter1 ) {
491 if ( key->get_name() == (*iter1)->get_name() ) {
492 (*iter1)->print( cout );
493 cout << key->get_name() << endl;
494 ObjectDecl *fred = dynamic_cast<ObjectDecl *>( *iter1 );
495 assert( fred );
496 StructInstType *mary = dynamic_cast<StructInstType*>( fred->get_type() );
497 assert( mary );
498 st = mary->get_baseStruct();
499 iter1 = st->get_members().begin();
500 break;
501 } // if
502 } // for
503 } // for
504 ObjectDecl *fred = dynamic_cast<ObjectDecl *>( *iter1 );
505 assert( fred );
506 initContext = fred->get_type();
507 (*listInit->begin_initializers())->accept( *this );
508 } // if
509 } // for
510 } else if ( UnionInstType *st = dynamic_cast<UnionInstType*>(initContext) ) {
511 DeclarationWithType *dt = dynamic_cast<DeclarationWithType *>( *st->get_baseUnion()->get_members().begin() );
512 initContext = dt->get_type();
513 (*listInit->begin_initializers())->accept( *this );
514 } // if
515#endif
516 }
517
518 // ConstructorInit - fall back on C-style initializer
519 void Resolver::fallbackInit( ConstructorInit * ctorInit ) {
520 // could not find valid constructor, or found an intrinsic constructor
521 // fall back on C-style initializer
522 delete ctorInit->get_ctor();
523 ctorInit->set_ctor( NULL );
524 delete ctorInit->get_dtor();
525 ctorInit->set_dtor( NULL );
526 maybeAccept( ctorInit->get_init(), *this );
527 }
528
529 void Resolver::visit( ConstructorInit *ctorInit ) {
530 try {
531 maybeAccept( ctorInit->get_ctor(), *this );
532 maybeAccept( ctorInit->get_dtor(), *this );
533 } catch ( SemanticError ) {
534 // no alternatives for the constructor initializer - fallback on C-style initializer
535 // xxx - not sure if this makes a ton of sense - should maybe never be able to have this situation?
536 fallbackInit( ctorInit );
537 return;
538 }
539
540 // found a constructor - can get rid of C-style initializer
541 delete ctorInit->get_init();
542 ctorInit->set_init( NULL );
543
544 // intrinsic single parameter constructors and destructors do nothing. Since this was
545 // implicitly generated, there's no way for it to have side effects, so get rid of it
546 // to clean up generated code.
547 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->get_ctor() ) ) {
548 delete ctorInit->get_ctor();
549 ctorInit->set_ctor( NULL );
550 }
551
552 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->get_dtor() ) ) {
553 delete ctorInit->get_dtor();
554 ctorInit->set_dtor( NULL );
555 }
556
557 // xxx - todo -- what about arrays?
558 // if ( dtor == NULL && InitTweak::isIntrinsicCallStmt( ctorInit->get_ctor() ) ) {
559 // // can reduce the constructor down to a SingleInit using the
560 // // second argument from the ctor call, since
561 // delete ctorInit->get_ctor();
562 // ctorInit->set_ctor( NULL );
563
564 // Expression * arg =
565 // ctorInit->set_init( new SingleInit( arg ) );
566 // }
567 }
568} // namespace ResolvExpr
569
570// Local Variables: //
571// tab-width: 4 //
572// mode: c++ //
573// compile-command: "make install" //
574// End: //
Note: See TracBrowser for help on using the repository browser.