source: src/ResolvExpr/Resolver.cc@ 946bcca

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 946bcca was 88d1066, checked in by Rob Schluntz <rschlunt@…>, 9 years ago

remove environments from default argument expressions

  • Property mode set to 100644
File size: 22.3 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Resolver.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 12:17:01 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Tue Jul 12 17:45:42 2016
13// Update Count : 204
14//
15
16#include "Resolver.h"
17#include "AlternativeFinder.h"
18#include "Alternative.h"
19#include "RenameVars.h"
20#include "ResolveTypeof.h"
21#include "typeops.h"
22#include "SynTree/Statement.h"
23#include "SynTree/Type.h"
24#include "SynTree/Expression.h"
25#include "SynTree/Initializer.h"
26#include "SymTab/Indexer.h"
27#include "SymTab/Autogen.h"
28#include "Common/utility.h"
29#include "InitTweak/InitTweak.h"
30
31#include <iostream>
32using namespace std;
33
34namespace ResolvExpr {
35 class Resolver final : public SymTab::Indexer {
36 public:
37 Resolver() : SymTab::Indexer( false ) {}
38 Resolver( const SymTab:: Indexer & other ) : SymTab::Indexer( other ) {
39 if ( const Resolver * res = dynamic_cast< const Resolver * >( &other ) ) {
40 functionReturn = res->functionReturn;
41 initContext = res->initContext;
42 inEnumDecl = res->inEnumDecl;
43 }
44 }
45
46 typedef SymTab::Indexer Parent;
47 using Parent::visit;
48 virtual void visit( FunctionDecl *functionDecl ) override;
49 virtual void visit( ObjectDecl *functionDecl ) override;
50 virtual void visit( TypeDecl *typeDecl ) override;
51 virtual void visit( EnumDecl * enumDecl ) override;
52
53 virtual void visit( ArrayType * at ) override;
54 virtual void visit( PointerType * at ) override;
55
56 virtual void visit( ExprStmt *exprStmt ) override;
57 virtual void visit( AsmExpr *asmExpr ) override;
58 virtual void visit( AsmStmt *asmStmt ) override;
59 virtual void visit( IfStmt *ifStmt ) override;
60 virtual void visit( WhileStmt *whileStmt ) override;
61 virtual void visit( ForStmt *forStmt ) override;
62 virtual void visit( SwitchStmt *switchStmt ) override;
63 virtual void visit( CaseStmt *caseStmt ) override;
64 virtual void visit( BranchStmt *branchStmt ) override;
65 virtual void visit( ReturnStmt *returnStmt ) override;
66
67 virtual void visit( SingleInit *singleInit ) override;
68 virtual void visit( ListInit *listInit ) override;
69 virtual void visit( ConstructorInit *ctorInit ) override;
70 private:
71 typedef std::list< Initializer * >::iterator InitIterator;
72
73 template< typename PtrType >
74 void handlePtrType( PtrType * type );
75
76 void resolveAggrInit( ReferenceToType *, InitIterator &, InitIterator & );
77 void resolveSingleAggrInit( Declaration *, InitIterator &, InitIterator &, TypeSubstitution sub );
78 void fallbackInit( ConstructorInit * ctorInit );
79
80 Type * functionReturn = nullptr;
81 Type *initContext = nullptr;
82 bool inEnumDecl = false;
83 };
84
85 void resolve( std::list< Declaration * > translationUnit ) {
86 Resolver resolver;
87 acceptAll( translationUnit, resolver );
88 }
89
90 Expression *resolveInVoidContext( Expression *expr, const SymTab::Indexer &indexer ) {
91 TypeEnvironment env;
92 return resolveInVoidContext( expr, indexer, env );
93 }
94
95
96 namespace {
97 void finishExpr( Expression *expr, const TypeEnvironment &env ) {
98 expr->set_env( new TypeSubstitution );
99 env.makeSubstitution( *expr->get_env() );
100 }
101 } // namespace
102
103 Expression *findVoidExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
104 global_renamer.reset();
105 TypeEnvironment env;
106 Expression *newExpr = resolveInVoidContext( untyped, indexer, env );
107 finishExpr( newExpr, env );
108 return newExpr;
109 }
110
111 namespace {
112 Expression *findSingleExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
113 TypeEnvironment env;
114 AlternativeFinder finder( indexer, env );
115 finder.find( untyped );
116#if 0
117 if ( finder.get_alternatives().size() != 1 ) {
118 std::cout << "untyped expr is ";
119 untyped->print( std::cout );
120 std::cout << std::endl << "alternatives are:";
121 for ( std::list< Alternative >::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
122 i->print( std::cout );
123 } // for
124 } // if
125#endif
126 assert( finder.get_alternatives().size() == 1 );
127 Alternative &choice = finder.get_alternatives().front();
128 Expression *newExpr = choice.expr->clone();
129 finishExpr( newExpr, choice.env );
130 return newExpr;
131 }
132
133 bool isIntegralType( Type *type ) {
134 if ( dynamic_cast< EnumInstType * >( type ) ) {
135 return true;
136 } else if ( BasicType *bt = dynamic_cast< BasicType * >( type ) ) {
137 return bt->isInteger();
138 } else if ( dynamic_cast< ZeroType* >( type ) != nullptr || dynamic_cast< OneType* >( type ) != nullptr ) {
139 return true;
140 } else {
141 return false;
142 } // if
143 }
144
145 Expression *findIntegralExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
146 TypeEnvironment env;
147 AlternativeFinder finder( indexer, env );
148 finder.find( untyped );
149#if 0
150 if ( finder.get_alternatives().size() != 1 ) {
151 std::cout << "untyped expr is ";
152 untyped->print( std::cout );
153 std::cout << std::endl << "alternatives are:";
154 for ( std::list< Alternative >::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
155 i->print( std::cout );
156 } // for
157 } // if
158#endif
159 Expression *newExpr = 0;
160 const TypeEnvironment *newEnv = 0;
161 for ( AltList::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
162 if ( i->expr->get_result()->size() == 1 && isIntegralType( i->expr->get_result() ) ) {
163 if ( newExpr ) {
164 throw SemanticError( "Too many interpretations for case control expression", untyped );
165 } else {
166 newExpr = i->expr->clone();
167 newEnv = &i->env;
168 } // if
169 } // if
170 } // for
171 if ( ! newExpr ) {
172 throw SemanticError( "No interpretations for case control expression", untyped );
173 } // if
174 finishExpr( newExpr, *newEnv );
175 return newExpr;
176 }
177
178 }
179
180 void Resolver::visit( ObjectDecl *objectDecl ) {
181 Type *new_type = resolveTypeof( objectDecl->get_type(), *this );
182 objectDecl->set_type( new_type );
183 // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that class-variable
184 // initContext is changed multiple time because the LHS is analysed twice. The second analysis changes
185 // initContext because of a function type can contain object declarations in the return and parameter types. So
186 // each value of initContext is retained, so the type on the first analysis is preserved and used for selecting
187 // the RHS.
188 Type *temp = initContext;
189 initContext = new_type;
190 if ( inEnumDecl && dynamic_cast< EnumInstType * >( initContext ) ) {
191 // enumerator initializers should not use the enum type to initialize, since
192 // the enum type is still incomplete at this point. Use signed int instead.
193 initContext = new BasicType( Type::Qualifiers(), BasicType::SignedInt );
194 }
195 Parent::visit( objectDecl );
196 if ( inEnumDecl && dynamic_cast< EnumInstType * >( initContext ) ) {
197 // delete newly created signed int type
198 delete initContext;
199 }
200 initContext = temp;
201 }
202
203 template< typename PtrType >
204 void Resolver::handlePtrType( PtrType * type ) {
205 if ( type->get_dimension() ) {
206 CastExpr *castExpr = new CastExpr( type->get_dimension(), SymTab::SizeType->clone() );
207 Expression *newExpr = findSingleExpression( castExpr, *this );
208 delete type->get_dimension();
209 type->set_dimension( newExpr );
210 }
211 }
212
213 void Resolver::visit( ArrayType * at ) {
214 handlePtrType( at );
215 Parent::visit( at );
216 }
217
218 void Resolver::visit( PointerType * pt ) {
219 handlePtrType( pt );
220 Parent::visit( pt );
221 }
222
223 void Resolver::visit( TypeDecl *typeDecl ) {
224 if ( typeDecl->get_base() ) {
225 Type *new_type = resolveTypeof( typeDecl->get_base(), *this );
226 typeDecl->set_base( new_type );
227 } // if
228 Parent::visit( typeDecl );
229 }
230
231 void Resolver::visit( FunctionDecl *functionDecl ) {
232#if 0
233 std::cout << "resolver visiting functiondecl ";
234 functionDecl->print( std::cout );
235 std::cout << std::endl;
236#endif
237 Type *new_type = resolveTypeof( functionDecl->get_type(), *this );
238 functionDecl->set_type( new_type );
239 ValueGuard< Type * > oldFunctionReturn( functionReturn );
240 functionReturn = ResolvExpr::extractResultType( functionDecl->get_functionType() );
241 Parent::visit( functionDecl );
242
243 // default value expressions have an environment which shouldn't be there and trips up later passes.
244 // xxx - it might be necessary to somehow keep the information from this environment, but I can't currently
245 // see how it's useful.
246 for ( Declaration * d : functionDecl->get_functionType()->get_parameters() ) {
247 if ( ObjectDecl * obj = dynamic_cast< ObjectDecl * >( d ) ) {
248 if ( SingleInit * init = dynamic_cast< SingleInit * >( obj->get_init() ) ) {
249 delete init->get_value()->get_env();
250 init->get_value()->set_env( nullptr );
251 }
252 }
253 }
254 }
255
256 void Resolver::visit( EnumDecl * enumDecl ) {
257 // in case we decide to allow nested enums
258 ValueGuard< bool > oldInEnumDecl( inEnumDecl );
259 inEnumDecl = true;
260 Parent::visit( enumDecl );
261 }
262
263 void Resolver::visit( ExprStmt *exprStmt ) {
264 assertf( exprStmt->get_expr(), "ExprStmt has null Expression in resolver" );
265 Expression *newExpr = findVoidExpression( exprStmt->get_expr(), *this );
266 delete exprStmt->get_expr();
267 exprStmt->set_expr( newExpr );
268 }
269
270 void Resolver::visit( AsmExpr *asmExpr ) {
271 Expression *newExpr = findVoidExpression( asmExpr->get_operand(), *this );
272 delete asmExpr->get_operand();
273 asmExpr->set_operand( newExpr );
274 if ( asmExpr->get_inout() ) {
275 newExpr = findVoidExpression( asmExpr->get_inout(), *this );
276 delete asmExpr->get_inout();
277 asmExpr->set_inout( newExpr );
278 } // if
279 }
280
281 void Resolver::visit( AsmStmt *asmStmt ) {
282 acceptAll( asmStmt->get_input(), *this);
283 acceptAll( asmStmt->get_output(), *this);
284 }
285
286 void Resolver::visit( IfStmt *ifStmt ) {
287 Expression *newExpr = findSingleExpression( ifStmt->get_condition(), *this );
288 delete ifStmt->get_condition();
289 ifStmt->set_condition( newExpr );
290 Parent::visit( ifStmt );
291 }
292
293 void Resolver::visit( WhileStmt *whileStmt ) {
294 Expression *newExpr = findSingleExpression( whileStmt->get_condition(), *this );
295 delete whileStmt->get_condition();
296 whileStmt->set_condition( newExpr );
297 Parent::visit( whileStmt );
298 }
299
300 void Resolver::visit( ForStmt *forStmt ) {
301 Parent::visit( forStmt );
302
303 if ( forStmt->get_condition() ) {
304 Expression * newExpr = findSingleExpression( forStmt->get_condition(), *this );
305 delete forStmt->get_condition();
306 forStmt->set_condition( newExpr );
307 } // if
308
309 if ( forStmt->get_increment() ) {
310 Expression * newExpr = findVoidExpression( forStmt->get_increment(), *this );
311 delete forStmt->get_increment();
312 forStmt->set_increment( newExpr );
313 } // if
314 }
315
316 void Resolver::visit( SwitchStmt *switchStmt ) {
317 ValueGuard< Type * > oldInitContext( initContext );
318 Expression *newExpr;
319 newExpr = findIntegralExpression( switchStmt->get_condition(), *this );
320 delete switchStmt->get_condition();
321 switchStmt->set_condition( newExpr );
322
323 initContext = newExpr->get_result();
324 Parent::visit( switchStmt );
325 }
326
327 void Resolver::visit( CaseStmt *caseStmt ) {
328 if ( caseStmt->get_condition() ) {
329 assert( initContext );
330 CastExpr * castExpr = new CastExpr( caseStmt->get_condition(), initContext->clone() );
331 Expression * newExpr = findSingleExpression( castExpr, *this );
332 castExpr = safe_dynamic_cast< CastExpr * >( newExpr );
333 caseStmt->set_condition( castExpr->get_arg() );
334 castExpr->set_arg( nullptr );
335 delete castExpr;
336 }
337 Parent::visit( caseStmt );
338 }
339
340 void Resolver::visit( BranchStmt *branchStmt ) {
341 // must resolve the argument for a computed goto
342 if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement
343 if ( Expression * arg = branchStmt->get_computedTarget() ) {
344 VoidType v = Type::Qualifiers(); // cast to void * for the alternative finder
345 PointerType pt( Type::Qualifiers(), v.clone() );
346 CastExpr * castExpr = new CastExpr( arg, pt.clone() );
347 Expression * newExpr = findSingleExpression( castExpr, *this ); // find best expression
348 branchStmt->set_target( newExpr );
349 } // if
350 } // if
351 }
352
353 void Resolver::visit( ReturnStmt *returnStmt ) {
354 if ( returnStmt->get_expr() ) {
355 CastExpr *castExpr = new CastExpr( returnStmt->get_expr(), functionReturn->clone() );
356 Expression *newExpr = findSingleExpression( castExpr, *this );
357 delete castExpr;
358 returnStmt->set_expr( newExpr );
359 } // if
360 }
361
362 template< typename T >
363 bool isCharType( T t ) {
364 if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) {
365 return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar ||
366 bt->get_kind() == BasicType::UnsignedChar;
367 }
368 return false;
369 }
370
371 void Resolver::visit( SingleInit *singleInit ) {
372 if ( singleInit->get_value() ) {
373#if 0
374 if (NameExpr * ne = dynamic_cast<NameExpr*>(singleInit->get_value())) {
375 string n = ne->get_name();
376 if (n == "0") {
377 initContext = new BasicType(Type::Qualifiers(),
378 BasicType::SignedInt);
379 } else {
380 DeclarationWithType * decl = lookupId( n );
381 initContext = decl->get_type();
382 }
383 } else if (ConstantExpr * e =
384 dynamic_cast<ConstantExpr*>(singleInit->get_value())) {
385 Constant *c = e->get_constant();
386 initContext = c->get_type();
387 } else {
388 assert(0);
389 }
390#endif
391 CastExpr *castExpr = new CastExpr( singleInit->get_value(), initContext->clone() );
392 Expression *newExpr = findSingleExpression( castExpr, *this );
393 delete castExpr;
394 singleInit->set_value( newExpr );
395
396 // check if initializing type is char[]
397 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
398 if ( isCharType( at->get_base() ) ) {
399 // check if the resolved type is char *
400 if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_result() ) ) {
401 if ( isCharType( pt->get_base() ) ) {
402 // strip cast if we're initializing a char[] with a char *, e.g. char x[] = "hello";
403 CastExpr *ce = dynamic_cast< CastExpr * >( newExpr );
404 singleInit->set_value( ce->get_arg() );
405 ce->set_arg( NULL );
406 delete ce;
407 }
408 }
409 }
410 }
411 } // if
412// singleInit->get_value()->accept( *this );
413 }
414
415 template< typename AggrInst >
416 TypeSubstitution makeGenericSubstitutuion( AggrInst * inst ) {
417 assert( inst );
418 assert( inst->get_baseParameters() );
419 std::list< TypeDecl * > baseParams = *inst->get_baseParameters();
420 std::list< Expression * > typeSubs = inst->get_parameters();
421 TypeSubstitution subs( baseParams.begin(), baseParams.end(), typeSubs.begin() );
422 return subs;
423 }
424
425 ReferenceToType * isStructOrUnion( Type * type ) {
426 if ( StructInstType * sit = dynamic_cast< StructInstType * >( type ) ) {
427 return sit;
428 } else if ( UnionInstType * uit = dynamic_cast< UnionInstType * >( type ) ) {
429 return uit;
430 }
431 return nullptr;
432 }
433
434 void Resolver::resolveSingleAggrInit( Declaration * dcl, InitIterator & init, InitIterator & initEnd, TypeSubstitution sub ) {
435 DeclarationWithType * dt = dynamic_cast< DeclarationWithType * >( dcl );
436 assert( dt );
437 // need to substitute for generic types, so that casts are to concrete types
438 initContext = dt->get_type()->clone();
439 sub.apply( initContext );
440
441 try {
442 if ( init == initEnd ) return; // stop when there are no more initializers
443 (*init)->accept( *this );
444 ++init; // made it past an initializer
445 } catch( SemanticError & ) {
446 // need to delve deeper, if you can
447 if ( ReferenceToType * type = isStructOrUnion( initContext ) ) {
448 resolveAggrInit( type, init, initEnd );
449 } else {
450 // member is not an aggregate type, so can't go any deeper
451
452 // might need to rethink what is being thrown
453 throw;
454 } // if
455 }
456 }
457
458 void Resolver::resolveAggrInit( ReferenceToType * inst, InitIterator & init, InitIterator & initEnd ) {
459 if ( StructInstType * sit = dynamic_cast< StructInstType * >( inst ) ) {
460 TypeSubstitution sub = makeGenericSubstitutuion( sit );
461 StructDecl * st = sit->get_baseStruct();
462 if(st->get_members().empty()) return;
463 // want to resolve each initializer to the members of the struct,
464 // but if there are more initializers than members we should stop
465 list< Declaration * >::iterator it = st->get_members().begin();
466 for ( ; it != st->get_members().end(); ++it) {
467 resolveSingleAggrInit( *it, init, initEnd, sub );
468 }
469 } else if ( UnionInstType * uit = dynamic_cast< UnionInstType * >( inst ) ) {
470 TypeSubstitution sub = makeGenericSubstitutuion( uit );
471 UnionDecl * un = uit->get_baseUnion();
472 if(un->get_members().empty()) return;
473 // only resolve to the first member of a union
474 resolveSingleAggrInit( *un->get_members().begin(), init, initEnd, sub );
475 } // if
476 }
477
478 void Resolver::visit( ListInit * listInit ) {
479 InitIterator iter = listInit->begin();
480 InitIterator end = listInit->end();
481
482 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
483 // resolve each member to the base type of the array
484 for ( ; iter != end; ++iter ) {
485 initContext = at->get_base();
486 (*iter)->accept( *this );
487 } // for
488 } else if ( TupleType * tt = dynamic_cast< TupleType * > ( initContext ) ) {
489 for ( Type * t : *tt ) {
490 if ( iter == end ) break;
491 initContext = t;
492 (*iter++)->accept( *this );
493 }
494 } else if ( ReferenceToType * type = isStructOrUnion( initContext ) ) {
495 resolveAggrInit( type, iter, end );
496 } else if ( TypeInstType * tt = dynamic_cast< TypeInstType * >( initContext ) ) {
497 Type * base = tt->get_baseType()->get_base();
498 if ( base ) {
499 // know the implementation type, so try using that as the initContext
500 initContext = base;
501 visit( listInit );
502 } else {
503 // missing implementation type -- might be an unknown type variable, so try proceeding with the current init context
504 Parent::visit( listInit );
505 }
506 } else {
507 assert( dynamic_cast< BasicType * >( initContext ) || dynamic_cast< PointerType * >( initContext )
508 || dynamic_cast< ZeroType * >( initContext ) || dynamic_cast< OneType * >( initContext ) || dynamic_cast < EnumInstType * > ( initContext ) );
509 // basic types are handled here
510 Parent::visit( listInit );
511 }
512
513#if 0
514 if ( ArrayType *at = dynamic_cast<ArrayType*>(initContext) ) {
515 std::list<Initializer *>::iterator iter( listInit->begin_initializers() );
516 for ( ; iter != listInit->end_initializers(); ++iter ) {
517 initContext = at->get_base();
518 (*iter)->accept( *this );
519 } // for
520 } else if ( StructInstType *st = dynamic_cast<StructInstType*>(initContext) ) {
521 StructDecl *baseStruct = st->get_baseStruct();
522 std::list<Declaration *>::iterator iter1( baseStruct->get_members().begin() );
523 std::list<Initializer *>::iterator iter2( listInit->begin_initializers() );
524 for ( ; iter1 != baseStruct->get_members().end() && iter2 != listInit->end_initializers(); ++iter2 ) {
525 if ( (*iter2)->get_designators().empty() ) {
526 DeclarationWithType *dt = dynamic_cast<DeclarationWithType *>( *iter1 );
527 initContext = dt->get_type();
528 (*iter2)->accept( *this );
529 ++iter1;
530 } else {
531 StructDecl *st = baseStruct;
532 iter1 = st->get_members().begin();
533 std::list<Expression *>::iterator iter3( (*iter2)->get_designators().begin() );
534 for ( ; iter3 != (*iter2)->get_designators().end(); ++iter3 ) {
535 NameExpr *key = dynamic_cast<NameExpr *>( *iter3 );
536 assert( key );
537 for ( ; iter1 != st->get_members().end(); ++iter1 ) {
538 if ( key->get_name() == (*iter1)->get_name() ) {
539 (*iter1)->print( cout );
540 cout << key->get_name() << endl;
541 ObjectDecl *fred = dynamic_cast<ObjectDecl *>( *iter1 );
542 assert( fred );
543 StructInstType *mary = dynamic_cast<StructInstType*>( fred->get_type() );
544 assert( mary );
545 st = mary->get_baseStruct();
546 iter1 = st->get_members().begin();
547 break;
548 } // if
549 } // for
550 } // for
551 ObjectDecl *fred = dynamic_cast<ObjectDecl *>( *iter1 );
552 assert( fred );
553 initContext = fred->get_type();
554 (*listInit->begin_initializers())->accept( *this );
555 } // if
556 } // for
557 } else if ( UnionInstType *st = dynamic_cast<UnionInstType*>(initContext) ) {
558 DeclarationWithType *dt = dynamic_cast<DeclarationWithType *>( *st->get_baseUnion()->get_members().begin() );
559 initContext = dt->get_type();
560 (*listInit->begin_initializers())->accept( *this );
561 } // if
562#endif
563 }
564
565 // ConstructorInit - fall back on C-style initializer
566 void Resolver::fallbackInit( ConstructorInit * ctorInit ) {
567 // could not find valid constructor, or found an intrinsic constructor
568 // fall back on C-style initializer
569 delete ctorInit->get_ctor();
570 ctorInit->set_ctor( NULL );
571 delete ctorInit->get_dtor();
572 ctorInit->set_dtor( NULL );
573 maybeAccept( ctorInit->get_init(), *this );
574 }
575
576 // needs to be callable from outside the resolver, so this is a standalone function
577 void resolveCtorInit( ConstructorInit * ctorInit, const SymTab::Indexer & indexer ) {
578 assert( ctorInit );
579 Resolver resolver( indexer );
580 ctorInit->accept( resolver );
581 }
582
583 void resolveStmtExpr( StmtExpr * stmtExpr, const SymTab::Indexer & indexer ) {
584 assert( stmtExpr );
585 Resolver resolver( indexer );
586 stmtExpr->accept( resolver );
587 }
588
589 void Resolver::visit( ConstructorInit *ctorInit ) {
590 // xxx - fallback init has been removed => remove fallbackInit function and remove complexity from FixInit and remove C-init from ConstructorInit
591 maybeAccept( ctorInit->get_ctor(), *this );
592 maybeAccept( ctorInit->get_dtor(), *this );
593
594 // found a constructor - can get rid of C-style initializer
595 delete ctorInit->get_init();
596 ctorInit->set_init( NULL );
597
598 // intrinsic single parameter constructors and destructors do nothing. Since this was
599 // implicitly generated, there's no way for it to have side effects, so get rid of it
600 // to clean up generated code.
601 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->get_ctor() ) ) {
602 delete ctorInit->get_ctor();
603 ctorInit->set_ctor( NULL );
604 }
605
606 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->get_dtor() ) ) {
607 delete ctorInit->get_dtor();
608 ctorInit->set_dtor( NULL );
609 }
610
611 // xxx - todo -- what about arrays?
612 // if ( dtor == NULL && InitTweak::isIntrinsicCallStmt( ctorInit->get_ctor() ) ) {
613 // // can reduce the constructor down to a SingleInit using the
614 // // second argument from the ctor call, since
615 // delete ctorInit->get_ctor();
616 // ctorInit->set_ctor( NULL );
617
618 // Expression * arg =
619 // ctorInit->set_init( new SingleInit( arg ) );
620 // }
621 }
622} // namespace ResolvExpr
623
624// Local Variables: //
625// tab-width: 4 //
626// mode: c++ //
627// compile-command: "make install" //
628// End: //
Note: See TracBrowser for help on using the repository browser.