source: src/ResolvExpr/Resolver.cc@ 4ab9536

ADT aaron-thesis arm-eh ast-experimental cleanup-dtors deferred_resn demangler enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr new-env no_list persistent-indexer pthread-emulation qualifiedEnum resolv-new with_gc
Last change on this file since 4ab9536 was 906e24d, checked in by Rob Schluntz <rschlunt@…>, 9 years ago

replace results list on Expressions with a single Type field

  • Property mode set to 100644
File size: 19.6 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Resolver.cc --
8//
9// Author : Richard C. Bilson
10// Created On : Sun May 17 12:17:01 2015
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Tue Jul 12 17:45:42 2016
13// Update Count : 204
14//
15
16#include "Resolver.h"
17#include "AlternativeFinder.h"
18#include "Alternative.h"
19#include "RenameVars.h"
20#include "ResolveTypeof.h"
21#include "typeops.h"
22#include "SynTree/Statement.h"
23#include "SynTree/Type.h"
24#include "SynTree/Expression.h"
25#include "SynTree/Initializer.h"
26#include "SymTab/Indexer.h"
27#include "SymTab/Autogen.h"
28#include "Common/utility.h"
29#include "InitTweak/InitTweak.h"
30
31#include <iostream>
32using namespace std;
33
34namespace ResolvExpr {
35 class Resolver : public SymTab::Indexer {
36 public:
37 Resolver() : SymTab::Indexer( false ), switchType( 0 ) {}
38
39 virtual void visit( FunctionDecl *functionDecl );
40 virtual void visit( ObjectDecl *functionDecl );
41 virtual void visit( TypeDecl *typeDecl );
42 virtual void visit( EnumDecl * enumDecl );
43
44 virtual void visit( ArrayType * at );
45 virtual void visit( PointerType * at );
46
47 virtual void visit( ExprStmt *exprStmt );
48 virtual void visit( AsmExpr *asmExpr );
49 virtual void visit( AsmStmt *asmStmt );
50 virtual void visit( IfStmt *ifStmt );
51 virtual void visit( WhileStmt *whileStmt );
52 virtual void visit( ForStmt *forStmt );
53 virtual void visit( SwitchStmt *switchStmt );
54 virtual void visit( CaseStmt *caseStmt );
55 virtual void visit( BranchStmt *branchStmt );
56 virtual void visit( ReturnStmt *returnStmt );
57
58 virtual void visit( SingleInit *singleInit );
59 virtual void visit( ListInit *listInit );
60 virtual void visit( ConstructorInit *ctorInit );
61 private:
62 typedef std::list< Initializer * >::iterator InitIterator;
63
64 template< typename PtrType >
65 void handlePtrType( PtrType * type );
66
67 void resolveAggrInit( AggregateDecl *, InitIterator &, InitIterator & );
68 void resolveSingleAggrInit( Declaration *, InitIterator &, InitIterator & );
69 void fallbackInit( ConstructorInit * ctorInit );
70 Type * functionReturn;
71 Type *initContext;
72 Type *switchType;
73 bool inEnumDecl = false;
74 };
75
76 void resolve( std::list< Declaration * > translationUnit ) {
77 Resolver resolver;
78 acceptAll( translationUnit, resolver );
79#if 0
80 resolver.print( cerr );
81 for ( std::list< Declaration * >::iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) {
82 (*i)->print( std::cerr );
83 (*i)->accept( resolver );
84 } // for
85#endif
86 }
87
88 Expression *resolveInVoidContext( Expression *expr, const SymTab::Indexer &indexer ) {
89 TypeEnvironment env;
90 return resolveInVoidContext( expr, indexer, env );
91 }
92
93
94 namespace {
95 void finishExpr( Expression *expr, const TypeEnvironment &env ) {
96 expr->set_env( new TypeSubstitution );
97 env.makeSubstitution( *expr->get_env() );
98 }
99 } // namespace
100
101 Expression *findVoidExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
102 global_renamer.reset();
103 TypeEnvironment env;
104 Expression *newExpr = resolveInVoidContext( untyped, indexer, env );
105 finishExpr( newExpr, env );
106 return newExpr;
107 }
108
109 namespace {
110 Expression *findSingleExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
111 TypeEnvironment env;
112 AlternativeFinder finder( indexer, env );
113 finder.find( untyped );
114#if 0
115 if ( finder.get_alternatives().size() != 1 ) {
116 std::cout << "untyped expr is ";
117 untyped->print( std::cout );
118 std::cout << std::endl << "alternatives are:";
119 for ( std::list< Alternative >::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
120 i->print( std::cout );
121 } // for
122 } // if
123#endif
124 assert( finder.get_alternatives().size() == 1 );
125 Alternative &choice = finder.get_alternatives().front();
126 Expression *newExpr = choice.expr->clone();
127 finishExpr( newExpr, choice.env );
128 return newExpr;
129 }
130
131 bool isIntegralType( Type *type ) {
132 if ( dynamic_cast< EnumInstType * >( type ) ) {
133 return true;
134 } else if ( BasicType *bt = dynamic_cast< BasicType * >( type ) ) {
135 return bt->isInteger();
136 } else {
137 return false;
138 } // if
139 }
140
141 Expression *findIntegralExpression( Expression *untyped, const SymTab::Indexer &indexer ) {
142 TypeEnvironment env;
143 AlternativeFinder finder( indexer, env );
144 finder.find( untyped );
145#if 0
146 if ( finder.get_alternatives().size() != 1 ) {
147 std::cout << "untyped expr is ";
148 untyped->print( std::cout );
149 std::cout << std::endl << "alternatives are:";
150 for ( std::list< Alternative >::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
151 i->print( std::cout );
152 } // for
153 } // if
154#endif
155 Expression *newExpr = 0;
156 const TypeEnvironment *newEnv = 0;
157 for ( AltList::const_iterator i = finder.get_alternatives().begin(); i != finder.get_alternatives().end(); ++i ) {
158 if ( i->expr->get_result()->size() == 1 && isIntegralType( i->expr->get_result() ) ) {
159 if ( newExpr ) {
160 throw SemanticError( "Too many interpretations for case control expression", untyped );
161 } else {
162 newExpr = i->expr->clone();
163 newEnv = &i->env;
164 } // if
165 } // if
166 } // for
167 if ( ! newExpr ) {
168 throw SemanticError( "No interpretations for case control expression", untyped );
169 } // if
170 finishExpr( newExpr, *newEnv );
171 return newExpr;
172 }
173
174 }
175
176 void Resolver::visit( ObjectDecl *objectDecl ) {
177 Type *new_type = resolveTypeof( objectDecl->get_type(), *this );
178 objectDecl->set_type( new_type );
179 // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that class-variable
180 // initContext is changed multiple time because the LHS is analysed twice. The second analysis changes
181 // initContext because of a function type can contain object declarations in the return and parameter types. So
182 // each value of initContext is retained, so the type on the first analysis is preserved and used for selecting
183 // the RHS.
184 Type *temp = initContext;
185 initContext = new_type;
186 if ( inEnumDecl && dynamic_cast< EnumInstType * >( initContext ) ) {
187 // enumerator initializers should not use the enum type to initialize, since
188 // the enum type is still incomplete at this point. Use signed int instead.
189 initContext = new BasicType( Type::Qualifiers(), BasicType::SignedInt );
190 }
191 SymTab::Indexer::visit( objectDecl );
192 if ( inEnumDecl && dynamic_cast< EnumInstType * >( initContext ) ) {
193 // delete newly created signed int type
194 delete initContext;
195 }
196 initContext = temp;
197 }
198
199 template< typename PtrType >
200 void Resolver::handlePtrType( PtrType * type ) {
201 if ( type->get_dimension() ) {
202 CastExpr *castExpr = new CastExpr( type->get_dimension(), SymTab::SizeType->clone() );
203 Expression *newExpr = findSingleExpression( castExpr, *this );
204 delete type->get_dimension();
205 type->set_dimension( newExpr );
206 }
207 }
208
209 void Resolver::visit( ArrayType * at ) {
210 handlePtrType( at );
211 Visitor::visit( at );
212 }
213
214 void Resolver::visit( PointerType * pt ) {
215 handlePtrType( pt );
216 Visitor::visit( pt );
217 }
218
219 void Resolver::visit( TypeDecl *typeDecl ) {
220 if ( typeDecl->get_base() ) {
221 Type *new_type = resolveTypeof( typeDecl->get_base(), *this );
222 typeDecl->set_base( new_type );
223 } // if
224 SymTab::Indexer::visit( typeDecl );
225 }
226
227 void Resolver::visit( FunctionDecl *functionDecl ) {
228#if 0
229 std::cout << "resolver visiting functiondecl ";
230 functionDecl->print( std::cout );
231 std::cout << std::endl;
232#endif
233 Type *new_type = resolveTypeof( functionDecl->get_type(), *this );
234 functionDecl->set_type( new_type );
235 ValueGuard< Type * > oldFunctionReturn( functionReturn );
236 functionReturn = ResolvExpr::extractResultType( functionDecl->get_functionType() );
237 SymTab::Indexer::visit( functionDecl );
238 }
239
240 void Resolver::visit( EnumDecl * enumDecl ) {
241 // in case we decide to allow nested enums
242 bool oldInEnumDecl = inEnumDecl;
243 inEnumDecl = true;
244 SymTab::Indexer::visit( enumDecl );
245 inEnumDecl = oldInEnumDecl;
246 }
247
248 void Resolver::visit( ExprStmt *exprStmt ) {
249 if ( exprStmt->get_expr() ) {
250 Expression *newExpr = findVoidExpression( exprStmt->get_expr(), *this );
251 delete exprStmt->get_expr();
252 exprStmt->set_expr( newExpr );
253 } // if
254 }
255
256 void Resolver::visit( AsmExpr *asmExpr ) {
257 Expression *newExpr = findVoidExpression( asmExpr->get_operand(), *this );
258 delete asmExpr->get_operand();
259 asmExpr->set_operand( newExpr );
260 if ( asmExpr->get_inout() ) {
261 newExpr = findVoidExpression( asmExpr->get_inout(), *this );
262 delete asmExpr->get_inout();
263 asmExpr->set_inout( newExpr );
264 } // if
265 }
266
267 void Resolver::visit( AsmStmt *asmStmt ) {
268 acceptAll( asmStmt->get_input(), *this);
269 acceptAll( asmStmt->get_output(), *this);
270 }
271
272 void Resolver::visit( IfStmt *ifStmt ) {
273 Expression *newExpr = findSingleExpression( ifStmt->get_condition(), *this );
274 delete ifStmt->get_condition();
275 ifStmt->set_condition( newExpr );
276 Visitor::visit( ifStmt );
277 }
278
279 void Resolver::visit( WhileStmt *whileStmt ) {
280 Expression *newExpr = findSingleExpression( whileStmt->get_condition(), *this );
281 delete whileStmt->get_condition();
282 whileStmt->set_condition( newExpr );
283 Visitor::visit( whileStmt );
284 }
285
286 void Resolver::visit( ForStmt *forStmt ) {
287 SymTab::Indexer::visit( forStmt );
288
289 if ( forStmt->get_condition() ) {
290 Expression * newExpr = findSingleExpression( forStmt->get_condition(), *this );
291 delete forStmt->get_condition();
292 forStmt->set_condition( newExpr );
293 } // if
294
295 if ( forStmt->get_increment() ) {
296 Expression * newExpr = findVoidExpression( forStmt->get_increment(), *this );
297 delete forStmt->get_increment();
298 forStmt->set_increment( newExpr );
299 } // if
300 }
301
302 template< typename SwitchClass >
303 void handleSwitchStmt( SwitchClass *switchStmt, SymTab::Indexer &visitor ) {
304 Expression *newExpr;
305 newExpr = findIntegralExpression( switchStmt->get_condition(), visitor );
306 delete switchStmt->get_condition();
307 switchStmt->set_condition( newExpr );
308
309 visitor.Visitor::visit( switchStmt );
310 }
311
312 void Resolver::visit( SwitchStmt *switchStmt ) {
313 handleSwitchStmt( switchStmt, *this );
314 }
315
316 void Resolver::visit( CaseStmt *caseStmt ) {
317 Visitor::visit( caseStmt );
318 }
319
320 void Resolver::visit( BranchStmt *branchStmt ) {
321 // must resolve the argument for a computed goto
322 if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement
323 if ( Expression * arg = branchStmt->get_computedTarget() ) {
324 VoidType v = Type::Qualifiers(); // cast to void * for the alternative finder
325 PointerType pt( Type::Qualifiers(), v.clone() );
326 CastExpr * castExpr = new CastExpr( arg, pt.clone() );
327 Expression * newExpr = findSingleExpression( castExpr, *this ); // find best expression
328 branchStmt->set_target( newExpr );
329 } // if
330 } // if
331 }
332
333 void Resolver::visit( ReturnStmt *returnStmt ) {
334 if ( returnStmt->get_expr() ) {
335 CastExpr *castExpr = new CastExpr( returnStmt->get_expr(), functionReturn->clone() );
336 Expression *newExpr = findSingleExpression( castExpr, *this );
337 delete castExpr;
338 returnStmt->set_expr( newExpr );
339 } // if
340 }
341
342 template< typename T >
343 bool isCharType( T t ) {
344 if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) {
345 return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar ||
346 bt->get_kind() == BasicType::UnsignedChar;
347 }
348 return false;
349 }
350
351 void Resolver::visit( SingleInit *singleInit ) {
352 if ( singleInit->get_value() ) {
353#if 0
354 if (NameExpr * ne = dynamic_cast<NameExpr*>(singleInit->get_value())) {
355 string n = ne->get_name();
356 if (n == "0") {
357 initContext = new BasicType(Type::Qualifiers(),
358 BasicType::SignedInt);
359 } else {
360 DeclarationWithType * decl = lookupId( n );
361 initContext = decl->get_type();
362 }
363 } else if (ConstantExpr * e =
364 dynamic_cast<ConstantExpr*>(singleInit->get_value())) {
365 Constant *c = e->get_constant();
366 initContext = c->get_type();
367 } else {
368 assert(0);
369 }
370#endif
371 CastExpr *castExpr = new CastExpr( singleInit->get_value(), initContext->clone() );
372 Expression *newExpr = findSingleExpression( castExpr, *this );
373 delete castExpr;
374 singleInit->set_value( newExpr );
375
376 // check if initializing type is char[]
377 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
378 if ( isCharType( at->get_base() ) ) {
379 // check if the resolved type is char *
380 if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_result() ) ) {
381 if ( isCharType( pt->get_base() ) ) {
382 // strip cast if we're initializing a char[] with a char *, e.g. char x[] = "hello";
383 CastExpr *ce = dynamic_cast< CastExpr * >( newExpr );
384 singleInit->set_value( ce->get_arg() );
385 ce->set_arg( NULL );
386 delete ce;
387 }
388 }
389 }
390 }
391 } // if
392// singleInit->get_value()->accept( *this );
393 }
394
395 void Resolver::resolveSingleAggrInit( Declaration * dcl, InitIterator & init, InitIterator & initEnd ) {
396 DeclarationWithType * dt = dynamic_cast< DeclarationWithType * >( dcl );
397 assert( dt );
398 initContext = dt->get_type();
399 try {
400 if ( init == initEnd ) return; // stop when there are no more initializers
401 (*init)->accept( *this );
402 ++init; // made it past an initializer
403 } catch( SemanticError & ) {
404 // need to delve deeper, if you can
405 if ( StructInstType * sit = dynamic_cast< StructInstType * >( dt->get_type() ) ) {
406 resolveAggrInit( sit->get_baseStruct(), init, initEnd );
407 } else if ( UnionInstType * uit = dynamic_cast< UnionInstType * >( dt->get_type() ) ) {
408 resolveAggrInit( uit->get_baseUnion(), init, initEnd );
409 } else {
410 // member is not an aggregate type, so can't go any deeper
411
412 // might need to rethink what is being thrown
413 throw;
414 } // if
415 }
416 }
417
418 void Resolver::resolveAggrInit( AggregateDecl * aggr, InitIterator & init, InitIterator & initEnd ) {
419 if ( StructDecl * st = dynamic_cast< StructDecl * >( aggr ) ) {
420 // want to resolve each initializer to the members of the struct,
421 // but if there are more initializers than members we should stop
422 list< Declaration * >::iterator it = st->get_members().begin();
423 for ( ; it != st->get_members().end(); ++it) {
424 resolveSingleAggrInit( *it, init, initEnd );
425 }
426 } else if ( UnionDecl * un = dynamic_cast< UnionDecl * >( aggr ) ) {
427 // only resolve to the first member of a union
428 resolveSingleAggrInit( *un->get_members().begin(), init, initEnd );
429 } // if
430 }
431
432 void Resolver::visit( ListInit * listInit ) {
433 InitIterator iter = listInit->begin();
434 InitIterator end = listInit->end();
435
436 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
437 // resolve each member to the base type of the array
438 for ( ; iter != end; ++iter ) {
439 initContext = at->get_base();
440 (*iter)->accept( *this );
441 } // for
442 } else if ( StructInstType * st = dynamic_cast< StructInstType * >( initContext ) ) {
443 resolveAggrInit( st->get_baseStruct(), iter, end );
444 } else if ( UnionInstType * st = dynamic_cast< UnionInstType * >( initContext ) ) {
445 resolveAggrInit( st->get_baseUnion(), iter, end );
446 } else if ( TypeInstType * tt = dynamic_cast< TypeInstType * >( initContext ) ) {
447 Type * base = tt->get_baseType()->get_base();
448 if ( base ) {
449 // know the implementation type, so try using that as the initContext
450 initContext = base;
451 visit( listInit );
452 } else {
453 // missing implementation type -- might be an unknown type variable, so try proceeding with the current init context
454 Visitor::visit( listInit );
455 }
456 } else {
457 assert( dynamic_cast< BasicType * >( initContext ) || dynamic_cast< PointerType * >( initContext ) );
458 // basic types are handled here
459 Visitor::visit( listInit );
460 }
461
462#if 0
463 if ( ArrayType *at = dynamic_cast<ArrayType*>(initContext) ) {
464 std::list<Initializer *>::iterator iter( listInit->begin_initializers() );
465 for ( ; iter != listInit->end_initializers(); ++iter ) {
466 initContext = at->get_base();
467 (*iter)->accept( *this );
468 } // for
469 } else if ( StructInstType *st = dynamic_cast<StructInstType*>(initContext) ) {
470 StructDecl *baseStruct = st->get_baseStruct();
471 std::list<Declaration *>::iterator iter1( baseStruct->get_members().begin() );
472 std::list<Initializer *>::iterator iter2( listInit->begin_initializers() );
473 for ( ; iter1 != baseStruct->get_members().end() && iter2 != listInit->end_initializers(); ++iter2 ) {
474 if ( (*iter2)->get_designators().empty() ) {
475 DeclarationWithType *dt = dynamic_cast<DeclarationWithType *>( *iter1 );
476 initContext = dt->get_type();
477 (*iter2)->accept( *this );
478 ++iter1;
479 } else {
480 StructDecl *st = baseStruct;
481 iter1 = st->get_members().begin();
482 std::list<Expression *>::iterator iter3( (*iter2)->get_designators().begin() );
483 for ( ; iter3 != (*iter2)->get_designators().end(); ++iter3 ) {
484 NameExpr *key = dynamic_cast<NameExpr *>( *iter3 );
485 assert( key );
486 for ( ; iter1 != st->get_members().end(); ++iter1 ) {
487 if ( key->get_name() == (*iter1)->get_name() ) {
488 (*iter1)->print( cout );
489 cout << key->get_name() << endl;
490 ObjectDecl *fred = dynamic_cast<ObjectDecl *>( *iter1 );
491 assert( fred );
492 StructInstType *mary = dynamic_cast<StructInstType*>( fred->get_type() );
493 assert( mary );
494 st = mary->get_baseStruct();
495 iter1 = st->get_members().begin();
496 break;
497 } // if
498 } // for
499 } // for
500 ObjectDecl *fred = dynamic_cast<ObjectDecl *>( *iter1 );
501 assert( fred );
502 initContext = fred->get_type();
503 (*listInit->begin_initializers())->accept( *this );
504 } // if
505 } // for
506 } else if ( UnionInstType *st = dynamic_cast<UnionInstType*>(initContext) ) {
507 DeclarationWithType *dt = dynamic_cast<DeclarationWithType *>( *st->get_baseUnion()->get_members().begin() );
508 initContext = dt->get_type();
509 (*listInit->begin_initializers())->accept( *this );
510 } // if
511#endif
512 }
513
514 // ConstructorInit - fall back on C-style initializer
515 void Resolver::fallbackInit( ConstructorInit * ctorInit ) {
516 // could not find valid constructor, or found an intrinsic constructor
517 // fall back on C-style initializer
518 delete ctorInit->get_ctor();
519 ctorInit->set_ctor( NULL );
520 delete ctorInit->get_dtor();
521 ctorInit->set_dtor( NULL );
522 maybeAccept( ctorInit->get_init(), *this );
523 }
524
525 void Resolver::visit( ConstructorInit *ctorInit ) {
526 // xxx - fallback init has been removed => remove fallbackInit function and remove complexity from FixInit and remove C-init from ConstructorInit
527 maybeAccept( ctorInit->get_ctor(), *this );
528 maybeAccept( ctorInit->get_dtor(), *this );
529
530 // found a constructor - can get rid of C-style initializer
531 delete ctorInit->get_init();
532 ctorInit->set_init( NULL );
533
534 // intrinsic single parameter constructors and destructors do nothing. Since this was
535 // implicitly generated, there's no way for it to have side effects, so get rid of it
536 // to clean up generated code.
537 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->get_ctor() ) ) {
538 delete ctorInit->get_ctor();
539 ctorInit->set_ctor( NULL );
540 }
541
542 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->get_dtor() ) ) {
543 delete ctorInit->get_dtor();
544 ctorInit->set_dtor( NULL );
545 }
546
547 // xxx - todo -- what about arrays?
548 // if ( dtor == NULL && InitTweak::isIntrinsicCallStmt( ctorInit->get_ctor() ) ) {
549 // // can reduce the constructor down to a SingleInit using the
550 // // second argument from the ctor call, since
551 // delete ctorInit->get_ctor();
552 // ctorInit->set_ctor( NULL );
553
554 // Expression * arg =
555 // ctorInit->set_init( new SingleInit( arg ) );
556 // }
557 }
558} // namespace ResolvExpr
559
560// Local Variables: //
561// tab-width: 4 //
562// mode: c++ //
563// compile-command: "make install" //
564// End: //
Note: See TracBrowser for help on using the repository browser.