source: src/ResolvExpr/Resolver.cc@ 033ff37

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 033ff37 was 8fd52e90, checked in by Thierry Delisle <tdelisle@…>, 6 years ago

Removed uses of lookupMutableXXX

  • Property mode set to 100644
File size: 66.2 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// Resolver.cc --
8//
9// Author : Aaron B. Moss
10// Created On : Sun May 17 12:17:01 2015
11// Last Modified By : Aaron B. Moss
12// Last Modified On : Wed May 29 11:00:00 2019
13// Update Count : 241
14//
15
16#include <cassert> // for strict_dynamic_cast, assert
17#include <memory> // for allocator, allocator_traits<...
18#include <tuple> // for get
19#include <vector> // for vector
20
21#include "Alternative.h" // for Alternative, AltList
22#include "AlternativeFinder.h" // for AlternativeFinder, resolveIn...
23#include "Candidate.hpp"
24#include "CandidateFinder.hpp"
25#include "CurrentObject.h" // for CurrentObject
26#include "RenameVars.h" // for RenameVars, global_renamer
27#include "Resolver.h"
28#include "ResolvMode.h" // for ResolvMode
29#include "typeops.h" // for extractResultType
30#include "Unify.h" // for unify
31#include "AST/Chain.hpp"
32#include "AST/Decl.hpp"
33#include "AST/Init.hpp"
34#include "AST/Pass.hpp"
35#include "AST/Print.hpp"
36#include "AST/SymbolTable.hpp"
37#include "AST/Type.hpp"
38#include "Common/PassVisitor.h" // for PassVisitor
39#include "Common/SemanticError.h" // for SemanticError
40#include "Common/utility.h" // for ValueGuard, group_iterate
41#include "InitTweak/GenInit.h"
42#include "InitTweak/InitTweak.h" // for isIntrinsicSingleArgCallStmt
43#include "ResolvExpr/TypeEnvironment.h" // for TypeEnvironment
44#include "SymTab/Autogen.h" // for SizeType
45#include "SymTab/Indexer.h" // for Indexer
46#include "SynTree/Declaration.h" // for ObjectDecl, TypeDecl, Declar...
47#include "SynTree/Expression.h" // for Expression, CastExpr, InitExpr
48#include "SynTree/Initializer.h" // for ConstructorInit, SingleInit
49#include "SynTree/Statement.h" // for ForStmt, Statement, BranchStmt
50#include "SynTree/Type.h" // for Type, BasicType, PointerType
51#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
52#include "SynTree/Visitor.h" // for acceptAll, maybeAccept
53#include "Tuples/Tuples.h"
54#include "Validate/FindSpecialDecls.h" // for SizeType
55
56using namespace std;
57
58namespace ResolvExpr {
59 struct Resolver_old final : public WithIndexer, public WithGuards, public WithVisitorRef<Resolver_old>, public WithShortCircuiting, public WithStmtsToAdd {
60 Resolver_old() {}
61 Resolver_old( const SymTab::Indexer & other ) {
62 indexer = other;
63 }
64
65 void previsit( FunctionDecl * functionDecl );
66 void postvisit( FunctionDecl * functionDecl );
67 void previsit( ObjectDecl * objectDecll );
68 void previsit( EnumDecl * enumDecl );
69 void previsit( StaticAssertDecl * assertDecl );
70
71 void previsit( ArrayType * at );
72 void previsit( PointerType * at );
73
74 void previsit( ExprStmt * exprStmt );
75 void previsit( AsmExpr * asmExpr );
76 void previsit( AsmStmt * asmStmt );
77 void previsit( IfStmt * ifStmt );
78 void previsit( WhileStmt * whileStmt );
79 void previsit( ForStmt * forStmt );
80 void previsit( SwitchStmt * switchStmt );
81 void previsit( CaseStmt * caseStmt );
82 void previsit( BranchStmt * branchStmt );
83 void previsit( ReturnStmt * returnStmt );
84 void previsit( ThrowStmt * throwStmt );
85 void previsit( CatchStmt * catchStmt );
86 void previsit( WaitForStmt * stmt );
87
88 void previsit( SingleInit * singleInit );
89 void previsit( ListInit * listInit );
90 void previsit( ConstructorInit * ctorInit );
91 private:
92 typedef std::list< Initializer * >::iterator InitIterator;
93
94 template< typename PtrType >
95 void handlePtrType( PtrType * type );
96
97 void fallbackInit( ConstructorInit * ctorInit );
98
99 Type * functionReturn = nullptr;
100 CurrentObject currentObject = nullptr;
101 bool inEnumDecl = false;
102 };
103
104 struct ResolveWithExprs : public WithIndexer, public WithGuards, public WithVisitorRef<ResolveWithExprs>, public WithShortCircuiting, public WithStmtsToAdd {
105 void previsit( FunctionDecl * );
106 void previsit( WithStmt * );
107
108 void resolveWithExprs( std::list< Expression * > & withExprs, std::list< Statement * > & newStmts );
109 };
110
111 void resolve( std::list< Declaration * > translationUnit ) {
112 PassVisitor<Resolver_old> resolver;
113 acceptAll( translationUnit, resolver );
114 }
115
116 void resolveDecl( Declaration * decl, const SymTab::Indexer & indexer ) {
117 PassVisitor<Resolver_old> resolver( indexer );
118 maybeAccept( decl, resolver );
119 }
120
121 namespace {
122 struct DeleteFinder_old : public WithShortCircuiting {
123 DeletedExpr * delExpr = nullptr;
124 void previsit( DeletedExpr * expr ) {
125 if ( delExpr ) visit_children = false;
126 else delExpr = expr;
127 }
128
129 void previsit( Expression * ) {
130 if ( delExpr ) visit_children = false;
131 }
132 };
133 }
134
135 DeletedExpr * findDeletedExpr( Expression * expr ) {
136 PassVisitor<DeleteFinder_old> finder;
137 expr->accept( finder );
138 return finder.pass.delExpr;
139 }
140
141 namespace {
142 struct StripCasts_old {
143 Expression * postmutate( CastExpr * castExpr ) {
144 if ( castExpr->isGenerated && ResolvExpr::typesCompatible( castExpr->arg->result, castExpr->result, SymTab::Indexer() ) ) {
145 // generated cast is to the same type as its argument, so it's unnecessary -- remove it
146 Expression * expr = castExpr->arg;
147 castExpr->arg = nullptr;
148 std::swap( expr->env, castExpr->env );
149 return expr;
150 }
151 return castExpr;
152 }
153
154 static void strip( Expression *& expr ) {
155 PassVisitor<StripCasts_old> stripper;
156 expr = expr->acceptMutator( stripper );
157 }
158 };
159
160 void finishExpr( Expression *& expr, const TypeEnvironment & env, TypeSubstitution * oldenv = nullptr ) {
161 expr->env = oldenv ? oldenv->clone() : new TypeSubstitution;
162 env.makeSubstitution( *expr->env );
163 StripCasts_old::strip( expr ); // remove unnecessary casts that may be buried in an expression
164 }
165
166 void removeExtraneousCast( Expression *& expr, const SymTab::Indexer & indexer ) {
167 if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( expr ) ) {
168 if ( typesCompatible( castExpr->arg->result, castExpr->result, indexer ) ) {
169 // cast is to the same type as its argument, so it's unnecessary -- remove it
170 expr = castExpr->arg;
171 castExpr->arg = nullptr;
172 std::swap( expr->env, castExpr->env );
173 delete castExpr;
174 }
175 }
176 }
177 } // namespace
178
179 namespace {
180 void findUnfinishedKindExpression(Expression * untyped, Alternative & alt, const SymTab::Indexer & indexer, const std::string & kindStr, std::function<bool(const Alternative &)> pred, ResolvMode mode = ResolvMode{} ) {
181 assertf( untyped, "expected a non-null expression." );
182
183 // xxx - this isn't thread-safe, but should work until we parallelize the resolver
184 static unsigned recursion_level = 0;
185
186 ++recursion_level;
187 TypeEnvironment env;
188 AlternativeFinder finder( indexer, env );
189 finder.find( untyped, recursion_level == 1 ? mode.atTopLevel() : mode );
190 --recursion_level;
191
192 #if 0
193 if ( finder.get_alternatives().size() != 1 ) {
194 std::cerr << "untyped expr is ";
195 untyped->print( std::cerr );
196 std::cerr << std::endl << "alternatives are:";
197 for ( const Alternative & alt : finder.get_alternatives() ) {
198 alt.print( std::cerr );
199 } // for
200 } // if
201 #endif
202
203 // produce filtered list of alternatives
204 AltList candidates;
205 for ( Alternative & alt : finder.get_alternatives() ) {
206 if ( pred( alt ) ) {
207 candidates.push_back( std::move( alt ) );
208 }
209 }
210
211 // produce invalid error if no candidates
212 if ( candidates.empty() ) {
213 SemanticError( untyped, toString( "No reasonable alternatives for ", kindStr, (kindStr != "" ? " " : ""), "expression: ") );
214 }
215
216 // search for cheapest candidate
217 AltList winners;
218 bool seen_undeleted = false;
219 for ( unsigned i = 0; i < candidates.size(); ++i ) {
220 int c = winners.empty() ? -1 : candidates[i].cost.compare( winners.front().cost );
221
222 if ( c > 0 ) continue; // skip more expensive than winner
223
224 if ( c < 0 ) {
225 // reset on new cheapest
226 seen_undeleted = ! findDeletedExpr( candidates[i].expr );
227 winners.clear();
228 } else /* if ( c == 0 ) */ {
229 if ( findDeletedExpr( candidates[i].expr ) ) {
230 // skip deleted expression if already seen one equivalent-cost not
231 if ( seen_undeleted ) continue;
232 } else if ( ! seen_undeleted ) {
233 // replace list of equivalent-cost deleted expressions with one non-deleted
234 winners.clear();
235 seen_undeleted = true;
236 }
237 }
238
239 winners.emplace_back( std::move( candidates[i] ) );
240 }
241
242 // promote alternative.cvtCost to .cost
243 // xxx - I don't know why this is done, but I'm keeping the behaviour from findMinCost
244 for ( Alternative& winner : winners ) {
245 winner.cost = winner.cvtCost;
246 }
247
248 // produce ambiguous errors, if applicable
249 if ( winners.size() != 1 ) {
250 std::ostringstream stream;
251 stream << "Cannot choose between " << winners.size() << " alternatives for " << kindStr << (kindStr != "" ? " " : "") << "expression\n";
252 untyped->print( stream );
253 stream << " Alternatives are:\n";
254 printAlts( winners, stream, 1 );
255 SemanticError( untyped->location, stream.str() );
256 }
257
258 // single selected choice
259 Alternative& choice = winners.front();
260
261 // fail on only expression deleted
262 if ( ! seen_undeleted ) {
263 SemanticError( untyped->location, choice.expr, "Unique best alternative includes deleted identifier in " );
264 }
265
266 // xxx - check for ambiguous expressions
267
268 // output selected choice
269 alt = std::move( choice );
270 }
271
272 /// resolve `untyped` to the expression whose alternative satisfies `pred` with the lowest cost; kindStr is used for providing better error messages
273 void findKindExpression(Expression *& untyped, const SymTab::Indexer & indexer, const std::string & kindStr, std::function<bool(const Alternative &)> pred, ResolvMode mode = ResolvMode{}) {
274 if ( ! untyped ) return;
275 Alternative choice;
276 findUnfinishedKindExpression( untyped, choice, indexer, kindStr, pred, mode );
277 finishExpr( choice.expr, choice.env, untyped->env );
278 delete untyped;
279 untyped = choice.expr;
280 choice.expr = nullptr;
281 }
282
283 bool standardAlternativeFilter( const Alternative & ) {
284 // currently don't need to filter, under normal circumstances.
285 // in the future, this may be useful for removing deleted expressions
286 return true;
287 }
288 } // namespace
289
290 // used in resolveTypeof
291 Expression * resolveInVoidContext( Expression * expr, const SymTab::Indexer & indexer ) {
292 TypeEnvironment env;
293 return resolveInVoidContext( expr, indexer, env );
294 }
295
296 Expression * resolveInVoidContext( Expression * expr, const SymTab::Indexer & indexer, TypeEnvironment & env ) {
297 // it's a property of the language that a cast expression has either 1 or 0 interpretations; if it has 0
298 // interpretations, an exception has already been thrown.
299 assertf( expr, "expected a non-null expression." );
300
301 CastExpr * untyped = new CastExpr( expr ); // cast to void
302 untyped->location = expr->location;
303
304 // set up and resolve expression cast to void
305 Alternative choice;
306 findUnfinishedKindExpression( untyped, choice, indexer, "", standardAlternativeFilter, ResolvMode::withAdjustment() );
307 CastExpr * castExpr = strict_dynamic_cast< CastExpr * >( choice.expr );
308 assert( castExpr );
309 env = std::move( choice.env );
310
311 // clean up resolved expression
312 Expression * ret = castExpr->arg;
313 castExpr->arg = nullptr;
314
315 // unlink the arg so that it isn't deleted twice at the end of the program
316 untyped->arg = nullptr;
317 return ret;
318 }
319
320 void findVoidExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
321 resetTyVarRenaming();
322 TypeEnvironment env;
323 Expression * newExpr = resolveInVoidContext( untyped, indexer, env );
324 finishExpr( newExpr, env, untyped->env );
325 delete untyped;
326 untyped = newExpr;
327 }
328
329 void findSingleExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
330 findKindExpression( untyped, indexer, "", standardAlternativeFilter );
331 }
332
333 void findSingleExpression( Expression *& untyped, Type * type, const SymTab::Indexer & indexer ) {
334 assert( untyped && type );
335 // transfer location to generated cast for error purposes
336 CodeLocation location = untyped->location;
337 untyped = new CastExpr( untyped, type );
338 untyped->location = location;
339 findSingleExpression( untyped, indexer );
340 removeExtraneousCast( untyped, indexer );
341 }
342
343 namespace {
344 bool isIntegralType( const Alternative & alt ) {
345 Type * type = alt.expr->result;
346 if ( dynamic_cast< EnumInstType * >( type ) ) {
347 return true;
348 } else if ( BasicType * bt = dynamic_cast< BasicType * >( type ) ) {
349 return bt->isInteger();
350 } else if ( dynamic_cast< ZeroType* >( type ) != nullptr || dynamic_cast< OneType* >( type ) != nullptr ) {
351 return true;
352 } else {
353 return false;
354 } // if
355 }
356
357 void findIntegralExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
358 findKindExpression( untyped, indexer, "condition", isIntegralType );
359 }
360 }
361
362
363 bool isStructOrUnion( const Alternative & alt ) {
364 Type * t = alt.expr->result->stripReferences();
365 return dynamic_cast< StructInstType * >( t ) || dynamic_cast< UnionInstType * >( t );
366 }
367
368 void resolveWithExprs( std::list< Declaration * > & translationUnit ) {
369 PassVisitor<ResolveWithExprs> resolver;
370 acceptAll( translationUnit, resolver );
371 }
372
373 void ResolveWithExprs::resolveWithExprs( std::list< Expression * > & withExprs, std::list< Statement * > & newStmts ) {
374 for ( Expression *& expr : withExprs ) {
375 // only struct- and union-typed expressions are viable candidates
376 findKindExpression( expr, indexer, "with statement", isStructOrUnion );
377
378 // if with expression might be impure, create a temporary so that it is evaluated once
379 if ( Tuples::maybeImpure( expr ) ) {
380 static UniqueName tmpNamer( "_with_tmp_" );
381 ObjectDecl * tmp = ObjectDecl::newObject( tmpNamer.newName(), expr->result->clone(), new SingleInit( expr ) );
382 expr = new VariableExpr( tmp );
383 newStmts.push_back( new DeclStmt( tmp ) );
384 if ( InitTweak::isConstructable( tmp->type ) ) {
385 // generate ctor/dtor and resolve them
386 tmp->init = InitTweak::genCtorInit( tmp );
387 tmp->accept( *visitor );
388 }
389 }
390 }
391 }
392
393 void ResolveWithExprs::previsit( WithStmt * withStmt ) {
394 resolveWithExprs( withStmt->exprs, stmtsToAddBefore );
395 }
396
397 void ResolveWithExprs::previsit( FunctionDecl * functionDecl ) {
398 {
399 // resolve with-exprs with parameters in scope and add any newly generated declarations to the
400 // front of the function body.
401 auto guard = makeFuncGuard( [this]() { indexer.enterScope(); }, [this](){ indexer.leaveScope(); } );
402 indexer.addFunctionType( functionDecl->type );
403 std::list< Statement * > newStmts;
404 resolveWithExprs( functionDecl->withExprs, newStmts );
405 if ( functionDecl->statements ) {
406 functionDecl->statements->kids.splice( functionDecl->statements->kids.begin(), newStmts );
407 } else {
408 assertf( functionDecl->withExprs.empty() && newStmts.empty(), "Function %s without a body has with-clause and/or generated with declarations.", functionDecl->name.c_str() );
409 }
410 }
411 }
412
413 void Resolver_old::previsit( ObjectDecl * objectDecl ) {
414 // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that
415 // class-variable initContext is changed multiple time because the LHS is analysed twice.
416 // The second analysis changes initContext because of a function type can contain object
417 // declarations in the return and parameter types. So each value of initContext is
418 // retained, so the type on the first analysis is preserved and used for selecting the RHS.
419 GuardValue( currentObject );
420 currentObject = CurrentObject( objectDecl->get_type() );
421 if ( inEnumDecl && dynamic_cast< EnumInstType * >( objectDecl->get_type() ) ) {
422 // enumerator initializers should not use the enum type to initialize, since
423 // the enum type is still incomplete at this point. Use signed int instead.
424 currentObject = CurrentObject( new BasicType( Type::Qualifiers(), BasicType::SignedInt ) );
425 }
426 }
427
428 template< typename PtrType >
429 void Resolver_old::handlePtrType( PtrType * type ) {
430 if ( type->get_dimension() ) {
431 findSingleExpression( type->dimension, Validate::SizeType->clone(), indexer );
432 }
433 }
434
435 void Resolver_old::previsit( ArrayType * at ) {
436 handlePtrType( at );
437 }
438
439 void Resolver_old::previsit( PointerType * pt ) {
440 handlePtrType( pt );
441 }
442
443 void Resolver_old::previsit( FunctionDecl * functionDecl ) {
444#if 0
445 std::cerr << "resolver visiting functiondecl ";
446 functionDecl->print( std::cerr );
447 std::cerr << std::endl;
448#endif
449 GuardValue( functionReturn );
450 functionReturn = ResolvExpr::extractResultType( functionDecl->type );
451 }
452
453 void Resolver_old::postvisit( FunctionDecl * functionDecl ) {
454 // default value expressions have an environment which shouldn't be there and trips up
455 // later passes.
456 // xxx - it might be necessary to somehow keep the information from this environment, but I
457 // can't currently see how it's useful.
458 for ( Declaration * d : functionDecl->type->parameters ) {
459 if ( ObjectDecl * obj = dynamic_cast< ObjectDecl * >( d ) ) {
460 if ( SingleInit * init = dynamic_cast< SingleInit * >( obj->init ) ) {
461 delete init->value->env;
462 init->value->env = nullptr;
463 }
464 }
465 }
466 }
467
468 void Resolver_old::previsit( EnumDecl * ) {
469 // in case we decide to allow nested enums
470 GuardValue( inEnumDecl );
471 inEnumDecl = true;
472 }
473
474 void Resolver_old::previsit( StaticAssertDecl * assertDecl ) {
475 findIntegralExpression( assertDecl->condition, indexer );
476 }
477
478 void Resolver_old::previsit( ExprStmt * exprStmt ) {
479 visit_children = false;
480 assertf( exprStmt->expr, "ExprStmt has null Expression in resolver" );
481 findVoidExpression( exprStmt->expr, indexer );
482 }
483
484 void Resolver_old::previsit( AsmExpr * asmExpr ) {
485 visit_children = false;
486 findVoidExpression( asmExpr->operand, indexer );
487 if ( asmExpr->get_inout() ) {
488 findVoidExpression( asmExpr->inout, indexer );
489 } // if
490 }
491
492 void Resolver_old::previsit( AsmStmt * asmStmt ) {
493 visit_children = false;
494 acceptAll( asmStmt->get_input(), *visitor );
495 acceptAll( asmStmt->get_output(), *visitor );
496 }
497
498 void Resolver_old::previsit( IfStmt * ifStmt ) {
499 findIntegralExpression( ifStmt->condition, indexer );
500 }
501
502 void Resolver_old::previsit( WhileStmt * whileStmt ) {
503 findIntegralExpression( whileStmt->condition, indexer );
504 }
505
506 void Resolver_old::previsit( ForStmt * forStmt ) {
507 if ( forStmt->condition ) {
508 findIntegralExpression( forStmt->condition, indexer );
509 } // if
510
511 if ( forStmt->increment ) {
512 findVoidExpression( forStmt->increment, indexer );
513 } // if
514 }
515
516 void Resolver_old::previsit( SwitchStmt * switchStmt ) {
517 GuardValue( currentObject );
518 findIntegralExpression( switchStmt->condition, indexer );
519
520 currentObject = CurrentObject( switchStmt->condition->result );
521 }
522
523 void Resolver_old::previsit( CaseStmt * caseStmt ) {
524 if ( caseStmt->condition ) {
525 std::list< InitAlternative > initAlts = currentObject.getOptions();
526 assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral expression." );
527 // must remove cast from case statement because RangeExpr cannot be cast.
528 Expression * newExpr = new CastExpr( caseStmt->condition, initAlts.front().type->clone() );
529 findSingleExpression( newExpr, indexer );
530 // case condition cannot have a cast in C, so it must be removed, regardless of whether it performs a conversion.
531 // Ideally we would perform the conversion internally here.
532 if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( newExpr ) ) {
533 newExpr = castExpr->arg;
534 castExpr->arg = nullptr;
535 std::swap( newExpr->env, castExpr->env );
536 delete castExpr;
537 }
538 caseStmt->condition = newExpr;
539 }
540 }
541
542 void Resolver_old::previsit( BranchStmt * branchStmt ) {
543 visit_children = false;
544 // must resolve the argument for a computed goto
545 if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement
546 if ( branchStmt->computedTarget ) {
547 // computed goto argument is void *
548 findSingleExpression( branchStmt->computedTarget, new PointerType( Type::Qualifiers(), new VoidType( Type::Qualifiers() ) ), indexer );
549 } // if
550 } // if
551 }
552
553 void Resolver_old::previsit( ReturnStmt * returnStmt ) {
554 visit_children = false;
555 if ( returnStmt->expr ) {
556 findSingleExpression( returnStmt->expr, functionReturn->clone(), indexer );
557 } // if
558 }
559
560 void Resolver_old::previsit( ThrowStmt * throwStmt ) {
561 visit_children = false;
562 // TODO: Replace *exception type with &exception type.
563 if ( throwStmt->get_expr() ) {
564 const StructDecl * exception_decl = indexer.lookupStruct( "__cfaabi_ehm__base_exception_t" );
565 assert( exception_decl );
566 Type * exceptType = new PointerType( noQualifiers, new StructInstType( noQualifiers, const_cast<StructDecl *>(exception_decl) ) );
567 findSingleExpression( throwStmt->expr, exceptType, indexer );
568 }
569 }
570
571 void Resolver_old::previsit( CatchStmt * catchStmt ) {
572 if ( catchStmt->cond ) {
573 findSingleExpression( catchStmt->cond, new BasicType( noQualifiers, BasicType::Bool ), indexer );
574 }
575 }
576
577 template< typename iterator_t >
578 inline bool advance_to_mutex( iterator_t & it, const iterator_t & end ) {
579 while( it != end && !(*it)->get_type()->get_mutex() ) {
580 it++;
581 }
582
583 return it != end;
584 }
585
586 void Resolver_old::previsit( WaitForStmt * stmt ) {
587 visit_children = false;
588
589 // Resolve all clauses first
590 for( auto& clause : stmt->clauses ) {
591
592 TypeEnvironment env;
593 AlternativeFinder funcFinder( indexer, env );
594
595 // Find all alternatives for a function in canonical form
596 funcFinder.findWithAdjustment( clause.target.function );
597
598 if ( funcFinder.get_alternatives().empty() ) {
599 stringstream ss;
600 ss << "Use of undeclared indentifier '";
601 ss << strict_dynamic_cast<NameExpr*>( clause.target.function )->name;
602 ss << "' in call to waitfor";
603 SemanticError( stmt->location, ss.str() );
604 }
605
606 if(clause.target.arguments.empty()) {
607 SemanticError( stmt->location, "Waitfor clause must have at least one mutex parameter");
608 }
609
610 // Find all alternatives for all arguments in canonical form
611 std::vector< AlternativeFinder > argAlternatives;
612 funcFinder.findSubExprs( clause.target.arguments.begin(), clause.target.arguments.end(), back_inserter( argAlternatives ) );
613
614 // List all combinations of arguments
615 std::vector< AltList > possibilities;
616 combos( argAlternatives.begin(), argAlternatives.end(), back_inserter( possibilities ) );
617
618 AltList func_candidates;
619 std::vector< AltList > args_candidates;
620
621 // For every possible function :
622 // try matching the arguments to the parameters
623 // not the other way around because we have more arguments than parameters
624 SemanticErrorException errors;
625 for ( Alternative & func : funcFinder.get_alternatives() ) {
626 try {
627 PointerType * pointer = dynamic_cast< PointerType* >( func.expr->get_result()->stripReferences() );
628 if( !pointer ) {
629 SemanticError( func.expr->get_result(), "candidate not viable: not a pointer type\n" );
630 }
631
632 FunctionType * function = dynamic_cast< FunctionType* >( pointer->get_base() );
633 if( !function ) {
634 SemanticError( pointer->get_base(), "candidate not viable: not a function type\n" );
635 }
636
637
638 {
639 auto param = function->parameters.begin();
640 auto param_end = function->parameters.end();
641
642 if( !advance_to_mutex( param, param_end ) ) {
643 SemanticError(function, "candidate function not viable: no mutex parameters\n");
644 }
645 }
646
647 Alternative newFunc( func );
648 // Strip reference from function
649 referenceToRvalueConversion( newFunc.expr, newFunc.cost );
650
651 // For all the set of arguments we have try to match it with the parameter of the current function alternative
652 for ( auto & argsList : possibilities ) {
653
654 try {
655 // Declare data structures need for resolution
656 OpenVarSet openVars;
657 AssertionSet resultNeed, resultHave;
658 TypeEnvironment resultEnv( func.env );
659 makeUnifiableVars( function, openVars, resultNeed );
660 // add all type variables as open variables now so that those not used in the parameter
661 // list are still considered open.
662 resultEnv.add( function->forall );
663
664 // Load type variables from arguemnts into one shared space
665 simpleCombineEnvironments( argsList.begin(), argsList.end(), resultEnv );
666
667 // Make sure we don't widen any existing bindings
668 resultEnv.forbidWidening();
669
670 // Find any unbound type variables
671 resultEnv.extractOpenVars( openVars );
672
673 auto param = function->parameters.begin();
674 auto param_end = function->parameters.end();
675
676 int n_mutex_param = 0;
677
678 // For every arguments of its set, check if it matches one of the parameter
679 // The order is important
680 for( auto & arg : argsList ) {
681
682 // Ignore non-mutex arguments
683 if( !advance_to_mutex( param, param_end ) ) {
684 // We ran out of parameters but still have arguments
685 // this function doesn't match
686 SemanticError( function, toString("candidate function not viable: too many mutex arguments, expected ", n_mutex_param, "\n" ));
687 }
688
689 n_mutex_param++;
690
691 // Check if the argument matches the parameter type in the current scope
692 if( ! unify( arg.expr->get_result(), (*param)->get_type(), resultEnv, resultNeed, resultHave, openVars, this->indexer ) ) {
693 // Type doesn't match
694 stringstream ss;
695 ss << "candidate function not viable: no known convertion from '";
696 (*param)->get_type()->print( ss );
697 ss << "' to '";
698 arg.expr->get_result()->print( ss );
699 ss << "' with env '";
700 resultEnv.print(ss);
701 ss << "'\n";
702 SemanticError( function, ss.str() );
703 }
704
705 param++;
706 }
707
708 // All arguments match !
709
710 // Check if parameters are missing
711 if( advance_to_mutex( param, param_end ) ) {
712 do {
713 n_mutex_param++;
714 param++;
715 } while( advance_to_mutex( param, param_end ) );
716
717 // We ran out of arguments but still have parameters left
718 // this function doesn't match
719 SemanticError( function, toString("candidate function not viable: too few mutex arguments, expected ", n_mutex_param, "\n" ));
720 }
721
722 // All parameters match !
723
724 // Finish the expressions to tie in the proper environments
725 finishExpr( newFunc.expr, resultEnv );
726 for( Alternative & alt : argsList ) {
727 finishExpr( alt.expr, resultEnv );
728 }
729
730 // This is a match store it and save it for later
731 func_candidates.push_back( newFunc );
732 args_candidates.push_back( argsList );
733
734 }
735 catch( SemanticErrorException & e ) {
736 errors.append( e );
737 }
738 }
739 }
740 catch( SemanticErrorException & e ) {
741 errors.append( e );
742 }
743 }
744
745 // Make sure we got the right number of arguments
746 if( func_candidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for function in call to waitfor" ); top.append( errors ); throw top; }
747 if( args_candidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for arguments in call to waitfor" ); top.append( errors ); throw top; }
748 if( func_candidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous function in call to waitfor" ); top.append( errors ); throw top; }
749 if( args_candidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous arguments in call to waitfor" ); top.append( errors ); throw top; }
750 // TODO: need to use findDeletedExpr to ensure no deleted identifiers are used.
751
752 // Swap the results from the alternative with the unresolved values.
753 // Alternatives will handle deletion on destruction
754 std::swap( clause.target.function, func_candidates.front().expr );
755 for( auto arg_pair : group_iterate( clause.target.arguments, args_candidates.front() ) ) {
756 std::swap ( std::get<0>( arg_pair), std::get<1>( arg_pair).expr );
757 }
758
759 // Resolve the conditions as if it were an IfStmt
760 // Resolve the statments normally
761 findSingleExpression( clause.condition, this->indexer );
762 clause.statement->accept( *visitor );
763 }
764
765
766 if( stmt->timeout.statement ) {
767 // Resolve the timeout as an size_t for now
768 // Resolve the conditions as if it were an IfStmt
769 // Resolve the statments normally
770 findSingleExpression( stmt->timeout.time, new BasicType( noQualifiers, BasicType::LongLongUnsignedInt ), this->indexer );
771 findSingleExpression( stmt->timeout.condition, this->indexer );
772 stmt->timeout.statement->accept( *visitor );
773 }
774
775 if( stmt->orelse.statement ) {
776 // Resolve the conditions as if it were an IfStmt
777 // Resolve the statments normally
778 findSingleExpression( stmt->orelse.condition, this->indexer );
779 stmt->orelse.statement->accept( *visitor );
780 }
781 }
782
783 bool isCharType( Type * t ) {
784 if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) {
785 return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar ||
786 bt->get_kind() == BasicType::UnsignedChar;
787 }
788 return false;
789 }
790
791 void Resolver_old::previsit( SingleInit * singleInit ) {
792 visit_children = false;
793 // resolve initialization using the possibilities as determined by the currentObject cursor
794 Expression * newExpr = new UntypedInitExpr( singleInit->value, currentObject.getOptions() );
795 findSingleExpression( newExpr, indexer );
796 InitExpr * initExpr = strict_dynamic_cast< InitExpr * >( newExpr );
797
798 // move cursor to the object that is actually initialized
799 currentObject.setNext( initExpr->get_designation() );
800
801 // discard InitExpr wrapper and retain relevant pieces
802 newExpr = initExpr->expr;
803 initExpr->expr = nullptr;
804 std::swap( initExpr->env, newExpr->env );
805 // InitExpr may have inferParams in the case where the expression specializes a function
806 // pointer, and newExpr may already have inferParams of its own, so a simple swap is not
807 // sufficient.
808 newExpr->spliceInferParams( initExpr );
809 delete initExpr;
810
811 // get the actual object's type (may not exactly match what comes back from the resolver
812 // due to conversions)
813 Type * initContext = currentObject.getCurrentType();
814
815 removeExtraneousCast( newExpr, indexer );
816
817 // check if actual object's type is char[]
818 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
819 if ( isCharType( at->get_base() ) ) {
820 // check if the resolved type is char *
821 if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_result() ) ) {
822 if ( isCharType( pt->get_base() ) ) {
823 if ( CastExpr * ce = dynamic_cast< CastExpr * >( newExpr ) ) {
824 // strip cast if we're initializing a char[] with a char *,
825 // e.g. char x[] = "hello";
826 newExpr = ce->get_arg();
827 ce->set_arg( nullptr );
828 std::swap( ce->env, newExpr->env );
829 delete ce;
830 }
831 }
832 }
833 }
834 }
835
836 // set initializer expr to resolved express
837 singleInit->value = newExpr;
838
839 // move cursor to next object in preparation for next initializer
840 currentObject.increment();
841 }
842
843 void Resolver_old::previsit( ListInit * listInit ) {
844 visit_children = false;
845 // move cursor into brace-enclosed initializer-list
846 currentObject.enterListInit();
847 // xxx - fix this so that the list isn't copied, iterator should be used to change current
848 // element
849 std::list<Designation *> newDesignations;
850 for ( auto p : group_iterate(listInit->get_designations(), listInit->get_initializers()) ) {
851 // iterate designations and initializers in pairs, moving the cursor to the current
852 // designated object and resolving the initializer against that object.
853 Designation * des = std::get<0>(p);
854 Initializer * init = std::get<1>(p);
855 newDesignations.push_back( currentObject.findNext( des ) );
856 init->accept( *visitor );
857 }
858 // set the set of 'resolved' designations and leave the brace-enclosed initializer-list
859 listInit->get_designations() = newDesignations; // xxx - memory management
860 currentObject.exitListInit();
861
862 // xxx - this part has not be folded into CurrentObject yet
863 // } else if ( TypeInstType * tt = dynamic_cast< TypeInstType * >( initContext ) ) {
864 // Type * base = tt->get_baseType()->get_base();
865 // if ( base ) {
866 // // know the implementation type, so try using that as the initContext
867 // ObjectDecl tmpObj( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, base->clone(), nullptr );
868 // currentObject = &tmpObj;
869 // visit( listInit );
870 // } else {
871 // // missing implementation type -- might be an unknown type variable, so try proceeding with the current init context
872 // Parent::visit( listInit );
873 // }
874 // } else {
875 }
876
877 // ConstructorInit - fall back on C-style initializer
878 void Resolver_old::fallbackInit( ConstructorInit * ctorInit ) {
879 // could not find valid constructor, or found an intrinsic constructor
880 // fall back on C-style initializer
881 delete ctorInit->get_ctor();
882 ctorInit->set_ctor( nullptr );
883 delete ctorInit->get_dtor();
884 ctorInit->set_dtor( nullptr );
885 maybeAccept( ctorInit->get_init(), *visitor );
886 }
887
888 // needs to be callable from outside the resolver, so this is a standalone function
889 void resolveCtorInit( ConstructorInit * ctorInit, const SymTab::Indexer & indexer ) {
890 assert( ctorInit );
891 PassVisitor<Resolver_old> resolver( indexer );
892 ctorInit->accept( resolver );
893 }
894
895 void resolveStmtExpr( StmtExpr * stmtExpr, const SymTab::Indexer & indexer ) {
896 assert( stmtExpr );
897 PassVisitor<Resolver_old> resolver( indexer );
898 stmtExpr->accept( resolver );
899 stmtExpr->computeResult();
900 // xxx - aggregate the environments from all statements? Possibly in AlternativeFinder instead?
901 }
902
903 void Resolver_old::previsit( ConstructorInit * ctorInit ) {
904 visit_children = false;
905 // xxx - fallback init has been removed => remove fallbackInit function and remove complexity from FixInit and remove C-init from ConstructorInit
906 maybeAccept( ctorInit->ctor, *visitor );
907 maybeAccept( ctorInit->dtor, *visitor );
908
909 // found a constructor - can get rid of C-style initializer
910 delete ctorInit->init;
911 ctorInit->init = nullptr;
912
913 // intrinsic single parameter constructors and destructors do nothing. Since this was
914 // implicitly generated, there's no way for it to have side effects, so get rid of it
915 // to clean up generated code.
916 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->ctor ) ) {
917 delete ctorInit->ctor;
918 ctorInit->ctor = nullptr;
919 }
920
921 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->dtor ) ) {
922 delete ctorInit->dtor;
923 ctorInit->dtor = nullptr;
924 }
925
926 // xxx - todo -- what about arrays?
927 // if ( dtor == nullptr && InitTweak::isIntrinsicCallStmt( ctorInit->get_ctor() ) ) {
928 // // can reduce the constructor down to a SingleInit using the
929 // // second argument from the ctor call, since
930 // delete ctorInit->get_ctor();
931 // ctorInit->set_ctor( nullptr );
932
933 // Expression * arg =
934 // ctorInit->set_init( new SingleInit( arg ) );
935 // }
936 }
937
938 ///////////////////////////////////////////////////////////////////////////
939 //
940 // *** NEW RESOLVER ***
941 //
942 ///////////////////////////////////////////////////////////////////////////
943
944 namespace {
945 /// Finds deleted expressions in an expression tree
946 struct DeleteFinder_new final : public ast::WithShortCircuiting {
947 const ast::DeletedExpr * delExpr = nullptr;
948
949 void previsit( const ast::DeletedExpr * expr ) {
950 if ( delExpr ) { visit_children = false; }
951 else { delExpr = expr; }
952 }
953
954 void previsit( const ast::Expr * ) {
955 if ( delExpr ) { visit_children = false; }
956 }
957 };
958 } // anonymous namespace
959
960 /// Check if this expression is or includes a deleted expression
961 const ast::DeletedExpr * findDeletedExpr( const ast::Expr * expr ) {
962 ast::Pass<DeleteFinder_new> finder;
963 expr->accept( finder );
964 return finder.pass.delExpr;
965 }
966
967 namespace {
968 /// always-accept candidate filter
969 bool anyCandidate( const Candidate & ) { return true; }
970
971 /// Calls the CandidateFinder and finds the single best candidate
972 CandidateRef findUnfinishedKindExpression(
973 const ast::Expr * untyped, const ast::SymbolTable & symtab, const std::string & kind,
974 std::function<bool(const Candidate &)> pred = anyCandidate, ResolvMode mode = {}
975 ) {
976 if ( ! untyped ) return nullptr;
977
978 // xxx - this isn't thread-safe, but should work until we parallelize the resolver
979 static unsigned recursion_level = 0;
980
981 ++recursion_level;
982 ast::TypeEnvironment env;
983 CandidateFinder finder{ symtab, env };
984 finder.find( untyped, recursion_level == 1 ? mode.atTopLevel() : mode );
985 --recursion_level;
986
987 // produce a filtered list of candidates
988 CandidateList candidates;
989 for ( auto & cand : finder.candidates ) {
990 if ( pred( *cand ) ) { candidates.emplace_back( cand ); }
991 }
992
993 // produce invalid error if no candidates
994 if ( candidates.empty() ) {
995 SemanticError( untyped,
996 toString( "No reasonable alternatives for ", kind, (kind != "" ? " " : ""),
997 "expression: ") );
998 }
999
1000 // search for cheapest candidate
1001 CandidateList winners;
1002 bool seen_undeleted = false;
1003 for ( CandidateRef & cand : candidates ) {
1004 int c = winners.empty() ? -1 : cand->cost.compare( winners.front()->cost );
1005
1006 if ( c > 0 ) continue; // skip more expensive than winner
1007
1008 if ( c < 0 ) {
1009 // reset on new cheapest
1010 seen_undeleted = ! findDeletedExpr( cand->expr );
1011 winners.clear();
1012 } else /* if ( c == 0 ) */ {
1013 if ( findDeletedExpr( cand->expr ) ) {
1014 // skip deleted expression if already seen one equivalent-cost not
1015 if ( seen_undeleted ) continue;
1016 } else if ( ! seen_undeleted ) {
1017 // replace list of equivalent-cost deleted expressions with one non-deleted
1018 winners.clear();
1019 seen_undeleted = true;
1020 }
1021 }
1022
1023 winners.emplace_back( std::move( cand ) );
1024 }
1025
1026 // promote candidate.cvtCost to .cost
1027 promoteCvtCost( winners );
1028
1029 // produce ambiguous errors, if applicable
1030 if ( winners.size() != 1 ) {
1031 std::ostringstream stream;
1032 stream << "Cannot choose between " << winners.size() << " alternatives for "
1033 << kind << (kind != "" ? " " : "") << "expression\n";
1034 ast::print( stream, untyped );
1035 stream << " Alternatives are:\n";
1036 print( stream, winners, 1 );
1037 SemanticError( untyped->location, stream.str() );
1038 }
1039
1040 // single selected choice
1041 CandidateRef & choice = winners.front();
1042
1043 // fail on only expression deleted
1044 if ( ! seen_undeleted ) {
1045 SemanticError( untyped->location, choice->expr.get(), "Unique best alternative "
1046 "includes deleted identifier in " );
1047 }
1048
1049 return std::move( choice );
1050 }
1051
1052 /// Strips extraneous casts out of an expression
1053 struct StripCasts_new final {
1054 const ast::Expr * postmutate( const ast::CastExpr * castExpr ) {
1055 if (
1056 castExpr->isGenerated
1057 && typesCompatible( castExpr->arg->result, castExpr->result )
1058 ) {
1059 // generated cast is the same type as its argument, remove it after keeping env
1060 return ast::mutate_field(
1061 castExpr->arg.get(), &ast::Expr::env, castExpr->env );
1062 }
1063 return castExpr;
1064 }
1065
1066 static void strip( ast::ptr< ast::Expr > & expr ) {
1067 ast::Pass< StripCasts_new > stripper;
1068 expr = expr->accept( stripper );
1069 }
1070 };
1071
1072 /// Swaps argument into expression pointer, saving original environment
1073 void swap_and_save_env( ast::ptr< ast::Expr > & expr, const ast::Expr * newExpr ) {
1074 ast::ptr< ast::TypeSubstitution > env = expr->env;
1075 expr.set_and_mutate( newExpr )->env = env;
1076 }
1077
1078 /// Removes cast to type of argument (unlike StripCasts, also handles non-generated casts)
1079 void removeExtraneousCast( ast::ptr<ast::Expr> & expr, const ast::SymbolTable & symtab ) {
1080 if ( const ast::CastExpr * castExpr = expr.as< ast::CastExpr >() ) {
1081 if ( typesCompatible( castExpr->arg->result, castExpr->result, symtab ) ) {
1082 // cast is to the same type as its argument, remove it
1083 swap_and_save_env( expr, castExpr->arg );
1084 }
1085 }
1086 }
1087
1088 /// Establish post-resolver invariants for expressions
1089 void finishExpr(
1090 ast::ptr< ast::Expr > & expr, const ast::TypeEnvironment & env,
1091 const ast::TypeSubstitution * oldenv = nullptr
1092 ) {
1093 // set up new type substitution for expression
1094 ast::ptr< ast::TypeSubstitution > newenv =
1095 oldenv ? oldenv : new ast::TypeSubstitution{};
1096 env.writeToSubstitution( *newenv.get_and_mutate() );
1097 expr.get_and_mutate()->env = std::move( newenv );
1098 // remove unncecessary casts
1099 StripCasts_new::strip( expr );
1100 }
1101 } // anonymous namespace
1102
1103
1104 ast::ptr< ast::Expr > resolveInVoidContext(
1105 const ast::Expr * expr, const ast::SymbolTable & symtab, ast::TypeEnvironment & env
1106 ) {
1107 assertf( expr, "expected a non-null expression" );
1108
1109 // set up and resolve expression cast to void
1110 ast::CastExpr * untyped = new ast::CastExpr{ expr };
1111 CandidateRef choice = findUnfinishedKindExpression(
1112 untyped, symtab, "", anyCandidate, ResolvMode::withAdjustment() );
1113
1114 // a cast expression has either 0 or 1 interpretations (by language rules);
1115 // if 0, an exception has already been thrown, and this code will not run
1116 const ast::CastExpr * castExpr = choice->expr.strict_as< ast::CastExpr >();
1117 env = std::move( choice->env );
1118
1119 return castExpr->arg;
1120 }
1121
1122 namespace {
1123 /// Resolve `untyped` to the expression whose candidate is the best match for a `void`
1124 /// context.
1125 ast::ptr< ast::Expr > findVoidExpression(
1126 const ast::Expr * untyped, const ast::SymbolTable & symtab
1127 ) {
1128 resetTyVarRenaming();
1129 ast::TypeEnvironment env;
1130 ast::ptr< ast::Expr > newExpr = resolveInVoidContext( untyped, symtab, env );
1131 finishExpr( newExpr, env, untyped->env );
1132 return newExpr;
1133 }
1134
1135 /// resolve `untyped` to the expression whose candidate satisfies `pred` with the
1136 /// lowest cost, returning the resolved version
1137 ast::ptr< ast::Expr > findKindExpression(
1138 const ast::Expr * untyped, const ast::SymbolTable & symtab,
1139 std::function<bool(const Candidate &)> pred = anyCandidate,
1140 const std::string & kind = "", ResolvMode mode = {}
1141 ) {
1142 if ( ! untyped ) return {};
1143 CandidateRef choice =
1144 findUnfinishedKindExpression( untyped, symtab, kind, pred, mode );
1145 finishExpr( choice->expr, choice->env, untyped->env );
1146 return std::move( choice->expr );
1147 }
1148
1149 /// Resolve `untyped` to the single expression whose candidate is the best match
1150 ast::ptr< ast::Expr > findSingleExpression(
1151 const ast::Expr * untyped, const ast::SymbolTable & symtab
1152 ) {
1153 return findKindExpression( untyped, symtab );
1154 }
1155 } // anonymous namespace
1156
1157 ast::ptr< ast::Expr > findSingleExpression(
1158 const ast::Expr * untyped, const ast::Type * type, const ast::SymbolTable & symtab
1159 ) {
1160 assert( untyped && type );
1161 ast::ptr< ast::Expr > castExpr = new ast::CastExpr{ untyped, type };
1162 ast::ptr< ast::Expr > newExpr = findSingleExpression( castExpr, symtab );
1163 removeExtraneousCast( newExpr, symtab );
1164 return newExpr;
1165 }
1166
1167 namespace {
1168 /// Predicate for "Candidate has integral type"
1169 bool hasIntegralType( const Candidate & i ) {
1170 const ast::Type * type = i.expr->result;
1171
1172 if ( auto bt = dynamic_cast< const ast::BasicType * >( type ) ) {
1173 return bt->isInteger();
1174 } else if (
1175 dynamic_cast< const ast::EnumInstType * >( type )
1176 || dynamic_cast< const ast::ZeroType * >( type )
1177 || dynamic_cast< const ast::OneType * >( type )
1178 ) {
1179 return true;
1180 } else return false;
1181 }
1182
1183 /// Resolve `untyped` as an integral expression, returning the resolved version
1184 ast::ptr< ast::Expr > findIntegralExpression(
1185 const ast::Expr * untyped, const ast::SymbolTable & symtab
1186 ) {
1187 return findKindExpression( untyped, symtab, hasIntegralType, "condition" );
1188 }
1189
1190 /// check if a type is a character type
1191 bool isCharType( const ast::Type * t ) {
1192 if ( auto bt = dynamic_cast< const ast::BasicType * >( t ) ) {
1193 return bt->kind == ast::BasicType::Char
1194 || bt->kind == ast::BasicType::SignedChar
1195 || bt->kind == ast::BasicType::UnsignedChar;
1196 }
1197 return false;
1198 }
1199
1200 /// Advance a type itertor to the next mutex parameter
1201 template<typename Iter>
1202 inline bool nextMutex( Iter & it, const Iter & end ) {
1203 while ( it != end && ! (*it)->get_type()->is_mutex() ) { ++it; }
1204 return it != end;
1205 }
1206 }
1207
1208 class Resolver_new final
1209 : public ast::WithSymbolTable, public ast::WithGuards,
1210 public ast::WithVisitorRef<Resolver_new>, public ast::WithShortCircuiting,
1211 public ast::WithStmtsToAdd<> {
1212
1213 ast::ptr< ast::Type > functionReturn = nullptr;
1214 ast::CurrentObject currentObject;
1215 bool inEnumDecl = false;
1216
1217 public:
1218 Resolver_new() = default;
1219 Resolver_new( const ast::SymbolTable & syms ) { symtab = syms; }
1220
1221 void previsit( const ast::FunctionDecl * );
1222 const ast::FunctionDecl * postvisit( const ast::FunctionDecl * );
1223 void previsit( const ast::ObjectDecl * );
1224 void previsit( const ast::EnumDecl * );
1225 const ast::StaticAssertDecl * previsit( const ast::StaticAssertDecl * );
1226
1227 const ast::ArrayType * previsit( const ast::ArrayType * );
1228 const ast::PointerType * previsit( const ast::PointerType * );
1229
1230 const ast::ExprStmt * previsit( const ast::ExprStmt * );
1231 const ast::AsmExpr * previsit( const ast::AsmExpr * );
1232 const ast::AsmStmt * previsit( const ast::AsmStmt * );
1233 const ast::IfStmt * previsit( const ast::IfStmt * );
1234 const ast::WhileStmt * previsit( const ast::WhileStmt * );
1235 const ast::ForStmt * previsit( const ast::ForStmt * );
1236 const ast::SwitchStmt * previsit( const ast::SwitchStmt * );
1237 const ast::CaseStmt * previsit( const ast::CaseStmt * );
1238 const ast::BranchStmt * previsit( const ast::BranchStmt * );
1239 const ast::ReturnStmt * previsit( const ast::ReturnStmt * );
1240 const ast::ThrowStmt * previsit( const ast::ThrowStmt * );
1241 const ast::CatchStmt * previsit( const ast::CatchStmt * );
1242 const ast::WaitForStmt * previsit( const ast::WaitForStmt * );
1243
1244 const ast::SingleInit * previsit( const ast::SingleInit * );
1245 const ast::ListInit * previsit( const ast::ListInit * );
1246 const ast::ConstructorInit * previsit( const ast::ConstructorInit * );
1247 };
1248
1249 void resolve( std::list< ast::ptr<ast::Decl> >& translationUnit ) {
1250 ast::Pass< Resolver_new > resolver;
1251 accept_all( translationUnit, resolver );
1252 }
1253
1254 ast::ptr< ast::Init > resolveCtorInit(
1255 const ast::ConstructorInit * ctorInit, const ast::SymbolTable & symtab
1256 ) {
1257 assert( ctorInit );
1258 ast::Pass< Resolver_new > resolver{ symtab };
1259 return ctorInit->accept( resolver );
1260 }
1261
1262 ast::ptr< ast::Expr > resolveStmtExpr(
1263 const ast::StmtExpr * stmtExpr, const ast::SymbolTable & symtab
1264 ) {
1265 assert( stmtExpr );
1266 ast::Pass< Resolver_new > resolver{ symtab };
1267 ast::ptr< ast::Expr > ret = stmtExpr;
1268 ret = ret->accept( resolver );
1269 strict_dynamic_cast< ast::StmtExpr * >( ret.get_and_mutate() )->computeResult();
1270 return ret;
1271 }
1272
1273 void Resolver_new::previsit( const ast::FunctionDecl * functionDecl ) {
1274 GuardValue( functionReturn );
1275 functionReturn = extractResultType( functionDecl->type );
1276 }
1277
1278 const ast::FunctionDecl * Resolver_new::postvisit( const ast::FunctionDecl * functionDecl ) {
1279 // default value expressions have an environment which shouldn't be there and trips up
1280 // later passes.
1281 ast::ptr< ast::FunctionDecl > ret = functionDecl;
1282 for ( unsigned i = 0; i < functionDecl->type->params.size(); ++i ) {
1283 const ast::ptr<ast::DeclWithType> & d = functionDecl->type->params[i];
1284
1285 if ( const ast::ObjectDecl * obj = d.as< ast::ObjectDecl >() ) {
1286 if ( const ast::SingleInit * init = obj->init.as< ast::SingleInit >() ) {
1287 if ( init->value->env == nullptr ) continue;
1288 // clone initializer minus the initializer environment
1289 ast::chain_mutate( ret )
1290 ( &ast::FunctionDecl::type )
1291 ( &ast::FunctionType::params )[i]
1292 ( &ast::ObjectDecl::init )
1293 ( &ast::SingleInit::value )->env = nullptr;
1294
1295 assert( functionDecl != ret.get() || functionDecl->unique() );
1296 assert( ! ret->type->params[i].strict_as< ast::ObjectDecl >()->init.strict_as< ast::SingleInit >()->value->env );
1297 }
1298 }
1299 }
1300 return ret.get();
1301 }
1302
1303 void Resolver_new::previsit( const ast::ObjectDecl * objectDecl ) {
1304 // To handle initialization of routine pointers [e.g. int (*fp)(int) = foo()],
1305 // class-variable `initContext` is changed multiple times because the LHS is analyzed
1306 // twice. The second analysis changes `initContext` because a function type can contain
1307 // object declarations in the return and parameter types. Therefore each value of
1308 // `initContext` is retained so the type on the first analysis is preserved and used for
1309 // selecting the RHS.
1310 GuardValue( currentObject );
1311 currentObject = ast::CurrentObject{ objectDecl->location, objectDecl->get_type() };
1312 if ( inEnumDecl && dynamic_cast< const ast::EnumInstType * >( objectDecl->get_type() ) ) {
1313 // enumerator initializers should not use the enum type to initialize, since the
1314 // enum type is still incomplete at this point. Use `int` instead.
1315 currentObject = ast::CurrentObject{
1316 objectDecl->location, new ast::BasicType{ ast::BasicType::SignedInt } };
1317 }
1318 }
1319
1320 void Resolver_new::previsit( const ast::EnumDecl * ) {
1321 // in case we decide to allow nested enums
1322 GuardValue( inEnumDecl );
1323 inEnumDecl = false;
1324 }
1325
1326 const ast::StaticAssertDecl * Resolver_new::previsit(
1327 const ast::StaticAssertDecl * assertDecl
1328 ) {
1329 return ast::mutate_field(
1330 assertDecl, &ast::StaticAssertDecl::cond,
1331 findIntegralExpression( assertDecl->cond, symtab ) );
1332 }
1333
1334 template< typename PtrType >
1335 const PtrType * handlePtrType( const PtrType * type, const ast::SymbolTable & symtab ) {
1336 if ( type->dimension ) {
1337 #warning should use new equivalent to Validate::SizeType rather than sizeType here
1338 ast::ptr< ast::Type > sizeType = new ast::BasicType{ ast::BasicType::LongUnsignedInt };
1339 ast::mutate_field(
1340 type, &PtrType::dimension,
1341 findSingleExpression( type->dimension, sizeType, symtab ) );
1342 }
1343 return type;
1344 }
1345
1346 const ast::ArrayType * Resolver_new::previsit( const ast::ArrayType * at ) {
1347 return handlePtrType( at, symtab );
1348 }
1349
1350 const ast::PointerType * Resolver_new::previsit( const ast::PointerType * pt ) {
1351 return handlePtrType( pt, symtab );
1352 }
1353
1354 const ast::ExprStmt * Resolver_new::previsit( const ast::ExprStmt * exprStmt ) {
1355 visit_children = false;
1356 assertf( exprStmt->expr, "ExprStmt has null expression in resolver" );
1357
1358 return ast::mutate_field(
1359 exprStmt, &ast::ExprStmt::expr, findVoidExpression( exprStmt->expr, symtab ) );
1360 }
1361
1362 const ast::AsmExpr * Resolver_new::previsit( const ast::AsmExpr * asmExpr ) {
1363 visit_children = false;
1364
1365 asmExpr = ast::mutate_field(
1366 asmExpr, &ast::AsmExpr::operand, findVoidExpression( asmExpr->operand, symtab ) );
1367
1368 if ( asmExpr->inout ) {
1369 asmExpr = ast::mutate_field(
1370 asmExpr, &ast::AsmExpr::inout, findVoidExpression( asmExpr->inout, symtab ) );
1371 }
1372
1373 return asmExpr;
1374 }
1375
1376 const ast::AsmStmt * Resolver_new::previsit( const ast::AsmStmt * asmStmt ) {
1377 visitor->maybe_accept( asmStmt, &ast::AsmStmt::input );
1378 visitor->maybe_accept( asmStmt, &ast::AsmStmt::output );
1379 visit_children = false;
1380 return asmStmt;
1381 }
1382
1383 const ast::IfStmt * Resolver_new::previsit( const ast::IfStmt * ifStmt ) {
1384 return ast::mutate_field(
1385 ifStmt, &ast::IfStmt::cond, findIntegralExpression( ifStmt->cond, symtab ) );
1386 }
1387
1388 const ast::WhileStmt * Resolver_new::previsit( const ast::WhileStmt * whileStmt ) {
1389 return ast::mutate_field(
1390 whileStmt, &ast::WhileStmt::cond, findIntegralExpression( whileStmt->cond, symtab ) );
1391 }
1392
1393 const ast::ForStmt * Resolver_new::previsit( const ast::ForStmt * forStmt ) {
1394 if ( forStmt->cond ) {
1395 forStmt = ast::mutate_field(
1396 forStmt, &ast::ForStmt::cond, findIntegralExpression( forStmt->cond, symtab ) );
1397 }
1398
1399 if ( forStmt->inc ) {
1400 forStmt = ast::mutate_field(
1401 forStmt, &ast::ForStmt::inc, findVoidExpression( forStmt->inc, symtab ) );
1402 }
1403
1404 return forStmt;
1405 }
1406
1407 const ast::SwitchStmt * Resolver_new::previsit( const ast::SwitchStmt * switchStmt ) {
1408 GuardValue( currentObject );
1409 switchStmt = ast::mutate_field(
1410 switchStmt, &ast::SwitchStmt::cond,
1411 findIntegralExpression( switchStmt->cond, symtab ) );
1412 currentObject = ast::CurrentObject{ switchStmt->location, switchStmt->cond->result };
1413 return switchStmt;
1414 }
1415
1416 const ast::CaseStmt * Resolver_new::previsit( const ast::CaseStmt * caseStmt ) {
1417 if ( caseStmt->cond ) {
1418 std::deque< ast::InitAlternative > initAlts = currentObject.getOptions();
1419 assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral "
1420 "expression." );
1421
1422 ast::ptr< ast::Expr > untyped =
1423 new ast::CastExpr{ caseStmt->location, caseStmt->cond, initAlts.front().type };
1424 ast::ptr< ast::Expr > newExpr = findSingleExpression( untyped, symtab );
1425
1426 // case condition cannot have a cast in C, so it must be removed here, regardless of
1427 // whether it would perform a conversion.
1428 if ( const ast::CastExpr * castExpr = newExpr.as< ast::CastExpr >() ) {
1429 swap_and_save_env( newExpr, castExpr->arg );
1430 }
1431
1432 caseStmt = ast::mutate_field( caseStmt, &ast::CaseStmt::cond, newExpr );
1433 }
1434 return caseStmt;
1435 }
1436
1437 const ast::BranchStmt * Resolver_new::previsit( const ast::BranchStmt * branchStmt ) {
1438 visit_children = false;
1439 // must resolve the argument of a computed goto
1440 if ( branchStmt->kind == ast::BranchStmt::Goto && branchStmt->computedTarget ) {
1441 // computed goto argument is void*
1442 ast::ptr< ast::Type > target = new ast::PointerType{ new ast::VoidType{} };
1443 branchStmt = ast::mutate_field(
1444 branchStmt, &ast::BranchStmt::computedTarget,
1445 findSingleExpression( branchStmt->computedTarget, target, symtab ) );
1446 }
1447 return branchStmt;
1448 }
1449
1450 const ast::ReturnStmt * Resolver_new::previsit( const ast::ReturnStmt * returnStmt ) {
1451 visit_children = false;
1452 if ( returnStmt->expr ) {
1453 returnStmt = ast::mutate_field(
1454 returnStmt, &ast::ReturnStmt::expr,
1455 findSingleExpression( returnStmt->expr, functionReturn, symtab ) );
1456 }
1457 return returnStmt;
1458 }
1459
1460 const ast::ThrowStmt * Resolver_new::previsit( const ast::ThrowStmt * throwStmt ) {
1461 visit_children = false;
1462 if ( throwStmt->expr ) {
1463 const ast::StructDecl * exceptionDecl =
1464 symtab.lookupStruct( "__cfaabi_ehm__base_exception_t" );
1465 assert( exceptionDecl );
1466 ast::ptr< ast::Type > exceptType =
1467 new ast::PointerType{ new ast::StructInstType{ exceptionDecl } };
1468 throwStmt = ast::mutate_field(
1469 throwStmt, &ast::ThrowStmt::expr,
1470 findSingleExpression( throwStmt->expr, exceptType, symtab ) );
1471 }
1472 return throwStmt;
1473 }
1474
1475 const ast::CatchStmt * Resolver_new::previsit( const ast::CatchStmt * catchStmt ) {
1476 if ( catchStmt->cond ) {
1477 ast::ptr< ast::Type > boolType = new ast::BasicType{ ast::BasicType::Bool };
1478 catchStmt = ast::mutate_field(
1479 catchStmt, &ast::CatchStmt::cond,
1480 findSingleExpression( catchStmt->cond, boolType, symtab ) );
1481 }
1482 return catchStmt;
1483 }
1484
1485 const ast::WaitForStmt * Resolver_new::previsit( const ast::WaitForStmt * stmt ) {
1486 visit_children = false;
1487
1488 // Resolve all clauses first
1489 for ( unsigned i = 0; i < stmt->clauses.size(); ++i ) {
1490 const ast::WaitForStmt::Clause & clause = stmt->clauses[i];
1491
1492 ast::TypeEnvironment env;
1493 CandidateFinder funcFinder{ symtab, env };
1494
1495 // Find all candidates for a function in canonical form
1496 funcFinder.find( clause.target.func, ResolvMode::withAdjustment() );
1497
1498 if ( funcFinder.candidates.empty() ) {
1499 stringstream ss;
1500 ss << "Use of undeclared indentifier '";
1501 ss << clause.target.func.strict_as< ast::NameExpr >()->name;
1502 ss << "' in call to waitfor";
1503 SemanticError( stmt->location, ss.str() );
1504 }
1505
1506 if ( clause.target.args.empty() ) {
1507 SemanticError( stmt->location,
1508 "Waitfor clause must have at least one mutex parameter");
1509 }
1510
1511 // Find all alternatives for all arguments in canonical form
1512 std::vector< CandidateFinder > argFinders =
1513 funcFinder.findSubExprs( clause.target.args );
1514
1515 // List all combinations of arguments
1516 std::vector< CandidateList > possibilities;
1517 combos( argFinders.begin(), argFinders.end(), back_inserter( possibilities ) );
1518
1519 // For every possible function:
1520 // * try matching the arguments to the parameters, not the other way around because
1521 // more arguments than parameters
1522 CandidateList funcCandidates;
1523 std::vector< CandidateList > argsCandidates;
1524 SemanticErrorException errors;
1525 for ( CandidateRef & func : funcFinder.candidates ) {
1526 try {
1527 auto pointerType = dynamic_cast< const ast::PointerType * >(
1528 func->expr->result->stripReferences() );
1529 if ( ! pointerType ) {
1530 SemanticError( stmt->location, func->expr->result.get(),
1531 "candidate not viable: not a pointer type\n" );
1532 }
1533
1534 auto funcType = pointerType->base.as< ast::FunctionType >();
1535 if ( ! funcType ) {
1536 SemanticError( stmt->location, func->expr->result.get(),
1537 "candidate not viable: not a function type\n" );
1538 }
1539
1540 {
1541 auto param = funcType->params.begin();
1542 auto paramEnd = funcType->params.end();
1543
1544 if( ! nextMutex( param, paramEnd ) ) {
1545 SemanticError( stmt->location, funcType,
1546 "candidate function not viable: no mutex parameters\n");
1547 }
1548 }
1549
1550 CandidateRef func2{ new Candidate{ *func } };
1551 // strip reference from function
1552 func2->expr = referenceToRvalueConversion( func->expr, func2->cost );
1553
1554 // Each argument must be matched with a parameter of the current candidate
1555 for ( auto & argsList : possibilities ) {
1556 try {
1557 // Declare data structures needed for resolution
1558 ast::OpenVarSet open;
1559 ast::AssertionSet need, have;
1560 ast::TypeEnvironment resultEnv{ func->env };
1561 // Add all type variables as open so that those not used in the
1562 // parameter list are still considered open
1563 resultEnv.add( funcType->forall );
1564
1565 // load type variables from arguments into one shared space
1566 for ( auto & arg : argsList ) {
1567 resultEnv.simpleCombine( arg->env );
1568 }
1569
1570 // Make sure we don't widen any existing bindings
1571 resultEnv.forbidWidening();
1572
1573 // Find any unbound type variables
1574 resultEnv.extractOpenVars( open );
1575
1576 auto param = funcType->params.begin();
1577 auto paramEnd = funcType->params.end();
1578
1579 unsigned n_mutex_param = 0;
1580
1581 // For every argument of its set, check if it matches one of the
1582 // parameters. The order is important
1583 for ( auto & arg : argsList ) {
1584 // Ignore non-mutex arguments
1585 if ( ! nextMutex( param, paramEnd ) ) {
1586 // We ran out of parameters but still have arguments.
1587 // This function doesn't match
1588 SemanticError( stmt->location, funcType,
1589 toString("candidate function not viable: too many mutex "
1590 "arguments, expected ", n_mutex_param, "\n" ) );
1591 }
1592
1593 ++n_mutex_param;
1594
1595 // Check if the argument matches the parameter type in the current
1596 // scope
1597 ast::ptr< ast::Type > paramType = (*param)->get_type();
1598 if (
1599 ! unify(
1600 arg->expr->result, paramType, resultEnv, need, have, open,
1601 symtab )
1602 ) {
1603 // Type doesn't match
1604 stringstream ss;
1605 ss << "candidate function not viable: no known conversion "
1606 "from '";
1607 ast::print( ss, (*param)->get_type() );
1608 ss << "' to '";
1609 ast::print( ss, arg->expr->result );
1610 ss << "' with env '";
1611 ast::print( ss, resultEnv );
1612 ss << "'\n";
1613 SemanticError( stmt->location, funcType, ss.str() );
1614 }
1615
1616 ++param;
1617 }
1618
1619 // All arguments match!
1620
1621 // Check if parameters are missing
1622 if ( nextMutex( param, paramEnd ) ) {
1623 do {
1624 ++n_mutex_param;
1625 ++param;
1626 } while ( nextMutex( param, paramEnd ) );
1627
1628 // We ran out of arguments but still have parameters left; this
1629 // function doesn't match
1630 SemanticError( stmt->location, funcType,
1631 toString( "candidate function not viable: too few mutex "
1632 "arguments, expected ", n_mutex_param, "\n" ) );
1633 }
1634
1635 // All parameters match!
1636
1637 // Finish the expressions to tie in proper environments
1638 finishExpr( func2->expr, resultEnv );
1639 for ( CandidateRef & arg : argsList ) {
1640 finishExpr( arg->expr, resultEnv );
1641 }
1642
1643 // This is a match, store it and save it for later
1644 funcCandidates.emplace_back( std::move( func2 ) );
1645 argsCandidates.emplace_back( std::move( argsList ) );
1646
1647 } catch ( SemanticErrorException & e ) {
1648 errors.append( e );
1649 }
1650 }
1651 } catch ( SemanticErrorException & e ) {
1652 errors.append( e );
1653 }
1654 }
1655
1656 // Make sure correct number of arguments
1657 if( funcCandidates.empty() ) {
1658 SemanticErrorException top( stmt->location,
1659 "No alternatives for function in call to waitfor" );
1660 top.append( errors );
1661 throw top;
1662 }
1663
1664 if( argsCandidates.empty() ) {
1665 SemanticErrorException top( stmt->location,
1666 "No alternatives for arguments in call to waitfor" );
1667 top.append( errors );
1668 throw top;
1669 }
1670
1671 if( funcCandidates.size() > 1 ) {
1672 SemanticErrorException top( stmt->location,
1673 "Ambiguous function in call to waitfor" );
1674 top.append( errors );
1675 throw top;
1676 }
1677 if( argsCandidates.size() > 1 ) {
1678 SemanticErrorException top( stmt->location,
1679 "Ambiguous arguments in call to waitfor" );
1680 top.append( errors );
1681 throw top;
1682 }
1683 // TODO: need to use findDeletedExpr to ensure no deleted identifiers are used.
1684
1685 // build new clause
1686 ast::WaitForStmt::Clause clause2;
1687
1688 clause2.target.func = funcCandidates.front()->expr;
1689
1690 clause2.target.args.reserve( clause.target.args.size() );
1691 for ( auto arg : argsCandidates.front() ) {
1692 clause2.target.args.emplace_back( std::move( arg->expr ) );
1693 }
1694
1695 // Resolve the conditions as if it were an IfStmt, statements normally
1696 clause2.cond = findSingleExpression( clause.cond, symtab );
1697 clause2.stmt = clause.stmt->accept( *visitor );
1698
1699 // set results into stmt
1700 auto n = mutate( stmt );
1701 n->clauses[i] = std::move( clause2 );
1702 stmt = n;
1703 }
1704
1705 if ( stmt->timeout.stmt ) {
1706 // resolve the timeout as a size_t, the conditions like IfStmt, and stmts normally
1707 ast::WaitForStmt::Timeout timeout2;
1708
1709 ast::ptr< ast::Type > target =
1710 new ast::BasicType{ ast::BasicType::LongLongUnsignedInt };
1711 timeout2.time = findSingleExpression( stmt->timeout.time, target, symtab );
1712 timeout2.cond = findSingleExpression( stmt->timeout.cond, symtab );
1713 timeout2.stmt = stmt->timeout.stmt->accept( *visitor );
1714
1715 // set results into stmt
1716 auto n = mutate( stmt );
1717 n->timeout = std::move( timeout2 );
1718 stmt = n;
1719 }
1720
1721 if ( stmt->orElse.stmt ) {
1722 // resolve the condition like IfStmt, stmts normally
1723 ast::WaitForStmt::OrElse orElse2;
1724
1725 orElse2.cond = findSingleExpression( stmt->orElse.cond, symtab );
1726 orElse2.stmt = stmt->orElse.stmt->accept( *visitor );
1727
1728 // set results into stmt
1729 auto n = mutate( stmt );
1730 n->orElse = std::move( orElse2 );
1731 stmt = n;
1732 }
1733
1734 return stmt;
1735 }
1736
1737
1738
1739 const ast::SingleInit * Resolver_new::previsit( const ast::SingleInit * singleInit ) {
1740 visit_children = false;
1741 // resolve initialization using the possibilities as determined by the `currentObject`
1742 // cursor.
1743 ast::ptr< ast::Expr > untyped = new ast::UntypedInitExpr{
1744 singleInit->location, singleInit->value, currentObject.getOptions() };
1745 ast::ptr<ast::Expr> newExpr = findSingleExpression( untyped, symtab );
1746 const ast::InitExpr * initExpr = newExpr.strict_as< ast::InitExpr >();
1747
1748 // move cursor to the object that is actually initialized
1749 currentObject.setNext( initExpr->designation );
1750
1751 // discard InitExpr wrapper and retain relevant pieces.
1752 // `initExpr` may have inferred params in the case where the expression specialized a
1753 // function pointer, and newExpr may already have inferParams of its own, so a simple
1754 // swap is not sufficient
1755 ast::Expr::InferUnion inferred = initExpr->inferred;
1756 swap_and_save_env( newExpr, initExpr->expr );
1757 newExpr.get_and_mutate()->inferred.splice( std::move(inferred) );
1758
1759 // get the actual object's type (may not exactly match what comes back from the resolver
1760 // due to conversions)
1761 const ast::Type * initContext = currentObject.getCurrentType();
1762
1763 removeExtraneousCast( newExpr, symtab );
1764
1765 // check if actual object's type is char[]
1766 if ( auto at = dynamic_cast< const ast::ArrayType * >( initContext ) ) {
1767 if ( isCharType( at->base ) ) {
1768 // check if the resolved type is char*
1769 if ( auto pt = newExpr->result.as< ast::PointerType >() ) {
1770 if ( isCharType( pt->base ) ) {
1771 // strip cast if we're initializing a char[] with a char*
1772 // e.g. char x[] = "hello"
1773 if ( auto ce = newExpr.as< ast::CastExpr >() ) {
1774 swap_and_save_env( newExpr, ce->arg );
1775 }
1776 }
1777 }
1778 }
1779 }
1780
1781 // move cursor to next object in preparation for next initializer
1782 currentObject.increment();
1783
1784 // set initializer expression to resolved expression
1785 return ast::mutate_field( singleInit, &ast::SingleInit::value, std::move(newExpr) );
1786 }
1787
1788 const ast::ListInit * Resolver_new::previsit( const ast::ListInit * listInit ) {
1789 // move cursor into brace-enclosed initializer-list
1790 currentObject.enterListInit( listInit->location );
1791
1792 assert( listInit->designations.size() == listInit->initializers.size() );
1793 for ( unsigned i = 0; i < listInit->designations.size(); ++i ) {
1794 // iterate designations and initializers in pairs, moving the cursor to the current
1795 // designated object and resolving the initializer against that object
1796 listInit = ast::mutate_field_index(
1797 listInit, &ast::ListInit::designations, i,
1798 currentObject.findNext( listInit->designations[i] ) );
1799 listInit = ast::mutate_field_index(
1800 listInit, &ast::ListInit::initializers, i,
1801 listInit->initializers[i]->accept( *visitor ) );
1802 }
1803
1804 // move cursor out of brace-enclosed initializer-list
1805 currentObject.exitListInit();
1806
1807 visit_children = false;
1808 return listInit;
1809 }
1810
1811 const ast::ConstructorInit * Resolver_new::previsit( const ast::ConstructorInit * ctorInit ) {
1812 visitor->maybe_accept( ctorInit, &ast::ConstructorInit::ctor );
1813 visitor->maybe_accept( ctorInit, &ast::ConstructorInit::dtor );
1814
1815 // found a constructor - can get rid of C-style initializer
1816 // xxx - Rob suggests this field is dead code
1817 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::init, nullptr );
1818
1819 // intrinsic single-parameter constructors and destructors do nothing. Since this was
1820 // implicitly generated, there's no way for it to have side effects, so get rid of it to
1821 // clean up generated code
1822 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->ctor ) ) {
1823 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::ctor, nullptr );
1824 }
1825 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->dtor ) ) {
1826 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::dtor, nullptr );
1827 }
1828
1829 return ctorInit;
1830 }
1831
1832} // namespace ResolvExpr
1833
1834// Local Variables: //
1835// tab-width: 4 //
1836// mode: c++ //
1837// compile-command: "make install" //
1838// End: //
Note: See TracBrowser for help on using the repository browser.