source: src/ResolvExpr/Resolver.cc@ ee0bfa9

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation jenkins-sandbox new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since ee0bfa9 was 665f432, checked in by Thierry Delisle <tdelisle@…>, 6 years ago

Fixed trac #149 where operand names in asm statements where incorrectly resolved (i.e., should not have been resolved)

  • Property mode set to 100644
File size: 66.0 KB
RevLine 
[a32b204]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
[71f4e4f]7// Resolver.cc --
[a32b204]8//
[d76c588]9// Author : Aaron B. Moss
[a32b204]10// Created On : Sun May 17 12:17:01 2015
[d76c588]11// Last Modified By : Aaron B. Moss
12// Last Modified On : Wed May 29 11:00:00 2019
13// Update Count : 241
[a32b204]14//
15
[e3e16bc]16#include <cassert> // for strict_dynamic_cast, assert
[ea6332d]17#include <memory> // for allocator, allocator_traits<...
18#include <tuple> // for get
[6d6e829]19#include <vector> // for vector
[ea6332d]20
21#include "Alternative.h" // for Alternative, AltList
22#include "AlternativeFinder.h" // for AlternativeFinder, resolveIn...
[99d4584]23#include "Candidate.hpp"
24#include "CandidateFinder.hpp"
[d76c588]25#include "CurrentObject.h" // for CurrentObject
26#include "RenameVars.h" // for RenameVars, global_renamer
27#include "Resolver.h"
28#include "ResolvMode.h" // for ResolvMode
29#include "typeops.h" // for extractResultType
30#include "Unify.h" // for unify
[4864a73]31#include "AST/Chain.hpp"
[2a8f0c1]32#include "AST/Decl.hpp"
33#include "AST/Init.hpp"
[d76c588]34#include "AST/Pass.hpp"
[99d4584]35#include "AST/Print.hpp"
[d76c588]36#include "AST/SymbolTable.hpp"
[2773ab8]37#include "AST/Type.hpp"
[a4ca48c]38#include "Common/PassVisitor.h" // for PassVisitor
[ea6332d]39#include "Common/SemanticError.h" // for SemanticError
40#include "Common/utility.h" // for ValueGuard, group_iterate
[0a60c04]41#include "InitTweak/GenInit.h"
[ea6332d]42#include "InitTweak/InitTweak.h" // for isIntrinsicSingleArgCallStmt
43#include "ResolvExpr/TypeEnvironment.h" // for TypeEnvironment
44#include "SymTab/Autogen.h" // for SizeType
45#include "SymTab/Indexer.h" // for Indexer
46#include "SynTree/Declaration.h" // for ObjectDecl, TypeDecl, Declar...
47#include "SynTree/Expression.h" // for Expression, CastExpr, InitExpr
48#include "SynTree/Initializer.h" // for ConstructorInit, SingleInit
49#include "SynTree/Statement.h" // for ForStmt, Statement, BranchStmt
50#include "SynTree/Type.h" // for Type, BasicType, PointerType
51#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
52#include "SynTree/Visitor.h" // for acceptAll, maybeAccept
[0a60c04]53#include "Tuples/Tuples.h"
[2bfc6b2]54#include "Validate/FindSpecialDecls.h" // for SizeType
[51b73452]55
[d9a0e76]56using namespace std;
[51b73452]57
[d9a0e76]58namespace ResolvExpr {
[d76c588]59 struct Resolver_old final : public WithIndexer, public WithGuards, public WithVisitorRef<Resolver_old>, public WithShortCircuiting, public WithStmtsToAdd {
60 Resolver_old() {}
61 Resolver_old( const SymTab::Indexer & other ) {
[a4ca48c]62 indexer = other;
[1d2b64f]63 }
[71f4e4f]64
[5170d95]65 void previsit( FunctionDecl * functionDecl );
66 void postvisit( FunctionDecl * functionDecl );
67 void previsit( ObjectDecl * objectDecll );
[a4ca48c]68 void previsit( EnumDecl * enumDecl );
[bd87b138]69 void previsit( StaticAssertDecl * assertDecl );
[a4ca48c]70
71 void previsit( ArrayType * at );
72 void previsit( PointerType * at );
73
[5170d95]74 void previsit( ExprStmt * exprStmt );
75 void previsit( AsmExpr * asmExpr );
76 void previsit( AsmStmt * asmStmt );
77 void previsit( IfStmt * ifStmt );
78 void previsit( WhileStmt * whileStmt );
79 void previsit( ForStmt * forStmt );
80 void previsit( SwitchStmt * switchStmt );
81 void previsit( CaseStmt * caseStmt );
82 void previsit( BranchStmt * branchStmt );
83 void previsit( ReturnStmt * returnStmt );
84 void previsit( ThrowStmt * throwStmt );
85 void previsit( CatchStmt * catchStmt );
[695e00d]86 void previsit( WaitForStmt * stmt );
[a4ca48c]87
[5170d95]88 void previsit( SingleInit * singleInit );
89 void previsit( ListInit * listInit );
90 void previsit( ConstructorInit * ctorInit );
[a32b204]91 private:
[c28a038d]92 typedef std::list< Initializer * >::iterator InitIterator;
[94b4364]93
[40e636a]94 template< typename PtrType >
95 void handlePtrType( PtrType * type );
96
[c28a038d]97 void fallbackInit( ConstructorInit * ctorInit );
[b726084]98
[77971f6]99 Type * functionReturn = nullptr;
[e4d829b]100 CurrentObject currentObject = nullptr;
[a436947]101 bool inEnumDecl = false;
[a32b204]102 };
[d9a0e76]103
[2a6292d]104 struct ResolveWithExprs : public WithIndexer, public WithGuards, public WithVisitorRef<ResolveWithExprs>, public WithShortCircuiting, public WithStmtsToAdd {
105 void previsit( FunctionDecl * );
106 void previsit( WithStmt * );
107
108 void resolveWithExprs( std::list< Expression * > & withExprs, std::list< Statement * > & newStmts );
109 };
110
[a32b204]111 void resolve( std::list< Declaration * > translationUnit ) {
[d76c588]112 PassVisitor<Resolver_old> resolver;
[a32b204]113 acceptAll( translationUnit, resolver );
[d9a0e76]114 }
115
[5170d95]116 void resolveDecl( Declaration * decl, const SymTab::Indexer & indexer ) {
[d76c588]117 PassVisitor<Resolver_old> resolver( indexer );
[8b11840]118 maybeAccept( decl, resolver );
119 }
120
[c71b256]121 namespace {
[99d4584]122 struct DeleteFinder_old : public WithShortCircuiting {
[c71b256]123 DeletedExpr * delExpr = nullptr;
124 void previsit( DeletedExpr * expr ) {
125 if ( delExpr ) visit_children = false;
126 else delExpr = expr;
127 }
128
129 void previsit( Expression * ) {
130 if ( delExpr ) visit_children = false;
131 }
132 };
133 }
134
135 DeletedExpr * findDeletedExpr( Expression * expr ) {
[99d4584]136 PassVisitor<DeleteFinder_old> finder;
[c71b256]137 expr->accept( finder );
138 return finder.pass.delExpr;
[d9a0e76]139 }
[a32b204]140
141 namespace {
[99d4584]142 struct StripCasts_old {
[cdb990a]143 Expression * postmutate( CastExpr * castExpr ) {
144 if ( castExpr->isGenerated && ResolvExpr::typesCompatible( castExpr->arg->result, castExpr->result, SymTab::Indexer() ) ) {
145 // generated cast is to the same type as its argument, so it's unnecessary -- remove it
146 Expression * expr = castExpr->arg;
147 castExpr->arg = nullptr;
148 std::swap( expr->env, castExpr->env );
149 return expr;
150 }
151 return castExpr;
152 }
153
154 static void strip( Expression *& expr ) {
[99d4584]155 PassVisitor<StripCasts_old> stripper;
[cdb990a]156 expr = expr->acceptMutator( stripper );
157 }
158 };
159
[5170d95]160 void finishExpr( Expression *& expr, const TypeEnvironment & env, TypeSubstitution * oldenv = nullptr ) {
[7664fad]161 expr->env = oldenv ? oldenv->clone() : new TypeSubstitution;
[cdb990a]162 env.makeSubstitution( *expr->env );
[99d4584]163 StripCasts_old::strip( expr ); // remove unnecessary casts that may be buried in an expression
[a32b204]164 }
[0a22cda]165
166 void removeExtraneousCast( Expression *& expr, const SymTab::Indexer & indexer ) {
167 if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( expr ) ) {
[b7d92b96]168 if ( typesCompatible( castExpr->arg->result, castExpr->result, indexer ) ) {
[0a22cda]169 // cast is to the same type as its argument, so it's unnecessary -- remove it
170 expr = castExpr->arg;
171 castExpr->arg = nullptr;
172 std::swap( expr->env, castExpr->env );
173 delete castExpr;
174 }
175 }
176 }
[db4ecc5]177 } // namespace
[a32b204]178
[8f98b78]179 namespace {
[59cf83b]180 void findUnfinishedKindExpression(Expression * untyped, Alternative & alt, const SymTab::Indexer & indexer, const std::string & kindStr, std::function<bool(const Alternative &)> pred, ResolvMode mode = ResolvMode{} ) {
[c71b256]181 assertf( untyped, "expected a non-null expression." );
[6d6e829]182
183 // xxx - this isn't thread-safe, but should work until we parallelize the resolver
184 static unsigned recursion_level = 0;
185
186 ++recursion_level;
[8587878e]187 TypeEnvironment env;
188 AlternativeFinder finder( indexer, env );
[6d6e829]189 finder.find( untyped, recursion_level == 1 ? mode.atTopLevel() : mode );
190 --recursion_level;
[c71b256]191
192 #if 0
193 if ( finder.get_alternatives().size() != 1 ) {
194 std::cerr << "untyped expr is ";
195 untyped->print( std::cerr );
196 std::cerr << std::endl << "alternatives are:";
197 for ( const Alternative & alt : finder.get_alternatives() ) {
198 alt.print( std::cerr );
199 } // for
200 } // if
201 #endif
[8587878e]202
[6d6e829]203 // produce filtered list of alternatives
[8587878e]204 AltList candidates;
205 for ( Alternative & alt : finder.get_alternatives() ) {
[c71b256]206 if ( pred( alt ) ) {
[8587878e]207 candidates.push_back( std::move( alt ) );
208 }
209 }
210
[6d6e829]211 // produce invalid error if no candidates
212 if ( candidates.empty() ) {
[a16764a6]213 SemanticError( untyped, toString( "No reasonable alternatives for ", kindStr, (kindStr != "" ? " " : ""), "expression: ") );
[6d6e829]214 }
215
216 // search for cheapest candidate
217 AltList winners;
218 bool seen_undeleted = false;
219 for ( unsigned i = 0; i < candidates.size(); ++i ) {
220 int c = winners.empty() ? -1 : candidates[i].cost.compare( winners.front().cost );
221
222 if ( c > 0 ) continue; // skip more expensive than winner
223
224 if ( c < 0 ) {
225 // reset on new cheapest
226 seen_undeleted = ! findDeletedExpr( candidates[i].expr );
227 winners.clear();
228 } else /* if ( c == 0 ) */ {
229 if ( findDeletedExpr( candidates[i].expr ) ) {
230 // skip deleted expression if already seen one equivalent-cost not
231 if ( seen_undeleted ) continue;
232 } else if ( ! seen_undeleted ) {
233 // replace list of equivalent-cost deleted expressions with one non-deleted
234 winners.clear();
235 seen_undeleted = true;
236 }
237 }
238
[2fd9f24]239 winners.emplace_back( std::move( candidates[i] ) );
[6d6e829]240 }
241
242 // promote alternative.cvtCost to .cost
243 // xxx - I don't know why this is done, but I'm keeping the behaviour from findMinCost
244 for ( Alternative& winner : winners ) {
245 winner.cost = winner.cvtCost;
246 }
[cde3891]247
[6d6e829]248 // produce ambiguous errors, if applicable
249 if ( winners.size() != 1 ) {
[8587878e]250 std::ostringstream stream;
[c71b256]251 stream << "Cannot choose between " << winners.size() << " alternatives for " << kindStr << (kindStr != "" ? " " : "") << "expression\n";
[8587878e]252 untyped->print( stream );
[93401f8]253 stream << " Alternatives are:\n";
[8587878e]254 printAlts( winners, stream, 1 );
[a16764a6]255 SemanticError( untyped->location, stream.str() );
[8587878e]256 }
257
[6d6e829]258 // single selected choice
259 Alternative& choice = winners.front();
260
261 // fail on only expression deleted
262 if ( ! seen_undeleted ) {
[2a08c25]263 SemanticError( untyped->location, choice.expr, "Unique best alternative includes deleted identifier in " );
[c71b256]264 }
[6d6e829]265
266 // xxx - check for ambiguous expressions
[cde3891]267
[6d6e829]268 // output selected choice
[c71b256]269 alt = std::move( choice );
270 }
271
272 /// resolve `untyped` to the expression whose alternative satisfies `pred` with the lowest cost; kindStr is used for providing better error messages
[59cf83b]273 void findKindExpression(Expression *& untyped, const SymTab::Indexer & indexer, const std::string & kindStr, std::function<bool(const Alternative &)> pred, ResolvMode mode = ResolvMode{}) {
[c71b256]274 if ( ! untyped ) return;
275 Alternative choice;
[59cf83b]276 findUnfinishedKindExpression( untyped, choice, indexer, kindStr, pred, mode );
[c71b256]277 finishExpr( choice.expr, choice.env, untyped->env );
[8587878e]278 delete untyped;
[c71b256]279 untyped = choice.expr;
280 choice.expr = nullptr;
[8587878e]281 }
282
[c71b256]283 bool standardAlternativeFilter( const Alternative & ) {
284 // currently don't need to filter, under normal circumstances.
285 // in the future, this may be useful for removing deleted expressions
286 return true;
287 }
288 } // namespace
289
290 // used in resolveTypeof
[5170d95]291 Expression * resolveInVoidContext( Expression * expr, const SymTab::Indexer & indexer ) {
[c71b256]292 TypeEnvironment env;
293 return resolveInVoidContext( expr, indexer, env );
294 }
295
[5170d95]296 Expression * resolveInVoidContext( Expression * expr, const SymTab::Indexer & indexer, TypeEnvironment & env ) {
[c71b256]297 // it's a property of the language that a cast expression has either 1 or 0 interpretations; if it has 0
298 // interpretations, an exception has already been thrown.
299 assertf( expr, "expected a non-null expression." );
300
[5170d95]301 CastExpr * untyped = new CastExpr( expr ); // cast to void
302 untyped->location = expr->location;
[c71b256]303
304 // set up and resolve expression cast to void
305 Alternative choice;
[5170d95]306 findUnfinishedKindExpression( untyped, choice, indexer, "", standardAlternativeFilter, ResolvMode::withAdjustment() );
[c71b256]307 CastExpr * castExpr = strict_dynamic_cast< CastExpr * >( choice.expr );
[5170d95]308 assert( castExpr );
[c71b256]309 env = std::move( choice.env );
310
311 // clean up resolved expression
312 Expression * ret = castExpr->arg;
313 castExpr->arg = nullptr;
314
315 // unlink the arg so that it isn't deleted twice at the end of the program
[5170d95]316 untyped->arg = nullptr;
[c71b256]317 return ret;
318 }
319
[5170d95]320 void findVoidExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
[c71b256]321 resetTyVarRenaming();
322 TypeEnvironment env;
323 Expression * newExpr = resolveInVoidContext( untyped, indexer, env );
324 finishExpr( newExpr, env, untyped->env );
325 delete untyped;
326 untyped = newExpr;
327 }
328
[5170d95]329 void findSingleExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
[c71b256]330 findKindExpression( untyped, indexer, "", standardAlternativeFilter );
331 }
332
333 void findSingleExpression( Expression *& untyped, Type * type, const SymTab::Indexer & indexer ) {
334 assert( untyped && type );
[2a08c25]335 // transfer location to generated cast for error purposes
336 CodeLocation location = untyped->location;
[c71b256]337 untyped = new CastExpr( untyped, type );
[2a08c25]338 untyped->location = location;
[c71b256]339 findSingleExpression( untyped, indexer );
340 removeExtraneousCast( untyped, indexer );
341 }
342
343 namespace {
344 bool isIntegralType( const Alternative & alt ) {
345 Type * type = alt.expr->result;
[a32b204]346 if ( dynamic_cast< EnumInstType * >( type ) ) {
347 return true;
[5170d95]348 } else if ( BasicType * bt = dynamic_cast< BasicType * >( type ) ) {
[a32b204]349 return bt->isInteger();
[89e6ffc]350 } else if ( dynamic_cast< ZeroType* >( type ) != nullptr || dynamic_cast< OneType* >( type ) != nullptr ) {
351 return true;
[a32b204]352 } else {
353 return false;
354 } // if
355 }
[71f4e4f]356
[5170d95]357 void findIntegralExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
[8587878e]358 findKindExpression( untyped, indexer, "condition", isIntegralType );
[a32b204]359 }
360 }
[71f4e4f]361
[2a6292d]362
363 bool isStructOrUnion( const Alternative & alt ) {
364 Type * t = alt.expr->result->stripReferences();
365 return dynamic_cast< StructInstType * >( t ) || dynamic_cast< UnionInstType * >( t );
366 }
367
368 void resolveWithExprs( std::list< Declaration * > & translationUnit ) {
369 PassVisitor<ResolveWithExprs> resolver;
370 acceptAll( translationUnit, resolver );
371 }
372
373 void ResolveWithExprs::resolveWithExprs( std::list< Expression * > & withExprs, std::list< Statement * > & newStmts ) {
374 for ( Expression *& expr : withExprs ) {
375 // only struct- and union-typed expressions are viable candidates
376 findKindExpression( expr, indexer, "with statement", isStructOrUnion );
377
378 // if with expression might be impure, create a temporary so that it is evaluated once
379 if ( Tuples::maybeImpure( expr ) ) {
380 static UniqueName tmpNamer( "_with_tmp_" );
381 ObjectDecl * tmp = ObjectDecl::newObject( tmpNamer.newName(), expr->result->clone(), new SingleInit( expr ) );
382 expr = new VariableExpr( tmp );
383 newStmts.push_back( new DeclStmt( tmp ) );
384 if ( InitTweak::isConstructable( tmp->type ) ) {
385 // generate ctor/dtor and resolve them
386 tmp->init = InitTweak::genCtorInit( tmp );
387 tmp->accept( *visitor );
388 }
389 }
390 }
391 }
392
393 void ResolveWithExprs::previsit( WithStmt * withStmt ) {
394 resolveWithExprs( withStmt->exprs, stmtsToAddBefore );
395 }
396
397 void ResolveWithExprs::previsit( FunctionDecl * functionDecl ) {
398 {
399 // resolve with-exprs with parameters in scope and add any newly generated declarations to the
400 // front of the function body.
401 auto guard = makeFuncGuard( [this]() { indexer.enterScope(); }, [this](){ indexer.leaveScope(); } );
402 indexer.addFunctionType( functionDecl->type );
403 std::list< Statement * > newStmts;
404 resolveWithExprs( functionDecl->withExprs, newStmts );
405 if ( functionDecl->statements ) {
406 functionDecl->statements->kids.splice( functionDecl->statements->kids.begin(), newStmts );
407 } else {
408 assertf( functionDecl->withExprs.empty() && newStmts.empty(), "Function %s without a body has with-clause and/or generated with declarations.", functionDecl->name.c_str() );
409 }
410 }
411 }
412
[d76c588]413 void Resolver_old::previsit( ObjectDecl * objectDecl ) {
[4864a73]414 // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that
415 // class-variable initContext is changed multiple time because the LHS is analysed twice.
416 // The second analysis changes initContext because of a function type can contain object
417 // declarations in the return and parameter types. So each value of initContext is
[6d6e829]418 // retained, so the type on the first analysis is preserved and used for selecting the RHS.
[a4ca48c]419 GuardValue( currentObject );
[e4d829b]420 currentObject = CurrentObject( objectDecl->get_type() );
421 if ( inEnumDecl && dynamic_cast< EnumInstType * >( objectDecl->get_type() ) ) {
[a436947]422 // enumerator initializers should not use the enum type to initialize, since
423 // the enum type is still incomplete at this point. Use signed int instead.
[e4d829b]424 currentObject = CurrentObject( new BasicType( Type::Qualifiers(), BasicType::SignedInt ) );
[a436947]425 }
[bfbf97f]426 }
427
[40e636a]428 template< typename PtrType >
[d76c588]429 void Resolver_old::handlePtrType( PtrType * type ) {
[40e636a]430 if ( type->get_dimension() ) {
[2bfc6b2]431 findSingleExpression( type->dimension, Validate::SizeType->clone(), indexer );
[d1d17f5]432 }
[40e636a]433 }
434
[d76c588]435 void Resolver_old::previsit( ArrayType * at ) {
[40e636a]436 handlePtrType( at );
[a32b204]437 }
[94b4364]438
[d76c588]439 void Resolver_old::previsit( PointerType * pt ) {
[40e636a]440 handlePtrType( pt );
441 }
442
[d76c588]443 void Resolver_old::previsit( FunctionDecl * functionDecl ) {
[d9a0e76]444#if 0
[a4ca48c]445 std::cerr << "resolver visiting functiondecl ";
446 functionDecl->print( std::cerr );
447 std::cerr << std::endl;
[d9a0e76]448#endif
[a4ca48c]449 GuardValue( functionReturn );
[60914351]450 functionReturn = ResolvExpr::extractResultType( functionDecl->type );
[a4ca48c]451 }
[88d1066]452
[d76c588]453 void Resolver_old::postvisit( FunctionDecl * functionDecl ) {
[4864a73]454 // default value expressions have an environment which shouldn't be there and trips up
[6d6e829]455 // later passes.
[cde3891]456 // xxx - it might be necessary to somehow keep the information from this environment, but I
[6d6e829]457 // can't currently see how it's useful.
[c28a038d]458 for ( Declaration * d : functionDecl->type->parameters ) {
[88d1066]459 if ( ObjectDecl * obj = dynamic_cast< ObjectDecl * >( d ) ) {
[c28a038d]460 if ( SingleInit * init = dynamic_cast< SingleInit * >( obj->init ) ) {
461 delete init->value->env;
462 init->value->env = nullptr;
[88d1066]463 }
464 }
465 }
[a32b204]466 }
[51b73452]467
[d76c588]468 void Resolver_old::previsit( EnumDecl * ) {
[a436947]469 // in case we decide to allow nested enums
[a4ca48c]470 GuardValue( inEnumDecl );
[a436947]471 inEnumDecl = true;
472 }
473
[d76c588]474 void Resolver_old::previsit( StaticAssertDecl * assertDecl ) {
[bd87b138]475 findIntegralExpression( assertDecl->condition, indexer );
476 }
477
[d76c588]478 void Resolver_old::previsit( ExprStmt * exprStmt ) {
[a4ca48c]479 visit_children = false;
[08da53d]480 assertf( exprStmt->expr, "ExprStmt has null Expression in resolver" );
481 findVoidExpression( exprStmt->expr, indexer );
[a32b204]482 }
[51b73452]483
[d76c588]484 void Resolver_old::previsit( AsmExpr * asmExpr ) {
[a4ca48c]485 visit_children = false;
[08da53d]486 findVoidExpression( asmExpr->operand, indexer );
[7f5566b]487 }
488
[d76c588]489 void Resolver_old::previsit( AsmStmt * asmStmt ) {
[a4ca48c]490 visit_children = false;
491 acceptAll( asmStmt->get_input(), *visitor );
492 acceptAll( asmStmt->get_output(), *visitor );
[7f5566b]493 }
494
[d76c588]495 void Resolver_old::previsit( IfStmt * ifStmt ) {
[8587878e]496 findIntegralExpression( ifStmt->condition, indexer );
[a32b204]497 }
[51b73452]498
[d76c588]499 void Resolver_old::previsit( WhileStmt * whileStmt ) {
[8587878e]500 findIntegralExpression( whileStmt->condition, indexer );
[a32b204]501 }
[51b73452]502
[d76c588]503 void Resolver_old::previsit( ForStmt * forStmt ) {
[08da53d]504 if ( forStmt->condition ) {
[8587878e]505 findIntegralExpression( forStmt->condition, indexer );
[a32b204]506 } // if
[71f4e4f]507
[08da53d]508 if ( forStmt->increment ) {
509 findVoidExpression( forStmt->increment, indexer );
[a32b204]510 } // if
511 }
[51b73452]512
[d76c588]513 void Resolver_old::previsit( SwitchStmt * switchStmt ) {
[a4ca48c]514 GuardValue( currentObject );
[08da53d]515 findIntegralExpression( switchStmt->condition, indexer );
[71f4e4f]516
[08da53d]517 currentObject = CurrentObject( switchStmt->condition->result );
[a32b204]518 }
[51b73452]519
[d76c588]520 void Resolver_old::previsit( CaseStmt * caseStmt ) {
[cdb990a]521 if ( caseStmt->condition ) {
[e4d829b]522 std::list< InitAlternative > initAlts = currentObject.getOptions();
523 assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral expression." );
[08da53d]524 // must remove cast from case statement because RangeExpr cannot be cast.
525 Expression * newExpr = new CastExpr( caseStmt->condition, initAlts.front().type->clone() );
526 findSingleExpression( newExpr, indexer );
[cdb990a]527 // case condition cannot have a cast in C, so it must be removed, regardless of whether it performs a conversion.
528 // Ideally we would perform the conversion internally here.
529 if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( newExpr ) ) {
530 newExpr = castExpr->arg;
531 castExpr->arg = nullptr;
532 std::swap( newExpr->env, castExpr->env );
533 delete castExpr;
534 }
535 caseStmt->condition = newExpr;
[32b8144]536 }
[a32b204]537 }
[51b73452]538
[d76c588]539 void Resolver_old::previsit( BranchStmt * branchStmt ) {
[a4ca48c]540 visit_children = false;
[de62360d]541 // must resolve the argument for a computed goto
542 if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement
[08da53d]543 if ( branchStmt->computedTarget ) {
544 // computed goto argument is void *
545 findSingleExpression( branchStmt->computedTarget, new PointerType( Type::Qualifiers(), new VoidType( Type::Qualifiers() ) ), indexer );
[de62360d]546 } // if
547 } // if
548 }
549
[d76c588]550 void Resolver_old::previsit( ReturnStmt * returnStmt ) {
[a4ca48c]551 visit_children = false;
[08da53d]552 if ( returnStmt->expr ) {
553 findSingleExpression( returnStmt->expr, functionReturn->clone(), indexer );
[a32b204]554 } // if
555 }
[51b73452]556
[d76c588]557 void Resolver_old::previsit( ThrowStmt * throwStmt ) {
[a4ca48c]558 visit_children = false;
[cbce272]559 // TODO: Replace *exception type with &exception type.
[307a732]560 if ( throwStmt->get_expr() ) {
[8fd52e90]561 const StructDecl * exception_decl = indexer.lookupStruct( "__cfaabi_ehm__base_exception_t" );
[cbce272]562 assert( exception_decl );
[8fd52e90]563 Type * exceptType = new PointerType( noQualifiers, new StructInstType( noQualifiers, const_cast<StructDecl *>(exception_decl) ) );
[08da53d]564 findSingleExpression( throwStmt->expr, exceptType, indexer );
[307a732]565 }
566 }
567
[d76c588]568 void Resolver_old::previsit( CatchStmt * catchStmt ) {
[08da53d]569 if ( catchStmt->cond ) {
[e15853c]570 findSingleExpression( catchStmt->cond, new BasicType( noQualifiers, BasicType::Bool ), indexer );
[cbce272]571 }
572 }
573
[1dcd9554]574 template< typename iterator_t >
575 inline bool advance_to_mutex( iterator_t & it, const iterator_t & end ) {
576 while( it != end && !(*it)->get_type()->get_mutex() ) {
577 it++;
578 }
579
580 return it != end;
581 }
582
[d76c588]583 void Resolver_old::previsit( WaitForStmt * stmt ) {
[8f98b78]584 visit_children = false;
[1dcd9554]585
586 // Resolve all clauses first
587 for( auto& clause : stmt->clauses ) {
588
589 TypeEnvironment env;
[8f98b78]590 AlternativeFinder funcFinder( indexer, env );
[1dcd9554]591
592 // Find all alternatives for a function in canonical form
593 funcFinder.findWithAdjustment( clause.target.function );
594
595 if ( funcFinder.get_alternatives().empty() ) {
596 stringstream ss;
597 ss << "Use of undeclared indentifier '";
598 ss << strict_dynamic_cast<NameExpr*>( clause.target.function )->name;
599 ss << "' in call to waitfor";
[a16764a6]600 SemanticError( stmt->location, ss.str() );
[1dcd9554]601 }
602
[b9f383f]603 if(clause.target.arguments.empty()) {
604 SemanticError( stmt->location, "Waitfor clause must have at least one mutex parameter");
605 }
606
[1dcd9554]607 // Find all alternatives for all arguments in canonical form
[bd4f2e9]608 std::vector< AlternativeFinder > argAlternatives;
[1dcd9554]609 funcFinder.findSubExprs( clause.target.arguments.begin(), clause.target.arguments.end(), back_inserter( argAlternatives ) );
610
611 // List all combinations of arguments
[bd4f2e9]612 std::vector< AltList > possibilities;
[1dcd9554]613 combos( argAlternatives.begin(), argAlternatives.end(), back_inserter( possibilities ) );
614
615 AltList func_candidates;
616 std::vector< AltList > args_candidates;
617
618 // For every possible function :
619 // try matching the arguments to the parameters
620 // not the other way around because we have more arguments than parameters
[a16764a6]621 SemanticErrorException errors;
[1dcd9554]622 for ( Alternative & func : funcFinder.get_alternatives() ) {
623 try {
624 PointerType * pointer = dynamic_cast< PointerType* >( func.expr->get_result()->stripReferences() );
625 if( !pointer ) {
[a16764a6]626 SemanticError( func.expr->get_result(), "candidate not viable: not a pointer type\n" );
[1dcd9554]627 }
628
629 FunctionType * function = dynamic_cast< FunctionType* >( pointer->get_base() );
630 if( !function ) {
[a16764a6]631 SemanticError( pointer->get_base(), "candidate not viable: not a function type\n" );
[1dcd9554]632 }
633
634
635 {
636 auto param = function->parameters.begin();
637 auto param_end = function->parameters.end();
638
639 if( !advance_to_mutex( param, param_end ) ) {
[a16764a6]640 SemanticError(function, "candidate function not viable: no mutex parameters\n");
[1dcd9554]641 }
642 }
643
644 Alternative newFunc( func );
645 // Strip reference from function
[a181494]646 referenceToRvalueConversion( newFunc.expr, newFunc.cost );
[1dcd9554]647
648 // For all the set of arguments we have try to match it with the parameter of the current function alternative
649 for ( auto & argsList : possibilities ) {
650
651 try {
652 // Declare data structures need for resolution
653 OpenVarSet openVars;
654 AssertionSet resultNeed, resultHave;
[6f326b1]655 TypeEnvironment resultEnv( func.env );
656 makeUnifiableVars( function, openVars, resultNeed );
657 // add all type variables as open variables now so that those not used in the parameter
658 // list are still considered open.
659 resultEnv.add( function->forall );
[1dcd9554]660
661 // Load type variables from arguemnts into one shared space
662 simpleCombineEnvironments( argsList.begin(), argsList.end(), resultEnv );
663
664 // Make sure we don't widen any existing bindings
[d286cf68]665 resultEnv.forbidWidening();
[c5283ba]666
[1dcd9554]667 // Find any unbound type variables
668 resultEnv.extractOpenVars( openVars );
669
670 auto param = function->parameters.begin();
671 auto param_end = function->parameters.end();
672
[c5283ba]673 int n_mutex_param = 0;
[b9f383f]674
[1dcd9554]675 // For every arguments of its set, check if it matches one of the parameter
676 // The order is important
677 for( auto & arg : argsList ) {
678
679 // Ignore non-mutex arguments
680 if( !advance_to_mutex( param, param_end ) ) {
681 // We ran out of parameters but still have arguments
682 // this function doesn't match
[c5283ba]683 SemanticError( function, toString("candidate function not viable: too many mutex arguments, expected ", n_mutex_param, "\n" ));
[1dcd9554]684 }
685
[c5283ba]686 n_mutex_param++;
[b9f383f]687
[1dcd9554]688 // Check if the argument matches the parameter type in the current scope
[b9f383f]689 if( ! unify( arg.expr->get_result(), (*param)->get_type(), resultEnv, resultNeed, resultHave, openVars, this->indexer ) ) {
[1dcd9554]690 // Type doesn't match
691 stringstream ss;
692 ss << "candidate function not viable: no known convertion from '";
693 (*param)->get_type()->print( ss );
[b9f383f]694 ss << "' to '";
695 arg.expr->get_result()->print( ss );
[5248789]696 ss << "' with env '";
697 resultEnv.print(ss);
[1dcd9554]698 ss << "'\n";
[a16764a6]699 SemanticError( function, ss.str() );
[1dcd9554]700 }
701
702 param++;
703 }
704
705 // All arguments match !
706
707 // Check if parameters are missing
708 if( advance_to_mutex( param, param_end ) ) {
[c5283ba]709 do {
710 n_mutex_param++;
711 param++;
712 } while( advance_to_mutex( param, param_end ) );
713
[1dcd9554]714 // We ran out of arguments but still have parameters left
715 // this function doesn't match
[c5283ba]716 SemanticError( function, toString("candidate function not viable: too few mutex arguments, expected ", n_mutex_param, "\n" ));
[1dcd9554]717 }
718
719 // All parameters match !
720
721 // Finish the expressions to tie in the proper environments
722 finishExpr( newFunc.expr, resultEnv );
723 for( Alternative & alt : argsList ) {
724 finishExpr( alt.expr, resultEnv );
725 }
726
727 // This is a match store it and save it for later
728 func_candidates.push_back( newFunc );
729 args_candidates.push_back( argsList );
730
731 }
[5170d95]732 catch( SemanticErrorException & e ) {
[1dcd9554]733 errors.append( e );
734 }
735 }
736 }
[5170d95]737 catch( SemanticErrorException & e ) {
[1dcd9554]738 errors.append( e );
739 }
740 }
741
742 // Make sure we got the right number of arguments
[a16764a6]743 if( func_candidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for function in call to waitfor" ); top.append( errors ); throw top; }
744 if( args_candidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for arguments in call to waitfor" ); top.append( errors ); throw top; }
745 if( func_candidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous function in call to waitfor" ); top.append( errors ); throw top; }
746 if( args_candidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous arguments in call to waitfor" ); top.append( errors ); throw top; }
[c71b256]747 // TODO: need to use findDeletedExpr to ensure no deleted identifiers are used.
[1dcd9554]748
749 // Swap the results from the alternative with the unresolved values.
750 // Alternatives will handle deletion on destruction
751 std::swap( clause.target.function, func_candidates.front().expr );
752 for( auto arg_pair : group_iterate( clause.target.arguments, args_candidates.front() ) ) {
753 std::swap ( std::get<0>( arg_pair), std::get<1>( arg_pair).expr );
754 }
755
756 // Resolve the conditions as if it were an IfStmt
757 // Resolve the statments normally
[08da53d]758 findSingleExpression( clause.condition, this->indexer );
[8f98b78]759 clause.statement->accept( *visitor );
[1dcd9554]760 }
761
762
763 if( stmt->timeout.statement ) {
764 // Resolve the timeout as an size_t for now
765 // Resolve the conditions as if it were an IfStmt
766 // Resolve the statments normally
[08da53d]767 findSingleExpression( stmt->timeout.time, new BasicType( noQualifiers, BasicType::LongLongUnsignedInt ), this->indexer );
768 findSingleExpression( stmt->timeout.condition, this->indexer );
[8f98b78]769 stmt->timeout.statement->accept( *visitor );
[1dcd9554]770 }
771
772 if( stmt->orelse.statement ) {
773 // Resolve the conditions as if it were an IfStmt
774 // Resolve the statments normally
[08da53d]775 findSingleExpression( stmt->orelse.condition, this->indexer );
[8f98b78]776 stmt->orelse.statement->accept( *visitor );
[1dcd9554]777 }
778 }
779
[60aaa51d]780 bool isCharType( Type * t ) {
[b5c5684]781 if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) {
[71f4e4f]782 return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar ||
[b5c5684]783 bt->get_kind() == BasicType::UnsignedChar;
784 }
785 return false;
786 }
787
[d76c588]788 void Resolver_old::previsit( SingleInit * singleInit ) {
[a4ca48c]789 visit_children = false;
[62423350]790 // resolve initialization using the possibilities as determined by the currentObject cursor
[0a22cda]791 Expression * newExpr = new UntypedInitExpr( singleInit->value, currentObject.getOptions() );
[08da53d]792 findSingleExpression( newExpr, indexer );
[e3e16bc]793 InitExpr * initExpr = strict_dynamic_cast< InitExpr * >( newExpr );
[62423350]794
795 // move cursor to the object that is actually initialized
[e4d829b]796 currentObject.setNext( initExpr->get_designation() );
[62423350]797
798 // discard InitExpr wrapper and retain relevant pieces
[08da53d]799 newExpr = initExpr->expr;
800 initExpr->expr = nullptr;
801 std::swap( initExpr->env, newExpr->env );
[cde3891]802 // InitExpr may have inferParams in the case where the expression specializes a function
803 // pointer, and newExpr may already have inferParams of its own, so a simple swap is not
[6d6e829]804 // sufficient.
[cdb990a]805 newExpr->spliceInferParams( initExpr );
[e4d829b]806 delete initExpr;
807
[cde3891]808 // get the actual object's type (may not exactly match what comes back from the resolver
[6d6e829]809 // due to conversions)
[62423350]810 Type * initContext = currentObject.getCurrentType();
811
[0a22cda]812 removeExtraneousCast( newExpr, indexer );
813
[62423350]814 // check if actual object's type is char[]
815 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
816 if ( isCharType( at->get_base() ) ) {
817 // check if the resolved type is char *
818 if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_result() ) ) {
819 if ( isCharType( pt->get_base() ) ) {
[5170d95]820 if ( CastExpr * ce = dynamic_cast< CastExpr * >( newExpr ) ) {
[cde3891]821 // strip cast if we're initializing a char[] with a char *,
[6d6e829]822 // e.g. char x[] = "hello";
[0a22cda]823 newExpr = ce->get_arg();
824 ce->set_arg( nullptr );
825 std::swap( ce->env, newExpr->env );
826 delete ce;
827 }
[62423350]828 }
829 }
830 }
831 }
[94b4364]832
[62423350]833 // set initializer expr to resolved express
[0a22cda]834 singleInit->value = newExpr;
[62423350]835
836 // move cursor to next object in preparation for next initializer
837 currentObject.increment();
838 }
[94b4364]839
[d76c588]840 void Resolver_old::previsit( ListInit * listInit ) {
[a4ca48c]841 visit_children = false;
[62423350]842 // move cursor into brace-enclosed initializer-list
[e4d829b]843 currentObject.enterListInit();
[cde3891]844 // xxx - fix this so that the list isn't copied, iterator should be used to change current
[6d6e829]845 // element
[e4d829b]846 std::list<Designation *> newDesignations;
847 for ( auto p : group_iterate(listInit->get_designations(), listInit->get_initializers()) ) {
[cde3891]848 // iterate designations and initializers in pairs, moving the cursor to the current
[6d6e829]849 // designated object and resolving the initializer against that object.
[e4d829b]850 Designation * des = std::get<0>(p);
851 Initializer * init = std::get<1>(p);
852 newDesignations.push_back( currentObject.findNext( des ) );
[a4ca48c]853 init->accept( *visitor );
[b5c5684]854 }
[62423350]855 // set the set of 'resolved' designations and leave the brace-enclosed initializer-list
[e4d829b]856 listInit->get_designations() = newDesignations; // xxx - memory management
857 currentObject.exitListInit();
858
[62423350]859 // xxx - this part has not be folded into CurrentObject yet
[e4d829b]860 // } else if ( TypeInstType * tt = dynamic_cast< TypeInstType * >( initContext ) ) {
861 // Type * base = tt->get_baseType()->get_base();
862 // if ( base ) {
863 // // know the implementation type, so try using that as the initContext
864 // ObjectDecl tmpObj( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, base->clone(), nullptr );
865 // currentObject = &tmpObj;
866 // visit( listInit );
867 // } else {
868 // // missing implementation type -- might be an unknown type variable, so try proceeding with the current init context
869 // Parent::visit( listInit );
870 // }
871 // } else {
[a32b204]872 }
[71f4e4f]873
[f1e012b]874 // ConstructorInit - fall back on C-style initializer
[d76c588]875 void Resolver_old::fallbackInit( ConstructorInit * ctorInit ) {
[f1e012b]876 // could not find valid constructor, or found an intrinsic constructor
877 // fall back on C-style initializer
878 delete ctorInit->get_ctor();
[6d6e829]879 ctorInit->set_ctor( nullptr );
[71a145de]880 delete ctorInit->get_dtor();
[6d6e829]881 ctorInit->set_dtor( nullptr );
[a4ca48c]882 maybeAccept( ctorInit->get_init(), *visitor );
[f1e012b]883 }
884
[1d2b64f]885 // needs to be callable from outside the resolver, so this is a standalone function
886 void resolveCtorInit( ConstructorInit * ctorInit, const SymTab::Indexer & indexer ) {
887 assert( ctorInit );
[d76c588]888 PassVisitor<Resolver_old> resolver( indexer );
[1d2b64f]889 ctorInit->accept( resolver );
890 }
891
892 void resolveStmtExpr( StmtExpr * stmtExpr, const SymTab::Indexer & indexer ) {
893 assert( stmtExpr );
[d76c588]894 PassVisitor<Resolver_old> resolver( indexer );
[1d2b64f]895 stmtExpr->accept( resolver );
[5e2c348]896 stmtExpr->computeResult();
[dd05e12]897 // xxx - aggregate the environments from all statements? Possibly in AlternativeFinder instead?
[1d2b64f]898 }
899
[d76c588]900 void Resolver_old::previsit( ConstructorInit * ctorInit ) {
[a4ca48c]901 visit_children = false;
[1ba88a0]902 // xxx - fallback init has been removed => remove fallbackInit function and remove complexity from FixInit and remove C-init from ConstructorInit
[dd05e12]903 maybeAccept( ctorInit->ctor, *visitor );
904 maybeAccept( ctorInit->dtor, *visitor );
[071a31a]905
[5b2f5bb]906 // found a constructor - can get rid of C-style initializer
[dd05e12]907 delete ctorInit->init;
908 ctorInit->init = nullptr;
[ec79847]909
910 // intrinsic single parameter constructors and destructors do nothing. Since this was
911 // implicitly generated, there's no way for it to have side effects, so get rid of it
912 // to clean up generated code.
[dd05e12]913 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->ctor ) ) {
914 delete ctorInit->ctor;
915 ctorInit->ctor = nullptr;
[ec79847]916 }
[f9cebb5]917
[dd05e12]918 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->dtor ) ) {
919 delete ctorInit->dtor;
920 ctorInit->dtor = nullptr;
[ec79847]921 }
[a465caff]922
923 // xxx - todo -- what about arrays?
[6d6e829]924 // if ( dtor == nullptr && InitTweak::isIntrinsicCallStmt( ctorInit->get_ctor() ) ) {
[a465caff]925 // // can reduce the constructor down to a SingleInit using the
926 // // second argument from the ctor call, since
927 // delete ctorInit->get_ctor();
[6d6e829]928 // ctorInit->set_ctor( nullptr );
[a465caff]929
930 // Expression * arg =
931 // ctorInit->set_init( new SingleInit( arg ) );
932 // }
[71f4e4f]933 }
[d76c588]934
935 ///////////////////////////////////////////////////////////////////////////
936 //
937 // *** NEW RESOLVER ***
938 //
939 ///////////////////////////////////////////////////////////////////////////
940
[99d4584]941 namespace {
942 /// Finds deleted expressions in an expression tree
943 struct DeleteFinder_new final : public ast::WithShortCircuiting {
944 const ast::DeletedExpr * delExpr = nullptr;
945
946 void previsit( const ast::DeletedExpr * expr ) {
947 if ( delExpr ) { visit_children = false; }
948 else { delExpr = expr; }
949 }
950
951 void previsit( const ast::Expr * ) {
952 if ( delExpr ) { visit_children = false; }
953 }
954 };
[d57e349]955 } // anonymous namespace
[99d4584]956
[d57e349]957 /// Check if this expression is or includes a deleted expression
958 const ast::DeletedExpr * findDeletedExpr( const ast::Expr * expr ) {
959 ast::Pass<DeleteFinder_new> finder;
960 expr->accept( finder );
961 return finder.pass.delExpr;
962 }
[99d4584]963
[d57e349]964 namespace {
[b7d92b96]965 /// always-accept candidate filter
966 bool anyCandidate( const Candidate & ) { return true; }
967
[99d4584]968 /// Calls the CandidateFinder and finds the single best candidate
969 CandidateRef findUnfinishedKindExpression(
[ef5b828]970 const ast::Expr * untyped, const ast::SymbolTable & symtab, const std::string & kind,
[b7d92b96]971 std::function<bool(const Candidate &)> pred = anyCandidate, ResolvMode mode = {}
[99d4584]972 ) {
973 if ( ! untyped ) return nullptr;
974
975 // xxx - this isn't thread-safe, but should work until we parallelize the resolver
976 static unsigned recursion_level = 0;
977
978 ++recursion_level;
979 ast::TypeEnvironment env;
980 CandidateFinder finder{ symtab, env };
981 finder.find( untyped, recursion_level == 1 ? mode.atTopLevel() : mode );
982 --recursion_level;
983
984 // produce a filtered list of candidates
985 CandidateList candidates;
986 for ( auto & cand : finder.candidates ) {
987 if ( pred( *cand ) ) { candidates.emplace_back( cand ); }
988 }
989
990 // produce invalid error if no candidates
991 if ( candidates.empty() ) {
[ef5b828]992 SemanticError( untyped,
993 toString( "No reasonable alternatives for ", kind, (kind != "" ? " " : ""),
[99d4584]994 "expression: ") );
995 }
996
997 // search for cheapest candidate
998 CandidateList winners;
999 bool seen_undeleted = false;
1000 for ( CandidateRef & cand : candidates ) {
1001 int c = winners.empty() ? -1 : cand->cost.compare( winners.front()->cost );
1002
1003 if ( c > 0 ) continue; // skip more expensive than winner
1004
1005 if ( c < 0 ) {
1006 // reset on new cheapest
1007 seen_undeleted = ! findDeletedExpr( cand->expr );
1008 winners.clear();
1009 } else /* if ( c == 0 ) */ {
1010 if ( findDeletedExpr( cand->expr ) ) {
1011 // skip deleted expression if already seen one equivalent-cost not
1012 if ( seen_undeleted ) continue;
1013 } else if ( ! seen_undeleted ) {
1014 // replace list of equivalent-cost deleted expressions with one non-deleted
1015 winners.clear();
1016 seen_undeleted = true;
1017 }
1018 }
1019
1020 winners.emplace_back( std::move( cand ) );
1021 }
1022
1023 // promote candidate.cvtCost to .cost
[d57e349]1024 promoteCvtCost( winners );
[99d4584]1025
1026 // produce ambiguous errors, if applicable
1027 if ( winners.size() != 1 ) {
1028 std::ostringstream stream;
[ef5b828]1029 stream << "Cannot choose between " << winners.size() << " alternatives for "
[99d4584]1030 << kind << (kind != "" ? " " : "") << "expression\n";
1031 ast::print( stream, untyped );
1032 stream << " Alternatives are:\n";
1033 print( stream, winners, 1 );
1034 SemanticError( untyped->location, stream.str() );
1035 }
1036
1037 // single selected choice
1038 CandidateRef & choice = winners.front();
1039
1040 // fail on only expression deleted
1041 if ( ! seen_undeleted ) {
1042 SemanticError( untyped->location, choice->expr.get(), "Unique best alternative "
1043 "includes deleted identifier in " );
1044 }
1045
1046 return std::move( choice );
1047 }
1048
1049 /// Strips extraneous casts out of an expression
1050 struct StripCasts_new final {
1051 const ast::Expr * postmutate( const ast::CastExpr * castExpr ) {
[ef5b828]1052 if (
1053 castExpr->isGenerated
1054 && typesCompatible( castExpr->arg->result, castExpr->result )
[99d4584]1055 ) {
1056 // generated cast is the same type as its argument, remove it after keeping env
[ef5b828]1057 return ast::mutate_field(
[b7d92b96]1058 castExpr->arg.get(), &ast::Expr::env, castExpr->env );
[99d4584]1059 }
1060 return castExpr;
1061 }
1062
1063 static void strip( ast::ptr< ast::Expr > & expr ) {
1064 ast::Pass< StripCasts_new > stripper;
1065 expr = expr->accept( stripper );
1066 }
1067 };
1068
[60aaa51d]1069 /// Swaps argument into expression pointer, saving original environment
1070 void swap_and_save_env( ast::ptr< ast::Expr > & expr, const ast::Expr * newExpr ) {
1071 ast::ptr< ast::TypeSubstitution > env = expr->env;
1072 expr.set_and_mutate( newExpr )->env = env;
1073 }
1074
[b7d92b96]1075 /// Removes cast to type of argument (unlike StripCasts, also handles non-generated casts)
1076 void removeExtraneousCast( ast::ptr<ast::Expr> & expr, const ast::SymbolTable & symtab ) {
1077 if ( const ast::CastExpr * castExpr = expr.as< ast::CastExpr >() ) {
1078 if ( typesCompatible( castExpr->arg->result, castExpr->result, symtab ) ) {
1079 // cast is to the same type as its argument, remove it
[60aaa51d]1080 swap_and_save_env( expr, castExpr->arg );
[b7d92b96]1081 }
1082 }
1083 }
1084
[99d4584]1085 /// Establish post-resolver invariants for expressions
[ef5b828]1086 void finishExpr(
1087 ast::ptr< ast::Expr > & expr, const ast::TypeEnvironment & env,
[99d4584]1088 const ast::TypeSubstitution * oldenv = nullptr
1089 ) {
1090 // set up new type substitution for expression
[ef5b828]1091 ast::ptr< ast::TypeSubstitution > newenv =
[99d4584]1092 oldenv ? oldenv : new ast::TypeSubstitution{};
1093 env.writeToSubstitution( *newenv.get_and_mutate() );
1094 expr.get_and_mutate()->env = std::move( newenv );
1095 // remove unncecessary casts
1096 StripCasts_new::strip( expr );
1097 }
[4b7cce6]1098 } // anonymous namespace
[b7d92b96]1099
[ef5b828]1100
[4b7cce6]1101 ast::ptr< ast::Expr > resolveInVoidContext(
1102 const ast::Expr * expr, const ast::SymbolTable & symtab, ast::TypeEnvironment & env
1103 ) {
1104 assertf( expr, "expected a non-null expression" );
[ef5b828]1105
[4b7cce6]1106 // set up and resolve expression cast to void
[b8524ca]1107 ast::CastExpr * untyped = new ast::CastExpr{ expr };
[ef5b828]1108 CandidateRef choice = findUnfinishedKindExpression(
[4b7cce6]1109 untyped, symtab, "", anyCandidate, ResolvMode::withAdjustment() );
[ef5b828]1110
[4b7cce6]1111 // a cast expression has either 0 or 1 interpretations (by language rules);
1112 // if 0, an exception has already been thrown, and this code will not run
1113 const ast::CastExpr * castExpr = choice->expr.strict_as< ast::CastExpr >();
1114 env = std::move( choice->env );
1115
1116 return castExpr->arg;
1117 }
[b7d92b96]1118
[4b7cce6]1119 namespace {
[ef5b828]1120 /// Resolve `untyped` to the expression whose candidate is the best match for a `void`
[b7d92b96]1121 /// context.
[ef5b828]1122 ast::ptr< ast::Expr > findVoidExpression(
[b7d92b96]1123 const ast::Expr * untyped, const ast::SymbolTable & symtab
1124 ) {
1125 resetTyVarRenaming();
1126 ast::TypeEnvironment env;
1127 ast::ptr< ast::Expr > newExpr = resolveInVoidContext( untyped, symtab, env );
1128 finishExpr( newExpr, env, untyped->env );
1129 return newExpr;
1130 }
1131
[ef5b828]1132 /// resolve `untyped` to the expression whose candidate satisfies `pred` with the
[99d4584]1133 /// lowest cost, returning the resolved version
1134 ast::ptr< ast::Expr > findKindExpression(
[ef5b828]1135 const ast::Expr * untyped, const ast::SymbolTable & symtab,
1136 std::function<bool(const Candidate &)> pred = anyCandidate,
[2b59f55]1137 const std::string & kind = "", ResolvMode mode = {}
[99d4584]1138 ) {
1139 if ( ! untyped ) return {};
[ef5b828]1140 CandidateRef choice =
[99d4584]1141 findUnfinishedKindExpression( untyped, symtab, kind, pred, mode );
1142 finishExpr( choice->expr, choice->env, untyped->env );
1143 return std::move( choice->expr );
1144 }
1145
[2773ab8]1146 /// Resolve `untyped` to the single expression whose candidate is the best match
[ef5b828]1147 ast::ptr< ast::Expr > findSingleExpression(
1148 const ast::Expr * untyped, const ast::SymbolTable & symtab
[2773ab8]1149 ) {
1150 return findKindExpression( untyped, symtab );
1151 }
[18e683b]1152 } // anonymous namespace
[2773ab8]1153
[b7d92b96]1154 ast::ptr< ast::Expr > findSingleExpression(
1155 const ast::Expr * untyped, const ast::Type * type, const ast::SymbolTable & symtab
1156 ) {
1157 assert( untyped && type );
[b8524ca]1158 ast::ptr< ast::Expr > castExpr = new ast::CastExpr{ untyped, type };
[2773ab8]1159 ast::ptr< ast::Expr > newExpr = findSingleExpression( castExpr, symtab );
[b7d92b96]1160 removeExtraneousCast( newExpr, symtab );
1161 return newExpr;
1162 }
1163
[18e683b]1164 namespace {
[99d4584]1165 /// Predicate for "Candidate has integral type"
1166 bool hasIntegralType( const Candidate & i ) {
1167 const ast::Type * type = i.expr->result;
[ef5b828]1168
[99d4584]1169 if ( auto bt = dynamic_cast< const ast::BasicType * >( type ) ) {
1170 return bt->isInteger();
[ef5b828]1171 } else if (
1172 dynamic_cast< const ast::EnumInstType * >( type )
[99d4584]1173 || dynamic_cast< const ast::ZeroType * >( type )
1174 || dynamic_cast< const ast::OneType * >( type )
1175 ) {
1176 return true;
1177 } else return false;
1178 }
1179
1180 /// Resolve `untyped` as an integral expression, returning the resolved version
[ef5b828]1181 ast::ptr< ast::Expr > findIntegralExpression(
1182 const ast::Expr * untyped, const ast::SymbolTable & symtab
[99d4584]1183 ) {
[2b59f55]1184 return findKindExpression( untyped, symtab, hasIntegralType, "condition" );
[99d4584]1185 }
[60aaa51d]1186
1187 /// check if a type is a character type
1188 bool isCharType( const ast::Type * t ) {
1189 if ( auto bt = dynamic_cast< const ast::BasicType * >( t ) ) {
[ef5b828]1190 return bt->kind == ast::BasicType::Char
1191 || bt->kind == ast::BasicType::SignedChar
[60aaa51d]1192 || bt->kind == ast::BasicType::UnsignedChar;
1193 }
1194 return false;
1195 }
[2773ab8]1196
1197 /// Advance a type itertor to the next mutex parameter
1198 template<typename Iter>
1199 inline bool nextMutex( Iter & it, const Iter & end ) {
1200 while ( it != end && ! (*it)->get_type()->is_mutex() ) { ++it; }
1201 return it != end;
1202 }
[99d4584]1203 }
1204
[4864a73]1205 class Resolver_new final
1206 : public ast::WithSymbolTable, public ast::WithGuards,
1207 public ast::WithVisitorRef<Resolver_new>, public ast::WithShortCircuiting,
[0e42794]1208 public ast::WithStmtsToAdd<> {
[4864a73]1209
[2a8f0c1]1210 ast::ptr< ast::Type > functionReturn = nullptr;
[2b59f55]1211 ast::CurrentObject currentObject;
[99d4584]1212 bool inEnumDecl = false;
[2a8f0c1]1213
[4864a73]1214 public:
[d76c588]1215 Resolver_new() = default;
[0e42794]1216 Resolver_new( const ast::SymbolTable & syms ) { symtab = syms; }
[d76c588]1217
[99d4584]1218 void previsit( const ast::FunctionDecl * );
1219 const ast::FunctionDecl * postvisit( const ast::FunctionDecl * );
1220 void previsit( const ast::ObjectDecl * );
1221 void previsit( const ast::EnumDecl * );
1222 const ast::StaticAssertDecl * previsit( const ast::StaticAssertDecl * );
1223
[0f6a7752]1224 const ast::ArrayType * previsit( const ast::ArrayType * );
1225 const ast::PointerType * previsit( const ast::PointerType * );
[99d4584]1226
[2773ab8]1227 const ast::ExprStmt * previsit( const ast::ExprStmt * );
1228 const ast::AsmExpr * previsit( const ast::AsmExpr * );
1229 const ast::AsmStmt * previsit( const ast::AsmStmt * );
1230 const ast::IfStmt * previsit( const ast::IfStmt * );
1231 const ast::WhileStmt * previsit( const ast::WhileStmt * );
1232 const ast::ForStmt * previsit( const ast::ForStmt * );
1233 const ast::SwitchStmt * previsit( const ast::SwitchStmt * );
1234 const ast::CaseStmt * previsit( const ast::CaseStmt * );
1235 const ast::BranchStmt * previsit( const ast::BranchStmt * );
1236 const ast::ReturnStmt * previsit( const ast::ReturnStmt * );
1237 const ast::ThrowStmt * previsit( const ast::ThrowStmt * );
1238 const ast::CatchStmt * previsit( const ast::CatchStmt * );
1239 const ast::WaitForStmt * previsit( const ast::WaitForStmt * );
[99d4584]1240
[2d11663]1241 const ast::SingleInit * previsit( const ast::SingleInit * );
1242 const ast::ListInit * previsit( const ast::ListInit * );
1243 const ast::ConstructorInit * previsit( const ast::ConstructorInit * );
[d76c588]1244 };
1245
1246 void resolve( std::list< ast::ptr<ast::Decl> >& translationUnit ) {
[17a0ede2]1247 ast::Pass< Resolver_new > resolver;
[d76c588]1248 accept_all( translationUnit, resolver );
1249 }
1250
[ef5b828]1251 ast::ptr< ast::Init > resolveCtorInit(
1252 const ast::ConstructorInit * ctorInit, const ast::SymbolTable & symtab
[234b1cb]1253 ) {
1254 assert( ctorInit );
1255 ast::Pass< Resolver_new > resolver{ symtab };
1256 return ctorInit->accept( resolver );
1257 }
1258
[ef5b828]1259 ast::ptr< ast::Expr > resolveStmtExpr(
1260 const ast::StmtExpr * stmtExpr, const ast::SymbolTable & symtab
[17a0ede2]1261 ) {
1262 assert( stmtExpr );
1263 ast::Pass< Resolver_new > resolver{ symtab };
1264 ast::ptr< ast::Expr > ret = stmtExpr;
1265 ret = ret->accept( resolver );
1266 strict_dynamic_cast< ast::StmtExpr * >( ret.get_and_mutate() )->computeResult();
1267 return ret;
1268 }
1269
[2a8f0c1]1270 void Resolver_new::previsit( const ast::FunctionDecl * functionDecl ) {
1271 GuardValue( functionReturn );
1272 functionReturn = extractResultType( functionDecl->type );
[d76c588]1273 }
1274
[2a8f0c1]1275 const ast::FunctionDecl * Resolver_new::postvisit( const ast::FunctionDecl * functionDecl ) {
[4864a73]1276 // default value expressions have an environment which shouldn't be there and trips up
[2a8f0c1]1277 // later passes.
1278 ast::ptr< ast::FunctionDecl > ret = functionDecl;
1279 for ( unsigned i = 0; i < functionDecl->type->params.size(); ++i ) {
1280 const ast::ptr<ast::DeclWithType> & d = functionDecl->type->params[i];
[4864a73]1281
[2a8f0c1]1282 if ( const ast::ObjectDecl * obj = d.as< ast::ObjectDecl >() ) {
1283 if ( const ast::SingleInit * init = obj->init.as< ast::SingleInit >() ) {
1284 if ( init->value->env == nullptr ) continue;
1285 // clone initializer minus the initializer environment
[4864a73]1286 ast::chain_mutate( ret )
1287 ( &ast::FunctionDecl::type )
[3cd5fdd]1288 ( &ast::FunctionType::params )[i]
[4864a73]1289 ( &ast::ObjectDecl::init )
1290 ( &ast::SingleInit::value )->env = nullptr;
1291
1292 assert( functionDecl != ret.get() || functionDecl->unique() );
1293 assert( ! ret->type->params[i].strict_as< ast::ObjectDecl >()->init.strict_as< ast::SingleInit >()->value->env );
[2a8f0c1]1294 }
1295 }
1296 }
1297 return ret.get();
[d76c588]1298 }
1299
[2a8f0c1]1300 void Resolver_new::previsit( const ast::ObjectDecl * objectDecl ) {
[ef5b828]1301 // To handle initialization of routine pointers [e.g. int (*fp)(int) = foo()],
1302 // class-variable `initContext` is changed multiple times because the LHS is analyzed
1303 // twice. The second analysis changes `initContext` because a function type can contain
1304 // object declarations in the return and parameter types. Therefore each value of
1305 // `initContext` is retained so the type on the first analysis is preserved and used for
[b7d92b96]1306 // selecting the RHS.
1307 GuardValue( currentObject );
[2b59f55]1308 currentObject = ast::CurrentObject{ objectDecl->location, objectDecl->get_type() };
[b7d92b96]1309 if ( inEnumDecl && dynamic_cast< const ast::EnumInstType * >( objectDecl->get_type() ) ) {
[ef5b828]1310 // enumerator initializers should not use the enum type to initialize, since the
[b7d92b96]1311 // enum type is still incomplete at this point. Use `int` instead.
[ef5b828]1312 currentObject = ast::CurrentObject{
[2b59f55]1313 objectDecl->location, new ast::BasicType{ ast::BasicType::SignedInt } };
[b7d92b96]1314 }
[d76c588]1315 }
1316
[99d4584]1317 void Resolver_new::previsit( const ast::EnumDecl * ) {
1318 // in case we decide to allow nested enums
1319 GuardValue( inEnumDecl );
1320 inEnumDecl = false;
[d76c588]1321 }
1322
[ef5b828]1323 const ast::StaticAssertDecl * Resolver_new::previsit(
1324 const ast::StaticAssertDecl * assertDecl
[99d4584]1325 ) {
[ef5b828]1326 return ast::mutate_field(
1327 assertDecl, &ast::StaticAssertDecl::cond,
[b7d92b96]1328 findIntegralExpression( assertDecl->cond, symtab ) );
1329 }
1330
1331 template< typename PtrType >
[0f6a7752]1332 const PtrType * handlePtrType( const PtrType * type, const ast::SymbolTable & symtab ) {
1333 if ( type->dimension ) {
1334 #warning should use new equivalent to Validate::SizeType rather than sizeType here
[3c89751]1335 ast::ptr< ast::Type > sizeType = new ast::BasicType{ ast::BasicType::LongUnsignedInt };
[ef5b828]1336 ast::mutate_field(
1337 type, &PtrType::dimension,
[0f6a7752]1338 findSingleExpression( type->dimension, sizeType, symtab ) );
1339 }
1340 return type;
[d76c588]1341 }
1342
[0f6a7752]1343 const ast::ArrayType * Resolver_new::previsit( const ast::ArrayType * at ) {
1344 return handlePtrType( at, symtab );
[d76c588]1345 }
1346
[0f6a7752]1347 const ast::PointerType * Resolver_new::previsit( const ast::PointerType * pt ) {
1348 return handlePtrType( pt, symtab );
[d76c588]1349 }
1350
[b7d92b96]1351 const ast::ExprStmt * Resolver_new::previsit( const ast::ExprStmt * exprStmt ) {
1352 visit_children = false;
1353 assertf( exprStmt->expr, "ExprStmt has null expression in resolver" );
[ef5b828]1354
1355 return ast::mutate_field(
[b7d92b96]1356 exprStmt, &ast::ExprStmt::expr, findVoidExpression( exprStmt->expr, symtab ) );
[d76c588]1357 }
1358
[b7d92b96]1359 const ast::AsmExpr * Resolver_new::previsit( const ast::AsmExpr * asmExpr ) {
1360 visit_children = false;
1361
[ef5b828]1362 asmExpr = ast::mutate_field(
[b7d92b96]1363 asmExpr, &ast::AsmExpr::operand, findVoidExpression( asmExpr->operand, symtab ) );
[ef5b828]1364
[b7d92b96]1365 return asmExpr;
[d76c588]1366 }
1367
[2b59f55]1368 const ast::AsmStmt * Resolver_new::previsit( const ast::AsmStmt * asmStmt ) {
1369 visitor->maybe_accept( asmStmt, &ast::AsmStmt::input );
1370 visitor->maybe_accept( asmStmt, &ast::AsmStmt::output );
1371 visit_children = false;
1372 return asmStmt;
[d76c588]1373 }
1374
[b7d92b96]1375 const ast::IfStmt * Resolver_new::previsit( const ast::IfStmt * ifStmt ) {
1376 return ast::mutate_field(
1377 ifStmt, &ast::IfStmt::cond, findIntegralExpression( ifStmt->cond, symtab ) );
[d76c588]1378 }
1379
[b7d92b96]1380 const ast::WhileStmt * Resolver_new::previsit( const ast::WhileStmt * whileStmt ) {
[ef5b828]1381 return ast::mutate_field(
[b7d92b96]1382 whileStmt, &ast::WhileStmt::cond, findIntegralExpression( whileStmt->cond, symtab ) );
[d76c588]1383 }
1384
[b7d92b96]1385 const ast::ForStmt * Resolver_new::previsit( const ast::ForStmt * forStmt ) {
1386 if ( forStmt->cond ) {
1387 forStmt = ast::mutate_field(
1388 forStmt, &ast::ForStmt::cond, findIntegralExpression( forStmt->cond, symtab ) );
1389 }
1390
1391 if ( forStmt->inc ) {
1392 forStmt = ast::mutate_field(
1393 forStmt, &ast::ForStmt::inc, findVoidExpression( forStmt->inc, symtab ) );
1394 }
1395
1396 return forStmt;
[d76c588]1397 }
1398
[b7d92b96]1399 const ast::SwitchStmt * Resolver_new::previsit( const ast::SwitchStmt * switchStmt ) {
1400 GuardValue( currentObject );
1401 switchStmt = ast::mutate_field(
[ef5b828]1402 switchStmt, &ast::SwitchStmt::cond,
[b7d92b96]1403 findIntegralExpression( switchStmt->cond, symtab ) );
[2b59f55]1404 currentObject = ast::CurrentObject{ switchStmt->location, switchStmt->cond->result };
[b7d92b96]1405 return switchStmt;
[d76c588]1406 }
1407
[b7d92b96]1408 const ast::CaseStmt * Resolver_new::previsit( const ast::CaseStmt * caseStmt ) {
1409 if ( caseStmt->cond ) {
[60aaa51d]1410 std::deque< ast::InitAlternative > initAlts = currentObject.getOptions();
[2b59f55]1411 assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral "
1412 "expression." );
[ef5b828]1413
1414 ast::ptr< ast::Expr > untyped =
[2b59f55]1415 new ast::CastExpr{ caseStmt->location, caseStmt->cond, initAlts.front().type };
[2773ab8]1416 ast::ptr< ast::Expr > newExpr = findSingleExpression( untyped, symtab );
[ef5b828]1417
1418 // case condition cannot have a cast in C, so it must be removed here, regardless of
[2b59f55]1419 // whether it would perform a conversion.
1420 if ( const ast::CastExpr * castExpr = newExpr.as< ast::CastExpr >() ) {
[60aaa51d]1421 swap_and_save_env( newExpr, castExpr->arg );
[2b59f55]1422 }
[ef5b828]1423
[2b59f55]1424 caseStmt = ast::mutate_field( caseStmt, &ast::CaseStmt::cond, newExpr );
[b7d92b96]1425 }
1426 return caseStmt;
[d76c588]1427 }
1428
[b7d92b96]1429 const ast::BranchStmt * Resolver_new::previsit( const ast::BranchStmt * branchStmt ) {
1430 visit_children = false;
1431 // must resolve the argument of a computed goto
1432 if ( branchStmt->kind == ast::BranchStmt::Goto && branchStmt->computedTarget ) {
1433 // computed goto argument is void*
[2773ab8]1434 ast::ptr< ast::Type > target = new ast::PointerType{ new ast::VoidType{} };
[b7d92b96]1435 branchStmt = ast::mutate_field(
[ef5b828]1436 branchStmt, &ast::BranchStmt::computedTarget,
[2773ab8]1437 findSingleExpression( branchStmt->computedTarget, target, symtab ) );
[b7d92b96]1438 }
1439 return branchStmt;
[d76c588]1440 }
1441
[2b59f55]1442 const ast::ReturnStmt * Resolver_new::previsit( const ast::ReturnStmt * returnStmt ) {
1443 visit_children = false;
1444 if ( returnStmt->expr ) {
1445 returnStmt = ast::mutate_field(
[ef5b828]1446 returnStmt, &ast::ReturnStmt::expr,
[2b59f55]1447 findSingleExpression( returnStmt->expr, functionReturn, symtab ) );
1448 }
1449 return returnStmt;
[d76c588]1450 }
1451
[2b59f55]1452 const ast::ThrowStmt * Resolver_new::previsit( const ast::ThrowStmt * throwStmt ) {
1453 visit_children = false;
1454 if ( throwStmt->expr ) {
[ef5b828]1455 const ast::StructDecl * exceptionDecl =
[2b59f55]1456 symtab.lookupStruct( "__cfaabi_ehm__base_exception_t" );
1457 assert( exceptionDecl );
[ef5b828]1458 ast::ptr< ast::Type > exceptType =
[2b59f55]1459 new ast::PointerType{ new ast::StructInstType{ exceptionDecl } };
1460 throwStmt = ast::mutate_field(
[ef5b828]1461 throwStmt, &ast::ThrowStmt::expr,
[2b59f55]1462 findSingleExpression( throwStmt->expr, exceptType, symtab ) );
1463 }
1464 return throwStmt;
[d76c588]1465 }
1466
[2b59f55]1467 const ast::CatchStmt * Resolver_new::previsit( const ast::CatchStmt * catchStmt ) {
1468 if ( catchStmt->cond ) {
1469 ast::ptr< ast::Type > boolType = new ast::BasicType{ ast::BasicType::Bool };
[ef5b828]1470 catchStmt = ast::mutate_field(
1471 catchStmt, &ast::CatchStmt::cond,
[2b59f55]1472 findSingleExpression( catchStmt->cond, boolType, symtab ) );
1473 }
1474 return catchStmt;
[d76c588]1475 }
1476
[2773ab8]1477 const ast::WaitForStmt * Resolver_new::previsit( const ast::WaitForStmt * stmt ) {
1478 visit_children = false;
1479
1480 // Resolve all clauses first
1481 for ( unsigned i = 0; i < stmt->clauses.size(); ++i ) {
1482 const ast::WaitForStmt::Clause & clause = stmt->clauses[i];
1483
1484 ast::TypeEnvironment env;
1485 CandidateFinder funcFinder{ symtab, env };
1486
1487 // Find all candidates for a function in canonical form
1488 funcFinder.find( clause.target.func, ResolvMode::withAdjustment() );
1489
1490 if ( funcFinder.candidates.empty() ) {
1491 stringstream ss;
1492 ss << "Use of undeclared indentifier '";
1493 ss << clause.target.func.strict_as< ast::NameExpr >()->name;
1494 ss << "' in call to waitfor";
1495 SemanticError( stmt->location, ss.str() );
1496 }
1497
1498 if ( clause.target.args.empty() ) {
[ef5b828]1499 SemanticError( stmt->location,
[2773ab8]1500 "Waitfor clause must have at least one mutex parameter");
1501 }
1502
1503 // Find all alternatives for all arguments in canonical form
[ef5b828]1504 std::vector< CandidateFinder > argFinders =
[2773ab8]1505 funcFinder.findSubExprs( clause.target.args );
[ef5b828]1506
[2773ab8]1507 // List all combinations of arguments
1508 std::vector< CandidateList > possibilities;
1509 combos( argFinders.begin(), argFinders.end(), back_inserter( possibilities ) );
1510
1511 // For every possible function:
[ef5b828]1512 // * try matching the arguments to the parameters, not the other way around because
[2773ab8]1513 // more arguments than parameters
1514 CandidateList funcCandidates;
1515 std::vector< CandidateList > argsCandidates;
1516 SemanticErrorException errors;
1517 for ( CandidateRef & func : funcFinder.candidates ) {
1518 try {
[ef5b828]1519 auto pointerType = dynamic_cast< const ast::PointerType * >(
[2773ab8]1520 func->expr->result->stripReferences() );
1521 if ( ! pointerType ) {
[ef5b828]1522 SemanticError( stmt->location, func->expr->result.get(),
[2773ab8]1523 "candidate not viable: not a pointer type\n" );
1524 }
1525
1526 auto funcType = pointerType->base.as< ast::FunctionType >();
1527 if ( ! funcType ) {
[ef5b828]1528 SemanticError( stmt->location, func->expr->result.get(),
[2773ab8]1529 "candidate not viable: not a function type\n" );
1530 }
1531
1532 {
1533 auto param = funcType->params.begin();
1534 auto paramEnd = funcType->params.end();
1535
1536 if( ! nextMutex( param, paramEnd ) ) {
[ef5b828]1537 SemanticError( stmt->location, funcType,
[2773ab8]1538 "candidate function not viable: no mutex parameters\n");
1539 }
1540 }
1541
1542 CandidateRef func2{ new Candidate{ *func } };
1543 // strip reference from function
1544 func2->expr = referenceToRvalueConversion( func->expr, func2->cost );
1545
1546 // Each argument must be matched with a parameter of the current candidate
1547 for ( auto & argsList : possibilities ) {
1548 try {
1549 // Declare data structures needed for resolution
1550 ast::OpenVarSet open;
1551 ast::AssertionSet need, have;
1552 ast::TypeEnvironment resultEnv{ func->env };
[ef5b828]1553 // Add all type variables as open so that those not used in the
[2773ab8]1554 // parameter list are still considered open
1555 resultEnv.add( funcType->forall );
1556
1557 // load type variables from arguments into one shared space
1558 for ( auto & arg : argsList ) {
1559 resultEnv.simpleCombine( arg->env );
1560 }
1561
1562 // Make sure we don't widen any existing bindings
1563 resultEnv.forbidWidening();
1564
1565 // Find any unbound type variables
1566 resultEnv.extractOpenVars( open );
1567
1568 auto param = funcType->params.begin();
1569 auto paramEnd = funcType->params.end();
1570
1571 unsigned n_mutex_param = 0;
1572
[ef5b828]1573 // For every argument of its set, check if it matches one of the
[2773ab8]1574 // parameters. The order is important
1575 for ( auto & arg : argsList ) {
1576 // Ignore non-mutex arguments
1577 if ( ! nextMutex( param, paramEnd ) ) {
1578 // We ran out of parameters but still have arguments.
1579 // This function doesn't match
[ef5b828]1580 SemanticError( stmt->location, funcType,
[2773ab8]1581 toString("candidate function not viable: too many mutex "
1582 "arguments, expected ", n_mutex_param, "\n" ) );
1583 }
1584
1585 ++n_mutex_param;
1586
[ef5b828]1587 // Check if the argument matches the parameter type in the current
[2773ab8]1588 // scope
1589 ast::ptr< ast::Type > paramType = (*param)->get_type();
[ef5b828]1590 if (
1591 ! unify(
1592 arg->expr->result, paramType, resultEnv, need, have, open,
1593 symtab )
[2773ab8]1594 ) {
1595 // Type doesn't match
1596 stringstream ss;
1597 ss << "candidate function not viable: no known conversion "
1598 "from '";
1599 ast::print( ss, (*param)->get_type() );
1600 ss << "' to '";
1601 ast::print( ss, arg->expr->result );
1602 ss << "' with env '";
1603 ast::print( ss, resultEnv );
1604 ss << "'\n";
1605 SemanticError( stmt->location, funcType, ss.str() );
1606 }
1607
1608 ++param;
1609 }
1610
1611 // All arguments match!
1612
1613 // Check if parameters are missing
1614 if ( nextMutex( param, paramEnd ) ) {
1615 do {
1616 ++n_mutex_param;
1617 ++param;
1618 } while ( nextMutex( param, paramEnd ) );
1619
[ef5b828]1620 // We ran out of arguments but still have parameters left; this
[2773ab8]1621 // function doesn't match
[ef5b828]1622 SemanticError( stmt->location, funcType,
[2773ab8]1623 toString( "candidate function not viable: too few mutex "
1624 "arguments, expected ", n_mutex_param, "\n" ) );
1625 }
1626
1627 // All parameters match!
1628
1629 // Finish the expressions to tie in proper environments
1630 finishExpr( func2->expr, resultEnv );
1631 for ( CandidateRef & arg : argsList ) {
1632 finishExpr( arg->expr, resultEnv );
1633 }
1634
1635 // This is a match, store it and save it for later
1636 funcCandidates.emplace_back( std::move( func2 ) );
1637 argsCandidates.emplace_back( std::move( argsList ) );
1638
1639 } catch ( SemanticErrorException & e ) {
1640 errors.append( e );
1641 }
1642 }
1643 } catch ( SemanticErrorException & e ) {
1644 errors.append( e );
1645 }
1646 }
1647
1648 // Make sure correct number of arguments
1649 if( funcCandidates.empty() ) {
[ef5b828]1650 SemanticErrorException top( stmt->location,
[2773ab8]1651 "No alternatives for function in call to waitfor" );
1652 top.append( errors );
1653 throw top;
1654 }
1655
1656 if( argsCandidates.empty() ) {
[ef5b828]1657 SemanticErrorException top( stmt->location,
1658 "No alternatives for arguments in call to waitfor" );
[2773ab8]1659 top.append( errors );
1660 throw top;
1661 }
1662
1663 if( funcCandidates.size() > 1 ) {
[ef5b828]1664 SemanticErrorException top( stmt->location,
[2773ab8]1665 "Ambiguous function in call to waitfor" );
1666 top.append( errors );
1667 throw top;
1668 }
1669 if( argsCandidates.size() > 1 ) {
1670 SemanticErrorException top( stmt->location,
1671 "Ambiguous arguments in call to waitfor" );
1672 top.append( errors );
1673 throw top;
1674 }
1675 // TODO: need to use findDeletedExpr to ensure no deleted identifiers are used.
1676
1677 // build new clause
1678 ast::WaitForStmt::Clause clause2;
[ef5b828]1679
[2773ab8]1680 clause2.target.func = funcCandidates.front()->expr;
[ef5b828]1681
[2773ab8]1682 clause2.target.args.reserve( clause.target.args.size() );
1683 for ( auto arg : argsCandidates.front() ) {
1684 clause2.target.args.emplace_back( std::move( arg->expr ) );
1685 }
1686
1687 // Resolve the conditions as if it were an IfStmt, statements normally
1688 clause2.cond = findSingleExpression( clause.cond, symtab );
1689 clause2.stmt = clause.stmt->accept( *visitor );
1690
1691 // set results into stmt
1692 auto n = mutate( stmt );
1693 n->clauses[i] = std::move( clause2 );
1694 stmt = n;
1695 }
1696
1697 if ( stmt->timeout.stmt ) {
1698 // resolve the timeout as a size_t, the conditions like IfStmt, and stmts normally
1699 ast::WaitForStmt::Timeout timeout2;
1700
[ef5b828]1701 ast::ptr< ast::Type > target =
[2773ab8]1702 new ast::BasicType{ ast::BasicType::LongLongUnsignedInt };
1703 timeout2.time = findSingleExpression( stmt->timeout.time, target, symtab );
1704 timeout2.cond = findSingleExpression( stmt->timeout.cond, symtab );
1705 timeout2.stmt = stmt->timeout.stmt->accept( *visitor );
1706
1707 // set results into stmt
1708 auto n = mutate( stmt );
1709 n->timeout = std::move( timeout2 );
1710 stmt = n;
1711 }
1712
1713 if ( stmt->orElse.stmt ) {
1714 // resolve the condition like IfStmt, stmts normally
1715 ast::WaitForStmt::OrElse orElse2;
1716
1717 orElse2.cond = findSingleExpression( stmt->orElse.cond, symtab );
1718 orElse2.stmt = stmt->orElse.stmt->accept( *visitor );
1719
1720 // set results into stmt
1721 auto n = mutate( stmt );
1722 n->orElse = std::move( orElse2 );
1723 stmt = n;
1724 }
1725
1726 return stmt;
[d76c588]1727 }
1728
[60aaa51d]1729
1730
1731 const ast::SingleInit * Resolver_new::previsit( const ast::SingleInit * singleInit ) {
1732 visit_children = false;
[ef5b828]1733 // resolve initialization using the possibilities as determined by the `currentObject`
[60aaa51d]1734 // cursor.
[ef5b828]1735 ast::ptr< ast::Expr > untyped = new ast::UntypedInitExpr{
[60aaa51d]1736 singleInit->location, singleInit->value, currentObject.getOptions() };
[2773ab8]1737 ast::ptr<ast::Expr> newExpr = findSingleExpression( untyped, symtab );
[60aaa51d]1738 const ast::InitExpr * initExpr = newExpr.strict_as< ast::InitExpr >();
1739
1740 // move cursor to the object that is actually initialized
1741 currentObject.setNext( initExpr->designation );
1742
1743 // discard InitExpr wrapper and retain relevant pieces.
[ef5b828]1744 // `initExpr` may have inferred params in the case where the expression specialized a
1745 // function pointer, and newExpr may already have inferParams of its own, so a simple
[60aaa51d]1746 // swap is not sufficient
1747 ast::Expr::InferUnion inferred = initExpr->inferred;
1748 swap_and_save_env( newExpr, initExpr->expr );
1749 newExpr.get_and_mutate()->inferred.splice( std::move(inferred) );
1750
[ef5b828]1751 // get the actual object's type (may not exactly match what comes back from the resolver
[60aaa51d]1752 // due to conversions)
1753 const ast::Type * initContext = currentObject.getCurrentType();
1754
1755 removeExtraneousCast( newExpr, symtab );
1756
1757 // check if actual object's type is char[]
1758 if ( auto at = dynamic_cast< const ast::ArrayType * >( initContext ) ) {
1759 if ( isCharType( at->base ) ) {
1760 // check if the resolved type is char*
1761 if ( auto pt = newExpr->result.as< ast::PointerType >() ) {
1762 if ( isCharType( pt->base ) ) {
[ef5b828]1763 // strip cast if we're initializing a char[] with a char*
[60aaa51d]1764 // e.g. char x[] = "hello"
1765 if ( auto ce = newExpr.as< ast::CastExpr >() ) {
1766 swap_and_save_env( newExpr, ce->arg );
1767 }
1768 }
1769 }
1770 }
1771 }
1772
1773 // move cursor to next object in preparation for next initializer
1774 currentObject.increment();
1775
1776 // set initializer expression to resolved expression
1777 return ast::mutate_field( singleInit, &ast::SingleInit::value, std::move(newExpr) );
[d76c588]1778 }
1779
[60aaa51d]1780 const ast::ListInit * Resolver_new::previsit( const ast::ListInit * listInit ) {
1781 // move cursor into brace-enclosed initializer-list
1782 currentObject.enterListInit( listInit->location );
1783
1784 assert( listInit->designations.size() == listInit->initializers.size() );
1785 for ( unsigned i = 0; i < listInit->designations.size(); ++i ) {
[ef5b828]1786 // iterate designations and initializers in pairs, moving the cursor to the current
[60aaa51d]1787 // designated object and resolving the initializer against that object
[2d11663]1788 listInit = ast::mutate_field_index(
[ef5b828]1789 listInit, &ast::ListInit::designations, i,
[2d11663]1790 currentObject.findNext( listInit->designations[i] ) );
1791 listInit = ast::mutate_field_index(
1792 listInit, &ast::ListInit::initializers, i,
1793 listInit->initializers[i]->accept( *visitor ) );
[60aaa51d]1794 }
1795
[2d11663]1796 // move cursor out of brace-enclosed initializer-list
1797 currentObject.exitListInit();
1798
[60aaa51d]1799 visit_children = false;
1800 return listInit;
[d76c588]1801 }
1802
[2d11663]1803 const ast::ConstructorInit * Resolver_new::previsit( const ast::ConstructorInit * ctorInit ) {
1804 visitor->maybe_accept( ctorInit, &ast::ConstructorInit::ctor );
1805 visitor->maybe_accept( ctorInit, &ast::ConstructorInit::dtor );
1806
1807 // found a constructor - can get rid of C-style initializer
1808 // xxx - Rob suggests this field is dead code
1809 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::init, nullptr );
1810
[ef5b828]1811 // intrinsic single-parameter constructors and destructors do nothing. Since this was
1812 // implicitly generated, there's no way for it to have side effects, so get rid of it to
[2d11663]1813 // clean up generated code
1814 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->ctor ) ) {
1815 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::ctor, nullptr );
1816 }
1817 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->dtor ) ) {
1818 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::dtor, nullptr );
1819 }
1820
1821 return ctorInit;
[d76c588]1822 }
1823
[51b73452]1824} // namespace ResolvExpr
[a32b204]1825
1826// Local Variables: //
1827// tab-width: 4 //
1828// mode: c++ //
1829// compile-command: "make install" //
1830// End: //
Note: See TracBrowser for help on using the repository browser.