source: src/ResolvExpr/Resolver.cc@ cc7bbe6

ADT ast-experimental enum pthread-emulation qualifiedEnum
Last change on this file since cc7bbe6 was 6668a3e, checked in by Thierry Delisle <tdelisle@…>, 4 years ago

Waitfor now resolves calls to get_monitor inside the resolver rather than after.

  • Property mode set to 100644
File size: 76.6 KB
RevLine 
[a32b204]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
[71f4e4f]7// Resolver.cc --
[a32b204]8//
[d76c588]9// Author : Aaron B. Moss
[a32b204]10// Created On : Sun May 17 12:17:01 2015
[3b0bc16]11// Last Modified By : Peter A. Buhr
12// Last Modified On : Tue Feb 1 16:27:14 2022
13// Update Count : 245
[a32b204]14//
15
[e3e16bc]16#include <cassert> // for strict_dynamic_cast, assert
[ea6332d]17#include <memory> // for allocator, allocator_traits<...
18#include <tuple> // for get
[6d6e829]19#include <vector> // for vector
[ea6332d]20
21#include "Alternative.h" // for Alternative, AltList
22#include "AlternativeFinder.h" // for AlternativeFinder, resolveIn...
[99d4584]23#include "Candidate.hpp"
24#include "CandidateFinder.hpp"
[d76c588]25#include "CurrentObject.h" // for CurrentObject
26#include "RenameVars.h" // for RenameVars, global_renamer
27#include "Resolver.h"
[16ba4a6f]28#include "ResolveTypeof.h"
[d76c588]29#include "ResolvMode.h" // for ResolvMode
30#include "typeops.h" // for extractResultType
31#include "Unify.h" // for unify
[16ba4a6f]32#include "CompilationState.h"
[4864a73]33#include "AST/Chain.hpp"
[2a8f0c1]34#include "AST/Decl.hpp"
35#include "AST/Init.hpp"
[d76c588]36#include "AST/Pass.hpp"
[99d4584]37#include "AST/Print.hpp"
[d76c588]38#include "AST/SymbolTable.hpp"
[2773ab8]39#include "AST/Type.hpp"
[a4ca48c]40#include "Common/PassVisitor.h" // for PassVisitor
[ea6332d]41#include "Common/SemanticError.h" // for SemanticError
[57e0289]42#include "Common/Stats/ResolveTime.h" // for ResolveTime::start(), ResolveTime::stop()
[ea6332d]43#include "Common/utility.h" // for ValueGuard, group_iterate
[0a60c04]44#include "InitTweak/GenInit.h"
[ea6332d]45#include "InitTweak/InitTweak.h" // for isIntrinsicSingleArgCallStmt
46#include "ResolvExpr/TypeEnvironment.h" // for TypeEnvironment
47#include "SymTab/Autogen.h" // for SizeType
48#include "SymTab/Indexer.h" // for Indexer
[16ba4a6f]49#include "SymTab/Mangler.h" // for Mangler
[ea6332d]50#include "SynTree/Declaration.h" // for ObjectDecl, TypeDecl, Declar...
51#include "SynTree/Expression.h" // for Expression, CastExpr, InitExpr
52#include "SynTree/Initializer.h" // for ConstructorInit, SingleInit
53#include "SynTree/Statement.h" // for ForStmt, Statement, BranchStmt
54#include "SynTree/Type.h" // for Type, BasicType, PointerType
55#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
56#include "SynTree/Visitor.h" // for acceptAll, maybeAccept
[0a60c04]57#include "Tuples/Tuples.h"
[2bfc6b2]58#include "Validate/FindSpecialDecls.h" // for SizeType
[51b73452]59
[d9a0e76]60using namespace std;
[51b73452]61
[d9a0e76]62namespace ResolvExpr {
[d76c588]63 struct Resolver_old final : public WithIndexer, public WithGuards, public WithVisitorRef<Resolver_old>, public WithShortCircuiting, public WithStmtsToAdd {
64 Resolver_old() {}
65 Resolver_old( const SymTab::Indexer & other ) {
[a4ca48c]66 indexer = other;
[1d2b64f]67 }
[71f4e4f]68
[5170d95]69 void previsit( FunctionDecl * functionDecl );
70 void postvisit( FunctionDecl * functionDecl );
71 void previsit( ObjectDecl * objectDecll );
[a4ca48c]72 void previsit( EnumDecl * enumDecl );
[bd87b138]73 void previsit( StaticAssertDecl * assertDecl );
[a4ca48c]74
75 void previsit( ArrayType * at );
76 void previsit( PointerType * at );
77
[5170d95]78 void previsit( ExprStmt * exprStmt );
79 void previsit( AsmExpr * asmExpr );
80 void previsit( AsmStmt * asmStmt );
81 void previsit( IfStmt * ifStmt );
[3b0bc16]82 void previsit( WhileDoStmt * whileDoStmt );
[5170d95]83 void previsit( ForStmt * forStmt );
84 void previsit( SwitchStmt * switchStmt );
85 void previsit( CaseStmt * caseStmt );
86 void previsit( BranchStmt * branchStmt );
87 void previsit( ReturnStmt * returnStmt );
88 void previsit( ThrowStmt * throwStmt );
89 void previsit( CatchStmt * catchStmt );
[3b9c674]90 void postvisit( CatchStmt * catchStmt );
[695e00d]91 void previsit( WaitForStmt * stmt );
[a4ca48c]92
[5170d95]93 void previsit( SingleInit * singleInit );
94 void previsit( ListInit * listInit );
95 void previsit( ConstructorInit * ctorInit );
[a32b204]96 private:
[c28a038d]97 typedef std::list< Initializer * >::iterator InitIterator;
[94b4364]98
[40e636a]99 template< typename PtrType >
100 void handlePtrType( PtrType * type );
101
[c28a038d]102 void fallbackInit( ConstructorInit * ctorInit );
[b726084]103
[77971f6]104 Type * functionReturn = nullptr;
[e4d829b]105 CurrentObject currentObject = nullptr;
[a436947]106 bool inEnumDecl = false;
[a32b204]107 };
[d9a0e76]108
[2a6292d]109 struct ResolveWithExprs : public WithIndexer, public WithGuards, public WithVisitorRef<ResolveWithExprs>, public WithShortCircuiting, public WithStmtsToAdd {
110 void previsit( FunctionDecl * );
111 void previsit( WithStmt * );
112
113 void resolveWithExprs( std::list< Expression * > & withExprs, std::list< Statement * > & newStmts );
114 };
115
[a32b204]116 void resolve( std::list< Declaration * > translationUnit ) {
[d76c588]117 PassVisitor<Resolver_old> resolver;
[a32b204]118 acceptAll( translationUnit, resolver );
[d9a0e76]119 }
120
[5170d95]121 void resolveDecl( Declaration * decl, const SymTab::Indexer & indexer ) {
[d76c588]122 PassVisitor<Resolver_old> resolver( indexer );
[8b11840]123 maybeAccept( decl, resolver );
124 }
125
[c71b256]126 namespace {
[99d4584]127 struct DeleteFinder_old : public WithShortCircuiting {
[c71b256]128 DeletedExpr * delExpr = nullptr;
129 void previsit( DeletedExpr * expr ) {
130 if ( delExpr ) visit_children = false;
131 else delExpr = expr;
132 }
133
134 void previsit( Expression * ) {
135 if ( delExpr ) visit_children = false;
136 }
137 };
138 }
139
140 DeletedExpr * findDeletedExpr( Expression * expr ) {
[99d4584]141 PassVisitor<DeleteFinder_old> finder;
[c71b256]142 expr->accept( finder );
143 return finder.pass.delExpr;
[d9a0e76]144 }
[a32b204]145
146 namespace {
[99d4584]147 struct StripCasts_old {
[cdb990a]148 Expression * postmutate( CastExpr * castExpr ) {
149 if ( castExpr->isGenerated && ResolvExpr::typesCompatible( castExpr->arg->result, castExpr->result, SymTab::Indexer() ) ) {
150 // generated cast is to the same type as its argument, so it's unnecessary -- remove it
151 Expression * expr = castExpr->arg;
152 castExpr->arg = nullptr;
153 std::swap( expr->env, castExpr->env );
154 return expr;
155 }
156 return castExpr;
157 }
158
159 static void strip( Expression *& expr ) {
[99d4584]160 PassVisitor<StripCasts_old> stripper;
[cdb990a]161 expr = expr->acceptMutator( stripper );
162 }
163 };
164
[5170d95]165 void finishExpr( Expression *& expr, const TypeEnvironment & env, TypeSubstitution * oldenv = nullptr ) {
[7664fad]166 expr->env = oldenv ? oldenv->clone() : new TypeSubstitution;
[cdb990a]167 env.makeSubstitution( *expr->env );
[99d4584]168 StripCasts_old::strip( expr ); // remove unnecessary casts that may be buried in an expression
[a32b204]169 }
[0a22cda]170
171 void removeExtraneousCast( Expression *& expr, const SymTab::Indexer & indexer ) {
172 if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( expr ) ) {
[b7d92b96]173 if ( typesCompatible( castExpr->arg->result, castExpr->result, indexer ) ) {
[0a22cda]174 // cast is to the same type as its argument, so it's unnecessary -- remove it
175 expr = castExpr->arg;
176 castExpr->arg = nullptr;
177 std::swap( expr->env, castExpr->env );
178 delete castExpr;
179 }
180 }
181 }
[db4ecc5]182 } // namespace
[a32b204]183
[8f98b78]184 namespace {
[59cf83b]185 void findUnfinishedKindExpression(Expression * untyped, Alternative & alt, const SymTab::Indexer & indexer, const std::string & kindStr, std::function<bool(const Alternative &)> pred, ResolvMode mode = ResolvMode{} ) {
[c71b256]186 assertf( untyped, "expected a non-null expression." );
[6d6e829]187
188 // xxx - this isn't thread-safe, but should work until we parallelize the resolver
189 static unsigned recursion_level = 0;
190
191 ++recursion_level;
[8587878e]192 TypeEnvironment env;
193 AlternativeFinder finder( indexer, env );
[6d6e829]194 finder.find( untyped, recursion_level == 1 ? mode.atTopLevel() : mode );
195 --recursion_level;
[c71b256]196
197 #if 0
198 if ( finder.get_alternatives().size() != 1 ) {
199 std::cerr << "untyped expr is ";
200 untyped->print( std::cerr );
201 std::cerr << std::endl << "alternatives are:";
202 for ( const Alternative & alt : finder.get_alternatives() ) {
203 alt.print( std::cerr );
204 } // for
205 } // if
206 #endif
[8587878e]207
[6d6e829]208 // produce filtered list of alternatives
[8587878e]209 AltList candidates;
210 for ( Alternative & alt : finder.get_alternatives() ) {
[c71b256]211 if ( pred( alt ) ) {
[8587878e]212 candidates.push_back( std::move( alt ) );
213 }
214 }
215
[6d6e829]216 // produce invalid error if no candidates
217 if ( candidates.empty() ) {
[a16764a6]218 SemanticError( untyped, toString( "No reasonable alternatives for ", kindStr, (kindStr != "" ? " " : ""), "expression: ") );
[6d6e829]219 }
220
221 // search for cheapest candidate
222 AltList winners;
223 bool seen_undeleted = false;
224 for ( unsigned i = 0; i < candidates.size(); ++i ) {
225 int c = winners.empty() ? -1 : candidates[i].cost.compare( winners.front().cost );
226
227 if ( c > 0 ) continue; // skip more expensive than winner
228
229 if ( c < 0 ) {
230 // reset on new cheapest
231 seen_undeleted = ! findDeletedExpr( candidates[i].expr );
232 winners.clear();
233 } else /* if ( c == 0 ) */ {
234 if ( findDeletedExpr( candidates[i].expr ) ) {
235 // skip deleted expression if already seen one equivalent-cost not
236 if ( seen_undeleted ) continue;
237 } else if ( ! seen_undeleted ) {
238 // replace list of equivalent-cost deleted expressions with one non-deleted
239 winners.clear();
240 seen_undeleted = true;
241 }
242 }
243
[2fd9f24]244 winners.emplace_back( std::move( candidates[i] ) );
[6d6e829]245 }
246
247 // promote alternative.cvtCost to .cost
248 // xxx - I don't know why this is done, but I'm keeping the behaviour from findMinCost
249 for ( Alternative& winner : winners ) {
250 winner.cost = winner.cvtCost;
251 }
[cde3891]252
[6d6e829]253 // produce ambiguous errors, if applicable
254 if ( winners.size() != 1 ) {
[8587878e]255 std::ostringstream stream;
[c71b256]256 stream << "Cannot choose between " << winners.size() << " alternatives for " << kindStr << (kindStr != "" ? " " : "") << "expression\n";
[8587878e]257 untyped->print( stream );
[93401f8]258 stream << " Alternatives are:\n";
[8587878e]259 printAlts( winners, stream, 1 );
[a16764a6]260 SemanticError( untyped->location, stream.str() );
[8587878e]261 }
262
[6d6e829]263 // single selected choice
264 Alternative& choice = winners.front();
265
266 // fail on only expression deleted
267 if ( ! seen_undeleted ) {
[2a08c25]268 SemanticError( untyped->location, choice.expr, "Unique best alternative includes deleted identifier in " );
[c71b256]269 }
[6d6e829]270
271 // xxx - check for ambiguous expressions
[cde3891]272
[6d6e829]273 // output selected choice
[c71b256]274 alt = std::move( choice );
275 }
276
277 /// resolve `untyped` to the expression whose alternative satisfies `pred` with the lowest cost; kindStr is used for providing better error messages
[59cf83b]278 void findKindExpression(Expression *& untyped, const SymTab::Indexer & indexer, const std::string & kindStr, std::function<bool(const Alternative &)> pred, ResolvMode mode = ResolvMode{}) {
[c71b256]279 if ( ! untyped ) return;
280 Alternative choice;
[59cf83b]281 findUnfinishedKindExpression( untyped, choice, indexer, kindStr, pred, mode );
[c71b256]282 finishExpr( choice.expr, choice.env, untyped->env );
[8587878e]283 delete untyped;
[c71b256]284 untyped = choice.expr;
285 choice.expr = nullptr;
[8587878e]286 }
287
[c71b256]288 bool standardAlternativeFilter( const Alternative & ) {
289 // currently don't need to filter, under normal circumstances.
290 // in the future, this may be useful for removing deleted expressions
291 return true;
292 }
293 } // namespace
294
295 // used in resolveTypeof
[5170d95]296 Expression * resolveInVoidContext( Expression * expr, const SymTab::Indexer & indexer ) {
[c71b256]297 TypeEnvironment env;
298 return resolveInVoidContext( expr, indexer, env );
299 }
300
[5170d95]301 Expression * resolveInVoidContext( Expression * expr, const SymTab::Indexer & indexer, TypeEnvironment & env ) {
[c71b256]302 // it's a property of the language that a cast expression has either 1 or 0 interpretations; if it has 0
303 // interpretations, an exception has already been thrown.
304 assertf( expr, "expected a non-null expression." );
305
[5170d95]306 CastExpr * untyped = new CastExpr( expr ); // cast to void
307 untyped->location = expr->location;
[c71b256]308
309 // set up and resolve expression cast to void
310 Alternative choice;
[5170d95]311 findUnfinishedKindExpression( untyped, choice, indexer, "", standardAlternativeFilter, ResolvMode::withAdjustment() );
[c71b256]312 CastExpr * castExpr = strict_dynamic_cast< CastExpr * >( choice.expr );
[5170d95]313 assert( castExpr );
[c71b256]314 env = std::move( choice.env );
315
316 // clean up resolved expression
317 Expression * ret = castExpr->arg;
318 castExpr->arg = nullptr;
319
320 // unlink the arg so that it isn't deleted twice at the end of the program
[5170d95]321 untyped->arg = nullptr;
[c71b256]322 return ret;
323 }
324
[5170d95]325 void findVoidExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
[c71b256]326 resetTyVarRenaming();
327 TypeEnvironment env;
328 Expression * newExpr = resolveInVoidContext( untyped, indexer, env );
329 finishExpr( newExpr, env, untyped->env );
330 delete untyped;
331 untyped = newExpr;
332 }
333
[5170d95]334 void findSingleExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
[c71b256]335 findKindExpression( untyped, indexer, "", standardAlternativeFilter );
336 }
337
338 void findSingleExpression( Expression *& untyped, Type * type, const SymTab::Indexer & indexer ) {
339 assert( untyped && type );
[2a08c25]340 // transfer location to generated cast for error purposes
341 CodeLocation location = untyped->location;
[c71b256]342 untyped = new CastExpr( untyped, type );
[2a08c25]343 untyped->location = location;
[c71b256]344 findSingleExpression( untyped, indexer );
345 removeExtraneousCast( untyped, indexer );
346 }
347
348 namespace {
349 bool isIntegralType( const Alternative & alt ) {
350 Type * type = alt.expr->result;
[a32b204]351 if ( dynamic_cast< EnumInstType * >( type ) ) {
352 return true;
[5170d95]353 } else if ( BasicType * bt = dynamic_cast< BasicType * >( type ) ) {
[a32b204]354 return bt->isInteger();
[89e6ffc]355 } else if ( dynamic_cast< ZeroType* >( type ) != nullptr || dynamic_cast< OneType* >( type ) != nullptr ) {
356 return true;
[a32b204]357 } else {
358 return false;
359 } // if
360 }
[71f4e4f]361
[5170d95]362 void findIntegralExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
[8587878e]363 findKindExpression( untyped, indexer, "condition", isIntegralType );
[a32b204]364 }
365 }
[71f4e4f]366
[2a6292d]367
368 bool isStructOrUnion( const Alternative & alt ) {
369 Type * t = alt.expr->result->stripReferences();
370 return dynamic_cast< StructInstType * >( t ) || dynamic_cast< UnionInstType * >( t );
371 }
372
373 void resolveWithExprs( std::list< Declaration * > & translationUnit ) {
374 PassVisitor<ResolveWithExprs> resolver;
375 acceptAll( translationUnit, resolver );
376 }
377
378 void ResolveWithExprs::resolveWithExprs( std::list< Expression * > & withExprs, std::list< Statement * > & newStmts ) {
379 for ( Expression *& expr : withExprs ) {
380 // only struct- and union-typed expressions are viable candidates
381 findKindExpression( expr, indexer, "with statement", isStructOrUnion );
382
383 // if with expression might be impure, create a temporary so that it is evaluated once
384 if ( Tuples::maybeImpure( expr ) ) {
385 static UniqueName tmpNamer( "_with_tmp_" );
386 ObjectDecl * tmp = ObjectDecl::newObject( tmpNamer.newName(), expr->result->clone(), new SingleInit( expr ) );
387 expr = new VariableExpr( tmp );
388 newStmts.push_back( new DeclStmt( tmp ) );
389 if ( InitTweak::isConstructable( tmp->type ) ) {
390 // generate ctor/dtor and resolve them
391 tmp->init = InitTweak::genCtorInit( tmp );
392 tmp->accept( *visitor );
393 }
394 }
395 }
396 }
397
398 void ResolveWithExprs::previsit( WithStmt * withStmt ) {
399 resolveWithExprs( withStmt->exprs, stmtsToAddBefore );
400 }
401
402 void ResolveWithExprs::previsit( FunctionDecl * functionDecl ) {
403 {
404 // resolve with-exprs with parameters in scope and add any newly generated declarations to the
405 // front of the function body.
406 auto guard = makeFuncGuard( [this]() { indexer.enterScope(); }, [this](){ indexer.leaveScope(); } );
407 indexer.addFunctionType( functionDecl->type );
408 std::list< Statement * > newStmts;
409 resolveWithExprs( functionDecl->withExprs, newStmts );
410 if ( functionDecl->statements ) {
411 functionDecl->statements->kids.splice( functionDecl->statements->kids.begin(), newStmts );
412 } else {
413 assertf( functionDecl->withExprs.empty() && newStmts.empty(), "Function %s without a body has with-clause and/or generated with declarations.", functionDecl->name.c_str() );
414 }
415 }
416 }
417
[d76c588]418 void Resolver_old::previsit( ObjectDecl * objectDecl ) {
[4864a73]419 // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that
420 // class-variable initContext is changed multiple time because the LHS is analysed twice.
421 // The second analysis changes initContext because of a function type can contain object
422 // declarations in the return and parameter types. So each value of initContext is
[6d6e829]423 // retained, so the type on the first analysis is preserved and used for selecting the RHS.
[a4ca48c]424 GuardValue( currentObject );
[e4d829b]425 currentObject = CurrentObject( objectDecl->get_type() );
426 if ( inEnumDecl && dynamic_cast< EnumInstType * >( objectDecl->get_type() ) ) {
[a436947]427 // enumerator initializers should not use the enum type to initialize, since
428 // the enum type is still incomplete at this point. Use signed int instead.
[e4d829b]429 currentObject = CurrentObject( new BasicType( Type::Qualifiers(), BasicType::SignedInt ) );
[a436947]430 }
[bfbf97f]431 }
432
[40e636a]433 template< typename PtrType >
[d76c588]434 void Resolver_old::handlePtrType( PtrType * type ) {
[40e636a]435 if ( type->get_dimension() ) {
[2bfc6b2]436 findSingleExpression( type->dimension, Validate::SizeType->clone(), indexer );
[d1d17f5]437 }
[40e636a]438 }
439
[d76c588]440 void Resolver_old::previsit( ArrayType * at ) {
[40e636a]441 handlePtrType( at );
[a32b204]442 }
[94b4364]443
[d76c588]444 void Resolver_old::previsit( PointerType * pt ) {
[40e636a]445 handlePtrType( pt );
446 }
447
[d76c588]448 void Resolver_old::previsit( FunctionDecl * functionDecl ) {
[d9a0e76]449#if 0
[a4ca48c]450 std::cerr << "resolver visiting functiondecl ";
451 functionDecl->print( std::cerr );
452 std::cerr << std::endl;
[d9a0e76]453#endif
[a4ca48c]454 GuardValue( functionReturn );
[60914351]455 functionReturn = ResolvExpr::extractResultType( functionDecl->type );
[a4ca48c]456 }
[88d1066]457
[d76c588]458 void Resolver_old::postvisit( FunctionDecl * functionDecl ) {
[4864a73]459 // default value expressions have an environment which shouldn't be there and trips up
[6d6e829]460 // later passes.
[cde3891]461 // xxx - it might be necessary to somehow keep the information from this environment, but I
[6d6e829]462 // can't currently see how it's useful.
[c28a038d]463 for ( Declaration * d : functionDecl->type->parameters ) {
[88d1066]464 if ( ObjectDecl * obj = dynamic_cast< ObjectDecl * >( d ) ) {
[c28a038d]465 if ( SingleInit * init = dynamic_cast< SingleInit * >( obj->init ) ) {
466 delete init->value->env;
467 init->value->env = nullptr;
[88d1066]468 }
469 }
470 }
[a32b204]471 }
[51b73452]472
[d76c588]473 void Resolver_old::previsit( EnumDecl * ) {
[a436947]474 // in case we decide to allow nested enums
[a4ca48c]475 GuardValue( inEnumDecl );
[a436947]476 inEnumDecl = true;
477 }
478
[d76c588]479 void Resolver_old::previsit( StaticAssertDecl * assertDecl ) {
[bd87b138]480 findIntegralExpression( assertDecl->condition, indexer );
481 }
482
[d76c588]483 void Resolver_old::previsit( ExprStmt * exprStmt ) {
[a4ca48c]484 visit_children = false;
[08da53d]485 assertf( exprStmt->expr, "ExprStmt has null Expression in resolver" );
486 findVoidExpression( exprStmt->expr, indexer );
[a32b204]487 }
[51b73452]488
[d76c588]489 void Resolver_old::previsit( AsmExpr * asmExpr ) {
[a4ca48c]490 visit_children = false;
[08da53d]491 findVoidExpression( asmExpr->operand, indexer );
[7f5566b]492 }
493
[d76c588]494 void Resolver_old::previsit( AsmStmt * asmStmt ) {
[a4ca48c]495 visit_children = false;
496 acceptAll( asmStmt->get_input(), *visitor );
497 acceptAll( asmStmt->get_output(), *visitor );
[7f5566b]498 }
499
[d76c588]500 void Resolver_old::previsit( IfStmt * ifStmt ) {
[8587878e]501 findIntegralExpression( ifStmt->condition, indexer );
[a32b204]502 }
[51b73452]503
[3b0bc16]504 void Resolver_old::previsit( WhileDoStmt * whileDoStmt ) {
505 findIntegralExpression( whileDoStmt->condition, indexer );
[a32b204]506 }
[51b73452]507
[d76c588]508 void Resolver_old::previsit( ForStmt * forStmt ) {
[08da53d]509 if ( forStmt->condition ) {
[8587878e]510 findIntegralExpression( forStmt->condition, indexer );
[a32b204]511 } // if
[71f4e4f]512
[08da53d]513 if ( forStmt->increment ) {
514 findVoidExpression( forStmt->increment, indexer );
[a32b204]515 } // if
516 }
[51b73452]517
[d76c588]518 void Resolver_old::previsit( SwitchStmt * switchStmt ) {
[a4ca48c]519 GuardValue( currentObject );
[08da53d]520 findIntegralExpression( switchStmt->condition, indexer );
[71f4e4f]521
[08da53d]522 currentObject = CurrentObject( switchStmt->condition->result );
[a32b204]523 }
[51b73452]524
[d76c588]525 void Resolver_old::previsit( CaseStmt * caseStmt ) {
[cdb990a]526 if ( caseStmt->condition ) {
[e4d829b]527 std::list< InitAlternative > initAlts = currentObject.getOptions();
528 assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral expression." );
[08da53d]529 // must remove cast from case statement because RangeExpr cannot be cast.
530 Expression * newExpr = new CastExpr( caseStmt->condition, initAlts.front().type->clone() );
531 findSingleExpression( newExpr, indexer );
[cdb990a]532 // case condition cannot have a cast in C, so it must be removed, regardless of whether it performs a conversion.
533 // Ideally we would perform the conversion internally here.
534 if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( newExpr ) ) {
535 newExpr = castExpr->arg;
536 castExpr->arg = nullptr;
537 std::swap( newExpr->env, castExpr->env );
538 delete castExpr;
539 }
540 caseStmt->condition = newExpr;
[32b8144]541 }
[a32b204]542 }
[51b73452]543
[d76c588]544 void Resolver_old::previsit( BranchStmt * branchStmt ) {
[a4ca48c]545 visit_children = false;
[de62360d]546 // must resolve the argument for a computed goto
547 if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement
[08da53d]548 if ( branchStmt->computedTarget ) {
549 // computed goto argument is void *
550 findSingleExpression( branchStmt->computedTarget, new PointerType( Type::Qualifiers(), new VoidType( Type::Qualifiers() ) ), indexer );
[de62360d]551 } // if
552 } // if
553 }
554
[d76c588]555 void Resolver_old::previsit( ReturnStmt * returnStmt ) {
[a4ca48c]556 visit_children = false;
[08da53d]557 if ( returnStmt->expr ) {
558 findSingleExpression( returnStmt->expr, functionReturn->clone(), indexer );
[a32b204]559 } // if
560 }
[51b73452]561
[d76c588]562 void Resolver_old::previsit( ThrowStmt * throwStmt ) {
[a4ca48c]563 visit_children = false;
[cbce272]564 // TODO: Replace *exception type with &exception type.
[307a732]565 if ( throwStmt->get_expr() ) {
[3090127]566 const StructDecl * exception_decl = indexer.lookupStruct( "__cfaehm_base_exception_t" );
[cbce272]567 assert( exception_decl );
[8fd52e90]568 Type * exceptType = new PointerType( noQualifiers, new StructInstType( noQualifiers, const_cast<StructDecl *>(exception_decl) ) );
[08da53d]569 findSingleExpression( throwStmt->expr, exceptType, indexer );
[307a732]570 }
571 }
572
[d76c588]573 void Resolver_old::previsit( CatchStmt * catchStmt ) {
[3b0bc16]574 // Until we are very sure this invarent (ifs that move between passes have then)
[3b9c674]575 // holds, check it. This allows a check for when to decode the mangling.
576 if ( IfStmt * ifStmt = dynamic_cast<IfStmt *>( catchStmt->body ) ) {
[3b0bc16]577 assert( ifStmt->then );
[3b9c674]578 }
579 // Encode the catchStmt so the condition can see the declaration.
[08da53d]580 if ( catchStmt->cond ) {
[3b9c674]581 IfStmt * ifStmt = new IfStmt( catchStmt->cond, nullptr, catchStmt->body );
582 catchStmt->cond = nullptr;
583 catchStmt->body = ifStmt;
584 }
585 }
586
587 void Resolver_old::postvisit( CatchStmt * catchStmt ) {
588 // Decode the catchStmt so everything is stored properly.
589 IfStmt * ifStmt = dynamic_cast<IfStmt *>( catchStmt->body );
[3b0bc16]590 if ( nullptr != ifStmt && nullptr == ifStmt->then ) {
[3b9c674]591 assert( ifStmt->condition );
[3b0bc16]592 assert( ifStmt->else_ );
[3b9c674]593 catchStmt->cond = ifStmt->condition;
[3b0bc16]594 catchStmt->body = ifStmt->else_;
[3b9c674]595 ifStmt->condition = nullptr;
[3b0bc16]596 ifStmt->else_ = nullptr;
[3b9c674]597 delete ifStmt;
[cbce272]598 }
599 }
600
[1dcd9554]601 template< typename iterator_t >
602 inline bool advance_to_mutex( iterator_t & it, const iterator_t & end ) {
603 while( it != end && !(*it)->get_type()->get_mutex() ) {
604 it++;
605 }
606
607 return it != end;
608 }
609
[d76c588]610 void Resolver_old::previsit( WaitForStmt * stmt ) {
[8f98b78]611 visit_children = false;
[1dcd9554]612
613 // Resolve all clauses first
614 for( auto& clause : stmt->clauses ) {
615
616 TypeEnvironment env;
[8f98b78]617 AlternativeFinder funcFinder( indexer, env );
[1dcd9554]618
619 // Find all alternatives for a function in canonical form
620 funcFinder.findWithAdjustment( clause.target.function );
621
622 if ( funcFinder.get_alternatives().empty() ) {
623 stringstream ss;
624 ss << "Use of undeclared indentifier '";
625 ss << strict_dynamic_cast<NameExpr*>( clause.target.function )->name;
626 ss << "' in call to waitfor";
[a16764a6]627 SemanticError( stmt->location, ss.str() );
[1dcd9554]628 }
629
[b9f383f]630 if(clause.target.arguments.empty()) {
631 SemanticError( stmt->location, "Waitfor clause must have at least one mutex parameter");
632 }
633
[1dcd9554]634 // Find all alternatives for all arguments in canonical form
[bd4f2e9]635 std::vector< AlternativeFinder > argAlternatives;
[1dcd9554]636 funcFinder.findSubExprs( clause.target.arguments.begin(), clause.target.arguments.end(), back_inserter( argAlternatives ) );
637
638 // List all combinations of arguments
[bd4f2e9]639 std::vector< AltList > possibilities;
[1dcd9554]640 combos( argAlternatives.begin(), argAlternatives.end(), back_inserter( possibilities ) );
641
642 AltList func_candidates;
643 std::vector< AltList > args_candidates;
644
645 // For every possible function :
646 // try matching the arguments to the parameters
647 // not the other way around because we have more arguments than parameters
[a16764a6]648 SemanticErrorException errors;
[1dcd9554]649 for ( Alternative & func : funcFinder.get_alternatives() ) {
650 try {
651 PointerType * pointer = dynamic_cast< PointerType* >( func.expr->get_result()->stripReferences() );
652 if( !pointer ) {
[a16764a6]653 SemanticError( func.expr->get_result(), "candidate not viable: not a pointer type\n" );
[1dcd9554]654 }
655
656 FunctionType * function = dynamic_cast< FunctionType* >( pointer->get_base() );
657 if( !function ) {
[a16764a6]658 SemanticError( pointer->get_base(), "candidate not viable: not a function type\n" );
[1dcd9554]659 }
660
661
662 {
663 auto param = function->parameters.begin();
664 auto param_end = function->parameters.end();
665
666 if( !advance_to_mutex( param, param_end ) ) {
[a16764a6]667 SemanticError(function, "candidate function not viable: no mutex parameters\n");
[1dcd9554]668 }
669 }
670
671 Alternative newFunc( func );
672 // Strip reference from function
[a181494]673 referenceToRvalueConversion( newFunc.expr, newFunc.cost );
[1dcd9554]674
675 // For all the set of arguments we have try to match it with the parameter of the current function alternative
676 for ( auto & argsList : possibilities ) {
677
678 try {
679 // Declare data structures need for resolution
680 OpenVarSet openVars;
681 AssertionSet resultNeed, resultHave;
[6f326b1]682 TypeEnvironment resultEnv( func.env );
683 makeUnifiableVars( function, openVars, resultNeed );
684 // add all type variables as open variables now so that those not used in the parameter
685 // list are still considered open.
686 resultEnv.add( function->forall );
[1dcd9554]687
688 // Load type variables from arguemnts into one shared space
689 simpleCombineEnvironments( argsList.begin(), argsList.end(), resultEnv );
690
691 // Make sure we don't widen any existing bindings
[d286cf68]692 resultEnv.forbidWidening();
[c5283ba]693
[1dcd9554]694 // Find any unbound type variables
695 resultEnv.extractOpenVars( openVars );
696
697 auto param = function->parameters.begin();
698 auto param_end = function->parameters.end();
699
[c5283ba]700 int n_mutex_param = 0;
[b9f383f]701
[1dcd9554]702 // For every arguments of its set, check if it matches one of the parameter
703 // The order is important
704 for( auto & arg : argsList ) {
705
706 // Ignore non-mutex arguments
707 if( !advance_to_mutex( param, param_end ) ) {
708 // We ran out of parameters but still have arguments
709 // this function doesn't match
[c5283ba]710 SemanticError( function, toString("candidate function not viable: too many mutex arguments, expected ", n_mutex_param, "\n" ));
[1dcd9554]711 }
712
[c5283ba]713 n_mutex_param++;
[b9f383f]714
[1dcd9554]715 // Check if the argument matches the parameter type in the current scope
[b9f383f]716 if( ! unify( arg.expr->get_result(), (*param)->get_type(), resultEnv, resultNeed, resultHave, openVars, this->indexer ) ) {
[1dcd9554]717 // Type doesn't match
718 stringstream ss;
719 ss << "candidate function not viable: no known convertion from '";
720 (*param)->get_type()->print( ss );
[b9f383f]721 ss << "' to '";
722 arg.expr->get_result()->print( ss );
[5248789]723 ss << "' with env '";
724 resultEnv.print(ss);
[1dcd9554]725 ss << "'\n";
[a16764a6]726 SemanticError( function, ss.str() );
[1dcd9554]727 }
728
729 param++;
730 }
731
732 // All arguments match !
733
734 // Check if parameters are missing
735 if( advance_to_mutex( param, param_end ) ) {
[c5283ba]736 do {
737 n_mutex_param++;
738 param++;
739 } while( advance_to_mutex( param, param_end ) );
740
[1dcd9554]741 // We ran out of arguments but still have parameters left
742 // this function doesn't match
[c5283ba]743 SemanticError( function, toString("candidate function not viable: too few mutex arguments, expected ", n_mutex_param, "\n" ));
[1dcd9554]744 }
745
746 // All parameters match !
747
748 // Finish the expressions to tie in the proper environments
749 finishExpr( newFunc.expr, resultEnv );
750 for( Alternative & alt : argsList ) {
751 finishExpr( alt.expr, resultEnv );
752 }
753
754 // This is a match store it and save it for later
755 func_candidates.push_back( newFunc );
756 args_candidates.push_back( argsList );
757
758 }
[5170d95]759 catch( SemanticErrorException & e ) {
[1dcd9554]760 errors.append( e );
761 }
762 }
763 }
[5170d95]764 catch( SemanticErrorException & e ) {
[1dcd9554]765 errors.append( e );
766 }
767 }
768
769 // Make sure we got the right number of arguments
[a16764a6]770 if( func_candidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for function in call to waitfor" ); top.append( errors ); throw top; }
771 if( args_candidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for arguments in call to waitfor" ); top.append( errors ); throw top; }
772 if( func_candidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous function in call to waitfor" ); top.append( errors ); throw top; }
773 if( args_candidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous arguments in call to waitfor" ); top.append( errors ); throw top; }
[c71b256]774 // TODO: need to use findDeletedExpr to ensure no deleted identifiers are used.
[1dcd9554]775
776 // Swap the results from the alternative with the unresolved values.
777 // Alternatives will handle deletion on destruction
778 std::swap( clause.target.function, func_candidates.front().expr );
779 for( auto arg_pair : group_iterate( clause.target.arguments, args_candidates.front() ) ) {
780 std::swap ( std::get<0>( arg_pair), std::get<1>( arg_pair).expr );
781 }
782
783 // Resolve the conditions as if it were an IfStmt
784 // Resolve the statments normally
[08da53d]785 findSingleExpression( clause.condition, this->indexer );
[8f98b78]786 clause.statement->accept( *visitor );
[1dcd9554]787 }
788
789
790 if( stmt->timeout.statement ) {
791 // Resolve the timeout as an size_t for now
792 // Resolve the conditions as if it were an IfStmt
793 // Resolve the statments normally
[08da53d]794 findSingleExpression( stmt->timeout.time, new BasicType( noQualifiers, BasicType::LongLongUnsignedInt ), this->indexer );
795 findSingleExpression( stmt->timeout.condition, this->indexer );
[8f98b78]796 stmt->timeout.statement->accept( *visitor );
[1dcd9554]797 }
798
799 if( stmt->orelse.statement ) {
800 // Resolve the conditions as if it were an IfStmt
801 // Resolve the statments normally
[08da53d]802 findSingleExpression( stmt->orelse.condition, this->indexer );
[8f98b78]803 stmt->orelse.statement->accept( *visitor );
[1dcd9554]804 }
805 }
806
[60aaa51d]807 bool isCharType( Type * t ) {
[b5c5684]808 if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) {
[71f4e4f]809 return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar ||
[b5c5684]810 bt->get_kind() == BasicType::UnsignedChar;
811 }
812 return false;
813 }
814
[d76c588]815 void Resolver_old::previsit( SingleInit * singleInit ) {
[a4ca48c]816 visit_children = false;
[62423350]817 // resolve initialization using the possibilities as determined by the currentObject cursor
[0a22cda]818 Expression * newExpr = new UntypedInitExpr( singleInit->value, currentObject.getOptions() );
[08da53d]819 findSingleExpression( newExpr, indexer );
[e3e16bc]820 InitExpr * initExpr = strict_dynamic_cast< InitExpr * >( newExpr );
[62423350]821
822 // move cursor to the object that is actually initialized
[e4d829b]823 currentObject.setNext( initExpr->get_designation() );
[62423350]824
825 // discard InitExpr wrapper and retain relevant pieces
[08da53d]826 newExpr = initExpr->expr;
827 initExpr->expr = nullptr;
828 std::swap( initExpr->env, newExpr->env );
[cde3891]829 // InitExpr may have inferParams in the case where the expression specializes a function
830 // pointer, and newExpr may already have inferParams of its own, so a simple swap is not
[6d6e829]831 // sufficient.
[cdb990a]832 newExpr->spliceInferParams( initExpr );
[e4d829b]833 delete initExpr;
834
[cde3891]835 // get the actual object's type (may not exactly match what comes back from the resolver
[6d6e829]836 // due to conversions)
[62423350]837 Type * initContext = currentObject.getCurrentType();
838
[0a22cda]839 removeExtraneousCast( newExpr, indexer );
840
[62423350]841 // check if actual object's type is char[]
842 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
843 if ( isCharType( at->get_base() ) ) {
844 // check if the resolved type is char *
845 if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_result() ) ) {
846 if ( isCharType( pt->get_base() ) ) {
[5170d95]847 if ( CastExpr * ce = dynamic_cast< CastExpr * >( newExpr ) ) {
[cde3891]848 // strip cast if we're initializing a char[] with a char *,
[6d6e829]849 // e.g. char x[] = "hello";
[0a22cda]850 newExpr = ce->get_arg();
851 ce->set_arg( nullptr );
852 std::swap( ce->env, newExpr->env );
853 delete ce;
854 }
[62423350]855 }
856 }
857 }
858 }
[94b4364]859
[62423350]860 // set initializer expr to resolved express
[0a22cda]861 singleInit->value = newExpr;
[62423350]862
863 // move cursor to next object in preparation for next initializer
864 currentObject.increment();
865 }
[94b4364]866
[d76c588]867 void Resolver_old::previsit( ListInit * listInit ) {
[a4ca48c]868 visit_children = false;
[62423350]869 // move cursor into brace-enclosed initializer-list
[e4d829b]870 currentObject.enterListInit();
[cde3891]871 // xxx - fix this so that the list isn't copied, iterator should be used to change current
[6d6e829]872 // element
[e4d829b]873 std::list<Designation *> newDesignations;
874 for ( auto p : group_iterate(listInit->get_designations(), listInit->get_initializers()) ) {
[cde3891]875 // iterate designations and initializers in pairs, moving the cursor to the current
[6d6e829]876 // designated object and resolving the initializer against that object.
[e4d829b]877 Designation * des = std::get<0>(p);
878 Initializer * init = std::get<1>(p);
879 newDesignations.push_back( currentObject.findNext( des ) );
[a4ca48c]880 init->accept( *visitor );
[b5c5684]881 }
[62423350]882 // set the set of 'resolved' designations and leave the brace-enclosed initializer-list
[e4d829b]883 listInit->get_designations() = newDesignations; // xxx - memory management
884 currentObject.exitListInit();
885
[62423350]886 // xxx - this part has not be folded into CurrentObject yet
[e4d829b]887 // } else if ( TypeInstType * tt = dynamic_cast< TypeInstType * >( initContext ) ) {
888 // Type * base = tt->get_baseType()->get_base();
889 // if ( base ) {
890 // // know the implementation type, so try using that as the initContext
891 // ObjectDecl tmpObj( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, base->clone(), nullptr );
892 // currentObject = &tmpObj;
893 // visit( listInit );
894 // } else {
895 // // missing implementation type -- might be an unknown type variable, so try proceeding with the current init context
896 // Parent::visit( listInit );
897 // }
898 // } else {
[a32b204]899 }
[71f4e4f]900
[f1e012b]901 // ConstructorInit - fall back on C-style initializer
[d76c588]902 void Resolver_old::fallbackInit( ConstructorInit * ctorInit ) {
[f1e012b]903 // could not find valid constructor, or found an intrinsic constructor
904 // fall back on C-style initializer
905 delete ctorInit->get_ctor();
[6d6e829]906 ctorInit->set_ctor( nullptr );
[71a145de]907 delete ctorInit->get_dtor();
[6d6e829]908 ctorInit->set_dtor( nullptr );
[a4ca48c]909 maybeAccept( ctorInit->get_init(), *visitor );
[f1e012b]910 }
911
[1d2b64f]912 // needs to be callable from outside the resolver, so this is a standalone function
913 void resolveCtorInit( ConstructorInit * ctorInit, const SymTab::Indexer & indexer ) {
914 assert( ctorInit );
[d76c588]915 PassVisitor<Resolver_old> resolver( indexer );
[1d2b64f]916 ctorInit->accept( resolver );
917 }
918
919 void resolveStmtExpr( StmtExpr * stmtExpr, const SymTab::Indexer & indexer ) {
920 assert( stmtExpr );
[d76c588]921 PassVisitor<Resolver_old> resolver( indexer );
[1d2b64f]922 stmtExpr->accept( resolver );
[5e2c348]923 stmtExpr->computeResult();
[dd05e12]924 // xxx - aggregate the environments from all statements? Possibly in AlternativeFinder instead?
[1d2b64f]925 }
926
[d76c588]927 void Resolver_old::previsit( ConstructorInit * ctorInit ) {
[a4ca48c]928 visit_children = false;
[1ba88a0]929 // xxx - fallback init has been removed => remove fallbackInit function and remove complexity from FixInit and remove C-init from ConstructorInit
[dd05e12]930 maybeAccept( ctorInit->ctor, *visitor );
931 maybeAccept( ctorInit->dtor, *visitor );
[071a31a]932
[5b2f5bb]933 // found a constructor - can get rid of C-style initializer
[dd05e12]934 delete ctorInit->init;
935 ctorInit->init = nullptr;
[ec79847]936
937 // intrinsic single parameter constructors and destructors do nothing. Since this was
938 // implicitly generated, there's no way for it to have side effects, so get rid of it
939 // to clean up generated code.
[dd05e12]940 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->ctor ) ) {
941 delete ctorInit->ctor;
942 ctorInit->ctor = nullptr;
[ec79847]943 }
[f9cebb5]944
[dd05e12]945 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->dtor ) ) {
946 delete ctorInit->dtor;
947 ctorInit->dtor = nullptr;
[ec79847]948 }
[a465caff]949
950 // xxx - todo -- what about arrays?
[6d6e829]951 // if ( dtor == nullptr && InitTweak::isIntrinsicCallStmt( ctorInit->get_ctor() ) ) {
[a465caff]952 // // can reduce the constructor down to a SingleInit using the
953 // // second argument from the ctor call, since
954 // delete ctorInit->get_ctor();
[6d6e829]955 // ctorInit->set_ctor( nullptr );
[a465caff]956
957 // Expression * arg =
958 // ctorInit->set_init( new SingleInit( arg ) );
959 // }
[71f4e4f]960 }
[d76c588]961
962 ///////////////////////////////////////////////////////////////////////////
963 //
964 // *** NEW RESOLVER ***
965 //
966 ///////////////////////////////////////////////////////////////////////////
967
[99d4584]968 namespace {
969 /// Finds deleted expressions in an expression tree
[2dda05d]970 struct DeleteFinder_new final : public ast::WithShortCircuiting, public ast::WithVisitorRef<DeleteFinder_new> {
[e6b42e7]971 const ast::DeletedExpr * result = nullptr;
[99d4584]972
973 void previsit( const ast::DeletedExpr * expr ) {
[e6b42e7]974 if ( result ) { visit_children = false; }
975 else { result = expr; }
[99d4584]976 }
977
[361bf01]978 void previsit( const ast::Expr * expr ) {
[e6b42e7]979 if ( result ) { visit_children = false; }
[361bf01]980 if (expr->inferred.hasParams()) {
981 for (auto & imp : expr->inferred.inferParams() ) {
[2dda05d]982 imp.second.expr->accept(*visitor);
[361bf01]983 }
984 }
[99d4584]985 }
986 };
[d57e349]987 } // anonymous namespace
988 /// Check if this expression is or includes a deleted expression
989 const ast::DeletedExpr * findDeletedExpr( const ast::Expr * expr ) {
[e6b42e7]990 return ast::Pass<DeleteFinder_new>::read( expr );
[d57e349]991 }
[99d4584]992
[d57e349]993 namespace {
[b7d92b96]994 /// always-accept candidate filter
995 bool anyCandidate( const Candidate & ) { return true; }
996
[99d4584]997 /// Calls the CandidateFinder and finds the single best candidate
998 CandidateRef findUnfinishedKindExpression(
[ef5b828]999 const ast::Expr * untyped, const ast::SymbolTable & symtab, const std::string & kind,
[b7d92b96]1000 std::function<bool(const Candidate &)> pred = anyCandidate, ResolvMode mode = {}
[99d4584]1001 ) {
1002 if ( ! untyped ) return nullptr;
1003
1004 // xxx - this isn't thread-safe, but should work until we parallelize the resolver
1005 static unsigned recursion_level = 0;
1006
1007 ++recursion_level;
1008 ast::TypeEnvironment env;
1009 CandidateFinder finder{ symtab, env };
1010 finder.find( untyped, recursion_level == 1 ? mode.atTopLevel() : mode );
1011 --recursion_level;
1012
1013 // produce a filtered list of candidates
1014 CandidateList candidates;
1015 for ( auto & cand : finder.candidates ) {
1016 if ( pred( *cand ) ) { candidates.emplace_back( cand ); }
1017 }
1018
1019 // produce invalid error if no candidates
1020 if ( candidates.empty() ) {
[ef5b828]1021 SemanticError( untyped,
1022 toString( "No reasonable alternatives for ", kind, (kind != "" ? " " : ""),
[99d4584]1023 "expression: ") );
1024 }
1025
1026 // search for cheapest candidate
1027 CandidateList winners;
1028 bool seen_undeleted = false;
1029 for ( CandidateRef & cand : candidates ) {
1030 int c = winners.empty() ? -1 : cand->cost.compare( winners.front()->cost );
1031
1032 if ( c > 0 ) continue; // skip more expensive than winner
1033
1034 if ( c < 0 ) {
1035 // reset on new cheapest
1036 seen_undeleted = ! findDeletedExpr( cand->expr );
1037 winners.clear();
1038 } else /* if ( c == 0 ) */ {
1039 if ( findDeletedExpr( cand->expr ) ) {
1040 // skip deleted expression if already seen one equivalent-cost not
1041 if ( seen_undeleted ) continue;
1042 } else if ( ! seen_undeleted ) {
1043 // replace list of equivalent-cost deleted expressions with one non-deleted
1044 winners.clear();
1045 seen_undeleted = true;
1046 }
1047 }
1048
1049 winners.emplace_back( std::move( cand ) );
1050 }
1051
1052 // promote candidate.cvtCost to .cost
[d57e349]1053 promoteCvtCost( winners );
[99d4584]1054
1055 // produce ambiguous errors, if applicable
1056 if ( winners.size() != 1 ) {
1057 std::ostringstream stream;
[ef5b828]1058 stream << "Cannot choose between " << winners.size() << " alternatives for "
[99d4584]1059 << kind << (kind != "" ? " " : "") << "expression\n";
1060 ast::print( stream, untyped );
1061 stream << " Alternatives are:\n";
1062 print( stream, winners, 1 );
1063 SemanticError( untyped->location, stream.str() );
1064 }
1065
1066 // single selected choice
1067 CandidateRef & choice = winners.front();
1068
1069 // fail on only expression deleted
1070 if ( ! seen_undeleted ) {
1071 SemanticError( untyped->location, choice->expr.get(), "Unique best alternative "
1072 "includes deleted identifier in " );
1073 }
1074
1075 return std::move( choice );
1076 }
1077
1078 /// Strips extraneous casts out of an expression
1079 struct StripCasts_new final {
[c408483]1080 const ast::Expr * postvisit( const ast::CastExpr * castExpr ) {
[ef5b828]1081 if (
[2890212]1082 castExpr->isGenerated == ast::GeneratedCast
[ef5b828]1083 && typesCompatible( castExpr->arg->result, castExpr->result )
[99d4584]1084 ) {
1085 // generated cast is the same type as its argument, remove it after keeping env
[ef5b828]1086 return ast::mutate_field(
[b7d92b96]1087 castExpr->arg.get(), &ast::Expr::env, castExpr->env );
[99d4584]1088 }
1089 return castExpr;
1090 }
1091
1092 static void strip( ast::ptr< ast::Expr > & expr ) {
1093 ast::Pass< StripCasts_new > stripper;
1094 expr = expr->accept( stripper );
1095 }
1096 };
1097
[60aaa51d]1098 /// Swaps argument into expression pointer, saving original environment
1099 void swap_and_save_env( ast::ptr< ast::Expr > & expr, const ast::Expr * newExpr ) {
1100 ast::ptr< ast::TypeSubstitution > env = expr->env;
1101 expr.set_and_mutate( newExpr )->env = env;
1102 }
1103
[b7d92b96]1104 /// Removes cast to type of argument (unlike StripCasts, also handles non-generated casts)
1105 void removeExtraneousCast( ast::ptr<ast::Expr> & expr, const ast::SymbolTable & symtab ) {
1106 if ( const ast::CastExpr * castExpr = expr.as< ast::CastExpr >() ) {
1107 if ( typesCompatible( castExpr->arg->result, castExpr->result, symtab ) ) {
1108 // cast is to the same type as its argument, remove it
[60aaa51d]1109 swap_and_save_env( expr, castExpr->arg );
[b7d92b96]1110 }
1111 }
1112 }
1113
[6668a3e]1114
[490fb92e]1115 } // anonymous namespace
1116/// Establish post-resolver invariants for expressions
[ef5b828]1117 void finishExpr(
1118 ast::ptr< ast::Expr > & expr, const ast::TypeEnvironment & env,
[99d4584]1119 const ast::TypeSubstitution * oldenv = nullptr
1120 ) {
1121 // set up new type substitution for expression
[ef5b828]1122 ast::ptr< ast::TypeSubstitution > newenv =
[99d4584]1123 oldenv ? oldenv : new ast::TypeSubstitution{};
1124 env.writeToSubstitution( *newenv.get_and_mutate() );
1125 expr.get_and_mutate()->env = std::move( newenv );
1126 // remove unncecessary casts
1127 StripCasts_new::strip( expr );
1128 }
[ef5b828]1129
[4b7cce6]1130 ast::ptr< ast::Expr > resolveInVoidContext(
1131 const ast::Expr * expr, const ast::SymbolTable & symtab, ast::TypeEnvironment & env
1132 ) {
1133 assertf( expr, "expected a non-null expression" );
[ef5b828]1134
[4b7cce6]1135 // set up and resolve expression cast to void
[417117e]1136 ast::ptr< ast::CastExpr > untyped = new ast::CastExpr{ expr };
[ef5b828]1137 CandidateRef choice = findUnfinishedKindExpression(
[4b7cce6]1138 untyped, symtab, "", anyCandidate, ResolvMode::withAdjustment() );
[ef5b828]1139
[4b7cce6]1140 // a cast expression has either 0 or 1 interpretations (by language rules);
1141 // if 0, an exception has already been thrown, and this code will not run
1142 const ast::CastExpr * castExpr = choice->expr.strict_as< ast::CastExpr >();
1143 env = std::move( choice->env );
1144
1145 return castExpr->arg;
1146 }
[b7d92b96]1147
[490fb92e]1148 /// Resolve `untyped` to the expression whose candidate is the best match for a `void`
[b7d92b96]1149 /// context.
[ef5b828]1150 ast::ptr< ast::Expr > findVoidExpression(
[b7d92b96]1151 const ast::Expr * untyped, const ast::SymbolTable & symtab
1152 ) {
1153 ast::TypeEnvironment env;
1154 ast::ptr< ast::Expr > newExpr = resolveInVoidContext( untyped, symtab, env );
1155 finishExpr( newExpr, env, untyped->env );
1156 return newExpr;
1157 }
1158
[490fb92e]1159 namespace {
[6668a3e]1160
[490fb92e]1161
[ef5b828]1162 /// resolve `untyped` to the expression whose candidate satisfies `pred` with the
[99d4584]1163 /// lowest cost, returning the resolved version
1164 ast::ptr< ast::Expr > findKindExpression(
[ef5b828]1165 const ast::Expr * untyped, const ast::SymbolTable & symtab,
1166 std::function<bool(const Candidate &)> pred = anyCandidate,
[2b59f55]1167 const std::string & kind = "", ResolvMode mode = {}
[99d4584]1168 ) {
1169 if ( ! untyped ) return {};
[ef5b828]1170 CandidateRef choice =
[99d4584]1171 findUnfinishedKindExpression( untyped, symtab, kind, pred, mode );
[490fb92e]1172 ResolvExpr::finishExpr( choice->expr, choice->env, untyped->env );
[99d4584]1173 return std::move( choice->expr );
1174 }
1175
[2773ab8]1176 /// Resolve `untyped` to the single expression whose candidate is the best match
[ef5b828]1177 ast::ptr< ast::Expr > findSingleExpression(
1178 const ast::Expr * untyped, const ast::SymbolTable & symtab
[2773ab8]1179 ) {
[57e0289]1180 Stats::ResolveTime::start( untyped );
1181 auto res = findKindExpression( untyped, symtab );
1182 Stats::ResolveTime::stop();
1183 return res;
[2773ab8]1184 }
[18e683b]1185 } // anonymous namespace
[2773ab8]1186
[16ba4a6f]1187 ast::ptr< ast::Expr > findSingleExpression(
1188 const ast::Expr * untyped, const ast::Type * type, const ast::SymbolTable & symtab
1189 ) {
1190 assert( untyped && type );
1191 ast::ptr< ast::Expr > castExpr = new ast::CastExpr{ untyped, type };
1192 ast::ptr< ast::Expr > newExpr = findSingleExpression( castExpr, symtab );
1193 removeExtraneousCast( newExpr, symtab );
1194 return newExpr;
1195 }
[b7d92b96]1196
[18e683b]1197 namespace {
[16ba4a6f]1198 bool structOrUnion( const Candidate & i ) {
1199 const ast::Type * t = i.expr->result->stripReferences();
1200 return dynamic_cast< const ast::StructInstType * >( t ) || dynamic_cast< const ast::UnionInstType * >( t );
1201 }
[99d4584]1202 /// Predicate for "Candidate has integral type"
1203 bool hasIntegralType( const Candidate & i ) {
1204 const ast::Type * type = i.expr->result;
[ef5b828]1205
[99d4584]1206 if ( auto bt = dynamic_cast< const ast::BasicType * >( type ) ) {
1207 return bt->isInteger();
[ef5b828]1208 } else if (
1209 dynamic_cast< const ast::EnumInstType * >( type )
[99d4584]1210 || dynamic_cast< const ast::ZeroType * >( type )
1211 || dynamic_cast< const ast::OneType * >( type )
1212 ) {
1213 return true;
1214 } else return false;
1215 }
1216
1217 /// Resolve `untyped` as an integral expression, returning the resolved version
[ef5b828]1218 ast::ptr< ast::Expr > findIntegralExpression(
1219 const ast::Expr * untyped, const ast::SymbolTable & symtab
[99d4584]1220 ) {
[2b59f55]1221 return findKindExpression( untyped, symtab, hasIntegralType, "condition" );
[99d4584]1222 }
[60aaa51d]1223
1224 /// check if a type is a character type
1225 bool isCharType( const ast::Type * t ) {
1226 if ( auto bt = dynamic_cast< const ast::BasicType * >( t ) ) {
[ef5b828]1227 return bt->kind == ast::BasicType::Char
1228 || bt->kind == ast::BasicType::SignedChar
[60aaa51d]1229 || bt->kind == ast::BasicType::UnsignedChar;
1230 }
1231 return false;
1232 }
[2773ab8]1233
1234 /// Advance a type itertor to the next mutex parameter
1235 template<typename Iter>
1236 inline bool nextMutex( Iter & it, const Iter & end ) {
[954c954]1237 while ( it != end && ! (*it)->is_mutex() ) { ++it; }
[2773ab8]1238 return it != end;
1239 }
[99d4584]1240 }
1241
[4864a73]1242 class Resolver_new final
1243 : public ast::WithSymbolTable, public ast::WithGuards,
1244 public ast::WithVisitorRef<Resolver_new>, public ast::WithShortCircuiting,
[0e42794]1245 public ast::WithStmtsToAdd<> {
[4864a73]1246
[2a8f0c1]1247 ast::ptr< ast::Type > functionReturn = nullptr;
[2b59f55]1248 ast::CurrentObject currentObject;
[16ba4a6f]1249 // for work previously in GenInit
1250 static InitTweak::ManagedTypes_new managedTypes;
1251
[99d4584]1252 bool inEnumDecl = false;
[2a8f0c1]1253
[4864a73]1254 public:
[c15085d]1255 static size_t traceId;
[d76c588]1256 Resolver_new() = default;
[0e42794]1257 Resolver_new( const ast::SymbolTable & syms ) { symtab = syms; }
[d76c588]1258
[16ba4a6f]1259 const ast::FunctionDecl * previsit( const ast::FunctionDecl * );
[99d4584]1260 const ast::FunctionDecl * postvisit( const ast::FunctionDecl * );
[16ba4a6f]1261 const ast::ObjectDecl * previsit( const ast::ObjectDecl * );
1262 void previsit( const ast::AggregateDecl * );
1263 void previsit( const ast::StructDecl * );
[99d4584]1264 void previsit( const ast::EnumDecl * );
1265 const ast::StaticAssertDecl * previsit( const ast::StaticAssertDecl * );
1266
[0f6a7752]1267 const ast::ArrayType * previsit( const ast::ArrayType * );
1268 const ast::PointerType * previsit( const ast::PointerType * );
[99d4584]1269
[2773ab8]1270 const ast::ExprStmt * previsit( const ast::ExprStmt * );
1271 const ast::AsmExpr * previsit( const ast::AsmExpr * );
1272 const ast::AsmStmt * previsit( const ast::AsmStmt * );
1273 const ast::IfStmt * previsit( const ast::IfStmt * );
[3b0bc16]1274 const ast::WhileDoStmt * previsit( const ast::WhileDoStmt * );
[2773ab8]1275 const ast::ForStmt * previsit( const ast::ForStmt * );
1276 const ast::SwitchStmt * previsit( const ast::SwitchStmt * );
1277 const ast::CaseStmt * previsit( const ast::CaseStmt * );
1278 const ast::BranchStmt * previsit( const ast::BranchStmt * );
1279 const ast::ReturnStmt * previsit( const ast::ReturnStmt * );
1280 const ast::ThrowStmt * previsit( const ast::ThrowStmt * );
1281 const ast::CatchStmt * previsit( const ast::CatchStmt * );
[b9fa85b]1282 const ast::CatchStmt * postvisit( const ast::CatchStmt * );
[2773ab8]1283 const ast::WaitForStmt * previsit( const ast::WaitForStmt * );
[16ba4a6f]1284 const ast::WithStmt * previsit( const ast::WithStmt * );
[99d4584]1285
[2d11663]1286 const ast::SingleInit * previsit( const ast::SingleInit * );
1287 const ast::ListInit * previsit( const ast::ListInit * );
1288 const ast::ConstructorInit * previsit( const ast::ConstructorInit * );
[16ba4a6f]1289
1290 void resolveWithExprs(std::vector<ast::ptr<ast::Expr>> & exprs, std::list<ast::ptr<ast::Stmt>> & stmtsToAdd);
1291
1292 void beginScope() { managedTypes.beginScope(); }
1293 void endScope() { managedTypes.endScope(); }
[e00c22f]1294 bool on_error(ast::ptr<ast::Decl> & decl);
[d76c588]1295 };
[0d070ca]1296 // size_t Resolver_new::traceId = Stats::Heap::new_stacktrace_id("Resolver");
[d76c588]1297
[16ba4a6f]1298 InitTweak::ManagedTypes_new Resolver_new::managedTypes;
1299
[293dc1c]1300 void resolve( ast::TranslationUnit& translationUnit ) {
[a86b2ca6]1301 ast::Pass< Resolver_new >::run( translationUnit );
[d76c588]1302 }
1303
[ef5b828]1304 ast::ptr< ast::Init > resolveCtorInit(
1305 const ast::ConstructorInit * ctorInit, const ast::SymbolTable & symtab
[234b1cb]1306 ) {
1307 assert( ctorInit );
1308 ast::Pass< Resolver_new > resolver{ symtab };
1309 return ctorInit->accept( resolver );
1310 }
1311
[302ef2a]1312 const ast::Expr * resolveStmtExpr(
[ef5b828]1313 const ast::StmtExpr * stmtExpr, const ast::SymbolTable & symtab
[17a0ede2]1314 ) {
1315 assert( stmtExpr );
1316 ast::Pass< Resolver_new > resolver{ symtab };
[302ef2a]1317 auto ret = mutate(stmtExpr->accept(resolver));
1318 strict_dynamic_cast< ast::StmtExpr * >( ret )->computeResult();
[17a0ede2]1319 return ret;
1320 }
1321
[16ba4a6f]1322 namespace {
1323 const ast::Attribute * handleAttribute(const CodeLocation & loc, const ast::Attribute * attr, const ast::SymbolTable & symtab) {
1324 std::string name = attr->normalizedName();
1325 if (name == "constructor" || name == "destructor") {
1326 if (attr->params.size() == 1) {
1327 auto arg = attr->params.front();
1328 auto resolved = ResolvExpr::findSingleExpression( arg, new ast::BasicType( ast::BasicType::LongLongSignedInt ), symtab );
1329 auto result = eval(arg);
1330
1331 auto mutAttr = mutate(attr);
1332 mutAttr->params.front() = resolved;
1333 if (! result.second) {
1334 SemanticWarning(loc, Warning::GccAttributes,
1335 toCString( name, " priorities must be integers from 0 to 65535 inclusive: ", arg ) );
1336 }
1337 else {
1338 auto priority = result.first;
1339 if (priority < 101) {
1340 SemanticWarning(loc, Warning::GccAttributes,
1341 toCString( name, " priorities from 0 to 100 are reserved for the implementation" ) );
1342 } else if (priority < 201 && ! buildingLibrary()) {
1343 SemanticWarning(loc, Warning::GccAttributes,
1344 toCString( name, " priorities from 101 to 200 are reserved for the implementation" ) );
1345 }
1346 }
1347 return mutAttr;
1348 } else if (attr->params.size() > 1) {
1349 SemanticWarning(loc, Warning::GccAttributes, toCString( "too many arguments to ", name, " attribute" ) );
1350 } else {
1351 SemanticWarning(loc, Warning::GccAttributes, toCString( "too few arguments to ", name, " attribute" ) );
1352 }
1353 }
1354 return attr;
1355 }
1356 }
1357
1358 const ast::FunctionDecl * Resolver_new::previsit( const ast::FunctionDecl * functionDecl ) {
[2a8f0c1]1359 GuardValue( functionReturn );
[16ba4a6f]1360
1361 assert (functionDecl->unique());
1362 if (!functionDecl->has_body() && !functionDecl->withExprs.empty()) {
1363 SemanticError(functionDecl->location, functionDecl, "Function without body has with declarations");
1364 }
1365
1366 if (!functionDecl->isTypeFixed) {
1367 auto mutDecl = mutate(functionDecl);
1368 auto mutType = mutDecl->type.get_and_mutate();
1369
1370 for (auto & attr: mutDecl->attributes) {
1371 attr = handleAttribute(mutDecl->location, attr, symtab);
1372 }
1373
[3e5dd913]1374 // handle assertions
[16ba4a6f]1375
1376 symtab.enterScope();
[3e5dd913]1377 mutType->forall.clear();
1378 mutType->assertions.clear();
1379 for (auto & typeParam : mutDecl->type_params) {
1380 symtab.addType(typeParam);
1381 mutType->forall.emplace_back(new ast::TypeInstType(typeParam->name, typeParam));
1382 }
1383 for (auto & asst : mutDecl->assertions) {
1384 asst = fixObjectType(asst.strict_as<ast::ObjectDecl>(), symtab);
1385 symtab.addId(asst);
1386 mutType->assertions.emplace_back(new ast::VariableExpr(functionDecl->location, asst));
[16ba4a6f]1387 }
1388
1389 // temporarily adds params to symbol table.
1390 // actual scoping rules for params and withexprs differ - see Pass::visit(FunctionDecl)
1391
1392 std::vector<ast::ptr<ast::Type>> paramTypes;
1393 std::vector<ast::ptr<ast::Type>> returnTypes;
1394
1395 for (auto & param : mutDecl->params) {
1396 param = fixObjectType(param.strict_as<ast::ObjectDecl>(), symtab);
1397 symtab.addId(param);
1398 paramTypes.emplace_back(param->get_type());
1399 }
1400 for (auto & ret : mutDecl->returns) {
1401 ret = fixObjectType(ret.strict_as<ast::ObjectDecl>(), symtab);
1402 returnTypes.emplace_back(ret->get_type());
1403 }
1404 // since function type in decl is just a view of param types, need to update that as well
1405 mutType->params = std::move(paramTypes);
1406 mutType->returns = std::move(returnTypes);
1407
[3e5dd913]1408 auto renamedType = strict_dynamic_cast<const ast::FunctionType *>(renameTyVars(mutType, RenameMode::GEN_EXPR_ID));
1409
[16ba4a6f]1410 std::list<ast::ptr<ast::Stmt>> newStmts;
1411 resolveWithExprs (mutDecl->withExprs, newStmts);
1412
1413 if (mutDecl->stmts) {
1414 auto mutStmt = mutDecl->stmts.get_and_mutate();
1415 mutStmt->kids.splice(mutStmt->kids.begin(), std::move(newStmts));
1416 mutDecl->stmts = mutStmt;
1417 }
1418
1419 symtab.leaveScope();
1420
[3e5dd913]1421 mutDecl->type = renamedType;
[16ba4a6f]1422 mutDecl->mangleName = Mangle::mangle(mutDecl);
1423 mutDecl->isTypeFixed = true;
1424 functionDecl = mutDecl;
1425 }
1426 managedTypes.handleDWT(functionDecl);
1427
[2a8f0c1]1428 functionReturn = extractResultType( functionDecl->type );
[16ba4a6f]1429 return functionDecl;
[d76c588]1430 }
1431
[2a8f0c1]1432 const ast::FunctionDecl * Resolver_new::postvisit( const ast::FunctionDecl * functionDecl ) {
[4864a73]1433 // default value expressions have an environment which shouldn't be there and trips up
[2a8f0c1]1434 // later passes.
[e068c8a]1435 assert( functionDecl->unique() );
1436 ast::FunctionType * mutType = mutate( functionDecl->type.get() );
1437
1438 for ( unsigned i = 0 ; i < mutType->params.size() ; ++i ) {
1439 if ( const ast::ObjectDecl * obj = mutType->params[i].as< ast::ObjectDecl >() ) {
1440 if ( const ast::SingleInit * init = obj->init.as< ast::SingleInit >() ) {
1441 if ( init->value->env == nullptr ) continue;
1442 // clone initializer minus the initializer environment
1443 auto mutParam = mutate( mutType->params[i].strict_as< ast::ObjectDecl >() );
1444 auto mutInit = mutate( mutParam->init.strict_as< ast::SingleInit >() );
1445 auto mutValue = mutate( mutInit->value.get() );
1446
1447 mutValue->env = nullptr;
1448 mutInit->value = mutValue;
1449 mutParam->init = mutInit;
1450 mutType->params[i] = mutParam;
1451
1452 assert( ! mutType->params[i].strict_as< ast::ObjectDecl >()->init.strict_as< ast::SingleInit >()->value->env);
1453 }
1454 }
[2a8f0c1]1455 }
[73973b6]1456 mutate_field(functionDecl, &ast::FunctionDecl::type, mutType);
1457 return functionDecl;
[d76c588]1458 }
1459
[16ba4a6f]1460 const ast::ObjectDecl * Resolver_new::previsit( const ast::ObjectDecl * objectDecl ) {
[ef5b828]1461 // To handle initialization of routine pointers [e.g. int (*fp)(int) = foo()],
1462 // class-variable `initContext` is changed multiple times because the LHS is analyzed
1463 // twice. The second analysis changes `initContext` because a function type can contain
1464 // object declarations in the return and parameter types. Therefore each value of
1465 // `initContext` is retained so the type on the first analysis is preserved and used for
[b7d92b96]1466 // selecting the RHS.
1467 GuardValue( currentObject );
[16ba4a6f]1468
[b7d92b96]1469 if ( inEnumDecl && dynamic_cast< const ast::EnumInstType * >( objectDecl->get_type() ) ) {
[ef5b828]1470 // enumerator initializers should not use the enum type to initialize, since the
[b7d92b96]1471 // enum type is still incomplete at this point. Use `int` instead.
[16ba4a6f]1472 objectDecl = fixObjectType(objectDecl, symtab);
[ef5b828]1473 currentObject = ast::CurrentObject{
[2b59f55]1474 objectDecl->location, new ast::BasicType{ ast::BasicType::SignedInt } };
[b7d92b96]1475 }
[16ba4a6f]1476 else {
1477 if (!objectDecl->isTypeFixed) {
1478 auto newDecl = fixObjectType(objectDecl, symtab);
1479 auto mutDecl = mutate(newDecl);
[4a8f150]1480
[16ba4a6f]1481 // generate CtorInit wrapper when necessary.
1482 // in certain cases, fixObjectType is called before reaching
1483 // this object in visitor pass, thus disabling CtorInit codegen.
1484 // this happens on aggregate members and function parameters.
1485 if ( InitTweak::tryConstruct( mutDecl ) && ( managedTypes.isManaged( mutDecl ) || ((! isInFunction() || mutDecl->storage.is_static ) && ! InitTweak::isConstExpr( mutDecl->init ) ) ) ) {
1486 // constructed objects cannot be designated
1487 if ( InitTweak::isDesignated( mutDecl->init ) ) SemanticError( mutDecl, "Cannot include designations in the initializer for a managed Object. If this is really what you want, then initialize with @=.\n" );
1488 // constructed objects should not have initializers nested too deeply
1489 if ( ! InitTweak::checkInitDepth( mutDecl ) ) SemanticError( mutDecl, "Managed object's initializer is too deep " );
1490
1491 mutDecl->init = InitTweak::genCtorInit( mutDecl->location, mutDecl );
1492 }
1493
1494 objectDecl = mutDecl;
1495 }
1496 currentObject = ast::CurrentObject{ objectDecl->location, objectDecl->get_type() };
1497 }
[4a8f150]1498
[16ba4a6f]1499 return objectDecl;
1500 }
1501
1502 void Resolver_new::previsit( const ast::AggregateDecl * _aggDecl ) {
1503 auto aggDecl = mutate(_aggDecl);
1504 assertf(aggDecl == _aggDecl, "type declarations must be unique");
1505
1506 for (auto & member: aggDecl->members) {
1507 // nested type decls are hoisted already. no need to do anything
1508 if (auto obj = member.as<ast::ObjectDecl>()) {
1509 member = fixObjectType(obj, symtab);
1510 }
1511 }
1512 }
1513
1514 void Resolver_new::previsit( const ast::StructDecl * structDecl ) {
1515 previsit(static_cast<const ast::AggregateDecl *>(structDecl));
1516 managedTypes.handleStruct(structDecl);
[d76c588]1517 }
1518
[99d4584]1519 void Resolver_new::previsit( const ast::EnumDecl * ) {
1520 // in case we decide to allow nested enums
1521 GuardValue( inEnumDecl );
[2890212]1522 inEnumDecl = true;
[16ba4a6f]1523 // don't need to fix types for enum fields
[d76c588]1524 }
1525
[16ba4a6f]1526
[ef5b828]1527 const ast::StaticAssertDecl * Resolver_new::previsit(
1528 const ast::StaticAssertDecl * assertDecl
[99d4584]1529 ) {
[ef5b828]1530 return ast::mutate_field(
1531 assertDecl, &ast::StaticAssertDecl::cond,
[b7d92b96]1532 findIntegralExpression( assertDecl->cond, symtab ) );
1533 }
1534
1535 template< typename PtrType >
[0f6a7752]1536 const PtrType * handlePtrType( const PtrType * type, const ast::SymbolTable & symtab ) {
1537 if ( type->dimension ) {
[8ba363e]1538 ast::ptr< ast::Type > sizeType = ast::sizeType;
[ef5b828]1539 ast::mutate_field(
1540 type, &PtrType::dimension,
[0f6a7752]1541 findSingleExpression( type->dimension, sizeType, symtab ) );
1542 }
1543 return type;
[d76c588]1544 }
1545
[0f6a7752]1546 const ast::ArrayType * Resolver_new::previsit( const ast::ArrayType * at ) {
1547 return handlePtrType( at, symtab );
[d76c588]1548 }
1549
[0f6a7752]1550 const ast::PointerType * Resolver_new::previsit( const ast::PointerType * pt ) {
1551 return handlePtrType( pt, symtab );
[d76c588]1552 }
1553
[b7d92b96]1554 const ast::ExprStmt * Resolver_new::previsit( const ast::ExprStmt * exprStmt ) {
1555 visit_children = false;
1556 assertf( exprStmt->expr, "ExprStmt has null expression in resolver" );
[ef5b828]1557
1558 return ast::mutate_field(
[b7d92b96]1559 exprStmt, &ast::ExprStmt::expr, findVoidExpression( exprStmt->expr, symtab ) );
[d76c588]1560 }
1561
[b7d92b96]1562 const ast::AsmExpr * Resolver_new::previsit( const ast::AsmExpr * asmExpr ) {
1563 visit_children = false;
1564
[ef5b828]1565 asmExpr = ast::mutate_field(
[b7d92b96]1566 asmExpr, &ast::AsmExpr::operand, findVoidExpression( asmExpr->operand, symtab ) );
[ef5b828]1567
[b7d92b96]1568 return asmExpr;
[d76c588]1569 }
1570
[2b59f55]1571 const ast::AsmStmt * Resolver_new::previsit( const ast::AsmStmt * asmStmt ) {
1572 visitor->maybe_accept( asmStmt, &ast::AsmStmt::input );
1573 visitor->maybe_accept( asmStmt, &ast::AsmStmt::output );
1574 visit_children = false;
1575 return asmStmt;
[d76c588]1576 }
1577
[b7d92b96]1578 const ast::IfStmt * Resolver_new::previsit( const ast::IfStmt * ifStmt ) {
1579 return ast::mutate_field(
1580 ifStmt, &ast::IfStmt::cond, findIntegralExpression( ifStmt->cond, symtab ) );
[d76c588]1581 }
1582
[3b0bc16]1583 const ast::WhileDoStmt * Resolver_new::previsit( const ast::WhileDoStmt * whileDoStmt ) {
[ef5b828]1584 return ast::mutate_field(
[3b0bc16]1585 whileDoStmt, &ast::WhileDoStmt::cond, findIntegralExpression( whileDoStmt->cond, symtab ) );
[d76c588]1586 }
1587
[b7d92b96]1588 const ast::ForStmt * Resolver_new::previsit( const ast::ForStmt * forStmt ) {
1589 if ( forStmt->cond ) {
1590 forStmt = ast::mutate_field(
1591 forStmt, &ast::ForStmt::cond, findIntegralExpression( forStmt->cond, symtab ) );
1592 }
1593
1594 if ( forStmt->inc ) {
1595 forStmt = ast::mutate_field(
1596 forStmt, &ast::ForStmt::inc, findVoidExpression( forStmt->inc, symtab ) );
1597 }
1598
1599 return forStmt;
[d76c588]1600 }
1601
[b7d92b96]1602 const ast::SwitchStmt * Resolver_new::previsit( const ast::SwitchStmt * switchStmt ) {
1603 GuardValue( currentObject );
1604 switchStmt = ast::mutate_field(
[ef5b828]1605 switchStmt, &ast::SwitchStmt::cond,
[b7d92b96]1606 findIntegralExpression( switchStmt->cond, symtab ) );
[2b59f55]1607 currentObject = ast::CurrentObject{ switchStmt->location, switchStmt->cond->result };
[b7d92b96]1608 return switchStmt;
[d76c588]1609 }
1610
[b7d92b96]1611 const ast::CaseStmt * Resolver_new::previsit( const ast::CaseStmt * caseStmt ) {
1612 if ( caseStmt->cond ) {
[60aaa51d]1613 std::deque< ast::InitAlternative > initAlts = currentObject.getOptions();
[2b59f55]1614 assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral "
1615 "expression." );
[ef5b828]1616
1617 ast::ptr< ast::Expr > untyped =
[2b59f55]1618 new ast::CastExpr{ caseStmt->location, caseStmt->cond, initAlts.front().type };
[2773ab8]1619 ast::ptr< ast::Expr > newExpr = findSingleExpression( untyped, symtab );
[ef5b828]1620
1621 // case condition cannot have a cast in C, so it must be removed here, regardless of
[2b59f55]1622 // whether it would perform a conversion.
1623 if ( const ast::CastExpr * castExpr = newExpr.as< ast::CastExpr >() ) {
[60aaa51d]1624 swap_and_save_env( newExpr, castExpr->arg );
[2b59f55]1625 }
[ef5b828]1626
[2b59f55]1627 caseStmt = ast::mutate_field( caseStmt, &ast::CaseStmt::cond, newExpr );
[b7d92b96]1628 }
1629 return caseStmt;
[d76c588]1630 }
1631
[b7d92b96]1632 const ast::BranchStmt * Resolver_new::previsit( const ast::BranchStmt * branchStmt ) {
1633 visit_children = false;
1634 // must resolve the argument of a computed goto
1635 if ( branchStmt->kind == ast::BranchStmt::Goto && branchStmt->computedTarget ) {
1636 // computed goto argument is void*
[2773ab8]1637 ast::ptr< ast::Type > target = new ast::PointerType{ new ast::VoidType{} };
[b7d92b96]1638 branchStmt = ast::mutate_field(
[ef5b828]1639 branchStmt, &ast::BranchStmt::computedTarget,
[2773ab8]1640 findSingleExpression( branchStmt->computedTarget, target, symtab ) );
[b7d92b96]1641 }
1642 return branchStmt;
[d76c588]1643 }
1644
[2b59f55]1645 const ast::ReturnStmt * Resolver_new::previsit( const ast::ReturnStmt * returnStmt ) {
1646 visit_children = false;
1647 if ( returnStmt->expr ) {
1648 returnStmt = ast::mutate_field(
[ef5b828]1649 returnStmt, &ast::ReturnStmt::expr,
[2b59f55]1650 findSingleExpression( returnStmt->expr, functionReturn, symtab ) );
1651 }
1652 return returnStmt;
[d76c588]1653 }
1654
[2b59f55]1655 const ast::ThrowStmt * Resolver_new::previsit( const ast::ThrowStmt * throwStmt ) {
1656 visit_children = false;
1657 if ( throwStmt->expr ) {
[ef5b828]1658 const ast::StructDecl * exceptionDecl =
[3090127]1659 symtab.lookupStruct( "__cfaehm_base_exception_t" );
[2b59f55]1660 assert( exceptionDecl );
[ef5b828]1661 ast::ptr< ast::Type > exceptType =
[2b59f55]1662 new ast::PointerType{ new ast::StructInstType{ exceptionDecl } };
1663 throwStmt = ast::mutate_field(
[ef5b828]1664 throwStmt, &ast::ThrowStmt::expr,
[2b59f55]1665 findSingleExpression( throwStmt->expr, exceptType, symtab ) );
1666 }
1667 return throwStmt;
[d76c588]1668 }
1669
[2b59f55]1670 const ast::CatchStmt * Resolver_new::previsit( const ast::CatchStmt * catchStmt ) {
[3b0bc16]1671 // Until we are very sure this invarent (ifs that move between passes have then)
[b9fa85b]1672 // holds, check it. This allows a check for when to decode the mangling.
1673 if ( auto ifStmt = catchStmt->body.as<ast::IfStmt>() ) {
[3b0bc16]1674 assert( ifStmt->then );
[b9fa85b]1675 }
1676 // Encode the catchStmt so the condition can see the declaration.
[2b59f55]1677 if ( catchStmt->cond ) {
[b9fa85b]1678 ast::CatchStmt * stmt = mutate( catchStmt );
1679 stmt->body = new ast::IfStmt( stmt->location, stmt->cond, nullptr, stmt->body );
1680 stmt->cond = nullptr;
1681 return stmt;
1682 }
1683 return catchStmt;
1684 }
1685
1686 const ast::CatchStmt * Resolver_new::postvisit( const ast::CatchStmt * catchStmt ) {
1687 // Decode the catchStmt so everything is stored properly.
1688 const ast::IfStmt * ifStmt = catchStmt->body.as<ast::IfStmt>();
[3b0bc16]1689 if ( nullptr != ifStmt && nullptr == ifStmt->then ) {
[b9fa85b]1690 assert( ifStmt->cond );
[3b0bc16]1691 assert( ifStmt->else_ );
[b9fa85b]1692 ast::CatchStmt * stmt = ast::mutate( catchStmt );
1693 stmt->cond = ifStmt->cond;
[3b0bc16]1694 stmt->body = ifStmt->else_;
[b9fa85b]1695 // ifStmt should be implicately deleted here.
1696 return stmt;
[2b59f55]1697 }
1698 return catchStmt;
[d76c588]1699 }
1700
[2773ab8]1701 const ast::WaitForStmt * Resolver_new::previsit( const ast::WaitForStmt * stmt ) {
1702 visit_children = false;
1703
1704 // Resolve all clauses first
1705 for ( unsigned i = 0; i < stmt->clauses.size(); ++i ) {
1706 const ast::WaitForStmt::Clause & clause = stmt->clauses[i];
1707
1708 ast::TypeEnvironment env;
1709 CandidateFinder funcFinder{ symtab, env };
1710
1711 // Find all candidates for a function in canonical form
1712 funcFinder.find( clause.target.func, ResolvMode::withAdjustment() );
1713
1714 if ( funcFinder.candidates.empty() ) {
1715 stringstream ss;
1716 ss << "Use of undeclared indentifier '";
1717 ss << clause.target.func.strict_as< ast::NameExpr >()->name;
1718 ss << "' in call to waitfor";
1719 SemanticError( stmt->location, ss.str() );
1720 }
1721
1722 if ( clause.target.args.empty() ) {
[ef5b828]1723 SemanticError( stmt->location,
[2773ab8]1724 "Waitfor clause must have at least one mutex parameter");
1725 }
1726
1727 // Find all alternatives for all arguments in canonical form
[ef5b828]1728 std::vector< CandidateFinder > argFinders =
[2773ab8]1729 funcFinder.findSubExprs( clause.target.args );
[ef5b828]1730
[2773ab8]1731 // List all combinations of arguments
1732 std::vector< CandidateList > possibilities;
1733 combos( argFinders.begin(), argFinders.end(), back_inserter( possibilities ) );
1734
1735 // For every possible function:
[ef5b828]1736 // * try matching the arguments to the parameters, not the other way around because
[2773ab8]1737 // more arguments than parameters
1738 CandidateList funcCandidates;
1739 std::vector< CandidateList > argsCandidates;
1740 SemanticErrorException errors;
1741 for ( CandidateRef & func : funcFinder.candidates ) {
1742 try {
[ef5b828]1743 auto pointerType = dynamic_cast< const ast::PointerType * >(
[2773ab8]1744 func->expr->result->stripReferences() );
1745 if ( ! pointerType ) {
[ef5b828]1746 SemanticError( stmt->location, func->expr->result.get(),
[2773ab8]1747 "candidate not viable: not a pointer type\n" );
1748 }
1749
1750 auto funcType = pointerType->base.as< ast::FunctionType >();
1751 if ( ! funcType ) {
[ef5b828]1752 SemanticError( stmt->location, func->expr->result.get(),
[2773ab8]1753 "candidate not viable: not a function type\n" );
1754 }
1755
1756 {
1757 auto param = funcType->params.begin();
1758 auto paramEnd = funcType->params.end();
1759
1760 if( ! nextMutex( param, paramEnd ) ) {
[ef5b828]1761 SemanticError( stmt->location, funcType,
[2773ab8]1762 "candidate function not viable: no mutex parameters\n");
1763 }
1764 }
1765
1766 CandidateRef func2{ new Candidate{ *func } };
1767 // strip reference from function
1768 func2->expr = referenceToRvalueConversion( func->expr, func2->cost );
1769
1770 // Each argument must be matched with a parameter of the current candidate
1771 for ( auto & argsList : possibilities ) {
1772 try {
1773 // Declare data structures needed for resolution
1774 ast::OpenVarSet open;
1775 ast::AssertionSet need, have;
1776 ast::TypeEnvironment resultEnv{ func->env };
[ef5b828]1777 // Add all type variables as open so that those not used in the
[2773ab8]1778 // parameter list are still considered open
1779 resultEnv.add( funcType->forall );
1780
1781 // load type variables from arguments into one shared space
1782 for ( auto & arg : argsList ) {
1783 resultEnv.simpleCombine( arg->env );
1784 }
1785
1786 // Make sure we don't widen any existing bindings
1787 resultEnv.forbidWidening();
1788
1789 // Find any unbound type variables
1790 resultEnv.extractOpenVars( open );
1791
1792 auto param = funcType->params.begin();
1793 auto paramEnd = funcType->params.end();
1794
1795 unsigned n_mutex_param = 0;
1796
[ef5b828]1797 // For every argument of its set, check if it matches one of the
[2773ab8]1798 // parameters. The order is important
1799 for ( auto & arg : argsList ) {
1800 // Ignore non-mutex arguments
1801 if ( ! nextMutex( param, paramEnd ) ) {
1802 // We ran out of parameters but still have arguments.
1803 // This function doesn't match
[ef5b828]1804 SemanticError( stmt->location, funcType,
[2773ab8]1805 toString("candidate function not viable: too many mutex "
1806 "arguments, expected ", n_mutex_param, "\n" ) );
1807 }
1808
1809 ++n_mutex_param;
1810
[ef5b828]1811 // Check if the argument matches the parameter type in the current
[2773ab8]1812 // scope
[954c954]1813 // ast::ptr< ast::Type > paramType = (*param)->get_type();
[ef5b828]1814 if (
1815 ! unify(
[954c954]1816 arg->expr->result, *param, resultEnv, need, have, open,
[ef5b828]1817 symtab )
[2773ab8]1818 ) {
1819 // Type doesn't match
1820 stringstream ss;
1821 ss << "candidate function not viable: no known conversion "
1822 "from '";
[954c954]1823 ast::print( ss, *param );
[2773ab8]1824 ss << "' to '";
1825 ast::print( ss, arg->expr->result );
1826 ss << "' with env '";
1827 ast::print( ss, resultEnv );
1828 ss << "'\n";
1829 SemanticError( stmt->location, funcType, ss.str() );
1830 }
1831
1832 ++param;
1833 }
1834
1835 // All arguments match!
1836
1837 // Check if parameters are missing
1838 if ( nextMutex( param, paramEnd ) ) {
1839 do {
1840 ++n_mutex_param;
1841 ++param;
1842 } while ( nextMutex( param, paramEnd ) );
1843
[ef5b828]1844 // We ran out of arguments but still have parameters left; this
[2773ab8]1845 // function doesn't match
[ef5b828]1846 SemanticError( stmt->location, funcType,
[2773ab8]1847 toString( "candidate function not viable: too few mutex "
1848 "arguments, expected ", n_mutex_param, "\n" ) );
1849 }
1850
1851 // All parameters match!
1852
1853 // Finish the expressions to tie in proper environments
1854 finishExpr( func2->expr, resultEnv );
1855 for ( CandidateRef & arg : argsList ) {
1856 finishExpr( arg->expr, resultEnv );
1857 }
1858
1859 // This is a match, store it and save it for later
1860 funcCandidates.emplace_back( std::move( func2 ) );
1861 argsCandidates.emplace_back( std::move( argsList ) );
1862
1863 } catch ( SemanticErrorException & e ) {
1864 errors.append( e );
1865 }
1866 }
1867 } catch ( SemanticErrorException & e ) {
1868 errors.append( e );
1869 }
1870 }
1871
1872 // Make sure correct number of arguments
1873 if( funcCandidates.empty() ) {
[ef5b828]1874 SemanticErrorException top( stmt->location,
[2773ab8]1875 "No alternatives for function in call to waitfor" );
1876 top.append( errors );
1877 throw top;
1878 }
1879
1880 if( argsCandidates.empty() ) {
[ef5b828]1881 SemanticErrorException top( stmt->location,
1882 "No alternatives for arguments in call to waitfor" );
[2773ab8]1883 top.append( errors );
1884 throw top;
1885 }
1886
1887 if( funcCandidates.size() > 1 ) {
[ef5b828]1888 SemanticErrorException top( stmt->location,
[2773ab8]1889 "Ambiguous function in call to waitfor" );
1890 top.append( errors );
1891 throw top;
1892 }
1893 if( argsCandidates.size() > 1 ) {
1894 SemanticErrorException top( stmt->location,
1895 "Ambiguous arguments in call to waitfor" );
1896 top.append( errors );
1897 throw top;
1898 }
1899 // TODO: need to use findDeletedExpr to ensure no deleted identifiers are used.
1900
1901 // build new clause
1902 ast::WaitForStmt::Clause clause2;
[ef5b828]1903
[2773ab8]1904 clause2.target.func = funcCandidates.front()->expr;
[ef5b828]1905
[2773ab8]1906 clause2.target.args.reserve( clause.target.args.size() );
[6668a3e]1907 const ast::StructDecl * decl_monitor = symtab.lookupStruct( "monitor$" );
[2773ab8]1908 for ( auto arg : argsCandidates.front() ) {
[6668a3e]1909 const auto & loc = stmt->location;
1910
1911 ast::Expr * init = new ast::CastExpr( loc,
1912 new ast::UntypedExpr( loc,
1913 new ast::NameExpr( loc, "get_monitor" ),
1914 { arg->expr }
1915 ),
1916 new ast::PointerType(
1917 new ast::StructInstType(
1918 decl_monitor
1919 )
1920 )
1921 );
1922
1923 clause2.target.args.emplace_back( findSingleExpression( init, symtab ) );
[2773ab8]1924 }
1925
1926 // Resolve the conditions as if it were an IfStmt, statements normally
1927 clause2.cond = findSingleExpression( clause.cond, symtab );
1928 clause2.stmt = clause.stmt->accept( *visitor );
1929
1930 // set results into stmt
1931 auto n = mutate( stmt );
1932 n->clauses[i] = std::move( clause2 );
1933 stmt = n;
1934 }
1935
1936 if ( stmt->timeout.stmt ) {
1937 // resolve the timeout as a size_t, the conditions like IfStmt, and stmts normally
1938 ast::WaitForStmt::Timeout timeout2;
1939
[ef5b828]1940 ast::ptr< ast::Type > target =
[2773ab8]1941 new ast::BasicType{ ast::BasicType::LongLongUnsignedInt };
1942 timeout2.time = findSingleExpression( stmt->timeout.time, target, symtab );
1943 timeout2.cond = findSingleExpression( stmt->timeout.cond, symtab );
1944 timeout2.stmt = stmt->timeout.stmt->accept( *visitor );
1945
1946 // set results into stmt
1947 auto n = mutate( stmt );
1948 n->timeout = std::move( timeout2 );
1949 stmt = n;
1950 }
1951
1952 if ( stmt->orElse.stmt ) {
1953 // resolve the condition like IfStmt, stmts normally
1954 ast::WaitForStmt::OrElse orElse2;
1955
1956 orElse2.cond = findSingleExpression( stmt->orElse.cond, symtab );
1957 orElse2.stmt = stmt->orElse.stmt->accept( *visitor );
1958
1959 // set results into stmt
1960 auto n = mutate( stmt );
1961 n->orElse = std::move( orElse2 );
1962 stmt = n;
1963 }
1964
1965 return stmt;
[d76c588]1966 }
1967
[16ba4a6f]1968 const ast::WithStmt * Resolver_new::previsit( const ast::WithStmt * withStmt ) {
1969 auto mutStmt = mutate(withStmt);
1970 resolveWithExprs(mutStmt->exprs, stmtsToAddBefore);
1971 return mutStmt;
1972 }
1973
1974 void Resolver_new::resolveWithExprs(std::vector<ast::ptr<ast::Expr>> & exprs, std::list<ast::ptr<ast::Stmt>> & stmtsToAdd) {
1975 for (auto & expr : exprs) {
1976 // only struct- and union-typed expressions are viable candidates
1977 expr = findKindExpression( expr, symtab, structOrUnion, "with expression" );
1978
1979 // if with expression might be impure, create a temporary so that it is evaluated once
1980 if ( Tuples::maybeImpure( expr ) ) {
1981 static UniqueName tmpNamer( "_with_tmp_" );
1982 const CodeLocation loc = expr->location;
1983 auto tmp = new ast::ObjectDecl(loc, tmpNamer.newName(), expr->result, new ast::SingleInit(loc, expr ) );
1984 expr = new ast::VariableExpr( loc, tmp );
1985 stmtsToAdd.push_back( new ast::DeclStmt(loc, tmp ) );
1986 if ( InitTweak::isConstructable( tmp->type ) ) {
1987 // generate ctor/dtor and resolve them
1988 tmp->init = InitTweak::genCtorInit( loc, tmp );
1989 }
1990 // since tmp is freshly created, this should modify tmp in-place
1991 tmp->accept( *visitor );
1992 }
1993 }
1994 }
[60aaa51d]1995
1996
1997 const ast::SingleInit * Resolver_new::previsit( const ast::SingleInit * singleInit ) {
1998 visit_children = false;
[ef5b828]1999 // resolve initialization using the possibilities as determined by the `currentObject`
[60aaa51d]2000 // cursor.
[ef5b828]2001 ast::ptr< ast::Expr > untyped = new ast::UntypedInitExpr{
[60aaa51d]2002 singleInit->location, singleInit->value, currentObject.getOptions() };
[2773ab8]2003 ast::ptr<ast::Expr> newExpr = findSingleExpression( untyped, symtab );
[60aaa51d]2004 const ast::InitExpr * initExpr = newExpr.strict_as< ast::InitExpr >();
2005
2006 // move cursor to the object that is actually initialized
2007 currentObject.setNext( initExpr->designation );
2008
2009 // discard InitExpr wrapper and retain relevant pieces.
[ef5b828]2010 // `initExpr` may have inferred params in the case where the expression specialized a
2011 // function pointer, and newExpr may already have inferParams of its own, so a simple
[60aaa51d]2012 // swap is not sufficient
2013 ast::Expr::InferUnion inferred = initExpr->inferred;
2014 swap_and_save_env( newExpr, initExpr->expr );
2015 newExpr.get_and_mutate()->inferred.splice( std::move(inferred) );
2016
[ef5b828]2017 // get the actual object's type (may not exactly match what comes back from the resolver
[60aaa51d]2018 // due to conversions)
2019 const ast::Type * initContext = currentObject.getCurrentType();
2020
2021 removeExtraneousCast( newExpr, symtab );
2022
2023 // check if actual object's type is char[]
2024 if ( auto at = dynamic_cast< const ast::ArrayType * >( initContext ) ) {
2025 if ( isCharType( at->base ) ) {
2026 // check if the resolved type is char*
2027 if ( auto pt = newExpr->result.as< ast::PointerType >() ) {
2028 if ( isCharType( pt->base ) ) {
[ef5b828]2029 // strip cast if we're initializing a char[] with a char*
[60aaa51d]2030 // e.g. char x[] = "hello"
2031 if ( auto ce = newExpr.as< ast::CastExpr >() ) {
2032 swap_and_save_env( newExpr, ce->arg );
2033 }
2034 }
2035 }
2036 }
2037 }
2038
2039 // move cursor to next object in preparation for next initializer
2040 currentObject.increment();
2041
2042 // set initializer expression to resolved expression
2043 return ast::mutate_field( singleInit, &ast::SingleInit::value, std::move(newExpr) );
[d76c588]2044 }
2045
[60aaa51d]2046 const ast::ListInit * Resolver_new::previsit( const ast::ListInit * listInit ) {
2047 // move cursor into brace-enclosed initializer-list
2048 currentObject.enterListInit( listInit->location );
2049
2050 assert( listInit->designations.size() == listInit->initializers.size() );
2051 for ( unsigned i = 0; i < listInit->designations.size(); ++i ) {
[ef5b828]2052 // iterate designations and initializers in pairs, moving the cursor to the current
[60aaa51d]2053 // designated object and resolving the initializer against that object
[2d11663]2054 listInit = ast::mutate_field_index(
[ef5b828]2055 listInit, &ast::ListInit::designations, i,
[2d11663]2056 currentObject.findNext( listInit->designations[i] ) );
2057 listInit = ast::mutate_field_index(
2058 listInit, &ast::ListInit::initializers, i,
2059 listInit->initializers[i]->accept( *visitor ) );
[60aaa51d]2060 }
2061
[2d11663]2062 // move cursor out of brace-enclosed initializer-list
2063 currentObject.exitListInit();
2064
[60aaa51d]2065 visit_children = false;
2066 return listInit;
[d76c588]2067 }
2068
[2d11663]2069 const ast::ConstructorInit * Resolver_new::previsit( const ast::ConstructorInit * ctorInit ) {
2070 visitor->maybe_accept( ctorInit, &ast::ConstructorInit::ctor );
2071 visitor->maybe_accept( ctorInit, &ast::ConstructorInit::dtor );
2072
2073 // found a constructor - can get rid of C-style initializer
2074 // xxx - Rob suggests this field is dead code
2075 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::init, nullptr );
2076
[ef5b828]2077 // intrinsic single-parameter constructors and destructors do nothing. Since this was
2078 // implicitly generated, there's no way for it to have side effects, so get rid of it to
[2d11663]2079 // clean up generated code
2080 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->ctor ) ) {
2081 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::ctor, nullptr );
2082 }
2083 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->dtor ) ) {
2084 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::dtor, nullptr );
2085 }
2086
2087 return ctorInit;
[d76c588]2088 }
2089
[0dd9a5e]2090 // suppress error on autogen functions and mark invalid autogen as deleted.
[e00c22f]2091 bool Resolver_new::on_error(ast::ptr<ast::Decl> & decl) {
[0dd9a5e]2092 if (auto functionDecl = decl.as<ast::FunctionDecl>()) {
2093 // xxx - can intrinsic gen ever fail?
[6668a3e]2094 if (functionDecl->linkage == ast::Linkage::AutoGen) {
[0dd9a5e]2095 auto mutDecl = mutate(functionDecl);
2096 mutDecl->isDeleted = true;
2097 mutDecl->stmts = nullptr;
2098 decl = mutDecl;
2099 return false;
2100 }
2101 }
2102 return true;
2103 }
2104
[51b73452]2105} // namespace ResolvExpr
[a32b204]2106
2107// Local Variables: //
2108// tab-width: 4 //
2109// mode: c++ //
2110// compile-command: "make install" //
2111// End: //
Note: See TracBrowser for help on using the repository browser.