source: src/ResolvExpr/Resolver.cc@ b185ed2

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since b185ed2 was b107885, checked in by Fangren Yu <f37yu@…>, 5 years ago

remove warning message

  • Property mode set to 100644
File size: 76.3 KB
RevLine 
[a32b204]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
[71f4e4f]7// Resolver.cc --
[a32b204]8//
[d76c588]9// Author : Aaron B. Moss
[a32b204]10// Created On : Sun May 17 12:17:01 2015
[3090127]11// Last Modified By : Andrew Beach
12// Last Modified On : Fri Mar 27 11:58:00 2020
13// Update Count : 242
[a32b204]14//
15
[e3e16bc]16#include <cassert> // for strict_dynamic_cast, assert
[ea6332d]17#include <memory> // for allocator, allocator_traits<...
18#include <tuple> // for get
[6d6e829]19#include <vector> // for vector
[ea6332d]20
21#include "Alternative.h" // for Alternative, AltList
22#include "AlternativeFinder.h" // for AlternativeFinder, resolveIn...
[99d4584]23#include "Candidate.hpp"
24#include "CandidateFinder.hpp"
[d76c588]25#include "CurrentObject.h" // for CurrentObject
26#include "RenameVars.h" // for RenameVars, global_renamer
27#include "Resolver.h"
[16ba4a6f]28#include "ResolveTypeof.h"
[d76c588]29#include "ResolvMode.h" // for ResolvMode
30#include "typeops.h" // for extractResultType
31#include "Unify.h" // for unify
[16ba4a6f]32#include "CompilationState.h"
[4864a73]33#include "AST/Chain.hpp"
[2a8f0c1]34#include "AST/Decl.hpp"
35#include "AST/Init.hpp"
[d76c588]36#include "AST/Pass.hpp"
[99d4584]37#include "AST/Print.hpp"
[d76c588]38#include "AST/SymbolTable.hpp"
[2773ab8]39#include "AST/Type.hpp"
[a4ca48c]40#include "Common/PassVisitor.h" // for PassVisitor
[ea6332d]41#include "Common/SemanticError.h" // for SemanticError
[57e0289]42#include "Common/Stats/ResolveTime.h" // for ResolveTime::start(), ResolveTime::stop()
[ea6332d]43#include "Common/utility.h" // for ValueGuard, group_iterate
[0a60c04]44#include "InitTweak/GenInit.h"
[ea6332d]45#include "InitTweak/InitTweak.h" // for isIntrinsicSingleArgCallStmt
46#include "ResolvExpr/TypeEnvironment.h" // for TypeEnvironment
47#include "SymTab/Autogen.h" // for SizeType
48#include "SymTab/Indexer.h" // for Indexer
[16ba4a6f]49#include "SymTab/Mangler.h" // for Mangler
[ea6332d]50#include "SynTree/Declaration.h" // for ObjectDecl, TypeDecl, Declar...
51#include "SynTree/Expression.h" // for Expression, CastExpr, InitExpr
52#include "SynTree/Initializer.h" // for ConstructorInit, SingleInit
53#include "SynTree/Statement.h" // for ForStmt, Statement, BranchStmt
54#include "SynTree/Type.h" // for Type, BasicType, PointerType
55#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
56#include "SynTree/Visitor.h" // for acceptAll, maybeAccept
[0a60c04]57#include "Tuples/Tuples.h"
[2bfc6b2]58#include "Validate/FindSpecialDecls.h" // for SizeType
[51b73452]59
[d9a0e76]60using namespace std;
[51b73452]61
[d9a0e76]62namespace ResolvExpr {
[d76c588]63 struct Resolver_old final : public WithIndexer, public WithGuards, public WithVisitorRef<Resolver_old>, public WithShortCircuiting, public WithStmtsToAdd {
64 Resolver_old() {}
65 Resolver_old( const SymTab::Indexer & other ) {
[a4ca48c]66 indexer = other;
[1d2b64f]67 }
[71f4e4f]68
[5170d95]69 void previsit( FunctionDecl * functionDecl );
70 void postvisit( FunctionDecl * functionDecl );
71 void previsit( ObjectDecl * objectDecll );
[a4ca48c]72 void previsit( EnumDecl * enumDecl );
[bd87b138]73 void previsit( StaticAssertDecl * assertDecl );
[a4ca48c]74
75 void previsit( ArrayType * at );
76 void previsit( PointerType * at );
77
[5170d95]78 void previsit( ExprStmt * exprStmt );
79 void previsit( AsmExpr * asmExpr );
80 void previsit( AsmStmt * asmStmt );
81 void previsit( IfStmt * ifStmt );
82 void previsit( WhileStmt * whileStmt );
83 void previsit( ForStmt * forStmt );
84 void previsit( SwitchStmt * switchStmt );
85 void previsit( CaseStmt * caseStmt );
86 void previsit( BranchStmt * branchStmt );
87 void previsit( ReturnStmt * returnStmt );
88 void previsit( ThrowStmt * throwStmt );
89 void previsit( CatchStmt * catchStmt );
[3b9c674]90 void postvisit( CatchStmt * catchStmt );
[695e00d]91 void previsit( WaitForStmt * stmt );
[a4ca48c]92
[5170d95]93 void previsit( SingleInit * singleInit );
94 void previsit( ListInit * listInit );
95 void previsit( ConstructorInit * ctorInit );
[a32b204]96 private:
[c28a038d]97 typedef std::list< Initializer * >::iterator InitIterator;
[94b4364]98
[40e636a]99 template< typename PtrType >
100 void handlePtrType( PtrType * type );
101
[c28a038d]102 void fallbackInit( ConstructorInit * ctorInit );
[b726084]103
[77971f6]104 Type * functionReturn = nullptr;
[e4d829b]105 CurrentObject currentObject = nullptr;
[a436947]106 bool inEnumDecl = false;
[a32b204]107 };
[d9a0e76]108
[2a6292d]109 struct ResolveWithExprs : public WithIndexer, public WithGuards, public WithVisitorRef<ResolveWithExprs>, public WithShortCircuiting, public WithStmtsToAdd {
110 void previsit( FunctionDecl * );
111 void previsit( WithStmt * );
112
113 void resolveWithExprs( std::list< Expression * > & withExprs, std::list< Statement * > & newStmts );
114 };
115
[a32b204]116 void resolve( std::list< Declaration * > translationUnit ) {
[d76c588]117 PassVisitor<Resolver_old> resolver;
[a32b204]118 acceptAll( translationUnit, resolver );
[d9a0e76]119 }
120
[5170d95]121 void resolveDecl( Declaration * decl, const SymTab::Indexer & indexer ) {
[d76c588]122 PassVisitor<Resolver_old> resolver( indexer );
[8b11840]123 maybeAccept( decl, resolver );
124 }
125
[c71b256]126 namespace {
[99d4584]127 struct DeleteFinder_old : public WithShortCircuiting {
[c71b256]128 DeletedExpr * delExpr = nullptr;
129 void previsit( DeletedExpr * expr ) {
130 if ( delExpr ) visit_children = false;
131 else delExpr = expr;
132 }
133
134 void previsit( Expression * ) {
135 if ( delExpr ) visit_children = false;
136 }
137 };
138 }
139
140 DeletedExpr * findDeletedExpr( Expression * expr ) {
[99d4584]141 PassVisitor<DeleteFinder_old> finder;
[c71b256]142 expr->accept( finder );
143 return finder.pass.delExpr;
[d9a0e76]144 }
[a32b204]145
146 namespace {
[99d4584]147 struct StripCasts_old {
[cdb990a]148 Expression * postmutate( CastExpr * castExpr ) {
149 if ( castExpr->isGenerated && ResolvExpr::typesCompatible( castExpr->arg->result, castExpr->result, SymTab::Indexer() ) ) {
150 // generated cast is to the same type as its argument, so it's unnecessary -- remove it
151 Expression * expr = castExpr->arg;
152 castExpr->arg = nullptr;
153 std::swap( expr->env, castExpr->env );
154 return expr;
155 }
156 return castExpr;
157 }
158
159 static void strip( Expression *& expr ) {
[99d4584]160 PassVisitor<StripCasts_old> stripper;
[cdb990a]161 expr = expr->acceptMutator( stripper );
162 }
163 };
164
[5170d95]165 void finishExpr( Expression *& expr, const TypeEnvironment & env, TypeSubstitution * oldenv = nullptr ) {
[7664fad]166 expr->env = oldenv ? oldenv->clone() : new TypeSubstitution;
[cdb990a]167 env.makeSubstitution( *expr->env );
[99d4584]168 StripCasts_old::strip( expr ); // remove unnecessary casts that may be buried in an expression
[a32b204]169 }
[0a22cda]170
171 void removeExtraneousCast( Expression *& expr, const SymTab::Indexer & indexer ) {
172 if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( expr ) ) {
[b7d92b96]173 if ( typesCompatible( castExpr->arg->result, castExpr->result, indexer ) ) {
[0a22cda]174 // cast is to the same type as its argument, so it's unnecessary -- remove it
175 expr = castExpr->arg;
176 castExpr->arg = nullptr;
177 std::swap( expr->env, castExpr->env );
178 delete castExpr;
179 }
180 }
181 }
[db4ecc5]182 } // namespace
[a32b204]183
[8f98b78]184 namespace {
[59cf83b]185 void findUnfinishedKindExpression(Expression * untyped, Alternative & alt, const SymTab::Indexer & indexer, const std::string & kindStr, std::function<bool(const Alternative &)> pred, ResolvMode mode = ResolvMode{} ) {
[c71b256]186 assertf( untyped, "expected a non-null expression." );
[6d6e829]187
188 // xxx - this isn't thread-safe, but should work until we parallelize the resolver
189 static unsigned recursion_level = 0;
190
191 ++recursion_level;
[8587878e]192 TypeEnvironment env;
193 AlternativeFinder finder( indexer, env );
[6d6e829]194 finder.find( untyped, recursion_level == 1 ? mode.atTopLevel() : mode );
195 --recursion_level;
[c71b256]196
197 #if 0
198 if ( finder.get_alternatives().size() != 1 ) {
199 std::cerr << "untyped expr is ";
200 untyped->print( std::cerr );
201 std::cerr << std::endl << "alternatives are:";
202 for ( const Alternative & alt : finder.get_alternatives() ) {
203 alt.print( std::cerr );
204 } // for
205 } // if
206 #endif
[8587878e]207
[6d6e829]208 // produce filtered list of alternatives
[8587878e]209 AltList candidates;
210 for ( Alternative & alt : finder.get_alternatives() ) {
[c71b256]211 if ( pred( alt ) ) {
[8587878e]212 candidates.push_back( std::move( alt ) );
213 }
214 }
215
[6d6e829]216 // produce invalid error if no candidates
217 if ( candidates.empty() ) {
[a16764a6]218 SemanticError( untyped, toString( "No reasonable alternatives for ", kindStr, (kindStr != "" ? " " : ""), "expression: ") );
[6d6e829]219 }
220
221 // search for cheapest candidate
222 AltList winners;
223 bool seen_undeleted = false;
224 for ( unsigned i = 0; i < candidates.size(); ++i ) {
225 int c = winners.empty() ? -1 : candidates[i].cost.compare( winners.front().cost );
226
227 if ( c > 0 ) continue; // skip more expensive than winner
228
229 if ( c < 0 ) {
230 // reset on new cheapest
231 seen_undeleted = ! findDeletedExpr( candidates[i].expr );
232 winners.clear();
233 } else /* if ( c == 0 ) */ {
234 if ( findDeletedExpr( candidates[i].expr ) ) {
235 // skip deleted expression if already seen one equivalent-cost not
236 if ( seen_undeleted ) continue;
237 } else if ( ! seen_undeleted ) {
238 // replace list of equivalent-cost deleted expressions with one non-deleted
239 winners.clear();
240 seen_undeleted = true;
241 }
242 }
243
[2fd9f24]244 winners.emplace_back( std::move( candidates[i] ) );
[6d6e829]245 }
246
247 // promote alternative.cvtCost to .cost
248 // xxx - I don't know why this is done, but I'm keeping the behaviour from findMinCost
249 for ( Alternative& winner : winners ) {
250 winner.cost = winner.cvtCost;
251 }
[cde3891]252
[6d6e829]253 // produce ambiguous errors, if applicable
254 if ( winners.size() != 1 ) {
[8587878e]255 std::ostringstream stream;
[c71b256]256 stream << "Cannot choose between " << winners.size() << " alternatives for " << kindStr << (kindStr != "" ? " " : "") << "expression\n";
[8587878e]257 untyped->print( stream );
[93401f8]258 stream << " Alternatives are:\n";
[8587878e]259 printAlts( winners, stream, 1 );
[a16764a6]260 SemanticError( untyped->location, stream.str() );
[8587878e]261 }
262
[6d6e829]263 // single selected choice
264 Alternative& choice = winners.front();
265
266 // fail on only expression deleted
267 if ( ! seen_undeleted ) {
[2a08c25]268 SemanticError( untyped->location, choice.expr, "Unique best alternative includes deleted identifier in " );
[c71b256]269 }
[6d6e829]270
271 // xxx - check for ambiguous expressions
[cde3891]272
[6d6e829]273 // output selected choice
[c71b256]274 alt = std::move( choice );
275 }
276
277 /// resolve `untyped` to the expression whose alternative satisfies `pred` with the lowest cost; kindStr is used for providing better error messages
[59cf83b]278 void findKindExpression(Expression *& untyped, const SymTab::Indexer & indexer, const std::string & kindStr, std::function<bool(const Alternative &)> pred, ResolvMode mode = ResolvMode{}) {
[c71b256]279 if ( ! untyped ) return;
280 Alternative choice;
[59cf83b]281 findUnfinishedKindExpression( untyped, choice, indexer, kindStr, pred, mode );
[c71b256]282 finishExpr( choice.expr, choice.env, untyped->env );
[8587878e]283 delete untyped;
[c71b256]284 untyped = choice.expr;
285 choice.expr = nullptr;
[8587878e]286 }
287
[c71b256]288 bool standardAlternativeFilter( const Alternative & ) {
289 // currently don't need to filter, under normal circumstances.
290 // in the future, this may be useful for removing deleted expressions
291 return true;
292 }
293 } // namespace
294
295 // used in resolveTypeof
[5170d95]296 Expression * resolveInVoidContext( Expression * expr, const SymTab::Indexer & indexer ) {
[c71b256]297 TypeEnvironment env;
298 return resolveInVoidContext( expr, indexer, env );
299 }
300
[5170d95]301 Expression * resolveInVoidContext( Expression * expr, const SymTab::Indexer & indexer, TypeEnvironment & env ) {
[c71b256]302 // it's a property of the language that a cast expression has either 1 or 0 interpretations; if it has 0
303 // interpretations, an exception has already been thrown.
304 assertf( expr, "expected a non-null expression." );
305
[5170d95]306 CastExpr * untyped = new CastExpr( expr ); // cast to void
307 untyped->location = expr->location;
[c71b256]308
309 // set up and resolve expression cast to void
310 Alternative choice;
[5170d95]311 findUnfinishedKindExpression( untyped, choice, indexer, "", standardAlternativeFilter, ResolvMode::withAdjustment() );
[c71b256]312 CastExpr * castExpr = strict_dynamic_cast< CastExpr * >( choice.expr );
[5170d95]313 assert( castExpr );
[c71b256]314 env = std::move( choice.env );
315
316 // clean up resolved expression
317 Expression * ret = castExpr->arg;
318 castExpr->arg = nullptr;
319
320 // unlink the arg so that it isn't deleted twice at the end of the program
[5170d95]321 untyped->arg = nullptr;
[c71b256]322 return ret;
323 }
324
[5170d95]325 void findVoidExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
[c71b256]326 resetTyVarRenaming();
327 TypeEnvironment env;
328 Expression * newExpr = resolveInVoidContext( untyped, indexer, env );
329 finishExpr( newExpr, env, untyped->env );
330 delete untyped;
331 untyped = newExpr;
332 }
333
[5170d95]334 void findSingleExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
[c71b256]335 findKindExpression( untyped, indexer, "", standardAlternativeFilter );
336 }
337
338 void findSingleExpression( Expression *& untyped, Type * type, const SymTab::Indexer & indexer ) {
339 assert( untyped && type );
[2a08c25]340 // transfer location to generated cast for error purposes
341 CodeLocation location = untyped->location;
[c71b256]342 untyped = new CastExpr( untyped, type );
[2a08c25]343 untyped->location = location;
[c71b256]344 findSingleExpression( untyped, indexer );
345 removeExtraneousCast( untyped, indexer );
346 }
347
348 namespace {
349 bool isIntegralType( const Alternative & alt ) {
350 Type * type = alt.expr->result;
[a32b204]351 if ( dynamic_cast< EnumInstType * >( type ) ) {
352 return true;
[5170d95]353 } else if ( BasicType * bt = dynamic_cast< BasicType * >( type ) ) {
[a32b204]354 return bt->isInteger();
[89e6ffc]355 } else if ( dynamic_cast< ZeroType* >( type ) != nullptr || dynamic_cast< OneType* >( type ) != nullptr ) {
356 return true;
[a32b204]357 } else {
358 return false;
359 } // if
360 }
[71f4e4f]361
[5170d95]362 void findIntegralExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
[8587878e]363 findKindExpression( untyped, indexer, "condition", isIntegralType );
[a32b204]364 }
365 }
[71f4e4f]366
[2a6292d]367
368 bool isStructOrUnion( const Alternative & alt ) {
369 Type * t = alt.expr->result->stripReferences();
370 return dynamic_cast< StructInstType * >( t ) || dynamic_cast< UnionInstType * >( t );
371 }
372
373 void resolveWithExprs( std::list< Declaration * > & translationUnit ) {
374 PassVisitor<ResolveWithExprs> resolver;
375 acceptAll( translationUnit, resolver );
376 }
377
378 void ResolveWithExprs::resolveWithExprs( std::list< Expression * > & withExprs, std::list< Statement * > & newStmts ) {
379 for ( Expression *& expr : withExprs ) {
380 // only struct- and union-typed expressions are viable candidates
381 findKindExpression( expr, indexer, "with statement", isStructOrUnion );
382
383 // if with expression might be impure, create a temporary so that it is evaluated once
384 if ( Tuples::maybeImpure( expr ) ) {
385 static UniqueName tmpNamer( "_with_tmp_" );
386 ObjectDecl * tmp = ObjectDecl::newObject( tmpNamer.newName(), expr->result->clone(), new SingleInit( expr ) );
387 expr = new VariableExpr( tmp );
388 newStmts.push_back( new DeclStmt( tmp ) );
389 if ( InitTweak::isConstructable( tmp->type ) ) {
390 // generate ctor/dtor and resolve them
391 tmp->init = InitTweak::genCtorInit( tmp );
392 tmp->accept( *visitor );
393 }
394 }
395 }
396 }
397
398 void ResolveWithExprs::previsit( WithStmt * withStmt ) {
399 resolveWithExprs( withStmt->exprs, stmtsToAddBefore );
400 }
401
402 void ResolveWithExprs::previsit( FunctionDecl * functionDecl ) {
403 {
404 // resolve with-exprs with parameters in scope and add any newly generated declarations to the
405 // front of the function body.
406 auto guard = makeFuncGuard( [this]() { indexer.enterScope(); }, [this](){ indexer.leaveScope(); } );
407 indexer.addFunctionType( functionDecl->type );
408 std::list< Statement * > newStmts;
409 resolveWithExprs( functionDecl->withExprs, newStmts );
410 if ( functionDecl->statements ) {
411 functionDecl->statements->kids.splice( functionDecl->statements->kids.begin(), newStmts );
412 } else {
413 assertf( functionDecl->withExprs.empty() && newStmts.empty(), "Function %s without a body has with-clause and/or generated with declarations.", functionDecl->name.c_str() );
414 }
415 }
416 }
417
[d76c588]418 void Resolver_old::previsit( ObjectDecl * objectDecl ) {
[4864a73]419 // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that
420 // class-variable initContext is changed multiple time because the LHS is analysed twice.
421 // The second analysis changes initContext because of a function type can contain object
422 // declarations in the return and parameter types. So each value of initContext is
[6d6e829]423 // retained, so the type on the first analysis is preserved and used for selecting the RHS.
[a4ca48c]424 GuardValue( currentObject );
[e4d829b]425 currentObject = CurrentObject( objectDecl->get_type() );
426 if ( inEnumDecl && dynamic_cast< EnumInstType * >( objectDecl->get_type() ) ) {
[a436947]427 // enumerator initializers should not use the enum type to initialize, since
428 // the enum type is still incomplete at this point. Use signed int instead.
[e4d829b]429 currentObject = CurrentObject( new BasicType( Type::Qualifiers(), BasicType::SignedInt ) );
[a436947]430 }
[bfbf97f]431 }
432
[40e636a]433 template< typename PtrType >
[d76c588]434 void Resolver_old::handlePtrType( PtrType * type ) {
[40e636a]435 if ( type->get_dimension() ) {
[2bfc6b2]436 findSingleExpression( type->dimension, Validate::SizeType->clone(), indexer );
[d1d17f5]437 }
[40e636a]438 }
439
[d76c588]440 void Resolver_old::previsit( ArrayType * at ) {
[40e636a]441 handlePtrType( at );
[a32b204]442 }
[94b4364]443
[d76c588]444 void Resolver_old::previsit( PointerType * pt ) {
[40e636a]445 handlePtrType( pt );
446 }
447
[d76c588]448 void Resolver_old::previsit( FunctionDecl * functionDecl ) {
[d9a0e76]449#if 0
[a4ca48c]450 std::cerr << "resolver visiting functiondecl ";
451 functionDecl->print( std::cerr );
452 std::cerr << std::endl;
[d9a0e76]453#endif
[a4ca48c]454 GuardValue( functionReturn );
[60914351]455 functionReturn = ResolvExpr::extractResultType( functionDecl->type );
[a4ca48c]456 }
[88d1066]457
[d76c588]458 void Resolver_old::postvisit( FunctionDecl * functionDecl ) {
[4864a73]459 // default value expressions have an environment which shouldn't be there and trips up
[6d6e829]460 // later passes.
[cde3891]461 // xxx - it might be necessary to somehow keep the information from this environment, but I
[6d6e829]462 // can't currently see how it's useful.
[c28a038d]463 for ( Declaration * d : functionDecl->type->parameters ) {
[88d1066]464 if ( ObjectDecl * obj = dynamic_cast< ObjectDecl * >( d ) ) {
[c28a038d]465 if ( SingleInit * init = dynamic_cast< SingleInit * >( obj->init ) ) {
466 delete init->value->env;
467 init->value->env = nullptr;
[88d1066]468 }
469 }
470 }
[a32b204]471 }
[51b73452]472
[d76c588]473 void Resolver_old::previsit( EnumDecl * ) {
[a436947]474 // in case we decide to allow nested enums
[a4ca48c]475 GuardValue( inEnumDecl );
[a436947]476 inEnumDecl = true;
477 }
478
[d76c588]479 void Resolver_old::previsit( StaticAssertDecl * assertDecl ) {
[bd87b138]480 findIntegralExpression( assertDecl->condition, indexer );
481 }
482
[d76c588]483 void Resolver_old::previsit( ExprStmt * exprStmt ) {
[a4ca48c]484 visit_children = false;
[08da53d]485 assertf( exprStmt->expr, "ExprStmt has null Expression in resolver" );
486 findVoidExpression( exprStmt->expr, indexer );
[a32b204]487 }
[51b73452]488
[d76c588]489 void Resolver_old::previsit( AsmExpr * asmExpr ) {
[a4ca48c]490 visit_children = false;
[08da53d]491 findVoidExpression( asmExpr->operand, indexer );
[7f5566b]492 }
493
[d76c588]494 void Resolver_old::previsit( AsmStmt * asmStmt ) {
[a4ca48c]495 visit_children = false;
496 acceptAll( asmStmt->get_input(), *visitor );
497 acceptAll( asmStmt->get_output(), *visitor );
[7f5566b]498 }
499
[d76c588]500 void Resolver_old::previsit( IfStmt * ifStmt ) {
[8587878e]501 findIntegralExpression( ifStmt->condition, indexer );
[a32b204]502 }
[51b73452]503
[d76c588]504 void Resolver_old::previsit( WhileStmt * whileStmt ) {
[8587878e]505 findIntegralExpression( whileStmt->condition, indexer );
[a32b204]506 }
[51b73452]507
[d76c588]508 void Resolver_old::previsit( ForStmt * forStmt ) {
[08da53d]509 if ( forStmt->condition ) {
[8587878e]510 findIntegralExpression( forStmt->condition, indexer );
[a32b204]511 } // if
[71f4e4f]512
[08da53d]513 if ( forStmt->increment ) {
514 findVoidExpression( forStmt->increment, indexer );
[a32b204]515 } // if
516 }
[51b73452]517
[d76c588]518 void Resolver_old::previsit( SwitchStmt * switchStmt ) {
[a4ca48c]519 GuardValue( currentObject );
[08da53d]520 findIntegralExpression( switchStmt->condition, indexer );
[71f4e4f]521
[08da53d]522 currentObject = CurrentObject( switchStmt->condition->result );
[a32b204]523 }
[51b73452]524
[d76c588]525 void Resolver_old::previsit( CaseStmt * caseStmt ) {
[cdb990a]526 if ( caseStmt->condition ) {
[e4d829b]527 std::list< InitAlternative > initAlts = currentObject.getOptions();
528 assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral expression." );
[08da53d]529 // must remove cast from case statement because RangeExpr cannot be cast.
530 Expression * newExpr = new CastExpr( caseStmt->condition, initAlts.front().type->clone() );
531 findSingleExpression( newExpr, indexer );
[cdb990a]532 // case condition cannot have a cast in C, so it must be removed, regardless of whether it performs a conversion.
533 // Ideally we would perform the conversion internally here.
534 if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( newExpr ) ) {
535 newExpr = castExpr->arg;
536 castExpr->arg = nullptr;
537 std::swap( newExpr->env, castExpr->env );
538 delete castExpr;
539 }
540 caseStmt->condition = newExpr;
[32b8144]541 }
[a32b204]542 }
[51b73452]543
[d76c588]544 void Resolver_old::previsit( BranchStmt * branchStmt ) {
[a4ca48c]545 visit_children = false;
[de62360d]546 // must resolve the argument for a computed goto
547 if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement
[08da53d]548 if ( branchStmt->computedTarget ) {
549 // computed goto argument is void *
550 findSingleExpression( branchStmt->computedTarget, new PointerType( Type::Qualifiers(), new VoidType( Type::Qualifiers() ) ), indexer );
[de62360d]551 } // if
552 } // if
553 }
554
[d76c588]555 void Resolver_old::previsit( ReturnStmt * returnStmt ) {
[a4ca48c]556 visit_children = false;
[08da53d]557 if ( returnStmt->expr ) {
558 findSingleExpression( returnStmt->expr, functionReturn->clone(), indexer );
[a32b204]559 } // if
560 }
[51b73452]561
[d76c588]562 void Resolver_old::previsit( ThrowStmt * throwStmt ) {
[a4ca48c]563 visit_children = false;
[cbce272]564 // TODO: Replace *exception type with &exception type.
[307a732]565 if ( throwStmt->get_expr() ) {
[3090127]566 const StructDecl * exception_decl = indexer.lookupStruct( "__cfaehm_base_exception_t" );
[cbce272]567 assert( exception_decl );
[8fd52e90]568 Type * exceptType = new PointerType( noQualifiers, new StructInstType( noQualifiers, const_cast<StructDecl *>(exception_decl) ) );
[08da53d]569 findSingleExpression( throwStmt->expr, exceptType, indexer );
[307a732]570 }
571 }
572
[d76c588]573 void Resolver_old::previsit( CatchStmt * catchStmt ) {
[3b9c674]574 // Until we are very sure this invarent (ifs that move between passes have thenPart)
575 // holds, check it. This allows a check for when to decode the mangling.
576 if ( IfStmt * ifStmt = dynamic_cast<IfStmt *>( catchStmt->body ) ) {
577 assert( ifStmt->thenPart );
578 }
579 // Encode the catchStmt so the condition can see the declaration.
[08da53d]580 if ( catchStmt->cond ) {
[3b9c674]581 IfStmt * ifStmt = new IfStmt( catchStmt->cond, nullptr, catchStmt->body );
582 catchStmt->cond = nullptr;
583 catchStmt->body = ifStmt;
584 }
585 }
586
587 void Resolver_old::postvisit( CatchStmt * catchStmt ) {
588 // Decode the catchStmt so everything is stored properly.
589 IfStmt * ifStmt = dynamic_cast<IfStmt *>( catchStmt->body );
590 if ( nullptr != ifStmt && nullptr == ifStmt->thenPart ) {
591 assert( ifStmt->condition );
592 assert( ifStmt->elsePart );
593 catchStmt->cond = ifStmt->condition;
594 catchStmt->body = ifStmt->elsePart;
595 ifStmt->condition = nullptr;
596 ifStmt->elsePart = nullptr;
597 delete ifStmt;
[cbce272]598 }
599 }
600
[1dcd9554]601 template< typename iterator_t >
602 inline bool advance_to_mutex( iterator_t & it, const iterator_t & end ) {
603 while( it != end && !(*it)->get_type()->get_mutex() ) {
604 it++;
605 }
606
607 return it != end;
608 }
609
[d76c588]610 void Resolver_old::previsit( WaitForStmt * stmt ) {
[8f98b78]611 visit_children = false;
[1dcd9554]612
613 // Resolve all clauses first
614 for( auto& clause : stmt->clauses ) {
615
616 TypeEnvironment env;
[8f98b78]617 AlternativeFinder funcFinder( indexer, env );
[1dcd9554]618
619 // Find all alternatives for a function in canonical form
620 funcFinder.findWithAdjustment( clause.target.function );
621
622 if ( funcFinder.get_alternatives().empty() ) {
623 stringstream ss;
624 ss << "Use of undeclared indentifier '";
625 ss << strict_dynamic_cast<NameExpr*>( clause.target.function )->name;
626 ss << "' in call to waitfor";
[a16764a6]627 SemanticError( stmt->location, ss.str() );
[1dcd9554]628 }
629
[b9f383f]630 if(clause.target.arguments.empty()) {
631 SemanticError( stmt->location, "Waitfor clause must have at least one mutex parameter");
632 }
633
[1dcd9554]634 // Find all alternatives for all arguments in canonical form
[bd4f2e9]635 std::vector< AlternativeFinder > argAlternatives;
[1dcd9554]636 funcFinder.findSubExprs( clause.target.arguments.begin(), clause.target.arguments.end(), back_inserter( argAlternatives ) );
637
638 // List all combinations of arguments
[bd4f2e9]639 std::vector< AltList > possibilities;
[1dcd9554]640 combos( argAlternatives.begin(), argAlternatives.end(), back_inserter( possibilities ) );
641
642 AltList func_candidates;
643 std::vector< AltList > args_candidates;
644
645 // For every possible function :
646 // try matching the arguments to the parameters
647 // not the other way around because we have more arguments than parameters
[a16764a6]648 SemanticErrorException errors;
[1dcd9554]649 for ( Alternative & func : funcFinder.get_alternatives() ) {
650 try {
651 PointerType * pointer = dynamic_cast< PointerType* >( func.expr->get_result()->stripReferences() );
652 if( !pointer ) {
[a16764a6]653 SemanticError( func.expr->get_result(), "candidate not viable: not a pointer type\n" );
[1dcd9554]654 }
655
656 FunctionType * function = dynamic_cast< FunctionType* >( pointer->get_base() );
657 if( !function ) {
[a16764a6]658 SemanticError( pointer->get_base(), "candidate not viable: not a function type\n" );
[1dcd9554]659 }
660
661
662 {
663 auto param = function->parameters.begin();
664 auto param_end = function->parameters.end();
665
666 if( !advance_to_mutex( param, param_end ) ) {
[a16764a6]667 SemanticError(function, "candidate function not viable: no mutex parameters\n");
[1dcd9554]668 }
669 }
670
671 Alternative newFunc( func );
672 // Strip reference from function
[a181494]673 referenceToRvalueConversion( newFunc.expr, newFunc.cost );
[1dcd9554]674
675 // For all the set of arguments we have try to match it with the parameter of the current function alternative
676 for ( auto & argsList : possibilities ) {
677
678 try {
679 // Declare data structures need for resolution
680 OpenVarSet openVars;
681 AssertionSet resultNeed, resultHave;
[6f326b1]682 TypeEnvironment resultEnv( func.env );
683 makeUnifiableVars( function, openVars, resultNeed );
684 // add all type variables as open variables now so that those not used in the parameter
685 // list are still considered open.
686 resultEnv.add( function->forall );
[1dcd9554]687
688 // Load type variables from arguemnts into one shared space
689 simpleCombineEnvironments( argsList.begin(), argsList.end(), resultEnv );
690
691 // Make sure we don't widen any existing bindings
[d286cf68]692 resultEnv.forbidWidening();
[c5283ba]693
[1dcd9554]694 // Find any unbound type variables
695 resultEnv.extractOpenVars( openVars );
696
697 auto param = function->parameters.begin();
698 auto param_end = function->parameters.end();
699
[c5283ba]700 int n_mutex_param = 0;
[b9f383f]701
[1dcd9554]702 // For every arguments of its set, check if it matches one of the parameter
703 // The order is important
704 for( auto & arg : argsList ) {
705
706 // Ignore non-mutex arguments
707 if( !advance_to_mutex( param, param_end ) ) {
708 // We ran out of parameters but still have arguments
709 // this function doesn't match
[c5283ba]710 SemanticError( function, toString("candidate function not viable: too many mutex arguments, expected ", n_mutex_param, "\n" ));
[1dcd9554]711 }
712
[c5283ba]713 n_mutex_param++;
[b9f383f]714
[1dcd9554]715 // Check if the argument matches the parameter type in the current scope
[b9f383f]716 if( ! unify( arg.expr->get_result(), (*param)->get_type(), resultEnv, resultNeed, resultHave, openVars, this->indexer ) ) {
[1dcd9554]717 // Type doesn't match
718 stringstream ss;
719 ss << "candidate function not viable: no known convertion from '";
720 (*param)->get_type()->print( ss );
[b9f383f]721 ss << "' to '";
722 arg.expr->get_result()->print( ss );
[5248789]723 ss << "' with env '";
724 resultEnv.print(ss);
[1dcd9554]725 ss << "'\n";
[a16764a6]726 SemanticError( function, ss.str() );
[1dcd9554]727 }
728
729 param++;
730 }
731
732 // All arguments match !
733
734 // Check if parameters are missing
735 if( advance_to_mutex( param, param_end ) ) {
[c5283ba]736 do {
737 n_mutex_param++;
738 param++;
739 } while( advance_to_mutex( param, param_end ) );
740
[1dcd9554]741 // We ran out of arguments but still have parameters left
742 // this function doesn't match
[c5283ba]743 SemanticError( function, toString("candidate function not viable: too few mutex arguments, expected ", n_mutex_param, "\n" ));
[1dcd9554]744 }
745
746 // All parameters match !
747
748 // Finish the expressions to tie in the proper environments
749 finishExpr( newFunc.expr, resultEnv );
750 for( Alternative & alt : argsList ) {
751 finishExpr( alt.expr, resultEnv );
752 }
753
754 // This is a match store it and save it for later
755 func_candidates.push_back( newFunc );
756 args_candidates.push_back( argsList );
757
758 }
[5170d95]759 catch( SemanticErrorException & e ) {
[1dcd9554]760 errors.append( e );
761 }
762 }
763 }
[5170d95]764 catch( SemanticErrorException & e ) {
[1dcd9554]765 errors.append( e );
766 }
767 }
768
769 // Make sure we got the right number of arguments
[a16764a6]770 if( func_candidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for function in call to waitfor" ); top.append( errors ); throw top; }
771 if( args_candidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for arguments in call to waitfor" ); top.append( errors ); throw top; }
772 if( func_candidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous function in call to waitfor" ); top.append( errors ); throw top; }
773 if( args_candidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous arguments in call to waitfor" ); top.append( errors ); throw top; }
[c71b256]774 // TODO: need to use findDeletedExpr to ensure no deleted identifiers are used.
[1dcd9554]775
776 // Swap the results from the alternative with the unresolved values.
777 // Alternatives will handle deletion on destruction
778 std::swap( clause.target.function, func_candidates.front().expr );
779 for( auto arg_pair : group_iterate( clause.target.arguments, args_candidates.front() ) ) {
780 std::swap ( std::get<0>( arg_pair), std::get<1>( arg_pair).expr );
781 }
782
783 // Resolve the conditions as if it were an IfStmt
784 // Resolve the statments normally
[08da53d]785 findSingleExpression( clause.condition, this->indexer );
[8f98b78]786 clause.statement->accept( *visitor );
[1dcd9554]787 }
788
789
790 if( stmt->timeout.statement ) {
791 // Resolve the timeout as an size_t for now
792 // Resolve the conditions as if it were an IfStmt
793 // Resolve the statments normally
[08da53d]794 findSingleExpression( stmt->timeout.time, new BasicType( noQualifiers, BasicType::LongLongUnsignedInt ), this->indexer );
795 findSingleExpression( stmt->timeout.condition, this->indexer );
[8f98b78]796 stmt->timeout.statement->accept( *visitor );
[1dcd9554]797 }
798
799 if( stmt->orelse.statement ) {
800 // Resolve the conditions as if it were an IfStmt
801 // Resolve the statments normally
[08da53d]802 findSingleExpression( stmt->orelse.condition, this->indexer );
[8f98b78]803 stmt->orelse.statement->accept( *visitor );
[1dcd9554]804 }
805 }
806
[60aaa51d]807 bool isCharType( Type * t ) {
[b5c5684]808 if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) {
[71f4e4f]809 return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar ||
[b5c5684]810 bt->get_kind() == BasicType::UnsignedChar;
811 }
812 return false;
813 }
814
[d76c588]815 void Resolver_old::previsit( SingleInit * singleInit ) {
[a4ca48c]816 visit_children = false;
[62423350]817 // resolve initialization using the possibilities as determined by the currentObject cursor
[0a22cda]818 Expression * newExpr = new UntypedInitExpr( singleInit->value, currentObject.getOptions() );
[08da53d]819 findSingleExpression( newExpr, indexer );
[e3e16bc]820 InitExpr * initExpr = strict_dynamic_cast< InitExpr * >( newExpr );
[62423350]821
822 // move cursor to the object that is actually initialized
[e4d829b]823 currentObject.setNext( initExpr->get_designation() );
[62423350]824
825 // discard InitExpr wrapper and retain relevant pieces
[08da53d]826 newExpr = initExpr->expr;
827 initExpr->expr = nullptr;
828 std::swap( initExpr->env, newExpr->env );
[cde3891]829 // InitExpr may have inferParams in the case where the expression specializes a function
830 // pointer, and newExpr may already have inferParams of its own, so a simple swap is not
[6d6e829]831 // sufficient.
[cdb990a]832 newExpr->spliceInferParams( initExpr );
[e4d829b]833 delete initExpr;
834
[cde3891]835 // get the actual object's type (may not exactly match what comes back from the resolver
[6d6e829]836 // due to conversions)
[62423350]837 Type * initContext = currentObject.getCurrentType();
838
[0a22cda]839 removeExtraneousCast( newExpr, indexer );
840
[62423350]841 // check if actual object's type is char[]
842 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
843 if ( isCharType( at->get_base() ) ) {
844 // check if the resolved type is char *
845 if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_result() ) ) {
846 if ( isCharType( pt->get_base() ) ) {
[5170d95]847 if ( CastExpr * ce = dynamic_cast< CastExpr * >( newExpr ) ) {
[cde3891]848 // strip cast if we're initializing a char[] with a char *,
[6d6e829]849 // e.g. char x[] = "hello";
[0a22cda]850 newExpr = ce->get_arg();
851 ce->set_arg( nullptr );
852 std::swap( ce->env, newExpr->env );
853 delete ce;
854 }
[62423350]855 }
856 }
857 }
858 }
[94b4364]859
[62423350]860 // set initializer expr to resolved express
[0a22cda]861 singleInit->value = newExpr;
[62423350]862
863 // move cursor to next object in preparation for next initializer
864 currentObject.increment();
865 }
[94b4364]866
[d76c588]867 void Resolver_old::previsit( ListInit * listInit ) {
[a4ca48c]868 visit_children = false;
[62423350]869 // move cursor into brace-enclosed initializer-list
[e4d829b]870 currentObject.enterListInit();
[cde3891]871 // xxx - fix this so that the list isn't copied, iterator should be used to change current
[6d6e829]872 // element
[e4d829b]873 std::list<Designation *> newDesignations;
874 for ( auto p : group_iterate(listInit->get_designations(), listInit->get_initializers()) ) {
[cde3891]875 // iterate designations and initializers in pairs, moving the cursor to the current
[6d6e829]876 // designated object and resolving the initializer against that object.
[e4d829b]877 Designation * des = std::get<0>(p);
878 Initializer * init = std::get<1>(p);
879 newDesignations.push_back( currentObject.findNext( des ) );
[a4ca48c]880 init->accept( *visitor );
[b5c5684]881 }
[62423350]882 // set the set of 'resolved' designations and leave the brace-enclosed initializer-list
[e4d829b]883 listInit->get_designations() = newDesignations; // xxx - memory management
884 currentObject.exitListInit();
885
[62423350]886 // xxx - this part has not be folded into CurrentObject yet
[e4d829b]887 // } else if ( TypeInstType * tt = dynamic_cast< TypeInstType * >( initContext ) ) {
888 // Type * base = tt->get_baseType()->get_base();
889 // if ( base ) {
890 // // know the implementation type, so try using that as the initContext
891 // ObjectDecl tmpObj( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, base->clone(), nullptr );
892 // currentObject = &tmpObj;
893 // visit( listInit );
894 // } else {
895 // // missing implementation type -- might be an unknown type variable, so try proceeding with the current init context
896 // Parent::visit( listInit );
897 // }
898 // } else {
[a32b204]899 }
[71f4e4f]900
[f1e012b]901 // ConstructorInit - fall back on C-style initializer
[d76c588]902 void Resolver_old::fallbackInit( ConstructorInit * ctorInit ) {
[f1e012b]903 // could not find valid constructor, or found an intrinsic constructor
904 // fall back on C-style initializer
905 delete ctorInit->get_ctor();
[6d6e829]906 ctorInit->set_ctor( nullptr );
[71a145de]907 delete ctorInit->get_dtor();
[6d6e829]908 ctorInit->set_dtor( nullptr );
[a4ca48c]909 maybeAccept( ctorInit->get_init(), *visitor );
[f1e012b]910 }
911
[1d2b64f]912 // needs to be callable from outside the resolver, so this is a standalone function
913 void resolveCtorInit( ConstructorInit * ctorInit, const SymTab::Indexer & indexer ) {
914 assert( ctorInit );
[d76c588]915 PassVisitor<Resolver_old> resolver( indexer );
[1d2b64f]916 ctorInit->accept( resolver );
917 }
918
919 void resolveStmtExpr( StmtExpr * stmtExpr, const SymTab::Indexer & indexer ) {
920 assert( stmtExpr );
[d76c588]921 PassVisitor<Resolver_old> resolver( indexer );
[1d2b64f]922 stmtExpr->accept( resolver );
[5e2c348]923 stmtExpr->computeResult();
[dd05e12]924 // xxx - aggregate the environments from all statements? Possibly in AlternativeFinder instead?
[1d2b64f]925 }
926
[d76c588]927 void Resolver_old::previsit( ConstructorInit * ctorInit ) {
[a4ca48c]928 visit_children = false;
[1ba88a0]929 // xxx - fallback init has been removed => remove fallbackInit function and remove complexity from FixInit and remove C-init from ConstructorInit
[dd05e12]930 maybeAccept( ctorInit->ctor, *visitor );
931 maybeAccept( ctorInit->dtor, *visitor );
[071a31a]932
[5b2f5bb]933 // found a constructor - can get rid of C-style initializer
[dd05e12]934 delete ctorInit->init;
935 ctorInit->init = nullptr;
[ec79847]936
937 // intrinsic single parameter constructors and destructors do nothing. Since this was
938 // implicitly generated, there's no way for it to have side effects, so get rid of it
939 // to clean up generated code.
[dd05e12]940 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->ctor ) ) {
941 delete ctorInit->ctor;
942 ctorInit->ctor = nullptr;
[ec79847]943 }
[f9cebb5]944
[dd05e12]945 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->dtor ) ) {
946 delete ctorInit->dtor;
947 ctorInit->dtor = nullptr;
[ec79847]948 }
[a465caff]949
950 // xxx - todo -- what about arrays?
[6d6e829]951 // if ( dtor == nullptr && InitTweak::isIntrinsicCallStmt( ctorInit->get_ctor() ) ) {
[a465caff]952 // // can reduce the constructor down to a SingleInit using the
953 // // second argument from the ctor call, since
954 // delete ctorInit->get_ctor();
[6d6e829]955 // ctorInit->set_ctor( nullptr );
[a465caff]956
957 // Expression * arg =
958 // ctorInit->set_init( new SingleInit( arg ) );
959 // }
[71f4e4f]960 }
[d76c588]961
962 ///////////////////////////////////////////////////////////////////////////
963 //
964 // *** NEW RESOLVER ***
965 //
966 ///////////////////////////////////////////////////////////////////////////
967
[99d4584]968 namespace {
969 /// Finds deleted expressions in an expression tree
[2dda05d]970 struct DeleteFinder_new final : public ast::WithShortCircuiting, public ast::WithVisitorRef<DeleteFinder_new> {
[e6b42e7]971 const ast::DeletedExpr * result = nullptr;
[99d4584]972
973 void previsit( const ast::DeletedExpr * expr ) {
[e6b42e7]974 if ( result ) { visit_children = false; }
975 else { result = expr; }
[99d4584]976 }
977
[361bf01]978 void previsit( const ast::Expr * expr ) {
[e6b42e7]979 if ( result ) { visit_children = false; }
[361bf01]980 if (expr->inferred.hasParams()) {
981 for (auto & imp : expr->inferred.inferParams() ) {
[2dda05d]982 imp.second.expr->accept(*visitor);
[361bf01]983 }
984 }
[99d4584]985 }
986 };
[d57e349]987 } // anonymous namespace
988 /// Check if this expression is or includes a deleted expression
989 const ast::DeletedExpr * findDeletedExpr( const ast::Expr * expr ) {
[e6b42e7]990 return ast::Pass<DeleteFinder_new>::read( expr );
[d57e349]991 }
[99d4584]992
[d57e349]993 namespace {
[b7d92b96]994 /// always-accept candidate filter
995 bool anyCandidate( const Candidate & ) { return true; }
996
[99d4584]997 /// Calls the CandidateFinder and finds the single best candidate
998 CandidateRef findUnfinishedKindExpression(
[ef5b828]999 const ast::Expr * untyped, const ast::SymbolTable & symtab, const std::string & kind,
[b7d92b96]1000 std::function<bool(const Candidate &)> pred = anyCandidate, ResolvMode mode = {}
[99d4584]1001 ) {
1002 if ( ! untyped ) return nullptr;
1003
1004 // xxx - this isn't thread-safe, but should work until we parallelize the resolver
1005 static unsigned recursion_level = 0;
1006
1007 ++recursion_level;
1008 ast::TypeEnvironment env;
1009 CandidateFinder finder{ symtab, env };
1010 finder.find( untyped, recursion_level == 1 ? mode.atTopLevel() : mode );
1011 --recursion_level;
1012
1013 // produce a filtered list of candidates
1014 CandidateList candidates;
1015 for ( auto & cand : finder.candidates ) {
1016 if ( pred( *cand ) ) { candidates.emplace_back( cand ); }
1017 }
1018
1019 // produce invalid error if no candidates
1020 if ( candidates.empty() ) {
[ef5b828]1021 SemanticError( untyped,
1022 toString( "No reasonable alternatives for ", kind, (kind != "" ? " " : ""),
[99d4584]1023 "expression: ") );
1024 }
1025
1026 // search for cheapest candidate
1027 CandidateList winners;
1028 bool seen_undeleted = false;
1029 for ( CandidateRef & cand : candidates ) {
1030 int c = winners.empty() ? -1 : cand->cost.compare( winners.front()->cost );
1031
1032 if ( c > 0 ) continue; // skip more expensive than winner
1033
1034 if ( c < 0 ) {
1035 // reset on new cheapest
1036 seen_undeleted = ! findDeletedExpr( cand->expr );
1037 winners.clear();
1038 } else /* if ( c == 0 ) */ {
1039 if ( findDeletedExpr( cand->expr ) ) {
1040 // skip deleted expression if already seen one equivalent-cost not
1041 if ( seen_undeleted ) continue;
1042 } else if ( ! seen_undeleted ) {
1043 // replace list of equivalent-cost deleted expressions with one non-deleted
1044 winners.clear();
1045 seen_undeleted = true;
1046 }
1047 }
1048
1049 winners.emplace_back( std::move( cand ) );
1050 }
1051
1052 // promote candidate.cvtCost to .cost
[d57e349]1053 promoteCvtCost( winners );
[99d4584]1054
1055 // produce ambiguous errors, if applicable
1056 if ( winners.size() != 1 ) {
1057 std::ostringstream stream;
[ef5b828]1058 stream << "Cannot choose between " << winners.size() << " alternatives for "
[99d4584]1059 << kind << (kind != "" ? " " : "") << "expression\n";
1060 ast::print( stream, untyped );
1061 stream << " Alternatives are:\n";
1062 print( stream, winners, 1 );
1063 SemanticError( untyped->location, stream.str() );
1064 }
1065
1066 // single selected choice
1067 CandidateRef & choice = winners.front();
1068
1069 // fail on only expression deleted
1070 if ( ! seen_undeleted ) {
1071 SemanticError( untyped->location, choice->expr.get(), "Unique best alternative "
1072 "includes deleted identifier in " );
1073 }
1074
1075 return std::move( choice );
1076 }
1077
1078 /// Strips extraneous casts out of an expression
1079 struct StripCasts_new final {
[c408483]1080 const ast::Expr * postvisit( const ast::CastExpr * castExpr ) {
[ef5b828]1081 if (
[2890212]1082 castExpr->isGenerated == ast::GeneratedCast
[ef5b828]1083 && typesCompatible( castExpr->arg->result, castExpr->result )
[99d4584]1084 ) {
1085 // generated cast is the same type as its argument, remove it after keeping env
[ef5b828]1086 return ast::mutate_field(
[b7d92b96]1087 castExpr->arg.get(), &ast::Expr::env, castExpr->env );
[99d4584]1088 }
1089 return castExpr;
1090 }
1091
1092 static void strip( ast::ptr< ast::Expr > & expr ) {
1093 ast::Pass< StripCasts_new > stripper;
1094 expr = expr->accept( stripper );
1095 }
1096 };
1097
[60aaa51d]1098 /// Swaps argument into expression pointer, saving original environment
1099 void swap_and_save_env( ast::ptr< ast::Expr > & expr, const ast::Expr * newExpr ) {
1100 ast::ptr< ast::TypeSubstitution > env = expr->env;
1101 expr.set_and_mutate( newExpr )->env = env;
1102 }
1103
[b7d92b96]1104 /// Removes cast to type of argument (unlike StripCasts, also handles non-generated casts)
1105 void removeExtraneousCast( ast::ptr<ast::Expr> & expr, const ast::SymbolTable & symtab ) {
1106 if ( const ast::CastExpr * castExpr = expr.as< ast::CastExpr >() ) {
1107 if ( typesCompatible( castExpr->arg->result, castExpr->result, symtab ) ) {
1108 // cast is to the same type as its argument, remove it
[60aaa51d]1109 swap_and_save_env( expr, castExpr->arg );
[b7d92b96]1110 }
1111 }
1112 }
1113
[490fb92e]1114
1115 } // anonymous namespace
1116/// Establish post-resolver invariants for expressions
[ef5b828]1117 void finishExpr(
1118 ast::ptr< ast::Expr > & expr, const ast::TypeEnvironment & env,
[99d4584]1119 const ast::TypeSubstitution * oldenv = nullptr
1120 ) {
1121 // set up new type substitution for expression
[ef5b828]1122 ast::ptr< ast::TypeSubstitution > newenv =
[99d4584]1123 oldenv ? oldenv : new ast::TypeSubstitution{};
1124 env.writeToSubstitution( *newenv.get_and_mutate() );
1125 expr.get_and_mutate()->env = std::move( newenv );
1126 // remove unncecessary casts
1127 StripCasts_new::strip( expr );
1128 }
[ef5b828]1129
[4b7cce6]1130 ast::ptr< ast::Expr > resolveInVoidContext(
1131 const ast::Expr * expr, const ast::SymbolTable & symtab, ast::TypeEnvironment & env
1132 ) {
1133 assertf( expr, "expected a non-null expression" );
[ef5b828]1134
[4b7cce6]1135 // set up and resolve expression cast to void
[417117e]1136 ast::ptr< ast::CastExpr > untyped = new ast::CastExpr{ expr };
[ef5b828]1137 CandidateRef choice = findUnfinishedKindExpression(
[4b7cce6]1138 untyped, symtab, "", anyCandidate, ResolvMode::withAdjustment() );
[ef5b828]1139
[4b7cce6]1140 // a cast expression has either 0 or 1 interpretations (by language rules);
1141 // if 0, an exception has already been thrown, and this code will not run
1142 const ast::CastExpr * castExpr = choice->expr.strict_as< ast::CastExpr >();
1143 env = std::move( choice->env );
1144
1145 return castExpr->arg;
1146 }
[b7d92b96]1147
[490fb92e]1148 /// Resolve `untyped` to the expression whose candidate is the best match for a `void`
[b7d92b96]1149 /// context.
[ef5b828]1150 ast::ptr< ast::Expr > findVoidExpression(
[b7d92b96]1151 const ast::Expr * untyped, const ast::SymbolTable & symtab
1152 ) {
1153 resetTyVarRenaming();
1154 ast::TypeEnvironment env;
1155 ast::ptr< ast::Expr > newExpr = resolveInVoidContext( untyped, symtab, env );
1156 finishExpr( newExpr, env, untyped->env );
1157 return newExpr;
1158 }
1159
[490fb92e]1160 namespace {
1161
1162
[ef5b828]1163 /// resolve `untyped` to the expression whose candidate satisfies `pred` with the
[99d4584]1164 /// lowest cost, returning the resolved version
1165 ast::ptr< ast::Expr > findKindExpression(
[ef5b828]1166 const ast::Expr * untyped, const ast::SymbolTable & symtab,
1167 std::function<bool(const Candidate &)> pred = anyCandidate,
[2b59f55]1168 const std::string & kind = "", ResolvMode mode = {}
[99d4584]1169 ) {
1170 if ( ! untyped ) return {};
[ef5b828]1171 CandidateRef choice =
[99d4584]1172 findUnfinishedKindExpression( untyped, symtab, kind, pred, mode );
[490fb92e]1173 ResolvExpr::finishExpr( choice->expr, choice->env, untyped->env );
[99d4584]1174 return std::move( choice->expr );
1175 }
1176
[2773ab8]1177 /// Resolve `untyped` to the single expression whose candidate is the best match
[ef5b828]1178 ast::ptr< ast::Expr > findSingleExpression(
1179 const ast::Expr * untyped, const ast::SymbolTable & symtab
[2773ab8]1180 ) {
[57e0289]1181 Stats::ResolveTime::start( untyped );
1182 auto res = findKindExpression( untyped, symtab );
1183 Stats::ResolveTime::stop();
1184 return res;
[2773ab8]1185 }
[18e683b]1186 } // anonymous namespace
[2773ab8]1187
[16ba4a6f]1188 ast::ptr< ast::Expr > findSingleExpression(
1189 const ast::Expr * untyped, const ast::Type * type, const ast::SymbolTable & symtab
1190 ) {
1191 assert( untyped && type );
1192 ast::ptr< ast::Expr > castExpr = new ast::CastExpr{ untyped, type };
1193 ast::ptr< ast::Expr > newExpr = findSingleExpression( castExpr, symtab );
1194 removeExtraneousCast( newExpr, symtab );
1195 return newExpr;
1196 }
[b7d92b96]1197
[18e683b]1198 namespace {
[16ba4a6f]1199 bool structOrUnion( const Candidate & i ) {
1200 const ast::Type * t = i.expr->result->stripReferences();
1201 return dynamic_cast< const ast::StructInstType * >( t ) || dynamic_cast< const ast::UnionInstType * >( t );
1202 }
[99d4584]1203 /// Predicate for "Candidate has integral type"
1204 bool hasIntegralType( const Candidate & i ) {
1205 const ast::Type * type = i.expr->result;
[ef5b828]1206
[99d4584]1207 if ( auto bt = dynamic_cast< const ast::BasicType * >( type ) ) {
1208 return bt->isInteger();
[ef5b828]1209 } else if (
1210 dynamic_cast< const ast::EnumInstType * >( type )
[99d4584]1211 || dynamic_cast< const ast::ZeroType * >( type )
1212 || dynamic_cast< const ast::OneType * >( type )
1213 ) {
1214 return true;
1215 } else return false;
1216 }
1217
1218 /// Resolve `untyped` as an integral expression, returning the resolved version
[ef5b828]1219 ast::ptr< ast::Expr > findIntegralExpression(
1220 const ast::Expr * untyped, const ast::SymbolTable & symtab
[99d4584]1221 ) {
[2b59f55]1222 return findKindExpression( untyped, symtab, hasIntegralType, "condition" );
[99d4584]1223 }
[60aaa51d]1224
1225 /// check if a type is a character type
1226 bool isCharType( const ast::Type * t ) {
1227 if ( auto bt = dynamic_cast< const ast::BasicType * >( t ) ) {
[ef5b828]1228 return bt->kind == ast::BasicType::Char
1229 || bt->kind == ast::BasicType::SignedChar
[60aaa51d]1230 || bt->kind == ast::BasicType::UnsignedChar;
1231 }
1232 return false;
1233 }
[2773ab8]1234
1235 /// Advance a type itertor to the next mutex parameter
1236 template<typename Iter>
1237 inline bool nextMutex( Iter & it, const Iter & end ) {
[954c954]1238 while ( it != end && ! (*it)->is_mutex() ) { ++it; }
[2773ab8]1239 return it != end;
1240 }
[99d4584]1241 }
1242
[4864a73]1243 class Resolver_new final
1244 : public ast::WithSymbolTable, public ast::WithGuards,
1245 public ast::WithVisitorRef<Resolver_new>, public ast::WithShortCircuiting,
[0e42794]1246 public ast::WithStmtsToAdd<> {
[4864a73]1247
[2a8f0c1]1248 ast::ptr< ast::Type > functionReturn = nullptr;
[2b59f55]1249 ast::CurrentObject currentObject;
[16ba4a6f]1250 // for work previously in GenInit
1251 static InitTweak::ManagedTypes_new managedTypes;
1252
[99d4584]1253 bool inEnumDecl = false;
[2a8f0c1]1254
[4864a73]1255 public:
[c15085d]1256 static size_t traceId;
[d76c588]1257 Resolver_new() = default;
[0e42794]1258 Resolver_new( const ast::SymbolTable & syms ) { symtab = syms; }
[d76c588]1259
[16ba4a6f]1260 const ast::FunctionDecl * previsit( const ast::FunctionDecl * );
[99d4584]1261 const ast::FunctionDecl * postvisit( const ast::FunctionDecl * );
[16ba4a6f]1262 const ast::ObjectDecl * previsit( const ast::ObjectDecl * );
1263 void previsit( const ast::AggregateDecl * );
1264 void previsit( const ast::StructDecl * );
[99d4584]1265 void previsit( const ast::EnumDecl * );
1266 const ast::StaticAssertDecl * previsit( const ast::StaticAssertDecl * );
1267
[0f6a7752]1268 const ast::ArrayType * previsit( const ast::ArrayType * );
1269 const ast::PointerType * previsit( const ast::PointerType * );
[99d4584]1270
[2773ab8]1271 const ast::ExprStmt * previsit( const ast::ExprStmt * );
1272 const ast::AsmExpr * previsit( const ast::AsmExpr * );
1273 const ast::AsmStmt * previsit( const ast::AsmStmt * );
1274 const ast::IfStmt * previsit( const ast::IfStmt * );
1275 const ast::WhileStmt * previsit( const ast::WhileStmt * );
1276 const ast::ForStmt * previsit( const ast::ForStmt * );
1277 const ast::SwitchStmt * previsit( const ast::SwitchStmt * );
1278 const ast::CaseStmt * previsit( const ast::CaseStmt * );
1279 const ast::BranchStmt * previsit( const ast::BranchStmt * );
1280 const ast::ReturnStmt * previsit( const ast::ReturnStmt * );
1281 const ast::ThrowStmt * previsit( const ast::ThrowStmt * );
1282 const ast::CatchStmt * previsit( const ast::CatchStmt * );
[b9fa85b]1283 const ast::CatchStmt * postvisit( const ast::CatchStmt * );
[2773ab8]1284 const ast::WaitForStmt * previsit( const ast::WaitForStmt * );
[16ba4a6f]1285 const ast::WithStmt * previsit( const ast::WithStmt * );
[99d4584]1286
[2d11663]1287 const ast::SingleInit * previsit( const ast::SingleInit * );
1288 const ast::ListInit * previsit( const ast::ListInit * );
1289 const ast::ConstructorInit * previsit( const ast::ConstructorInit * );
[16ba4a6f]1290
1291 void resolveWithExprs(std::vector<ast::ptr<ast::Expr>> & exprs, std::list<ast::ptr<ast::Stmt>> & stmtsToAdd);
1292
1293 void beginScope() { managedTypes.beginScope(); }
1294 void endScope() { managedTypes.endScope(); }
[e00c22f]1295 bool on_error(ast::ptr<ast::Decl> & decl);
[d76c588]1296 };
[0d070ca]1297 // size_t Resolver_new::traceId = Stats::Heap::new_stacktrace_id("Resolver");
[d76c588]1298
[16ba4a6f]1299 InitTweak::ManagedTypes_new Resolver_new::managedTypes;
1300
[293dc1c]1301 void resolve( ast::TranslationUnit& translationUnit ) {
[a86b2ca6]1302 ast::Pass< Resolver_new >::run( translationUnit );
[d76c588]1303 }
1304
[ef5b828]1305 ast::ptr< ast::Init > resolveCtorInit(
1306 const ast::ConstructorInit * ctorInit, const ast::SymbolTable & symtab
[234b1cb]1307 ) {
1308 assert( ctorInit );
1309 ast::Pass< Resolver_new > resolver{ symtab };
1310 return ctorInit->accept( resolver );
1311 }
1312
[ef5b828]1313 ast::ptr< ast::Expr > resolveStmtExpr(
1314 const ast::StmtExpr * stmtExpr, const ast::SymbolTable & symtab
[17a0ede2]1315 ) {
1316 assert( stmtExpr );
1317 ast::Pass< Resolver_new > resolver{ symtab };
1318 ast::ptr< ast::Expr > ret = stmtExpr;
1319 ret = ret->accept( resolver );
1320 strict_dynamic_cast< ast::StmtExpr * >( ret.get_and_mutate() )->computeResult();
1321 return ret;
1322 }
1323
[16ba4a6f]1324 namespace {
1325 const ast::Attribute * handleAttribute(const CodeLocation & loc, const ast::Attribute * attr, const ast::SymbolTable & symtab) {
1326 std::string name = attr->normalizedName();
1327 if (name == "constructor" || name == "destructor") {
1328 if (attr->params.size() == 1) {
1329 auto arg = attr->params.front();
1330 auto resolved = ResolvExpr::findSingleExpression( arg, new ast::BasicType( ast::BasicType::LongLongSignedInt ), symtab );
1331 auto result = eval(arg);
1332
1333 auto mutAttr = mutate(attr);
1334 mutAttr->params.front() = resolved;
1335 if (! result.second) {
1336 SemanticWarning(loc, Warning::GccAttributes,
1337 toCString( name, " priorities must be integers from 0 to 65535 inclusive: ", arg ) );
1338 }
1339 else {
1340 auto priority = result.first;
1341 if (priority < 101) {
1342 SemanticWarning(loc, Warning::GccAttributes,
1343 toCString( name, " priorities from 0 to 100 are reserved for the implementation" ) );
1344 } else if (priority < 201 && ! buildingLibrary()) {
1345 SemanticWarning(loc, Warning::GccAttributes,
1346 toCString( name, " priorities from 101 to 200 are reserved for the implementation" ) );
1347 }
1348 }
1349 return mutAttr;
1350 } else if (attr->params.size() > 1) {
1351 SemanticWarning(loc, Warning::GccAttributes, toCString( "too many arguments to ", name, " attribute" ) );
1352 } else {
1353 SemanticWarning(loc, Warning::GccAttributes, toCString( "too few arguments to ", name, " attribute" ) );
1354 }
1355 }
1356 return attr;
1357 }
1358 }
1359
1360 const ast::FunctionDecl * Resolver_new::previsit( const ast::FunctionDecl * functionDecl ) {
[2a8f0c1]1361 GuardValue( functionReturn );
[16ba4a6f]1362
1363 assert (functionDecl->unique());
1364 if (!functionDecl->has_body() && !functionDecl->withExprs.empty()) {
1365 SemanticError(functionDecl->location, functionDecl, "Function without body has with declarations");
1366 }
1367
1368 if (!functionDecl->isTypeFixed) {
1369 auto mutDecl = mutate(functionDecl);
1370 auto mutType = mutDecl->type.get_and_mutate();
1371
1372 for (auto & attr: mutDecl->attributes) {
1373 attr = handleAttribute(mutDecl->location, attr, symtab);
1374 }
1375
[3e5dd913]1376 // handle assertions
[16ba4a6f]1377
1378 symtab.enterScope();
[3e5dd913]1379 mutType->forall.clear();
1380 mutType->assertions.clear();
1381 for (auto & typeParam : mutDecl->type_params) {
1382 symtab.addType(typeParam);
1383 mutType->forall.emplace_back(new ast::TypeInstType(typeParam->name, typeParam));
1384 }
1385 for (auto & asst : mutDecl->assertions) {
1386 asst = fixObjectType(asst.strict_as<ast::ObjectDecl>(), symtab);
1387 symtab.addId(asst);
1388 mutType->assertions.emplace_back(new ast::VariableExpr(functionDecl->location, asst));
[16ba4a6f]1389 }
1390
1391 // temporarily adds params to symbol table.
1392 // actual scoping rules for params and withexprs differ - see Pass::visit(FunctionDecl)
1393
1394 std::vector<ast::ptr<ast::Type>> paramTypes;
1395 std::vector<ast::ptr<ast::Type>> returnTypes;
1396
1397 for (auto & param : mutDecl->params) {
1398 param = fixObjectType(param.strict_as<ast::ObjectDecl>(), symtab);
1399 symtab.addId(param);
1400 paramTypes.emplace_back(param->get_type());
1401 }
1402 for (auto & ret : mutDecl->returns) {
1403 ret = fixObjectType(ret.strict_as<ast::ObjectDecl>(), symtab);
1404 returnTypes.emplace_back(ret->get_type());
1405 }
1406 // since function type in decl is just a view of param types, need to update that as well
1407 mutType->params = std::move(paramTypes);
1408 mutType->returns = std::move(returnTypes);
1409
[3e5dd913]1410 auto renamedType = strict_dynamic_cast<const ast::FunctionType *>(renameTyVars(mutType, RenameMode::GEN_EXPR_ID));
1411
[16ba4a6f]1412 std::list<ast::ptr<ast::Stmt>> newStmts;
1413 resolveWithExprs (mutDecl->withExprs, newStmts);
1414
1415 if (mutDecl->stmts) {
1416 auto mutStmt = mutDecl->stmts.get_and_mutate();
1417 mutStmt->kids.splice(mutStmt->kids.begin(), std::move(newStmts));
1418 mutDecl->stmts = mutStmt;
1419 }
1420
1421 symtab.leaveScope();
1422
[3e5dd913]1423 mutDecl->type = renamedType;
[16ba4a6f]1424 mutDecl->mangleName = Mangle::mangle(mutDecl);
1425 mutDecl->isTypeFixed = true;
1426 functionDecl = mutDecl;
1427 }
1428 managedTypes.handleDWT(functionDecl);
1429
[2a8f0c1]1430 functionReturn = extractResultType( functionDecl->type );
[16ba4a6f]1431 return functionDecl;
[d76c588]1432 }
1433
[2a8f0c1]1434 const ast::FunctionDecl * Resolver_new::postvisit( const ast::FunctionDecl * functionDecl ) {
[4864a73]1435 // default value expressions have an environment which shouldn't be there and trips up
[2a8f0c1]1436 // later passes.
[e068c8a]1437 assert( functionDecl->unique() );
1438 ast::FunctionType * mutType = mutate( functionDecl->type.get() );
1439
1440 for ( unsigned i = 0 ; i < mutType->params.size() ; ++i ) {
1441 if ( const ast::ObjectDecl * obj = mutType->params[i].as< ast::ObjectDecl >() ) {
1442 if ( const ast::SingleInit * init = obj->init.as< ast::SingleInit >() ) {
1443 if ( init->value->env == nullptr ) continue;
1444 // clone initializer minus the initializer environment
1445 auto mutParam = mutate( mutType->params[i].strict_as< ast::ObjectDecl >() );
1446 auto mutInit = mutate( mutParam->init.strict_as< ast::SingleInit >() );
1447 auto mutValue = mutate( mutInit->value.get() );
1448
1449 mutValue->env = nullptr;
1450 mutInit->value = mutValue;
1451 mutParam->init = mutInit;
1452 mutType->params[i] = mutParam;
1453
1454 assert( ! mutType->params[i].strict_as< ast::ObjectDecl >()->init.strict_as< ast::SingleInit >()->value->env);
1455 }
1456 }
[2a8f0c1]1457 }
[73973b6]1458 mutate_field(functionDecl, &ast::FunctionDecl::type, mutType);
1459 return functionDecl;
[d76c588]1460 }
1461
[16ba4a6f]1462 const ast::ObjectDecl * Resolver_new::previsit( const ast::ObjectDecl * objectDecl ) {
[ef5b828]1463 // To handle initialization of routine pointers [e.g. int (*fp)(int) = foo()],
1464 // class-variable `initContext` is changed multiple times because the LHS is analyzed
1465 // twice. The second analysis changes `initContext` because a function type can contain
1466 // object declarations in the return and parameter types. Therefore each value of
1467 // `initContext` is retained so the type on the first analysis is preserved and used for
[b7d92b96]1468 // selecting the RHS.
1469 GuardValue( currentObject );
[16ba4a6f]1470
[b7d92b96]1471 if ( inEnumDecl && dynamic_cast< const ast::EnumInstType * >( objectDecl->get_type() ) ) {
[ef5b828]1472 // enumerator initializers should not use the enum type to initialize, since the
[b7d92b96]1473 // enum type is still incomplete at this point. Use `int` instead.
[16ba4a6f]1474 objectDecl = fixObjectType(objectDecl, symtab);
[ef5b828]1475 currentObject = ast::CurrentObject{
[2b59f55]1476 objectDecl->location, new ast::BasicType{ ast::BasicType::SignedInt } };
[b7d92b96]1477 }
[16ba4a6f]1478 else {
1479 if (!objectDecl->isTypeFixed) {
1480 auto newDecl = fixObjectType(objectDecl, symtab);
1481 auto mutDecl = mutate(newDecl);
[4a8f150]1482
[16ba4a6f]1483 // generate CtorInit wrapper when necessary.
1484 // in certain cases, fixObjectType is called before reaching
1485 // this object in visitor pass, thus disabling CtorInit codegen.
1486 // this happens on aggregate members and function parameters.
1487 if ( InitTweak::tryConstruct( mutDecl ) && ( managedTypes.isManaged( mutDecl ) || ((! isInFunction() || mutDecl->storage.is_static ) && ! InitTweak::isConstExpr( mutDecl->init ) ) ) ) {
1488 // constructed objects cannot be designated
1489 if ( InitTweak::isDesignated( mutDecl->init ) ) SemanticError( mutDecl, "Cannot include designations in the initializer for a managed Object. If this is really what you want, then initialize with @=.\n" );
1490 // constructed objects should not have initializers nested too deeply
1491 if ( ! InitTweak::checkInitDepth( mutDecl ) ) SemanticError( mutDecl, "Managed object's initializer is too deep " );
1492
1493 mutDecl->init = InitTweak::genCtorInit( mutDecl->location, mutDecl );
1494 }
1495
1496 objectDecl = mutDecl;
1497 }
1498 currentObject = ast::CurrentObject{ objectDecl->location, objectDecl->get_type() };
1499 }
[4a8f150]1500
[16ba4a6f]1501 return objectDecl;
1502 }
1503
1504 void Resolver_new::previsit( const ast::AggregateDecl * _aggDecl ) {
1505 auto aggDecl = mutate(_aggDecl);
1506 assertf(aggDecl == _aggDecl, "type declarations must be unique");
1507
1508 for (auto & member: aggDecl->members) {
1509 // nested type decls are hoisted already. no need to do anything
1510 if (auto obj = member.as<ast::ObjectDecl>()) {
1511 member = fixObjectType(obj, symtab);
1512 }
1513 }
1514 }
1515
1516 void Resolver_new::previsit( const ast::StructDecl * structDecl ) {
1517 previsit(static_cast<const ast::AggregateDecl *>(structDecl));
1518 managedTypes.handleStruct(structDecl);
[d76c588]1519 }
1520
[99d4584]1521 void Resolver_new::previsit( const ast::EnumDecl * ) {
1522 // in case we decide to allow nested enums
1523 GuardValue( inEnumDecl );
[2890212]1524 inEnumDecl = true;
[16ba4a6f]1525 // don't need to fix types for enum fields
[d76c588]1526 }
1527
[16ba4a6f]1528
[ef5b828]1529 const ast::StaticAssertDecl * Resolver_new::previsit(
1530 const ast::StaticAssertDecl * assertDecl
[99d4584]1531 ) {
[ef5b828]1532 return ast::mutate_field(
1533 assertDecl, &ast::StaticAssertDecl::cond,
[b7d92b96]1534 findIntegralExpression( assertDecl->cond, symtab ) );
1535 }
1536
1537 template< typename PtrType >
[0f6a7752]1538 const PtrType * handlePtrType( const PtrType * type, const ast::SymbolTable & symtab ) {
1539 if ( type->dimension ) {
[8ba363e]1540 ast::ptr< ast::Type > sizeType = ast::sizeType;
[ef5b828]1541 ast::mutate_field(
1542 type, &PtrType::dimension,
[0f6a7752]1543 findSingleExpression( type->dimension, sizeType, symtab ) );
1544 }
1545 return type;
[d76c588]1546 }
1547
[0f6a7752]1548 const ast::ArrayType * Resolver_new::previsit( const ast::ArrayType * at ) {
1549 return handlePtrType( at, symtab );
[d76c588]1550 }
1551
[0f6a7752]1552 const ast::PointerType * Resolver_new::previsit( const ast::PointerType * pt ) {
1553 return handlePtrType( pt, symtab );
[d76c588]1554 }
1555
[b7d92b96]1556 const ast::ExprStmt * Resolver_new::previsit( const ast::ExprStmt * exprStmt ) {
1557 visit_children = false;
1558 assertf( exprStmt->expr, "ExprStmt has null expression in resolver" );
[ef5b828]1559
1560 return ast::mutate_field(
[b7d92b96]1561 exprStmt, &ast::ExprStmt::expr, findVoidExpression( exprStmt->expr, symtab ) );
[d76c588]1562 }
1563
[b7d92b96]1564 const ast::AsmExpr * Resolver_new::previsit( const ast::AsmExpr * asmExpr ) {
1565 visit_children = false;
1566
[ef5b828]1567 asmExpr = ast::mutate_field(
[b7d92b96]1568 asmExpr, &ast::AsmExpr::operand, findVoidExpression( asmExpr->operand, symtab ) );
[ef5b828]1569
[b7d92b96]1570 return asmExpr;
[d76c588]1571 }
1572
[2b59f55]1573 const ast::AsmStmt * Resolver_new::previsit( const ast::AsmStmt * asmStmt ) {
1574 visitor->maybe_accept( asmStmt, &ast::AsmStmt::input );
1575 visitor->maybe_accept( asmStmt, &ast::AsmStmt::output );
1576 visit_children = false;
1577 return asmStmt;
[d76c588]1578 }
1579
[b7d92b96]1580 const ast::IfStmt * Resolver_new::previsit( const ast::IfStmt * ifStmt ) {
1581 return ast::mutate_field(
1582 ifStmt, &ast::IfStmt::cond, findIntegralExpression( ifStmt->cond, symtab ) );
[d76c588]1583 }
1584
[b7d92b96]1585 const ast::WhileStmt * Resolver_new::previsit( const ast::WhileStmt * whileStmt ) {
[ef5b828]1586 return ast::mutate_field(
[b7d92b96]1587 whileStmt, &ast::WhileStmt::cond, findIntegralExpression( whileStmt->cond, symtab ) );
[d76c588]1588 }
1589
[b7d92b96]1590 const ast::ForStmt * Resolver_new::previsit( const ast::ForStmt * forStmt ) {
1591 if ( forStmt->cond ) {
1592 forStmt = ast::mutate_field(
1593 forStmt, &ast::ForStmt::cond, findIntegralExpression( forStmt->cond, symtab ) );
1594 }
1595
1596 if ( forStmt->inc ) {
1597 forStmt = ast::mutate_field(
1598 forStmt, &ast::ForStmt::inc, findVoidExpression( forStmt->inc, symtab ) );
1599 }
1600
1601 return forStmt;
[d76c588]1602 }
1603
[b7d92b96]1604 const ast::SwitchStmt * Resolver_new::previsit( const ast::SwitchStmt * switchStmt ) {
1605 GuardValue( currentObject );
1606 switchStmt = ast::mutate_field(
[ef5b828]1607 switchStmt, &ast::SwitchStmt::cond,
[b7d92b96]1608 findIntegralExpression( switchStmt->cond, symtab ) );
[2b59f55]1609 currentObject = ast::CurrentObject{ switchStmt->location, switchStmt->cond->result };
[b7d92b96]1610 return switchStmt;
[d76c588]1611 }
1612
[b7d92b96]1613 const ast::CaseStmt * Resolver_new::previsit( const ast::CaseStmt * caseStmt ) {
1614 if ( caseStmt->cond ) {
[60aaa51d]1615 std::deque< ast::InitAlternative > initAlts = currentObject.getOptions();
[2b59f55]1616 assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral "
1617 "expression." );
[ef5b828]1618
1619 ast::ptr< ast::Expr > untyped =
[2b59f55]1620 new ast::CastExpr{ caseStmt->location, caseStmt->cond, initAlts.front().type };
[2773ab8]1621 ast::ptr< ast::Expr > newExpr = findSingleExpression( untyped, symtab );
[ef5b828]1622
1623 // case condition cannot have a cast in C, so it must be removed here, regardless of
[2b59f55]1624 // whether it would perform a conversion.
1625 if ( const ast::CastExpr * castExpr = newExpr.as< ast::CastExpr >() ) {
[60aaa51d]1626 swap_and_save_env( newExpr, castExpr->arg );
[2b59f55]1627 }
[ef5b828]1628
[2b59f55]1629 caseStmt = ast::mutate_field( caseStmt, &ast::CaseStmt::cond, newExpr );
[b7d92b96]1630 }
1631 return caseStmt;
[d76c588]1632 }
1633
[b7d92b96]1634 const ast::BranchStmt * Resolver_new::previsit( const ast::BranchStmt * branchStmt ) {
1635 visit_children = false;
1636 // must resolve the argument of a computed goto
1637 if ( branchStmt->kind == ast::BranchStmt::Goto && branchStmt->computedTarget ) {
1638 // computed goto argument is void*
[2773ab8]1639 ast::ptr< ast::Type > target = new ast::PointerType{ new ast::VoidType{} };
[b7d92b96]1640 branchStmt = ast::mutate_field(
[ef5b828]1641 branchStmt, &ast::BranchStmt::computedTarget,
[2773ab8]1642 findSingleExpression( branchStmt->computedTarget, target, symtab ) );
[b7d92b96]1643 }
1644 return branchStmt;
[d76c588]1645 }
1646
[2b59f55]1647 const ast::ReturnStmt * Resolver_new::previsit( const ast::ReturnStmt * returnStmt ) {
1648 visit_children = false;
1649 if ( returnStmt->expr ) {
1650 returnStmt = ast::mutate_field(
[ef5b828]1651 returnStmt, &ast::ReturnStmt::expr,
[2b59f55]1652 findSingleExpression( returnStmt->expr, functionReturn, symtab ) );
1653 }
1654 return returnStmt;
[d76c588]1655 }
1656
[2b59f55]1657 const ast::ThrowStmt * Resolver_new::previsit( const ast::ThrowStmt * throwStmt ) {
1658 visit_children = false;
1659 if ( throwStmt->expr ) {
[ef5b828]1660 const ast::StructDecl * exceptionDecl =
[3090127]1661 symtab.lookupStruct( "__cfaehm_base_exception_t" );
[2b59f55]1662 assert( exceptionDecl );
[ef5b828]1663 ast::ptr< ast::Type > exceptType =
[2b59f55]1664 new ast::PointerType{ new ast::StructInstType{ exceptionDecl } };
1665 throwStmt = ast::mutate_field(
[ef5b828]1666 throwStmt, &ast::ThrowStmt::expr,
[2b59f55]1667 findSingleExpression( throwStmt->expr, exceptType, symtab ) );
1668 }
1669 return throwStmt;
[d76c588]1670 }
1671
[2b59f55]1672 const ast::CatchStmt * Resolver_new::previsit( const ast::CatchStmt * catchStmt ) {
[b9fa85b]1673 // Until we are very sure this invarent (ifs that move between passes have thenPart)
1674 // holds, check it. This allows a check for when to decode the mangling.
1675 if ( auto ifStmt = catchStmt->body.as<ast::IfStmt>() ) {
1676 assert( ifStmt->thenPart );
1677 }
1678 // Encode the catchStmt so the condition can see the declaration.
[2b59f55]1679 if ( catchStmt->cond ) {
[b9fa85b]1680 ast::CatchStmt * stmt = mutate( catchStmt );
1681 stmt->body = new ast::IfStmt( stmt->location, stmt->cond, nullptr, stmt->body );
1682 stmt->cond = nullptr;
1683 return stmt;
1684 }
1685 return catchStmt;
1686 }
1687
1688 const ast::CatchStmt * Resolver_new::postvisit( const ast::CatchStmt * catchStmt ) {
1689 // Decode the catchStmt so everything is stored properly.
1690 const ast::IfStmt * ifStmt = catchStmt->body.as<ast::IfStmt>();
1691 if ( nullptr != ifStmt && nullptr == ifStmt->thenPart ) {
1692 assert( ifStmt->cond );
1693 assert( ifStmt->elsePart );
1694 ast::CatchStmt * stmt = ast::mutate( catchStmt );
1695 stmt->cond = ifStmt->cond;
1696 stmt->body = ifStmt->elsePart;
1697 // ifStmt should be implicately deleted here.
1698 return stmt;
[2b59f55]1699 }
1700 return catchStmt;
[d76c588]1701 }
1702
[2773ab8]1703 const ast::WaitForStmt * Resolver_new::previsit( const ast::WaitForStmt * stmt ) {
1704 visit_children = false;
1705
1706 // Resolve all clauses first
1707 for ( unsigned i = 0; i < stmt->clauses.size(); ++i ) {
1708 const ast::WaitForStmt::Clause & clause = stmt->clauses[i];
1709
1710 ast::TypeEnvironment env;
1711 CandidateFinder funcFinder{ symtab, env };
1712
1713 // Find all candidates for a function in canonical form
1714 funcFinder.find( clause.target.func, ResolvMode::withAdjustment() );
1715
1716 if ( funcFinder.candidates.empty() ) {
1717 stringstream ss;
1718 ss << "Use of undeclared indentifier '";
1719 ss << clause.target.func.strict_as< ast::NameExpr >()->name;
1720 ss << "' in call to waitfor";
1721 SemanticError( stmt->location, ss.str() );
1722 }
1723
1724 if ( clause.target.args.empty() ) {
[ef5b828]1725 SemanticError( stmt->location,
[2773ab8]1726 "Waitfor clause must have at least one mutex parameter");
1727 }
1728
1729 // Find all alternatives for all arguments in canonical form
[ef5b828]1730 std::vector< CandidateFinder > argFinders =
[2773ab8]1731 funcFinder.findSubExprs( clause.target.args );
[ef5b828]1732
[2773ab8]1733 // List all combinations of arguments
1734 std::vector< CandidateList > possibilities;
1735 combos( argFinders.begin(), argFinders.end(), back_inserter( possibilities ) );
1736
1737 // For every possible function:
[ef5b828]1738 // * try matching the arguments to the parameters, not the other way around because
[2773ab8]1739 // more arguments than parameters
1740 CandidateList funcCandidates;
1741 std::vector< CandidateList > argsCandidates;
1742 SemanticErrorException errors;
1743 for ( CandidateRef & func : funcFinder.candidates ) {
1744 try {
[ef5b828]1745 auto pointerType = dynamic_cast< const ast::PointerType * >(
[2773ab8]1746 func->expr->result->stripReferences() );
1747 if ( ! pointerType ) {
[ef5b828]1748 SemanticError( stmt->location, func->expr->result.get(),
[2773ab8]1749 "candidate not viable: not a pointer type\n" );
1750 }
1751
1752 auto funcType = pointerType->base.as< ast::FunctionType >();
1753 if ( ! funcType ) {
[ef5b828]1754 SemanticError( stmt->location, func->expr->result.get(),
[2773ab8]1755 "candidate not viable: not a function type\n" );
1756 }
1757
1758 {
1759 auto param = funcType->params.begin();
1760 auto paramEnd = funcType->params.end();
1761
1762 if( ! nextMutex( param, paramEnd ) ) {
[ef5b828]1763 SemanticError( stmt->location, funcType,
[2773ab8]1764 "candidate function not viable: no mutex parameters\n");
1765 }
1766 }
1767
1768 CandidateRef func2{ new Candidate{ *func } };
1769 // strip reference from function
1770 func2->expr = referenceToRvalueConversion( func->expr, func2->cost );
1771
1772 // Each argument must be matched with a parameter of the current candidate
1773 for ( auto & argsList : possibilities ) {
1774 try {
1775 // Declare data structures needed for resolution
1776 ast::OpenVarSet open;
1777 ast::AssertionSet need, have;
1778 ast::TypeEnvironment resultEnv{ func->env };
[ef5b828]1779 // Add all type variables as open so that those not used in the
[2773ab8]1780 // parameter list are still considered open
1781 resultEnv.add( funcType->forall );
1782
1783 // load type variables from arguments into one shared space
1784 for ( auto & arg : argsList ) {
1785 resultEnv.simpleCombine( arg->env );
1786 }
1787
1788 // Make sure we don't widen any existing bindings
1789 resultEnv.forbidWidening();
1790
1791 // Find any unbound type variables
1792 resultEnv.extractOpenVars( open );
1793
1794 auto param = funcType->params.begin();
1795 auto paramEnd = funcType->params.end();
1796
1797 unsigned n_mutex_param = 0;
1798
[ef5b828]1799 // For every argument of its set, check if it matches one of the
[2773ab8]1800 // parameters. The order is important
1801 for ( auto & arg : argsList ) {
1802 // Ignore non-mutex arguments
1803 if ( ! nextMutex( param, paramEnd ) ) {
1804 // We ran out of parameters but still have arguments.
1805 // This function doesn't match
[ef5b828]1806 SemanticError( stmt->location, funcType,
[2773ab8]1807 toString("candidate function not viable: too many mutex "
1808 "arguments, expected ", n_mutex_param, "\n" ) );
1809 }
1810
1811 ++n_mutex_param;
1812
[ef5b828]1813 // Check if the argument matches the parameter type in the current
[2773ab8]1814 // scope
[954c954]1815 // ast::ptr< ast::Type > paramType = (*param)->get_type();
[ef5b828]1816 if (
1817 ! unify(
[954c954]1818 arg->expr->result, *param, resultEnv, need, have, open,
[ef5b828]1819 symtab )
[2773ab8]1820 ) {
1821 // Type doesn't match
1822 stringstream ss;
1823 ss << "candidate function not viable: no known conversion "
1824 "from '";
[954c954]1825 ast::print( ss, *param );
[2773ab8]1826 ss << "' to '";
1827 ast::print( ss, arg->expr->result );
1828 ss << "' with env '";
1829 ast::print( ss, resultEnv );
1830 ss << "'\n";
1831 SemanticError( stmt->location, funcType, ss.str() );
1832 }
1833
1834 ++param;
1835 }
1836
1837 // All arguments match!
1838
1839 // Check if parameters are missing
1840 if ( nextMutex( param, paramEnd ) ) {
1841 do {
1842 ++n_mutex_param;
1843 ++param;
1844 } while ( nextMutex( param, paramEnd ) );
1845
[ef5b828]1846 // We ran out of arguments but still have parameters left; this
[2773ab8]1847 // function doesn't match
[ef5b828]1848 SemanticError( stmt->location, funcType,
[2773ab8]1849 toString( "candidate function not viable: too few mutex "
1850 "arguments, expected ", n_mutex_param, "\n" ) );
1851 }
1852
1853 // All parameters match!
1854
1855 // Finish the expressions to tie in proper environments
1856 finishExpr( func2->expr, resultEnv );
1857 for ( CandidateRef & arg : argsList ) {
1858 finishExpr( arg->expr, resultEnv );
1859 }
1860
1861 // This is a match, store it and save it for later
1862 funcCandidates.emplace_back( std::move( func2 ) );
1863 argsCandidates.emplace_back( std::move( argsList ) );
1864
1865 } catch ( SemanticErrorException & e ) {
1866 errors.append( e );
1867 }
1868 }
1869 } catch ( SemanticErrorException & e ) {
1870 errors.append( e );
1871 }
1872 }
1873
1874 // Make sure correct number of arguments
1875 if( funcCandidates.empty() ) {
[ef5b828]1876 SemanticErrorException top( stmt->location,
[2773ab8]1877 "No alternatives for function in call to waitfor" );
1878 top.append( errors );
1879 throw top;
1880 }
1881
1882 if( argsCandidates.empty() ) {
[ef5b828]1883 SemanticErrorException top( stmt->location,
1884 "No alternatives for arguments in call to waitfor" );
[2773ab8]1885 top.append( errors );
1886 throw top;
1887 }
1888
1889 if( funcCandidates.size() > 1 ) {
[ef5b828]1890 SemanticErrorException top( stmt->location,
[2773ab8]1891 "Ambiguous function in call to waitfor" );
1892 top.append( errors );
1893 throw top;
1894 }
1895 if( argsCandidates.size() > 1 ) {
1896 SemanticErrorException top( stmt->location,
1897 "Ambiguous arguments in call to waitfor" );
1898 top.append( errors );
1899 throw top;
1900 }
1901 // TODO: need to use findDeletedExpr to ensure no deleted identifiers are used.
1902
1903 // build new clause
1904 ast::WaitForStmt::Clause clause2;
[ef5b828]1905
[2773ab8]1906 clause2.target.func = funcCandidates.front()->expr;
[ef5b828]1907
[2773ab8]1908 clause2.target.args.reserve( clause.target.args.size() );
1909 for ( auto arg : argsCandidates.front() ) {
1910 clause2.target.args.emplace_back( std::move( arg->expr ) );
1911 }
1912
1913 // Resolve the conditions as if it were an IfStmt, statements normally
1914 clause2.cond = findSingleExpression( clause.cond, symtab );
1915 clause2.stmt = clause.stmt->accept( *visitor );
1916
1917 // set results into stmt
1918 auto n = mutate( stmt );
1919 n->clauses[i] = std::move( clause2 );
1920 stmt = n;
1921 }
1922
1923 if ( stmt->timeout.stmt ) {
1924 // resolve the timeout as a size_t, the conditions like IfStmt, and stmts normally
1925 ast::WaitForStmt::Timeout timeout2;
1926
[ef5b828]1927 ast::ptr< ast::Type > target =
[2773ab8]1928 new ast::BasicType{ ast::BasicType::LongLongUnsignedInt };
1929 timeout2.time = findSingleExpression( stmt->timeout.time, target, symtab );
1930 timeout2.cond = findSingleExpression( stmt->timeout.cond, symtab );
1931 timeout2.stmt = stmt->timeout.stmt->accept( *visitor );
1932
1933 // set results into stmt
1934 auto n = mutate( stmt );
1935 n->timeout = std::move( timeout2 );
1936 stmt = n;
1937 }
1938
1939 if ( stmt->orElse.stmt ) {
1940 // resolve the condition like IfStmt, stmts normally
1941 ast::WaitForStmt::OrElse orElse2;
1942
1943 orElse2.cond = findSingleExpression( stmt->orElse.cond, symtab );
1944 orElse2.stmt = stmt->orElse.stmt->accept( *visitor );
1945
1946 // set results into stmt
1947 auto n = mutate( stmt );
1948 n->orElse = std::move( orElse2 );
1949 stmt = n;
1950 }
1951
1952 return stmt;
[d76c588]1953 }
1954
[16ba4a6f]1955 const ast::WithStmt * Resolver_new::previsit( const ast::WithStmt * withStmt ) {
1956 auto mutStmt = mutate(withStmt);
1957 resolveWithExprs(mutStmt->exprs, stmtsToAddBefore);
1958 return mutStmt;
1959 }
1960
1961 void Resolver_new::resolveWithExprs(std::vector<ast::ptr<ast::Expr>> & exprs, std::list<ast::ptr<ast::Stmt>> & stmtsToAdd) {
1962 for (auto & expr : exprs) {
1963 // only struct- and union-typed expressions are viable candidates
1964 expr = findKindExpression( expr, symtab, structOrUnion, "with expression" );
1965
1966 // if with expression might be impure, create a temporary so that it is evaluated once
1967 if ( Tuples::maybeImpure( expr ) ) {
1968 static UniqueName tmpNamer( "_with_tmp_" );
1969 const CodeLocation loc = expr->location;
1970 auto tmp = new ast::ObjectDecl(loc, tmpNamer.newName(), expr->result, new ast::SingleInit(loc, expr ) );
1971 expr = new ast::VariableExpr( loc, tmp );
1972 stmtsToAdd.push_back( new ast::DeclStmt(loc, tmp ) );
1973 if ( InitTweak::isConstructable( tmp->type ) ) {
1974 // generate ctor/dtor and resolve them
1975 tmp->init = InitTweak::genCtorInit( loc, tmp );
1976 }
1977 // since tmp is freshly created, this should modify tmp in-place
1978 tmp->accept( *visitor );
1979 }
1980 }
1981 }
[60aaa51d]1982
1983
1984 const ast::SingleInit * Resolver_new::previsit( const ast::SingleInit * singleInit ) {
1985 visit_children = false;
[ef5b828]1986 // resolve initialization using the possibilities as determined by the `currentObject`
[60aaa51d]1987 // cursor.
[ef5b828]1988 ast::ptr< ast::Expr > untyped = new ast::UntypedInitExpr{
[60aaa51d]1989 singleInit->location, singleInit->value, currentObject.getOptions() };
[2773ab8]1990 ast::ptr<ast::Expr> newExpr = findSingleExpression( untyped, symtab );
[60aaa51d]1991 const ast::InitExpr * initExpr = newExpr.strict_as< ast::InitExpr >();
1992
1993 // move cursor to the object that is actually initialized
1994 currentObject.setNext( initExpr->designation );
1995
1996 // discard InitExpr wrapper and retain relevant pieces.
[ef5b828]1997 // `initExpr` may have inferred params in the case where the expression specialized a
1998 // function pointer, and newExpr may already have inferParams of its own, so a simple
[60aaa51d]1999 // swap is not sufficient
2000 ast::Expr::InferUnion inferred = initExpr->inferred;
2001 swap_and_save_env( newExpr, initExpr->expr );
2002 newExpr.get_and_mutate()->inferred.splice( std::move(inferred) );
2003
[ef5b828]2004 // get the actual object's type (may not exactly match what comes back from the resolver
[60aaa51d]2005 // due to conversions)
2006 const ast::Type * initContext = currentObject.getCurrentType();
2007
2008 removeExtraneousCast( newExpr, symtab );
2009
2010 // check if actual object's type is char[]
2011 if ( auto at = dynamic_cast< const ast::ArrayType * >( initContext ) ) {
2012 if ( isCharType( at->base ) ) {
2013 // check if the resolved type is char*
2014 if ( auto pt = newExpr->result.as< ast::PointerType >() ) {
2015 if ( isCharType( pt->base ) ) {
[ef5b828]2016 // strip cast if we're initializing a char[] with a char*
[60aaa51d]2017 // e.g. char x[] = "hello"
2018 if ( auto ce = newExpr.as< ast::CastExpr >() ) {
2019 swap_and_save_env( newExpr, ce->arg );
2020 }
2021 }
2022 }
2023 }
2024 }
2025
2026 // move cursor to next object in preparation for next initializer
2027 currentObject.increment();
2028
2029 // set initializer expression to resolved expression
2030 return ast::mutate_field( singleInit, &ast::SingleInit::value, std::move(newExpr) );
[d76c588]2031 }
2032
[60aaa51d]2033 const ast::ListInit * Resolver_new::previsit( const ast::ListInit * listInit ) {
2034 // move cursor into brace-enclosed initializer-list
2035 currentObject.enterListInit( listInit->location );
2036
2037 assert( listInit->designations.size() == listInit->initializers.size() );
2038 for ( unsigned i = 0; i < listInit->designations.size(); ++i ) {
[ef5b828]2039 // iterate designations and initializers in pairs, moving the cursor to the current
[60aaa51d]2040 // designated object and resolving the initializer against that object
[2d11663]2041 listInit = ast::mutate_field_index(
[ef5b828]2042 listInit, &ast::ListInit::designations, i,
[2d11663]2043 currentObject.findNext( listInit->designations[i] ) );
2044 listInit = ast::mutate_field_index(
2045 listInit, &ast::ListInit::initializers, i,
2046 listInit->initializers[i]->accept( *visitor ) );
[60aaa51d]2047 }
2048
[2d11663]2049 // move cursor out of brace-enclosed initializer-list
2050 currentObject.exitListInit();
2051
[60aaa51d]2052 visit_children = false;
2053 return listInit;
[d76c588]2054 }
2055
[2d11663]2056 const ast::ConstructorInit * Resolver_new::previsit( const ast::ConstructorInit * ctorInit ) {
2057 visitor->maybe_accept( ctorInit, &ast::ConstructorInit::ctor );
2058 visitor->maybe_accept( ctorInit, &ast::ConstructorInit::dtor );
2059
2060 // found a constructor - can get rid of C-style initializer
2061 // xxx - Rob suggests this field is dead code
2062 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::init, nullptr );
2063
[ef5b828]2064 // intrinsic single-parameter constructors and destructors do nothing. Since this was
2065 // implicitly generated, there's no way for it to have side effects, so get rid of it to
[2d11663]2066 // clean up generated code
2067 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->ctor ) ) {
2068 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::ctor, nullptr );
2069 }
2070 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->dtor ) ) {
2071 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::dtor, nullptr );
2072 }
2073
2074 return ctorInit;
[d76c588]2075 }
2076
[0dd9a5e]2077 // suppress error on autogen functions and mark invalid autogen as deleted.
[e00c22f]2078 bool Resolver_new::on_error(ast::ptr<ast::Decl> & decl) {
[0dd9a5e]2079 if (auto functionDecl = decl.as<ast::FunctionDecl>()) {
2080 // xxx - can intrinsic gen ever fail?
2081 if (functionDecl->linkage == ast::Linkage::AutoGen) {
2082 auto mutDecl = mutate(functionDecl);
2083 mutDecl->isDeleted = true;
2084 mutDecl->stmts = nullptr;
2085 decl = mutDecl;
2086 return false;
2087 }
2088 }
2089 return true;
2090 }
2091
[51b73452]2092} // namespace ResolvExpr
[a32b204]2093
2094// Local Variables: //
2095// tab-width: 4 //
2096// mode: c++ //
2097// compile-command: "make install" //
2098// End: //
Note: See TracBrowser for help on using the repository browser.