source: src/ResolvExpr/Resolver.cc@ 34d0a28

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since 34d0a28 was 3090127, checked in by Andrew Beach <ajbeach@…>, 5 years ago

Naming updates, most are to get exception names to the new cfa(module)_ format.

  • Property mode set to 100644
File size: 66.9 KB
RevLine 
[a32b204]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
[71f4e4f]7// Resolver.cc --
[a32b204]8//
[d76c588]9// Author : Aaron B. Moss
[a32b204]10// Created On : Sun May 17 12:17:01 2015
[3090127]11// Last Modified By : Andrew Beach
12// Last Modified On : Fri Mar 27 11:58:00 2020
13// Update Count : 242
[a32b204]14//
15
[e3e16bc]16#include <cassert> // for strict_dynamic_cast, assert
[ea6332d]17#include <memory> // for allocator, allocator_traits<...
18#include <tuple> // for get
[6d6e829]19#include <vector> // for vector
[ea6332d]20
21#include "Alternative.h" // for Alternative, AltList
22#include "AlternativeFinder.h" // for AlternativeFinder, resolveIn...
[99d4584]23#include "Candidate.hpp"
24#include "CandidateFinder.hpp"
[d76c588]25#include "CurrentObject.h" // for CurrentObject
26#include "RenameVars.h" // for RenameVars, global_renamer
27#include "Resolver.h"
28#include "ResolvMode.h" // for ResolvMode
29#include "typeops.h" // for extractResultType
30#include "Unify.h" // for unify
[4864a73]31#include "AST/Chain.hpp"
[2a8f0c1]32#include "AST/Decl.hpp"
33#include "AST/Init.hpp"
[d76c588]34#include "AST/Pass.hpp"
[99d4584]35#include "AST/Print.hpp"
[d76c588]36#include "AST/SymbolTable.hpp"
[2773ab8]37#include "AST/Type.hpp"
[a4ca48c]38#include "Common/PassVisitor.h" // for PassVisitor
[ea6332d]39#include "Common/SemanticError.h" // for SemanticError
40#include "Common/utility.h" // for ValueGuard, group_iterate
[0a60c04]41#include "InitTweak/GenInit.h"
[ea6332d]42#include "InitTweak/InitTweak.h" // for isIntrinsicSingleArgCallStmt
43#include "ResolvExpr/TypeEnvironment.h" // for TypeEnvironment
44#include "SymTab/Autogen.h" // for SizeType
45#include "SymTab/Indexer.h" // for Indexer
46#include "SynTree/Declaration.h" // for ObjectDecl, TypeDecl, Declar...
47#include "SynTree/Expression.h" // for Expression, CastExpr, InitExpr
48#include "SynTree/Initializer.h" // for ConstructorInit, SingleInit
49#include "SynTree/Statement.h" // for ForStmt, Statement, BranchStmt
50#include "SynTree/Type.h" // for Type, BasicType, PointerType
51#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
52#include "SynTree/Visitor.h" // for acceptAll, maybeAccept
[0a60c04]53#include "Tuples/Tuples.h"
[2bfc6b2]54#include "Validate/FindSpecialDecls.h" // for SizeType
[51b73452]55
[d9a0e76]56using namespace std;
[51b73452]57
[d9a0e76]58namespace ResolvExpr {
[d76c588]59 struct Resolver_old final : public WithIndexer, public WithGuards, public WithVisitorRef<Resolver_old>, public WithShortCircuiting, public WithStmtsToAdd {
60 Resolver_old() {}
61 Resolver_old( const SymTab::Indexer & other ) {
[a4ca48c]62 indexer = other;
[1d2b64f]63 }
[71f4e4f]64
[5170d95]65 void previsit( FunctionDecl * functionDecl );
66 void postvisit( FunctionDecl * functionDecl );
67 void previsit( ObjectDecl * objectDecll );
[a4ca48c]68 void previsit( EnumDecl * enumDecl );
[bd87b138]69 void previsit( StaticAssertDecl * assertDecl );
[a4ca48c]70
71 void previsit( ArrayType * at );
72 void previsit( PointerType * at );
73
[5170d95]74 void previsit( ExprStmt * exprStmt );
75 void previsit( AsmExpr * asmExpr );
76 void previsit( AsmStmt * asmStmt );
77 void previsit( IfStmt * ifStmt );
78 void previsit( WhileStmt * whileStmt );
79 void previsit( ForStmt * forStmt );
80 void previsit( SwitchStmt * switchStmt );
81 void previsit( CaseStmt * caseStmt );
82 void previsit( BranchStmt * branchStmt );
83 void previsit( ReturnStmt * returnStmt );
84 void previsit( ThrowStmt * throwStmt );
85 void previsit( CatchStmt * catchStmt );
[3b9c674]86 void postvisit( CatchStmt * catchStmt );
[695e00d]87 void previsit( WaitForStmt * stmt );
[a4ca48c]88
[5170d95]89 void previsit( SingleInit * singleInit );
90 void previsit( ListInit * listInit );
91 void previsit( ConstructorInit * ctorInit );
[a32b204]92 private:
[c28a038d]93 typedef std::list< Initializer * >::iterator InitIterator;
[94b4364]94
[40e636a]95 template< typename PtrType >
96 void handlePtrType( PtrType * type );
97
[c28a038d]98 void fallbackInit( ConstructorInit * ctorInit );
[b726084]99
[77971f6]100 Type * functionReturn = nullptr;
[e4d829b]101 CurrentObject currentObject = nullptr;
[a436947]102 bool inEnumDecl = false;
[a32b204]103 };
[d9a0e76]104
[2a6292d]105 struct ResolveWithExprs : public WithIndexer, public WithGuards, public WithVisitorRef<ResolveWithExprs>, public WithShortCircuiting, public WithStmtsToAdd {
106 void previsit( FunctionDecl * );
107 void previsit( WithStmt * );
108
109 void resolveWithExprs( std::list< Expression * > & withExprs, std::list< Statement * > & newStmts );
110 };
111
[a32b204]112 void resolve( std::list< Declaration * > translationUnit ) {
[d76c588]113 PassVisitor<Resolver_old> resolver;
[a32b204]114 acceptAll( translationUnit, resolver );
[d9a0e76]115 }
116
[5170d95]117 void resolveDecl( Declaration * decl, const SymTab::Indexer & indexer ) {
[d76c588]118 PassVisitor<Resolver_old> resolver( indexer );
[8b11840]119 maybeAccept( decl, resolver );
120 }
121
[c71b256]122 namespace {
[99d4584]123 struct DeleteFinder_old : public WithShortCircuiting {
[c71b256]124 DeletedExpr * delExpr = nullptr;
125 void previsit( DeletedExpr * expr ) {
126 if ( delExpr ) visit_children = false;
127 else delExpr = expr;
128 }
129
130 void previsit( Expression * ) {
131 if ( delExpr ) visit_children = false;
132 }
133 };
134 }
135
136 DeletedExpr * findDeletedExpr( Expression * expr ) {
[99d4584]137 PassVisitor<DeleteFinder_old> finder;
[c71b256]138 expr->accept( finder );
139 return finder.pass.delExpr;
[d9a0e76]140 }
[a32b204]141
142 namespace {
[99d4584]143 struct StripCasts_old {
[cdb990a]144 Expression * postmutate( CastExpr * castExpr ) {
145 if ( castExpr->isGenerated && ResolvExpr::typesCompatible( castExpr->arg->result, castExpr->result, SymTab::Indexer() ) ) {
146 // generated cast is to the same type as its argument, so it's unnecessary -- remove it
147 Expression * expr = castExpr->arg;
148 castExpr->arg = nullptr;
149 std::swap( expr->env, castExpr->env );
150 return expr;
151 }
152 return castExpr;
153 }
154
155 static void strip( Expression *& expr ) {
[99d4584]156 PassVisitor<StripCasts_old> stripper;
[cdb990a]157 expr = expr->acceptMutator( stripper );
158 }
159 };
160
[5170d95]161 void finishExpr( Expression *& expr, const TypeEnvironment & env, TypeSubstitution * oldenv = nullptr ) {
[7664fad]162 expr->env = oldenv ? oldenv->clone() : new TypeSubstitution;
[cdb990a]163 env.makeSubstitution( *expr->env );
[99d4584]164 StripCasts_old::strip( expr ); // remove unnecessary casts that may be buried in an expression
[a32b204]165 }
[0a22cda]166
167 void removeExtraneousCast( Expression *& expr, const SymTab::Indexer & indexer ) {
168 if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( expr ) ) {
[b7d92b96]169 if ( typesCompatible( castExpr->arg->result, castExpr->result, indexer ) ) {
[0a22cda]170 // cast is to the same type as its argument, so it's unnecessary -- remove it
171 expr = castExpr->arg;
172 castExpr->arg = nullptr;
173 std::swap( expr->env, castExpr->env );
174 delete castExpr;
175 }
176 }
177 }
[db4ecc5]178 } // namespace
[a32b204]179
[8f98b78]180 namespace {
[59cf83b]181 void findUnfinishedKindExpression(Expression * untyped, Alternative & alt, const SymTab::Indexer & indexer, const std::string & kindStr, std::function<bool(const Alternative &)> pred, ResolvMode mode = ResolvMode{} ) {
[c71b256]182 assertf( untyped, "expected a non-null expression." );
[6d6e829]183
184 // xxx - this isn't thread-safe, but should work until we parallelize the resolver
185 static unsigned recursion_level = 0;
186
187 ++recursion_level;
[8587878e]188 TypeEnvironment env;
189 AlternativeFinder finder( indexer, env );
[6d6e829]190 finder.find( untyped, recursion_level == 1 ? mode.atTopLevel() : mode );
191 --recursion_level;
[c71b256]192
193 #if 0
194 if ( finder.get_alternatives().size() != 1 ) {
195 std::cerr << "untyped expr is ";
196 untyped->print( std::cerr );
197 std::cerr << std::endl << "alternatives are:";
198 for ( const Alternative & alt : finder.get_alternatives() ) {
199 alt.print( std::cerr );
200 } // for
201 } // if
202 #endif
[8587878e]203
[6d6e829]204 // produce filtered list of alternatives
[8587878e]205 AltList candidates;
206 for ( Alternative & alt : finder.get_alternatives() ) {
[c71b256]207 if ( pred( alt ) ) {
[8587878e]208 candidates.push_back( std::move( alt ) );
209 }
210 }
211
[6d6e829]212 // produce invalid error if no candidates
213 if ( candidates.empty() ) {
[a16764a6]214 SemanticError( untyped, toString( "No reasonable alternatives for ", kindStr, (kindStr != "" ? " " : ""), "expression: ") );
[6d6e829]215 }
216
217 // search for cheapest candidate
218 AltList winners;
219 bool seen_undeleted = false;
220 for ( unsigned i = 0; i < candidates.size(); ++i ) {
221 int c = winners.empty() ? -1 : candidates[i].cost.compare( winners.front().cost );
222
223 if ( c > 0 ) continue; // skip more expensive than winner
224
225 if ( c < 0 ) {
226 // reset on new cheapest
227 seen_undeleted = ! findDeletedExpr( candidates[i].expr );
228 winners.clear();
229 } else /* if ( c == 0 ) */ {
230 if ( findDeletedExpr( candidates[i].expr ) ) {
231 // skip deleted expression if already seen one equivalent-cost not
232 if ( seen_undeleted ) continue;
233 } else if ( ! seen_undeleted ) {
234 // replace list of equivalent-cost deleted expressions with one non-deleted
235 winners.clear();
236 seen_undeleted = true;
237 }
238 }
239
[2fd9f24]240 winners.emplace_back( std::move( candidates[i] ) );
[6d6e829]241 }
242
243 // promote alternative.cvtCost to .cost
244 // xxx - I don't know why this is done, but I'm keeping the behaviour from findMinCost
245 for ( Alternative& winner : winners ) {
246 winner.cost = winner.cvtCost;
247 }
[cde3891]248
[6d6e829]249 // produce ambiguous errors, if applicable
250 if ( winners.size() != 1 ) {
[8587878e]251 std::ostringstream stream;
[c71b256]252 stream << "Cannot choose between " << winners.size() << " alternatives for " << kindStr << (kindStr != "" ? " " : "") << "expression\n";
[8587878e]253 untyped->print( stream );
[93401f8]254 stream << " Alternatives are:\n";
[8587878e]255 printAlts( winners, stream, 1 );
[a16764a6]256 SemanticError( untyped->location, stream.str() );
[8587878e]257 }
258
[6d6e829]259 // single selected choice
260 Alternative& choice = winners.front();
261
262 // fail on only expression deleted
263 if ( ! seen_undeleted ) {
[2a08c25]264 SemanticError( untyped->location, choice.expr, "Unique best alternative includes deleted identifier in " );
[c71b256]265 }
[6d6e829]266
267 // xxx - check for ambiguous expressions
[cde3891]268
[6d6e829]269 // output selected choice
[c71b256]270 alt = std::move( choice );
271 }
272
273 /// resolve `untyped` to the expression whose alternative satisfies `pred` with the lowest cost; kindStr is used for providing better error messages
[59cf83b]274 void findKindExpression(Expression *& untyped, const SymTab::Indexer & indexer, const std::string & kindStr, std::function<bool(const Alternative &)> pred, ResolvMode mode = ResolvMode{}) {
[c71b256]275 if ( ! untyped ) return;
276 Alternative choice;
[59cf83b]277 findUnfinishedKindExpression( untyped, choice, indexer, kindStr, pred, mode );
[c71b256]278 finishExpr( choice.expr, choice.env, untyped->env );
[8587878e]279 delete untyped;
[c71b256]280 untyped = choice.expr;
281 choice.expr = nullptr;
[8587878e]282 }
283
[c71b256]284 bool standardAlternativeFilter( const Alternative & ) {
285 // currently don't need to filter, under normal circumstances.
286 // in the future, this may be useful for removing deleted expressions
287 return true;
288 }
289 } // namespace
290
291 // used in resolveTypeof
[5170d95]292 Expression * resolveInVoidContext( Expression * expr, const SymTab::Indexer & indexer ) {
[c71b256]293 TypeEnvironment env;
294 return resolveInVoidContext( expr, indexer, env );
295 }
296
[5170d95]297 Expression * resolveInVoidContext( Expression * expr, const SymTab::Indexer & indexer, TypeEnvironment & env ) {
[c71b256]298 // it's a property of the language that a cast expression has either 1 or 0 interpretations; if it has 0
299 // interpretations, an exception has already been thrown.
300 assertf( expr, "expected a non-null expression." );
301
[5170d95]302 CastExpr * untyped = new CastExpr( expr ); // cast to void
303 untyped->location = expr->location;
[c71b256]304
305 // set up and resolve expression cast to void
306 Alternative choice;
[5170d95]307 findUnfinishedKindExpression( untyped, choice, indexer, "", standardAlternativeFilter, ResolvMode::withAdjustment() );
[c71b256]308 CastExpr * castExpr = strict_dynamic_cast< CastExpr * >( choice.expr );
[5170d95]309 assert( castExpr );
[c71b256]310 env = std::move( choice.env );
311
312 // clean up resolved expression
313 Expression * ret = castExpr->arg;
314 castExpr->arg = nullptr;
315
316 // unlink the arg so that it isn't deleted twice at the end of the program
[5170d95]317 untyped->arg = nullptr;
[c71b256]318 return ret;
319 }
320
[5170d95]321 void findVoidExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
[c71b256]322 resetTyVarRenaming();
323 TypeEnvironment env;
324 Expression * newExpr = resolveInVoidContext( untyped, indexer, env );
325 finishExpr( newExpr, env, untyped->env );
326 delete untyped;
327 untyped = newExpr;
328 }
329
[5170d95]330 void findSingleExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
[c71b256]331 findKindExpression( untyped, indexer, "", standardAlternativeFilter );
332 }
333
334 void findSingleExpression( Expression *& untyped, Type * type, const SymTab::Indexer & indexer ) {
335 assert( untyped && type );
[2a08c25]336 // transfer location to generated cast for error purposes
337 CodeLocation location = untyped->location;
[c71b256]338 untyped = new CastExpr( untyped, type );
[2a08c25]339 untyped->location = location;
[c71b256]340 findSingleExpression( untyped, indexer );
341 removeExtraneousCast( untyped, indexer );
342 }
343
344 namespace {
345 bool isIntegralType( const Alternative & alt ) {
346 Type * type = alt.expr->result;
[a32b204]347 if ( dynamic_cast< EnumInstType * >( type ) ) {
348 return true;
[5170d95]349 } else if ( BasicType * bt = dynamic_cast< BasicType * >( type ) ) {
[a32b204]350 return bt->isInteger();
[89e6ffc]351 } else if ( dynamic_cast< ZeroType* >( type ) != nullptr || dynamic_cast< OneType* >( type ) != nullptr ) {
352 return true;
[a32b204]353 } else {
354 return false;
355 } // if
356 }
[71f4e4f]357
[5170d95]358 void findIntegralExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
[8587878e]359 findKindExpression( untyped, indexer, "condition", isIntegralType );
[a32b204]360 }
361 }
[71f4e4f]362
[2a6292d]363
364 bool isStructOrUnion( const Alternative & alt ) {
365 Type * t = alt.expr->result->stripReferences();
366 return dynamic_cast< StructInstType * >( t ) || dynamic_cast< UnionInstType * >( t );
367 }
368
369 void resolveWithExprs( std::list< Declaration * > & translationUnit ) {
370 PassVisitor<ResolveWithExprs> resolver;
371 acceptAll( translationUnit, resolver );
372 }
373
374 void ResolveWithExprs::resolveWithExprs( std::list< Expression * > & withExprs, std::list< Statement * > & newStmts ) {
375 for ( Expression *& expr : withExprs ) {
376 // only struct- and union-typed expressions are viable candidates
377 findKindExpression( expr, indexer, "with statement", isStructOrUnion );
378
379 // if with expression might be impure, create a temporary so that it is evaluated once
380 if ( Tuples::maybeImpure( expr ) ) {
381 static UniqueName tmpNamer( "_with_tmp_" );
382 ObjectDecl * tmp = ObjectDecl::newObject( tmpNamer.newName(), expr->result->clone(), new SingleInit( expr ) );
383 expr = new VariableExpr( tmp );
384 newStmts.push_back( new DeclStmt( tmp ) );
385 if ( InitTweak::isConstructable( tmp->type ) ) {
386 // generate ctor/dtor and resolve them
387 tmp->init = InitTweak::genCtorInit( tmp );
388 tmp->accept( *visitor );
389 }
390 }
391 }
392 }
393
394 void ResolveWithExprs::previsit( WithStmt * withStmt ) {
395 resolveWithExprs( withStmt->exprs, stmtsToAddBefore );
396 }
397
398 void ResolveWithExprs::previsit( FunctionDecl * functionDecl ) {
399 {
400 // resolve with-exprs with parameters in scope and add any newly generated declarations to the
401 // front of the function body.
402 auto guard = makeFuncGuard( [this]() { indexer.enterScope(); }, [this](){ indexer.leaveScope(); } );
403 indexer.addFunctionType( functionDecl->type );
404 std::list< Statement * > newStmts;
405 resolveWithExprs( functionDecl->withExprs, newStmts );
406 if ( functionDecl->statements ) {
407 functionDecl->statements->kids.splice( functionDecl->statements->kids.begin(), newStmts );
408 } else {
409 assertf( functionDecl->withExprs.empty() && newStmts.empty(), "Function %s without a body has with-clause and/or generated with declarations.", functionDecl->name.c_str() );
410 }
411 }
412 }
413
[d76c588]414 void Resolver_old::previsit( ObjectDecl * objectDecl ) {
[4864a73]415 // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that
416 // class-variable initContext is changed multiple time because the LHS is analysed twice.
417 // The second analysis changes initContext because of a function type can contain object
418 // declarations in the return and parameter types. So each value of initContext is
[6d6e829]419 // retained, so the type on the first analysis is preserved and used for selecting the RHS.
[a4ca48c]420 GuardValue( currentObject );
[e4d829b]421 currentObject = CurrentObject( objectDecl->get_type() );
422 if ( inEnumDecl && dynamic_cast< EnumInstType * >( objectDecl->get_type() ) ) {
[a436947]423 // enumerator initializers should not use the enum type to initialize, since
424 // the enum type is still incomplete at this point. Use signed int instead.
[e4d829b]425 currentObject = CurrentObject( new BasicType( Type::Qualifiers(), BasicType::SignedInt ) );
[a436947]426 }
[bfbf97f]427 }
428
[40e636a]429 template< typename PtrType >
[d76c588]430 void Resolver_old::handlePtrType( PtrType * type ) {
[40e636a]431 if ( type->get_dimension() ) {
[2bfc6b2]432 findSingleExpression( type->dimension, Validate::SizeType->clone(), indexer );
[d1d17f5]433 }
[40e636a]434 }
435
[d76c588]436 void Resolver_old::previsit( ArrayType * at ) {
[40e636a]437 handlePtrType( at );
[a32b204]438 }
[94b4364]439
[d76c588]440 void Resolver_old::previsit( PointerType * pt ) {
[40e636a]441 handlePtrType( pt );
442 }
443
[d76c588]444 void Resolver_old::previsit( FunctionDecl * functionDecl ) {
[d9a0e76]445#if 0
[a4ca48c]446 std::cerr << "resolver visiting functiondecl ";
447 functionDecl->print( std::cerr );
448 std::cerr << std::endl;
[d9a0e76]449#endif
[a4ca48c]450 GuardValue( functionReturn );
[60914351]451 functionReturn = ResolvExpr::extractResultType( functionDecl->type );
[a4ca48c]452 }
[88d1066]453
[d76c588]454 void Resolver_old::postvisit( FunctionDecl * functionDecl ) {
[4864a73]455 // default value expressions have an environment which shouldn't be there and trips up
[6d6e829]456 // later passes.
[cde3891]457 // xxx - it might be necessary to somehow keep the information from this environment, but I
[6d6e829]458 // can't currently see how it's useful.
[c28a038d]459 for ( Declaration * d : functionDecl->type->parameters ) {
[88d1066]460 if ( ObjectDecl * obj = dynamic_cast< ObjectDecl * >( d ) ) {
[c28a038d]461 if ( SingleInit * init = dynamic_cast< SingleInit * >( obj->init ) ) {
462 delete init->value->env;
463 init->value->env = nullptr;
[88d1066]464 }
465 }
466 }
[a32b204]467 }
[51b73452]468
[d76c588]469 void Resolver_old::previsit( EnumDecl * ) {
[a436947]470 // in case we decide to allow nested enums
[a4ca48c]471 GuardValue( inEnumDecl );
[a436947]472 inEnumDecl = true;
473 }
474
[d76c588]475 void Resolver_old::previsit( StaticAssertDecl * assertDecl ) {
[bd87b138]476 findIntegralExpression( assertDecl->condition, indexer );
477 }
478
[d76c588]479 void Resolver_old::previsit( ExprStmt * exprStmt ) {
[a4ca48c]480 visit_children = false;
[08da53d]481 assertf( exprStmt->expr, "ExprStmt has null Expression in resolver" );
482 findVoidExpression( exprStmt->expr, indexer );
[a32b204]483 }
[51b73452]484
[d76c588]485 void Resolver_old::previsit( AsmExpr * asmExpr ) {
[a4ca48c]486 visit_children = false;
[08da53d]487 findVoidExpression( asmExpr->operand, indexer );
[7f5566b]488 }
489
[d76c588]490 void Resolver_old::previsit( AsmStmt * asmStmt ) {
[a4ca48c]491 visit_children = false;
492 acceptAll( asmStmt->get_input(), *visitor );
493 acceptAll( asmStmt->get_output(), *visitor );
[7f5566b]494 }
495
[d76c588]496 void Resolver_old::previsit( IfStmt * ifStmt ) {
[8587878e]497 findIntegralExpression( ifStmt->condition, indexer );
[a32b204]498 }
[51b73452]499
[d76c588]500 void Resolver_old::previsit( WhileStmt * whileStmt ) {
[8587878e]501 findIntegralExpression( whileStmt->condition, indexer );
[a32b204]502 }
[51b73452]503
[d76c588]504 void Resolver_old::previsit( ForStmt * forStmt ) {
[08da53d]505 if ( forStmt->condition ) {
[8587878e]506 findIntegralExpression( forStmt->condition, indexer );
[a32b204]507 } // if
[71f4e4f]508
[08da53d]509 if ( forStmt->increment ) {
510 findVoidExpression( forStmt->increment, indexer );
[a32b204]511 } // if
512 }
[51b73452]513
[d76c588]514 void Resolver_old::previsit( SwitchStmt * switchStmt ) {
[a4ca48c]515 GuardValue( currentObject );
[08da53d]516 findIntegralExpression( switchStmt->condition, indexer );
[71f4e4f]517
[08da53d]518 currentObject = CurrentObject( switchStmt->condition->result );
[a32b204]519 }
[51b73452]520
[d76c588]521 void Resolver_old::previsit( CaseStmt * caseStmt ) {
[cdb990a]522 if ( caseStmt->condition ) {
[e4d829b]523 std::list< InitAlternative > initAlts = currentObject.getOptions();
524 assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral expression." );
[08da53d]525 // must remove cast from case statement because RangeExpr cannot be cast.
526 Expression * newExpr = new CastExpr( caseStmt->condition, initAlts.front().type->clone() );
527 findSingleExpression( newExpr, indexer );
[cdb990a]528 // case condition cannot have a cast in C, so it must be removed, regardless of whether it performs a conversion.
529 // Ideally we would perform the conversion internally here.
530 if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( newExpr ) ) {
531 newExpr = castExpr->arg;
532 castExpr->arg = nullptr;
533 std::swap( newExpr->env, castExpr->env );
534 delete castExpr;
535 }
536 caseStmt->condition = newExpr;
[32b8144]537 }
[a32b204]538 }
[51b73452]539
[d76c588]540 void Resolver_old::previsit( BranchStmt * branchStmt ) {
[a4ca48c]541 visit_children = false;
[de62360d]542 // must resolve the argument for a computed goto
543 if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement
[08da53d]544 if ( branchStmt->computedTarget ) {
545 // computed goto argument is void *
546 findSingleExpression( branchStmt->computedTarget, new PointerType( Type::Qualifiers(), new VoidType( Type::Qualifiers() ) ), indexer );
[de62360d]547 } // if
548 } // if
549 }
550
[d76c588]551 void Resolver_old::previsit( ReturnStmt * returnStmt ) {
[a4ca48c]552 visit_children = false;
[08da53d]553 if ( returnStmt->expr ) {
554 findSingleExpression( returnStmt->expr, functionReturn->clone(), indexer );
[a32b204]555 } // if
556 }
[51b73452]557
[d76c588]558 void Resolver_old::previsit( ThrowStmt * throwStmt ) {
[a4ca48c]559 visit_children = false;
[cbce272]560 // TODO: Replace *exception type with &exception type.
[307a732]561 if ( throwStmt->get_expr() ) {
[3090127]562 const StructDecl * exception_decl = indexer.lookupStruct( "__cfaehm_base_exception_t" );
[cbce272]563 assert( exception_decl );
[8fd52e90]564 Type * exceptType = new PointerType( noQualifiers, new StructInstType( noQualifiers, const_cast<StructDecl *>(exception_decl) ) );
[08da53d]565 findSingleExpression( throwStmt->expr, exceptType, indexer );
[307a732]566 }
567 }
568
[d76c588]569 void Resolver_old::previsit( CatchStmt * catchStmt ) {
[3b9c674]570 // Until we are very sure this invarent (ifs that move between passes have thenPart)
571 // holds, check it. This allows a check for when to decode the mangling.
572 if ( IfStmt * ifStmt = dynamic_cast<IfStmt *>( catchStmt->body ) ) {
573 assert( ifStmt->thenPart );
574 }
575 // Encode the catchStmt so the condition can see the declaration.
[08da53d]576 if ( catchStmt->cond ) {
[3b9c674]577 IfStmt * ifStmt = new IfStmt( catchStmt->cond, nullptr, catchStmt->body );
578 catchStmt->cond = nullptr;
579 catchStmt->body = ifStmt;
580 }
581 }
582
583 void Resolver_old::postvisit( CatchStmt * catchStmt ) {
584 // Decode the catchStmt so everything is stored properly.
585 IfStmt * ifStmt = dynamic_cast<IfStmt *>( catchStmt->body );
586 if ( nullptr != ifStmt && nullptr == ifStmt->thenPart ) {
587 assert( ifStmt->condition );
588 assert( ifStmt->elsePart );
589 catchStmt->cond = ifStmt->condition;
590 catchStmt->body = ifStmt->elsePart;
591 ifStmt->condition = nullptr;
592 ifStmt->elsePart = nullptr;
593 delete ifStmt;
[cbce272]594 }
595 }
596
[1dcd9554]597 template< typename iterator_t >
598 inline bool advance_to_mutex( iterator_t & it, const iterator_t & end ) {
599 while( it != end && !(*it)->get_type()->get_mutex() ) {
600 it++;
601 }
602
603 return it != end;
604 }
605
[d76c588]606 void Resolver_old::previsit( WaitForStmt * stmt ) {
[8f98b78]607 visit_children = false;
[1dcd9554]608
609 // Resolve all clauses first
610 for( auto& clause : stmt->clauses ) {
611
612 TypeEnvironment env;
[8f98b78]613 AlternativeFinder funcFinder( indexer, env );
[1dcd9554]614
615 // Find all alternatives for a function in canonical form
616 funcFinder.findWithAdjustment( clause.target.function );
617
618 if ( funcFinder.get_alternatives().empty() ) {
619 stringstream ss;
620 ss << "Use of undeclared indentifier '";
621 ss << strict_dynamic_cast<NameExpr*>( clause.target.function )->name;
622 ss << "' in call to waitfor";
[a16764a6]623 SemanticError( stmt->location, ss.str() );
[1dcd9554]624 }
625
[b9f383f]626 if(clause.target.arguments.empty()) {
627 SemanticError( stmt->location, "Waitfor clause must have at least one mutex parameter");
628 }
629
[1dcd9554]630 // Find all alternatives for all arguments in canonical form
[bd4f2e9]631 std::vector< AlternativeFinder > argAlternatives;
[1dcd9554]632 funcFinder.findSubExprs( clause.target.arguments.begin(), clause.target.arguments.end(), back_inserter( argAlternatives ) );
633
634 // List all combinations of arguments
[bd4f2e9]635 std::vector< AltList > possibilities;
[1dcd9554]636 combos( argAlternatives.begin(), argAlternatives.end(), back_inserter( possibilities ) );
637
638 AltList func_candidates;
639 std::vector< AltList > args_candidates;
640
641 // For every possible function :
642 // try matching the arguments to the parameters
643 // not the other way around because we have more arguments than parameters
[a16764a6]644 SemanticErrorException errors;
[1dcd9554]645 for ( Alternative & func : funcFinder.get_alternatives() ) {
646 try {
647 PointerType * pointer = dynamic_cast< PointerType* >( func.expr->get_result()->stripReferences() );
648 if( !pointer ) {
[a16764a6]649 SemanticError( func.expr->get_result(), "candidate not viable: not a pointer type\n" );
[1dcd9554]650 }
651
652 FunctionType * function = dynamic_cast< FunctionType* >( pointer->get_base() );
653 if( !function ) {
[a16764a6]654 SemanticError( pointer->get_base(), "candidate not viable: not a function type\n" );
[1dcd9554]655 }
656
657
658 {
659 auto param = function->parameters.begin();
660 auto param_end = function->parameters.end();
661
662 if( !advance_to_mutex( param, param_end ) ) {
[a16764a6]663 SemanticError(function, "candidate function not viable: no mutex parameters\n");
[1dcd9554]664 }
665 }
666
667 Alternative newFunc( func );
668 // Strip reference from function
[a181494]669 referenceToRvalueConversion( newFunc.expr, newFunc.cost );
[1dcd9554]670
671 // For all the set of arguments we have try to match it with the parameter of the current function alternative
672 for ( auto & argsList : possibilities ) {
673
674 try {
675 // Declare data structures need for resolution
676 OpenVarSet openVars;
677 AssertionSet resultNeed, resultHave;
[6f326b1]678 TypeEnvironment resultEnv( func.env );
679 makeUnifiableVars( function, openVars, resultNeed );
680 // add all type variables as open variables now so that those not used in the parameter
681 // list are still considered open.
682 resultEnv.add( function->forall );
[1dcd9554]683
684 // Load type variables from arguemnts into one shared space
685 simpleCombineEnvironments( argsList.begin(), argsList.end(), resultEnv );
686
687 // Make sure we don't widen any existing bindings
[d286cf68]688 resultEnv.forbidWidening();
[c5283ba]689
[1dcd9554]690 // Find any unbound type variables
691 resultEnv.extractOpenVars( openVars );
692
693 auto param = function->parameters.begin();
694 auto param_end = function->parameters.end();
695
[c5283ba]696 int n_mutex_param = 0;
[b9f383f]697
[1dcd9554]698 // For every arguments of its set, check if it matches one of the parameter
699 // The order is important
700 for( auto & arg : argsList ) {
701
702 // Ignore non-mutex arguments
703 if( !advance_to_mutex( param, param_end ) ) {
704 // We ran out of parameters but still have arguments
705 // this function doesn't match
[c5283ba]706 SemanticError( function, toString("candidate function not viable: too many mutex arguments, expected ", n_mutex_param, "\n" ));
[1dcd9554]707 }
708
[c5283ba]709 n_mutex_param++;
[b9f383f]710
[1dcd9554]711 // Check if the argument matches the parameter type in the current scope
[b9f383f]712 if( ! unify( arg.expr->get_result(), (*param)->get_type(), resultEnv, resultNeed, resultHave, openVars, this->indexer ) ) {
[1dcd9554]713 // Type doesn't match
714 stringstream ss;
715 ss << "candidate function not viable: no known convertion from '";
716 (*param)->get_type()->print( ss );
[b9f383f]717 ss << "' to '";
718 arg.expr->get_result()->print( ss );
[5248789]719 ss << "' with env '";
720 resultEnv.print(ss);
[1dcd9554]721 ss << "'\n";
[a16764a6]722 SemanticError( function, ss.str() );
[1dcd9554]723 }
724
725 param++;
726 }
727
728 // All arguments match !
729
730 // Check if parameters are missing
731 if( advance_to_mutex( param, param_end ) ) {
[c5283ba]732 do {
733 n_mutex_param++;
734 param++;
735 } while( advance_to_mutex( param, param_end ) );
736
[1dcd9554]737 // We ran out of arguments but still have parameters left
738 // this function doesn't match
[c5283ba]739 SemanticError( function, toString("candidate function not viable: too few mutex arguments, expected ", n_mutex_param, "\n" ));
[1dcd9554]740 }
741
742 // All parameters match !
743
744 // Finish the expressions to tie in the proper environments
745 finishExpr( newFunc.expr, resultEnv );
746 for( Alternative & alt : argsList ) {
747 finishExpr( alt.expr, resultEnv );
748 }
749
750 // This is a match store it and save it for later
751 func_candidates.push_back( newFunc );
752 args_candidates.push_back( argsList );
753
754 }
[5170d95]755 catch( SemanticErrorException & e ) {
[1dcd9554]756 errors.append( e );
757 }
758 }
759 }
[5170d95]760 catch( SemanticErrorException & e ) {
[1dcd9554]761 errors.append( e );
762 }
763 }
764
765 // Make sure we got the right number of arguments
[a16764a6]766 if( func_candidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for function in call to waitfor" ); top.append( errors ); throw top; }
767 if( args_candidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for arguments in call to waitfor" ); top.append( errors ); throw top; }
768 if( func_candidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous function in call to waitfor" ); top.append( errors ); throw top; }
769 if( args_candidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous arguments in call to waitfor" ); top.append( errors ); throw top; }
[c71b256]770 // TODO: need to use findDeletedExpr to ensure no deleted identifiers are used.
[1dcd9554]771
772 // Swap the results from the alternative with the unresolved values.
773 // Alternatives will handle deletion on destruction
774 std::swap( clause.target.function, func_candidates.front().expr );
775 for( auto arg_pair : group_iterate( clause.target.arguments, args_candidates.front() ) ) {
776 std::swap ( std::get<0>( arg_pair), std::get<1>( arg_pair).expr );
777 }
778
779 // Resolve the conditions as if it were an IfStmt
780 // Resolve the statments normally
[08da53d]781 findSingleExpression( clause.condition, this->indexer );
[8f98b78]782 clause.statement->accept( *visitor );
[1dcd9554]783 }
784
785
786 if( stmt->timeout.statement ) {
787 // Resolve the timeout as an size_t for now
788 // Resolve the conditions as if it were an IfStmt
789 // Resolve the statments normally
[08da53d]790 findSingleExpression( stmt->timeout.time, new BasicType( noQualifiers, BasicType::LongLongUnsignedInt ), this->indexer );
791 findSingleExpression( stmt->timeout.condition, this->indexer );
[8f98b78]792 stmt->timeout.statement->accept( *visitor );
[1dcd9554]793 }
794
795 if( stmt->orelse.statement ) {
796 // Resolve the conditions as if it were an IfStmt
797 // Resolve the statments normally
[08da53d]798 findSingleExpression( stmt->orelse.condition, this->indexer );
[8f98b78]799 stmt->orelse.statement->accept( *visitor );
[1dcd9554]800 }
801 }
802
[60aaa51d]803 bool isCharType( Type * t ) {
[b5c5684]804 if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) {
[71f4e4f]805 return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar ||
[b5c5684]806 bt->get_kind() == BasicType::UnsignedChar;
807 }
808 return false;
809 }
810
[d76c588]811 void Resolver_old::previsit( SingleInit * singleInit ) {
[a4ca48c]812 visit_children = false;
[62423350]813 // resolve initialization using the possibilities as determined by the currentObject cursor
[0a22cda]814 Expression * newExpr = new UntypedInitExpr( singleInit->value, currentObject.getOptions() );
[08da53d]815 findSingleExpression( newExpr, indexer );
[e3e16bc]816 InitExpr * initExpr = strict_dynamic_cast< InitExpr * >( newExpr );
[62423350]817
818 // move cursor to the object that is actually initialized
[e4d829b]819 currentObject.setNext( initExpr->get_designation() );
[62423350]820
821 // discard InitExpr wrapper and retain relevant pieces
[08da53d]822 newExpr = initExpr->expr;
823 initExpr->expr = nullptr;
824 std::swap( initExpr->env, newExpr->env );
[cde3891]825 // InitExpr may have inferParams in the case where the expression specializes a function
826 // pointer, and newExpr may already have inferParams of its own, so a simple swap is not
[6d6e829]827 // sufficient.
[cdb990a]828 newExpr->spliceInferParams( initExpr );
[e4d829b]829 delete initExpr;
830
[cde3891]831 // get the actual object's type (may not exactly match what comes back from the resolver
[6d6e829]832 // due to conversions)
[62423350]833 Type * initContext = currentObject.getCurrentType();
834
[0a22cda]835 removeExtraneousCast( newExpr, indexer );
836
[62423350]837 // check if actual object's type is char[]
838 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
839 if ( isCharType( at->get_base() ) ) {
840 // check if the resolved type is char *
841 if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_result() ) ) {
842 if ( isCharType( pt->get_base() ) ) {
[5170d95]843 if ( CastExpr * ce = dynamic_cast< CastExpr * >( newExpr ) ) {
[cde3891]844 // strip cast if we're initializing a char[] with a char *,
[6d6e829]845 // e.g. char x[] = "hello";
[0a22cda]846 newExpr = ce->get_arg();
847 ce->set_arg( nullptr );
848 std::swap( ce->env, newExpr->env );
849 delete ce;
850 }
[62423350]851 }
852 }
853 }
854 }
[94b4364]855
[62423350]856 // set initializer expr to resolved express
[0a22cda]857 singleInit->value = newExpr;
[62423350]858
859 // move cursor to next object in preparation for next initializer
860 currentObject.increment();
861 }
[94b4364]862
[d76c588]863 void Resolver_old::previsit( ListInit * listInit ) {
[a4ca48c]864 visit_children = false;
[62423350]865 // move cursor into brace-enclosed initializer-list
[e4d829b]866 currentObject.enterListInit();
[cde3891]867 // xxx - fix this so that the list isn't copied, iterator should be used to change current
[6d6e829]868 // element
[e4d829b]869 std::list<Designation *> newDesignations;
870 for ( auto p : group_iterate(listInit->get_designations(), listInit->get_initializers()) ) {
[cde3891]871 // iterate designations and initializers in pairs, moving the cursor to the current
[6d6e829]872 // designated object and resolving the initializer against that object.
[e4d829b]873 Designation * des = std::get<0>(p);
874 Initializer * init = std::get<1>(p);
875 newDesignations.push_back( currentObject.findNext( des ) );
[a4ca48c]876 init->accept( *visitor );
[b5c5684]877 }
[62423350]878 // set the set of 'resolved' designations and leave the brace-enclosed initializer-list
[e4d829b]879 listInit->get_designations() = newDesignations; // xxx - memory management
880 currentObject.exitListInit();
881
[62423350]882 // xxx - this part has not be folded into CurrentObject yet
[e4d829b]883 // } else if ( TypeInstType * tt = dynamic_cast< TypeInstType * >( initContext ) ) {
884 // Type * base = tt->get_baseType()->get_base();
885 // if ( base ) {
886 // // know the implementation type, so try using that as the initContext
887 // ObjectDecl tmpObj( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, base->clone(), nullptr );
888 // currentObject = &tmpObj;
889 // visit( listInit );
890 // } else {
891 // // missing implementation type -- might be an unknown type variable, so try proceeding with the current init context
892 // Parent::visit( listInit );
893 // }
894 // } else {
[a32b204]895 }
[71f4e4f]896
[f1e012b]897 // ConstructorInit - fall back on C-style initializer
[d76c588]898 void Resolver_old::fallbackInit( ConstructorInit * ctorInit ) {
[f1e012b]899 // could not find valid constructor, or found an intrinsic constructor
900 // fall back on C-style initializer
901 delete ctorInit->get_ctor();
[6d6e829]902 ctorInit->set_ctor( nullptr );
[71a145de]903 delete ctorInit->get_dtor();
[6d6e829]904 ctorInit->set_dtor( nullptr );
[a4ca48c]905 maybeAccept( ctorInit->get_init(), *visitor );
[f1e012b]906 }
907
[1d2b64f]908 // needs to be callable from outside the resolver, so this is a standalone function
909 void resolveCtorInit( ConstructorInit * ctorInit, const SymTab::Indexer & indexer ) {
910 assert( ctorInit );
[d76c588]911 PassVisitor<Resolver_old> resolver( indexer );
[1d2b64f]912 ctorInit->accept( resolver );
913 }
914
915 void resolveStmtExpr( StmtExpr * stmtExpr, const SymTab::Indexer & indexer ) {
916 assert( stmtExpr );
[d76c588]917 PassVisitor<Resolver_old> resolver( indexer );
[1d2b64f]918 stmtExpr->accept( resolver );
[5e2c348]919 stmtExpr->computeResult();
[dd05e12]920 // xxx - aggregate the environments from all statements? Possibly in AlternativeFinder instead?
[1d2b64f]921 }
922
[d76c588]923 void Resolver_old::previsit( ConstructorInit * ctorInit ) {
[a4ca48c]924 visit_children = false;
[1ba88a0]925 // xxx - fallback init has been removed => remove fallbackInit function and remove complexity from FixInit and remove C-init from ConstructorInit
[dd05e12]926 maybeAccept( ctorInit->ctor, *visitor );
927 maybeAccept( ctorInit->dtor, *visitor );
[071a31a]928
[5b2f5bb]929 // found a constructor - can get rid of C-style initializer
[dd05e12]930 delete ctorInit->init;
931 ctorInit->init = nullptr;
[ec79847]932
933 // intrinsic single parameter constructors and destructors do nothing. Since this was
934 // implicitly generated, there's no way for it to have side effects, so get rid of it
935 // to clean up generated code.
[dd05e12]936 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->ctor ) ) {
937 delete ctorInit->ctor;
938 ctorInit->ctor = nullptr;
[ec79847]939 }
[f9cebb5]940
[dd05e12]941 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->dtor ) ) {
942 delete ctorInit->dtor;
943 ctorInit->dtor = nullptr;
[ec79847]944 }
[a465caff]945
946 // xxx - todo -- what about arrays?
[6d6e829]947 // if ( dtor == nullptr && InitTweak::isIntrinsicCallStmt( ctorInit->get_ctor() ) ) {
[a465caff]948 // // can reduce the constructor down to a SingleInit using the
949 // // second argument from the ctor call, since
950 // delete ctorInit->get_ctor();
[6d6e829]951 // ctorInit->set_ctor( nullptr );
[a465caff]952
953 // Expression * arg =
954 // ctorInit->set_init( new SingleInit( arg ) );
955 // }
[71f4e4f]956 }
[d76c588]957
958 ///////////////////////////////////////////////////////////////////////////
959 //
960 // *** NEW RESOLVER ***
961 //
962 ///////////////////////////////////////////////////////////////////////////
963
[99d4584]964 namespace {
965 /// Finds deleted expressions in an expression tree
966 struct DeleteFinder_new final : public ast::WithShortCircuiting {
967 const ast::DeletedExpr * delExpr = nullptr;
968
969 void previsit( const ast::DeletedExpr * expr ) {
970 if ( delExpr ) { visit_children = false; }
971 else { delExpr = expr; }
972 }
973
974 void previsit( const ast::Expr * ) {
975 if ( delExpr ) { visit_children = false; }
976 }
977 };
[d57e349]978 } // anonymous namespace
[99d4584]979
[d57e349]980 /// Check if this expression is or includes a deleted expression
981 const ast::DeletedExpr * findDeletedExpr( const ast::Expr * expr ) {
982 ast::Pass<DeleteFinder_new> finder;
983 expr->accept( finder );
984 return finder.pass.delExpr;
985 }
[99d4584]986
[d57e349]987 namespace {
[b7d92b96]988 /// always-accept candidate filter
989 bool anyCandidate( const Candidate & ) { return true; }
990
[99d4584]991 /// Calls the CandidateFinder and finds the single best candidate
992 CandidateRef findUnfinishedKindExpression(
[ef5b828]993 const ast::Expr * untyped, const ast::SymbolTable & symtab, const std::string & kind,
[b7d92b96]994 std::function<bool(const Candidate &)> pred = anyCandidate, ResolvMode mode = {}
[99d4584]995 ) {
996 if ( ! untyped ) return nullptr;
997
998 // xxx - this isn't thread-safe, but should work until we parallelize the resolver
999 static unsigned recursion_level = 0;
1000
1001 ++recursion_level;
1002 ast::TypeEnvironment env;
1003 CandidateFinder finder{ symtab, env };
1004 finder.find( untyped, recursion_level == 1 ? mode.atTopLevel() : mode );
1005 --recursion_level;
1006
1007 // produce a filtered list of candidates
1008 CandidateList candidates;
1009 for ( auto & cand : finder.candidates ) {
1010 if ( pred( *cand ) ) { candidates.emplace_back( cand ); }
1011 }
1012
1013 // produce invalid error if no candidates
1014 if ( candidates.empty() ) {
[ef5b828]1015 SemanticError( untyped,
1016 toString( "No reasonable alternatives for ", kind, (kind != "" ? " " : ""),
[99d4584]1017 "expression: ") );
1018 }
1019
1020 // search for cheapest candidate
1021 CandidateList winners;
1022 bool seen_undeleted = false;
1023 for ( CandidateRef & cand : candidates ) {
1024 int c = winners.empty() ? -1 : cand->cost.compare( winners.front()->cost );
1025
1026 if ( c > 0 ) continue; // skip more expensive than winner
1027
1028 if ( c < 0 ) {
1029 // reset on new cheapest
1030 seen_undeleted = ! findDeletedExpr( cand->expr );
1031 winners.clear();
1032 } else /* if ( c == 0 ) */ {
1033 if ( findDeletedExpr( cand->expr ) ) {
1034 // skip deleted expression if already seen one equivalent-cost not
1035 if ( seen_undeleted ) continue;
1036 } else if ( ! seen_undeleted ) {
1037 // replace list of equivalent-cost deleted expressions with one non-deleted
1038 winners.clear();
1039 seen_undeleted = true;
1040 }
1041 }
1042
1043 winners.emplace_back( std::move( cand ) );
1044 }
1045
1046 // promote candidate.cvtCost to .cost
[d57e349]1047 promoteCvtCost( winners );
[99d4584]1048
1049 // produce ambiguous errors, if applicable
1050 if ( winners.size() != 1 ) {
1051 std::ostringstream stream;
[ef5b828]1052 stream << "Cannot choose between " << winners.size() << " alternatives for "
[99d4584]1053 << kind << (kind != "" ? " " : "") << "expression\n";
1054 ast::print( stream, untyped );
1055 stream << " Alternatives are:\n";
1056 print( stream, winners, 1 );
1057 SemanticError( untyped->location, stream.str() );
1058 }
1059
1060 // single selected choice
1061 CandidateRef & choice = winners.front();
1062
1063 // fail on only expression deleted
1064 if ( ! seen_undeleted ) {
1065 SemanticError( untyped->location, choice->expr.get(), "Unique best alternative "
1066 "includes deleted identifier in " );
1067 }
1068
1069 return std::move( choice );
1070 }
1071
1072 /// Strips extraneous casts out of an expression
1073 struct StripCasts_new final {
1074 const ast::Expr * postmutate( const ast::CastExpr * castExpr ) {
[ef5b828]1075 if (
1076 castExpr->isGenerated
1077 && typesCompatible( castExpr->arg->result, castExpr->result )
[99d4584]1078 ) {
1079 // generated cast is the same type as its argument, remove it after keeping env
[ef5b828]1080 return ast::mutate_field(
[b7d92b96]1081 castExpr->arg.get(), &ast::Expr::env, castExpr->env );
[99d4584]1082 }
1083 return castExpr;
1084 }
1085
1086 static void strip( ast::ptr< ast::Expr > & expr ) {
1087 ast::Pass< StripCasts_new > stripper;
1088 expr = expr->accept( stripper );
1089 }
1090 };
1091
[60aaa51d]1092 /// Swaps argument into expression pointer, saving original environment
1093 void swap_and_save_env( ast::ptr< ast::Expr > & expr, const ast::Expr * newExpr ) {
1094 ast::ptr< ast::TypeSubstitution > env = expr->env;
1095 expr.set_and_mutate( newExpr )->env = env;
1096 }
1097
[b7d92b96]1098 /// Removes cast to type of argument (unlike StripCasts, also handles non-generated casts)
1099 void removeExtraneousCast( ast::ptr<ast::Expr> & expr, const ast::SymbolTable & symtab ) {
1100 if ( const ast::CastExpr * castExpr = expr.as< ast::CastExpr >() ) {
1101 if ( typesCompatible( castExpr->arg->result, castExpr->result, symtab ) ) {
1102 // cast is to the same type as its argument, remove it
[60aaa51d]1103 swap_and_save_env( expr, castExpr->arg );
[b7d92b96]1104 }
1105 }
1106 }
1107
[99d4584]1108 /// Establish post-resolver invariants for expressions
[ef5b828]1109 void finishExpr(
1110 ast::ptr< ast::Expr > & expr, const ast::TypeEnvironment & env,
[99d4584]1111 const ast::TypeSubstitution * oldenv = nullptr
1112 ) {
1113 // set up new type substitution for expression
[ef5b828]1114 ast::ptr< ast::TypeSubstitution > newenv =
[99d4584]1115 oldenv ? oldenv : new ast::TypeSubstitution{};
1116 env.writeToSubstitution( *newenv.get_and_mutate() );
1117 expr.get_and_mutate()->env = std::move( newenv );
1118 // remove unncecessary casts
1119 StripCasts_new::strip( expr );
1120 }
[4b7cce6]1121 } // anonymous namespace
[b7d92b96]1122
[ef5b828]1123
[4b7cce6]1124 ast::ptr< ast::Expr > resolveInVoidContext(
1125 const ast::Expr * expr, const ast::SymbolTable & symtab, ast::TypeEnvironment & env
1126 ) {
1127 assertf( expr, "expected a non-null expression" );
[ef5b828]1128
[4b7cce6]1129 // set up and resolve expression cast to void
[b8524ca]1130 ast::CastExpr * untyped = new ast::CastExpr{ expr };
[ef5b828]1131 CandidateRef choice = findUnfinishedKindExpression(
[4b7cce6]1132 untyped, symtab, "", anyCandidate, ResolvMode::withAdjustment() );
[ef5b828]1133
[4b7cce6]1134 // a cast expression has either 0 or 1 interpretations (by language rules);
1135 // if 0, an exception has already been thrown, and this code will not run
1136 const ast::CastExpr * castExpr = choice->expr.strict_as< ast::CastExpr >();
1137 env = std::move( choice->env );
1138
1139 return castExpr->arg;
1140 }
[b7d92b96]1141
[4b7cce6]1142 namespace {
[ef5b828]1143 /// Resolve `untyped` to the expression whose candidate is the best match for a `void`
[b7d92b96]1144 /// context.
[ef5b828]1145 ast::ptr< ast::Expr > findVoidExpression(
[b7d92b96]1146 const ast::Expr * untyped, const ast::SymbolTable & symtab
1147 ) {
1148 resetTyVarRenaming();
1149 ast::TypeEnvironment env;
1150 ast::ptr< ast::Expr > newExpr = resolveInVoidContext( untyped, symtab, env );
1151 finishExpr( newExpr, env, untyped->env );
1152 return newExpr;
1153 }
1154
[ef5b828]1155 /// resolve `untyped` to the expression whose candidate satisfies `pred` with the
[99d4584]1156 /// lowest cost, returning the resolved version
1157 ast::ptr< ast::Expr > findKindExpression(
[ef5b828]1158 const ast::Expr * untyped, const ast::SymbolTable & symtab,
1159 std::function<bool(const Candidate &)> pred = anyCandidate,
[2b59f55]1160 const std::string & kind = "", ResolvMode mode = {}
[99d4584]1161 ) {
1162 if ( ! untyped ) return {};
[ef5b828]1163 CandidateRef choice =
[99d4584]1164 findUnfinishedKindExpression( untyped, symtab, kind, pred, mode );
1165 finishExpr( choice->expr, choice->env, untyped->env );
1166 return std::move( choice->expr );
1167 }
1168
[2773ab8]1169 /// Resolve `untyped` to the single expression whose candidate is the best match
[ef5b828]1170 ast::ptr< ast::Expr > findSingleExpression(
1171 const ast::Expr * untyped, const ast::SymbolTable & symtab
[2773ab8]1172 ) {
1173 return findKindExpression( untyped, symtab );
1174 }
[18e683b]1175 } // anonymous namespace
[2773ab8]1176
[b7d92b96]1177 ast::ptr< ast::Expr > findSingleExpression(
1178 const ast::Expr * untyped, const ast::Type * type, const ast::SymbolTable & symtab
1179 ) {
1180 assert( untyped && type );
[b8524ca]1181 ast::ptr< ast::Expr > castExpr = new ast::CastExpr{ untyped, type };
[2773ab8]1182 ast::ptr< ast::Expr > newExpr = findSingleExpression( castExpr, symtab );
[b7d92b96]1183 removeExtraneousCast( newExpr, symtab );
1184 return newExpr;
1185 }
1186
[18e683b]1187 namespace {
[99d4584]1188 /// Predicate for "Candidate has integral type"
1189 bool hasIntegralType( const Candidate & i ) {
1190 const ast::Type * type = i.expr->result;
[ef5b828]1191
[99d4584]1192 if ( auto bt = dynamic_cast< const ast::BasicType * >( type ) ) {
1193 return bt->isInteger();
[ef5b828]1194 } else if (
1195 dynamic_cast< const ast::EnumInstType * >( type )
[99d4584]1196 || dynamic_cast< const ast::ZeroType * >( type )
1197 || dynamic_cast< const ast::OneType * >( type )
1198 ) {
1199 return true;
1200 } else return false;
1201 }
1202
1203 /// Resolve `untyped` as an integral expression, returning the resolved version
[ef5b828]1204 ast::ptr< ast::Expr > findIntegralExpression(
1205 const ast::Expr * untyped, const ast::SymbolTable & symtab
[99d4584]1206 ) {
[2b59f55]1207 return findKindExpression( untyped, symtab, hasIntegralType, "condition" );
[99d4584]1208 }
[60aaa51d]1209
1210 /// check if a type is a character type
1211 bool isCharType( const ast::Type * t ) {
1212 if ( auto bt = dynamic_cast< const ast::BasicType * >( t ) ) {
[ef5b828]1213 return bt->kind == ast::BasicType::Char
1214 || bt->kind == ast::BasicType::SignedChar
[60aaa51d]1215 || bt->kind == ast::BasicType::UnsignedChar;
1216 }
1217 return false;
1218 }
[2773ab8]1219
1220 /// Advance a type itertor to the next mutex parameter
1221 template<typename Iter>
1222 inline bool nextMutex( Iter & it, const Iter & end ) {
1223 while ( it != end && ! (*it)->get_type()->is_mutex() ) { ++it; }
1224 return it != end;
1225 }
[99d4584]1226 }
1227
[4864a73]1228 class Resolver_new final
1229 : public ast::WithSymbolTable, public ast::WithGuards,
1230 public ast::WithVisitorRef<Resolver_new>, public ast::WithShortCircuiting,
[0e42794]1231 public ast::WithStmtsToAdd<> {
[4864a73]1232
[2a8f0c1]1233 ast::ptr< ast::Type > functionReturn = nullptr;
[2b59f55]1234 ast::CurrentObject currentObject;
[99d4584]1235 bool inEnumDecl = false;
[2a8f0c1]1236
[4864a73]1237 public:
[d76c588]1238 Resolver_new() = default;
[0e42794]1239 Resolver_new( const ast::SymbolTable & syms ) { symtab = syms; }
[d76c588]1240
[99d4584]1241 void previsit( const ast::FunctionDecl * );
1242 const ast::FunctionDecl * postvisit( const ast::FunctionDecl * );
1243 void previsit( const ast::ObjectDecl * );
1244 void previsit( const ast::EnumDecl * );
1245 const ast::StaticAssertDecl * previsit( const ast::StaticAssertDecl * );
1246
[0f6a7752]1247 const ast::ArrayType * previsit( const ast::ArrayType * );
1248 const ast::PointerType * previsit( const ast::PointerType * );
[99d4584]1249
[2773ab8]1250 const ast::ExprStmt * previsit( const ast::ExprStmt * );
1251 const ast::AsmExpr * previsit( const ast::AsmExpr * );
1252 const ast::AsmStmt * previsit( const ast::AsmStmt * );
1253 const ast::IfStmt * previsit( const ast::IfStmt * );
1254 const ast::WhileStmt * previsit( const ast::WhileStmt * );
1255 const ast::ForStmt * previsit( const ast::ForStmt * );
1256 const ast::SwitchStmt * previsit( const ast::SwitchStmt * );
1257 const ast::CaseStmt * previsit( const ast::CaseStmt * );
1258 const ast::BranchStmt * previsit( const ast::BranchStmt * );
1259 const ast::ReturnStmt * previsit( const ast::ReturnStmt * );
1260 const ast::ThrowStmt * previsit( const ast::ThrowStmt * );
1261 const ast::CatchStmt * previsit( const ast::CatchStmt * );
1262 const ast::WaitForStmt * previsit( const ast::WaitForStmt * );
[99d4584]1263
[2d11663]1264 const ast::SingleInit * previsit( const ast::SingleInit * );
1265 const ast::ListInit * previsit( const ast::ListInit * );
1266 const ast::ConstructorInit * previsit( const ast::ConstructorInit * );
[d76c588]1267 };
1268
1269 void resolve( std::list< ast::ptr<ast::Decl> >& translationUnit ) {
[17a0ede2]1270 ast::Pass< Resolver_new > resolver;
[d76c588]1271 accept_all( translationUnit, resolver );
1272 }
1273
[ef5b828]1274 ast::ptr< ast::Init > resolveCtorInit(
1275 const ast::ConstructorInit * ctorInit, const ast::SymbolTable & symtab
[234b1cb]1276 ) {
1277 assert( ctorInit );
1278 ast::Pass< Resolver_new > resolver{ symtab };
1279 return ctorInit->accept( resolver );
1280 }
1281
[ef5b828]1282 ast::ptr< ast::Expr > resolveStmtExpr(
1283 const ast::StmtExpr * stmtExpr, const ast::SymbolTable & symtab
[17a0ede2]1284 ) {
1285 assert( stmtExpr );
1286 ast::Pass< Resolver_new > resolver{ symtab };
1287 ast::ptr< ast::Expr > ret = stmtExpr;
1288 ret = ret->accept( resolver );
1289 strict_dynamic_cast< ast::StmtExpr * >( ret.get_and_mutate() )->computeResult();
1290 return ret;
1291 }
1292
[2a8f0c1]1293 void Resolver_new::previsit( const ast::FunctionDecl * functionDecl ) {
1294 GuardValue( functionReturn );
1295 functionReturn = extractResultType( functionDecl->type );
[d76c588]1296 }
1297
[2a8f0c1]1298 const ast::FunctionDecl * Resolver_new::postvisit( const ast::FunctionDecl * functionDecl ) {
[4864a73]1299 // default value expressions have an environment which shouldn't be there and trips up
[2a8f0c1]1300 // later passes.
1301 ast::ptr< ast::FunctionDecl > ret = functionDecl;
1302 for ( unsigned i = 0; i < functionDecl->type->params.size(); ++i ) {
1303 const ast::ptr<ast::DeclWithType> & d = functionDecl->type->params[i];
[4864a73]1304
[2a8f0c1]1305 if ( const ast::ObjectDecl * obj = d.as< ast::ObjectDecl >() ) {
1306 if ( const ast::SingleInit * init = obj->init.as< ast::SingleInit >() ) {
1307 if ( init->value->env == nullptr ) continue;
1308 // clone initializer minus the initializer environment
[4864a73]1309 ast::chain_mutate( ret )
1310 ( &ast::FunctionDecl::type )
[3cd5fdd]1311 ( &ast::FunctionType::params )[i]
[4864a73]1312 ( &ast::ObjectDecl::init )
1313 ( &ast::SingleInit::value )->env = nullptr;
1314
1315 assert( functionDecl != ret.get() || functionDecl->unique() );
1316 assert( ! ret->type->params[i].strict_as< ast::ObjectDecl >()->init.strict_as< ast::SingleInit >()->value->env );
[2a8f0c1]1317 }
1318 }
1319 }
1320 return ret.get();
[d76c588]1321 }
1322
[2a8f0c1]1323 void Resolver_new::previsit( const ast::ObjectDecl * objectDecl ) {
[ef5b828]1324 // To handle initialization of routine pointers [e.g. int (*fp)(int) = foo()],
1325 // class-variable `initContext` is changed multiple times because the LHS is analyzed
1326 // twice. The second analysis changes `initContext` because a function type can contain
1327 // object declarations in the return and parameter types. Therefore each value of
1328 // `initContext` is retained so the type on the first analysis is preserved and used for
[b7d92b96]1329 // selecting the RHS.
1330 GuardValue( currentObject );
[2b59f55]1331 currentObject = ast::CurrentObject{ objectDecl->location, objectDecl->get_type() };
[b7d92b96]1332 if ( inEnumDecl && dynamic_cast< const ast::EnumInstType * >( objectDecl->get_type() ) ) {
[ef5b828]1333 // enumerator initializers should not use the enum type to initialize, since the
[b7d92b96]1334 // enum type is still incomplete at this point. Use `int` instead.
[ef5b828]1335 currentObject = ast::CurrentObject{
[2b59f55]1336 objectDecl->location, new ast::BasicType{ ast::BasicType::SignedInt } };
[b7d92b96]1337 }
[d76c588]1338 }
1339
[99d4584]1340 void Resolver_new::previsit( const ast::EnumDecl * ) {
1341 // in case we decide to allow nested enums
1342 GuardValue( inEnumDecl );
1343 inEnumDecl = false;
[d76c588]1344 }
1345
[ef5b828]1346 const ast::StaticAssertDecl * Resolver_new::previsit(
1347 const ast::StaticAssertDecl * assertDecl
[99d4584]1348 ) {
[ef5b828]1349 return ast::mutate_field(
1350 assertDecl, &ast::StaticAssertDecl::cond,
[b7d92b96]1351 findIntegralExpression( assertDecl->cond, symtab ) );
1352 }
1353
1354 template< typename PtrType >
[0f6a7752]1355 const PtrType * handlePtrType( const PtrType * type, const ast::SymbolTable & symtab ) {
1356 if ( type->dimension ) {
1357 #warning should use new equivalent to Validate::SizeType rather than sizeType here
[3c89751]1358 ast::ptr< ast::Type > sizeType = new ast::BasicType{ ast::BasicType::LongUnsignedInt };
[ef5b828]1359 ast::mutate_field(
1360 type, &PtrType::dimension,
[0f6a7752]1361 findSingleExpression( type->dimension, sizeType, symtab ) );
1362 }
1363 return type;
[d76c588]1364 }
1365
[0f6a7752]1366 const ast::ArrayType * Resolver_new::previsit( const ast::ArrayType * at ) {
1367 return handlePtrType( at, symtab );
[d76c588]1368 }
1369
[0f6a7752]1370 const ast::PointerType * Resolver_new::previsit( const ast::PointerType * pt ) {
1371 return handlePtrType( pt, symtab );
[d76c588]1372 }
1373
[b7d92b96]1374 const ast::ExprStmt * Resolver_new::previsit( const ast::ExprStmt * exprStmt ) {
1375 visit_children = false;
1376 assertf( exprStmt->expr, "ExprStmt has null expression in resolver" );
[ef5b828]1377
1378 return ast::mutate_field(
[b7d92b96]1379 exprStmt, &ast::ExprStmt::expr, findVoidExpression( exprStmt->expr, symtab ) );
[d76c588]1380 }
1381
[b7d92b96]1382 const ast::AsmExpr * Resolver_new::previsit( const ast::AsmExpr * asmExpr ) {
1383 visit_children = false;
1384
[ef5b828]1385 asmExpr = ast::mutate_field(
[b7d92b96]1386 asmExpr, &ast::AsmExpr::operand, findVoidExpression( asmExpr->operand, symtab ) );
[ef5b828]1387
[b7d92b96]1388 return asmExpr;
[d76c588]1389 }
1390
[2b59f55]1391 const ast::AsmStmt * Resolver_new::previsit( const ast::AsmStmt * asmStmt ) {
1392 visitor->maybe_accept( asmStmt, &ast::AsmStmt::input );
1393 visitor->maybe_accept( asmStmt, &ast::AsmStmt::output );
1394 visit_children = false;
1395 return asmStmt;
[d76c588]1396 }
1397
[b7d92b96]1398 const ast::IfStmt * Resolver_new::previsit( const ast::IfStmt * ifStmt ) {
1399 return ast::mutate_field(
1400 ifStmt, &ast::IfStmt::cond, findIntegralExpression( ifStmt->cond, symtab ) );
[d76c588]1401 }
1402
[b7d92b96]1403 const ast::WhileStmt * Resolver_new::previsit( const ast::WhileStmt * whileStmt ) {
[ef5b828]1404 return ast::mutate_field(
[b7d92b96]1405 whileStmt, &ast::WhileStmt::cond, findIntegralExpression( whileStmt->cond, symtab ) );
[d76c588]1406 }
1407
[b7d92b96]1408 const ast::ForStmt * Resolver_new::previsit( const ast::ForStmt * forStmt ) {
1409 if ( forStmt->cond ) {
1410 forStmt = ast::mutate_field(
1411 forStmt, &ast::ForStmt::cond, findIntegralExpression( forStmt->cond, symtab ) );
1412 }
1413
1414 if ( forStmt->inc ) {
1415 forStmt = ast::mutate_field(
1416 forStmt, &ast::ForStmt::inc, findVoidExpression( forStmt->inc, symtab ) );
1417 }
1418
1419 return forStmt;
[d76c588]1420 }
1421
[b7d92b96]1422 const ast::SwitchStmt * Resolver_new::previsit( const ast::SwitchStmt * switchStmt ) {
1423 GuardValue( currentObject );
1424 switchStmt = ast::mutate_field(
[ef5b828]1425 switchStmt, &ast::SwitchStmt::cond,
[b7d92b96]1426 findIntegralExpression( switchStmt->cond, symtab ) );
[2b59f55]1427 currentObject = ast::CurrentObject{ switchStmt->location, switchStmt->cond->result };
[b7d92b96]1428 return switchStmt;
[d76c588]1429 }
1430
[b7d92b96]1431 const ast::CaseStmt * Resolver_new::previsit( const ast::CaseStmt * caseStmt ) {
1432 if ( caseStmt->cond ) {
[60aaa51d]1433 std::deque< ast::InitAlternative > initAlts = currentObject.getOptions();
[2b59f55]1434 assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral "
1435 "expression." );
[ef5b828]1436
1437 ast::ptr< ast::Expr > untyped =
[2b59f55]1438 new ast::CastExpr{ caseStmt->location, caseStmt->cond, initAlts.front().type };
[2773ab8]1439 ast::ptr< ast::Expr > newExpr = findSingleExpression( untyped, symtab );
[ef5b828]1440
1441 // case condition cannot have a cast in C, so it must be removed here, regardless of
[2b59f55]1442 // whether it would perform a conversion.
1443 if ( const ast::CastExpr * castExpr = newExpr.as< ast::CastExpr >() ) {
[60aaa51d]1444 swap_and_save_env( newExpr, castExpr->arg );
[2b59f55]1445 }
[ef5b828]1446
[2b59f55]1447 caseStmt = ast::mutate_field( caseStmt, &ast::CaseStmt::cond, newExpr );
[b7d92b96]1448 }
1449 return caseStmt;
[d76c588]1450 }
1451
[b7d92b96]1452 const ast::BranchStmt * Resolver_new::previsit( const ast::BranchStmt * branchStmt ) {
1453 visit_children = false;
1454 // must resolve the argument of a computed goto
1455 if ( branchStmt->kind == ast::BranchStmt::Goto && branchStmt->computedTarget ) {
1456 // computed goto argument is void*
[2773ab8]1457 ast::ptr< ast::Type > target = new ast::PointerType{ new ast::VoidType{} };
[b7d92b96]1458 branchStmt = ast::mutate_field(
[ef5b828]1459 branchStmt, &ast::BranchStmt::computedTarget,
[2773ab8]1460 findSingleExpression( branchStmt->computedTarget, target, symtab ) );
[b7d92b96]1461 }
1462 return branchStmt;
[d76c588]1463 }
1464
[2b59f55]1465 const ast::ReturnStmt * Resolver_new::previsit( const ast::ReturnStmt * returnStmt ) {
1466 visit_children = false;
1467 if ( returnStmt->expr ) {
1468 returnStmt = ast::mutate_field(
[ef5b828]1469 returnStmt, &ast::ReturnStmt::expr,
[2b59f55]1470 findSingleExpression( returnStmt->expr, functionReturn, symtab ) );
1471 }
1472 return returnStmt;
[d76c588]1473 }
1474
[2b59f55]1475 const ast::ThrowStmt * Resolver_new::previsit( const ast::ThrowStmt * throwStmt ) {
1476 visit_children = false;
1477 if ( throwStmt->expr ) {
[ef5b828]1478 const ast::StructDecl * exceptionDecl =
[3090127]1479 symtab.lookupStruct( "__cfaehm_base_exception_t" );
[2b59f55]1480 assert( exceptionDecl );
[ef5b828]1481 ast::ptr< ast::Type > exceptType =
[2b59f55]1482 new ast::PointerType{ new ast::StructInstType{ exceptionDecl } };
1483 throwStmt = ast::mutate_field(
[ef5b828]1484 throwStmt, &ast::ThrowStmt::expr,
[2b59f55]1485 findSingleExpression( throwStmt->expr, exceptType, symtab ) );
1486 }
1487 return throwStmt;
[d76c588]1488 }
1489
[2b59f55]1490 const ast::CatchStmt * Resolver_new::previsit( const ast::CatchStmt * catchStmt ) {
[3b9c674]1491 // TODO: This will need a fix for the decl/cond scoping problem.
[2b59f55]1492 if ( catchStmt->cond ) {
1493 ast::ptr< ast::Type > boolType = new ast::BasicType{ ast::BasicType::Bool };
[ef5b828]1494 catchStmt = ast::mutate_field(
1495 catchStmt, &ast::CatchStmt::cond,
[2b59f55]1496 findSingleExpression( catchStmt->cond, boolType, symtab ) );
1497 }
1498 return catchStmt;
[d76c588]1499 }
1500
[2773ab8]1501 const ast::WaitForStmt * Resolver_new::previsit( const ast::WaitForStmt * stmt ) {
1502 visit_children = false;
1503
1504 // Resolve all clauses first
1505 for ( unsigned i = 0; i < stmt->clauses.size(); ++i ) {
1506 const ast::WaitForStmt::Clause & clause = stmt->clauses[i];
1507
1508 ast::TypeEnvironment env;
1509 CandidateFinder funcFinder{ symtab, env };
1510
1511 // Find all candidates for a function in canonical form
1512 funcFinder.find( clause.target.func, ResolvMode::withAdjustment() );
1513
1514 if ( funcFinder.candidates.empty() ) {
1515 stringstream ss;
1516 ss << "Use of undeclared indentifier '";
1517 ss << clause.target.func.strict_as< ast::NameExpr >()->name;
1518 ss << "' in call to waitfor";
1519 SemanticError( stmt->location, ss.str() );
1520 }
1521
1522 if ( clause.target.args.empty() ) {
[ef5b828]1523 SemanticError( stmt->location,
[2773ab8]1524 "Waitfor clause must have at least one mutex parameter");
1525 }
1526
1527 // Find all alternatives for all arguments in canonical form
[ef5b828]1528 std::vector< CandidateFinder > argFinders =
[2773ab8]1529 funcFinder.findSubExprs( clause.target.args );
[ef5b828]1530
[2773ab8]1531 // List all combinations of arguments
1532 std::vector< CandidateList > possibilities;
1533 combos( argFinders.begin(), argFinders.end(), back_inserter( possibilities ) );
1534
1535 // For every possible function:
[ef5b828]1536 // * try matching the arguments to the parameters, not the other way around because
[2773ab8]1537 // more arguments than parameters
1538 CandidateList funcCandidates;
1539 std::vector< CandidateList > argsCandidates;
1540 SemanticErrorException errors;
1541 for ( CandidateRef & func : funcFinder.candidates ) {
1542 try {
[ef5b828]1543 auto pointerType = dynamic_cast< const ast::PointerType * >(
[2773ab8]1544 func->expr->result->stripReferences() );
1545 if ( ! pointerType ) {
[ef5b828]1546 SemanticError( stmt->location, func->expr->result.get(),
[2773ab8]1547 "candidate not viable: not a pointer type\n" );
1548 }
1549
1550 auto funcType = pointerType->base.as< ast::FunctionType >();
1551 if ( ! funcType ) {
[ef5b828]1552 SemanticError( stmt->location, func->expr->result.get(),
[2773ab8]1553 "candidate not viable: not a function type\n" );
1554 }
1555
1556 {
1557 auto param = funcType->params.begin();
1558 auto paramEnd = funcType->params.end();
1559
1560 if( ! nextMutex( param, paramEnd ) ) {
[ef5b828]1561 SemanticError( stmt->location, funcType,
[2773ab8]1562 "candidate function not viable: no mutex parameters\n");
1563 }
1564 }
1565
1566 CandidateRef func2{ new Candidate{ *func } };
1567 // strip reference from function
1568 func2->expr = referenceToRvalueConversion( func->expr, func2->cost );
1569
1570 // Each argument must be matched with a parameter of the current candidate
1571 for ( auto & argsList : possibilities ) {
1572 try {
1573 // Declare data structures needed for resolution
1574 ast::OpenVarSet open;
1575 ast::AssertionSet need, have;
1576 ast::TypeEnvironment resultEnv{ func->env };
[ef5b828]1577 // Add all type variables as open so that those not used in the
[2773ab8]1578 // parameter list are still considered open
1579 resultEnv.add( funcType->forall );
1580
1581 // load type variables from arguments into one shared space
1582 for ( auto & arg : argsList ) {
1583 resultEnv.simpleCombine( arg->env );
1584 }
1585
1586 // Make sure we don't widen any existing bindings
1587 resultEnv.forbidWidening();
1588
1589 // Find any unbound type variables
1590 resultEnv.extractOpenVars( open );
1591
1592 auto param = funcType->params.begin();
1593 auto paramEnd = funcType->params.end();
1594
1595 unsigned n_mutex_param = 0;
1596
[ef5b828]1597 // For every argument of its set, check if it matches one of the
[2773ab8]1598 // parameters. The order is important
1599 for ( auto & arg : argsList ) {
1600 // Ignore non-mutex arguments
1601 if ( ! nextMutex( param, paramEnd ) ) {
1602 // We ran out of parameters but still have arguments.
1603 // This function doesn't match
[ef5b828]1604 SemanticError( stmt->location, funcType,
[2773ab8]1605 toString("candidate function not viable: too many mutex "
1606 "arguments, expected ", n_mutex_param, "\n" ) );
1607 }
1608
1609 ++n_mutex_param;
1610
[ef5b828]1611 // Check if the argument matches the parameter type in the current
[2773ab8]1612 // scope
1613 ast::ptr< ast::Type > paramType = (*param)->get_type();
[ef5b828]1614 if (
1615 ! unify(
1616 arg->expr->result, paramType, resultEnv, need, have, open,
1617 symtab )
[2773ab8]1618 ) {
1619 // Type doesn't match
1620 stringstream ss;
1621 ss << "candidate function not viable: no known conversion "
1622 "from '";
1623 ast::print( ss, (*param)->get_type() );
1624 ss << "' to '";
1625 ast::print( ss, arg->expr->result );
1626 ss << "' with env '";
1627 ast::print( ss, resultEnv );
1628 ss << "'\n";
1629 SemanticError( stmt->location, funcType, ss.str() );
1630 }
1631
1632 ++param;
1633 }
1634
1635 // All arguments match!
1636
1637 // Check if parameters are missing
1638 if ( nextMutex( param, paramEnd ) ) {
1639 do {
1640 ++n_mutex_param;
1641 ++param;
1642 } while ( nextMutex( param, paramEnd ) );
1643
[ef5b828]1644 // We ran out of arguments but still have parameters left; this
[2773ab8]1645 // function doesn't match
[ef5b828]1646 SemanticError( stmt->location, funcType,
[2773ab8]1647 toString( "candidate function not viable: too few mutex "
1648 "arguments, expected ", n_mutex_param, "\n" ) );
1649 }
1650
1651 // All parameters match!
1652
1653 // Finish the expressions to tie in proper environments
1654 finishExpr( func2->expr, resultEnv );
1655 for ( CandidateRef & arg : argsList ) {
1656 finishExpr( arg->expr, resultEnv );
1657 }
1658
1659 // This is a match, store it and save it for later
1660 funcCandidates.emplace_back( std::move( func2 ) );
1661 argsCandidates.emplace_back( std::move( argsList ) );
1662
1663 } catch ( SemanticErrorException & e ) {
1664 errors.append( e );
1665 }
1666 }
1667 } catch ( SemanticErrorException & e ) {
1668 errors.append( e );
1669 }
1670 }
1671
1672 // Make sure correct number of arguments
1673 if( funcCandidates.empty() ) {
[ef5b828]1674 SemanticErrorException top( stmt->location,
[2773ab8]1675 "No alternatives for function in call to waitfor" );
1676 top.append( errors );
1677 throw top;
1678 }
1679
1680 if( argsCandidates.empty() ) {
[ef5b828]1681 SemanticErrorException top( stmt->location,
1682 "No alternatives for arguments in call to waitfor" );
[2773ab8]1683 top.append( errors );
1684 throw top;
1685 }
1686
1687 if( funcCandidates.size() > 1 ) {
[ef5b828]1688 SemanticErrorException top( stmt->location,
[2773ab8]1689 "Ambiguous function in call to waitfor" );
1690 top.append( errors );
1691 throw top;
1692 }
1693 if( argsCandidates.size() > 1 ) {
1694 SemanticErrorException top( stmt->location,
1695 "Ambiguous arguments in call to waitfor" );
1696 top.append( errors );
1697 throw top;
1698 }
1699 // TODO: need to use findDeletedExpr to ensure no deleted identifiers are used.
1700
1701 // build new clause
1702 ast::WaitForStmt::Clause clause2;
[ef5b828]1703
[2773ab8]1704 clause2.target.func = funcCandidates.front()->expr;
[ef5b828]1705
[2773ab8]1706 clause2.target.args.reserve( clause.target.args.size() );
1707 for ( auto arg : argsCandidates.front() ) {
1708 clause2.target.args.emplace_back( std::move( arg->expr ) );
1709 }
1710
1711 // Resolve the conditions as if it were an IfStmt, statements normally
1712 clause2.cond = findSingleExpression( clause.cond, symtab );
1713 clause2.stmt = clause.stmt->accept( *visitor );
1714
1715 // set results into stmt
1716 auto n = mutate( stmt );
1717 n->clauses[i] = std::move( clause2 );
1718 stmt = n;
1719 }
1720
1721 if ( stmt->timeout.stmt ) {
1722 // resolve the timeout as a size_t, the conditions like IfStmt, and stmts normally
1723 ast::WaitForStmt::Timeout timeout2;
1724
[ef5b828]1725 ast::ptr< ast::Type > target =
[2773ab8]1726 new ast::BasicType{ ast::BasicType::LongLongUnsignedInt };
1727 timeout2.time = findSingleExpression( stmt->timeout.time, target, symtab );
1728 timeout2.cond = findSingleExpression( stmt->timeout.cond, symtab );
1729 timeout2.stmt = stmt->timeout.stmt->accept( *visitor );
1730
1731 // set results into stmt
1732 auto n = mutate( stmt );
1733 n->timeout = std::move( timeout2 );
1734 stmt = n;
1735 }
1736
1737 if ( stmt->orElse.stmt ) {
1738 // resolve the condition like IfStmt, stmts normally
1739 ast::WaitForStmt::OrElse orElse2;
1740
1741 orElse2.cond = findSingleExpression( stmt->orElse.cond, symtab );
1742 orElse2.stmt = stmt->orElse.stmt->accept( *visitor );
1743
1744 // set results into stmt
1745 auto n = mutate( stmt );
1746 n->orElse = std::move( orElse2 );
1747 stmt = n;
1748 }
1749
1750 return stmt;
[d76c588]1751 }
1752
[60aaa51d]1753
1754
1755 const ast::SingleInit * Resolver_new::previsit( const ast::SingleInit * singleInit ) {
1756 visit_children = false;
[ef5b828]1757 // resolve initialization using the possibilities as determined by the `currentObject`
[60aaa51d]1758 // cursor.
[ef5b828]1759 ast::ptr< ast::Expr > untyped = new ast::UntypedInitExpr{
[60aaa51d]1760 singleInit->location, singleInit->value, currentObject.getOptions() };
[2773ab8]1761 ast::ptr<ast::Expr> newExpr = findSingleExpression( untyped, symtab );
[60aaa51d]1762 const ast::InitExpr * initExpr = newExpr.strict_as< ast::InitExpr >();
1763
1764 // move cursor to the object that is actually initialized
1765 currentObject.setNext( initExpr->designation );
1766
1767 // discard InitExpr wrapper and retain relevant pieces.
[ef5b828]1768 // `initExpr` may have inferred params in the case where the expression specialized a
1769 // function pointer, and newExpr may already have inferParams of its own, so a simple
[60aaa51d]1770 // swap is not sufficient
1771 ast::Expr::InferUnion inferred = initExpr->inferred;
1772 swap_and_save_env( newExpr, initExpr->expr );
1773 newExpr.get_and_mutate()->inferred.splice( std::move(inferred) );
1774
[ef5b828]1775 // get the actual object's type (may not exactly match what comes back from the resolver
[60aaa51d]1776 // due to conversions)
1777 const ast::Type * initContext = currentObject.getCurrentType();
1778
1779 removeExtraneousCast( newExpr, symtab );
1780
1781 // check if actual object's type is char[]
1782 if ( auto at = dynamic_cast< const ast::ArrayType * >( initContext ) ) {
1783 if ( isCharType( at->base ) ) {
1784 // check if the resolved type is char*
1785 if ( auto pt = newExpr->result.as< ast::PointerType >() ) {
1786 if ( isCharType( pt->base ) ) {
[ef5b828]1787 // strip cast if we're initializing a char[] with a char*
[60aaa51d]1788 // e.g. char x[] = "hello"
1789 if ( auto ce = newExpr.as< ast::CastExpr >() ) {
1790 swap_and_save_env( newExpr, ce->arg );
1791 }
1792 }
1793 }
1794 }
1795 }
1796
1797 // move cursor to next object in preparation for next initializer
1798 currentObject.increment();
1799
1800 // set initializer expression to resolved expression
1801 return ast::mutate_field( singleInit, &ast::SingleInit::value, std::move(newExpr) );
[d76c588]1802 }
1803
[60aaa51d]1804 const ast::ListInit * Resolver_new::previsit( const ast::ListInit * listInit ) {
1805 // move cursor into brace-enclosed initializer-list
1806 currentObject.enterListInit( listInit->location );
1807
1808 assert( listInit->designations.size() == listInit->initializers.size() );
1809 for ( unsigned i = 0; i < listInit->designations.size(); ++i ) {
[ef5b828]1810 // iterate designations and initializers in pairs, moving the cursor to the current
[60aaa51d]1811 // designated object and resolving the initializer against that object
[2d11663]1812 listInit = ast::mutate_field_index(
[ef5b828]1813 listInit, &ast::ListInit::designations, i,
[2d11663]1814 currentObject.findNext( listInit->designations[i] ) );
1815 listInit = ast::mutate_field_index(
1816 listInit, &ast::ListInit::initializers, i,
1817 listInit->initializers[i]->accept( *visitor ) );
[60aaa51d]1818 }
1819
[2d11663]1820 // move cursor out of brace-enclosed initializer-list
1821 currentObject.exitListInit();
1822
[60aaa51d]1823 visit_children = false;
1824 return listInit;
[d76c588]1825 }
1826
[2d11663]1827 const ast::ConstructorInit * Resolver_new::previsit( const ast::ConstructorInit * ctorInit ) {
1828 visitor->maybe_accept( ctorInit, &ast::ConstructorInit::ctor );
1829 visitor->maybe_accept( ctorInit, &ast::ConstructorInit::dtor );
1830
1831 // found a constructor - can get rid of C-style initializer
1832 // xxx - Rob suggests this field is dead code
1833 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::init, nullptr );
1834
[ef5b828]1835 // intrinsic single-parameter constructors and destructors do nothing. Since this was
1836 // implicitly generated, there's no way for it to have side effects, so get rid of it to
[2d11663]1837 // clean up generated code
1838 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->ctor ) ) {
1839 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::ctor, nullptr );
1840 }
1841 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->dtor ) ) {
1842 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::dtor, nullptr );
1843 }
1844
1845 return ctorInit;
[d76c588]1846 }
1847
[51b73452]1848} // namespace ResolvExpr
[a32b204]1849
1850// Local Variables: //
1851// tab-width: 4 //
1852// mode: c++ //
1853// compile-command: "make install" //
1854// End: //
Note: See TracBrowser for help on using the repository browser.