source: src/ResolvExpr/Resolver.cc@ 1b0184b

Last change on this file since 1b0184b was 4894239, checked in by JiadaL <j82liang@…>, 2 years ago

Allow uninitialized enum value as designators

  • Property mode set to 100644
File size: 78.8 KB
RevLine 
[a32b204]1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
[71f4e4f]7// Resolver.cc --
[a32b204]8//
[d76c588]9// Author : Aaron B. Moss
[a32b204]10// Created On : Sun May 17 12:17:01 2015
[39d8950]11// Last Modified By : Andrew Beach
[f6e6a55]12// Last Modified On : Wed Apr 20 10:41:00 2022
13// Update Count : 248
[a32b204]14//
15
[e3e16bc]16#include <cassert> // for strict_dynamic_cast, assert
[ea6332d]17#include <memory> // for allocator, allocator_traits<...
18#include <tuple> // for get
[6d6e829]19#include <vector> // for vector
[ea6332d]20
21#include "Alternative.h" // for Alternative, AltList
22#include "AlternativeFinder.h" // for AlternativeFinder, resolveIn...
[99d4584]23#include "Candidate.hpp"
24#include "CandidateFinder.hpp"
[d76c588]25#include "CurrentObject.h" // for CurrentObject
26#include "RenameVars.h" // for RenameVars, global_renamer
27#include "Resolver.h"
[16ba4a6f]28#include "ResolveTypeof.h"
[d76c588]29#include "ResolvMode.h" // for ResolvMode
30#include "typeops.h" // for extractResultType
31#include "Unify.h" // for unify
[16ba4a6f]32#include "CompilationState.h"
[4864a73]33#include "AST/Chain.hpp"
[2a8f0c1]34#include "AST/Decl.hpp"
35#include "AST/Init.hpp"
[d76c588]36#include "AST/Pass.hpp"
[99d4584]37#include "AST/Print.hpp"
[d76c588]38#include "AST/SymbolTable.hpp"
[2773ab8]39#include "AST/Type.hpp"
[8f06277]40#include "Common/Eval.h" // for eval
[9feb34b]41#include "Common/Iterate.hpp" // for group_iterate
[a4ca48c]42#include "Common/PassVisitor.h" // for PassVisitor
[ea6332d]43#include "Common/SemanticError.h" // for SemanticError
[57e0289]44#include "Common/Stats/ResolveTime.h" // for ResolveTime::start(), ResolveTime::stop()
[9feb34b]45#include "Common/ToString.hpp" // for toCString
[0a60c04]46#include "InitTweak/GenInit.h"
[ea6332d]47#include "InitTweak/InitTweak.h" // for isIntrinsicSingleArgCallStmt
48#include "ResolvExpr/TypeEnvironment.h" // for TypeEnvironment
49#include "SymTab/Autogen.h" // for SizeType
50#include "SymTab/Indexer.h" // for Indexer
[16ba4a6f]51#include "SymTab/Mangler.h" // for Mangler
[ea6332d]52#include "SynTree/Declaration.h" // for ObjectDecl, TypeDecl, Declar...
53#include "SynTree/Expression.h" // for Expression, CastExpr, InitExpr
54#include "SynTree/Initializer.h" // for ConstructorInit, SingleInit
55#include "SynTree/Statement.h" // for ForStmt, Statement, BranchStmt
56#include "SynTree/Type.h" // for Type, BasicType, PointerType
57#include "SynTree/TypeSubstitution.h" // for TypeSubstitution
58#include "SynTree/Visitor.h" // for acceptAll, maybeAccept
[0a60c04]59#include "Tuples/Tuples.h"
[2bfc6b2]60#include "Validate/FindSpecialDecls.h" // for SizeType
[51b73452]61
[d9a0e76]62using namespace std;
[51b73452]63
[d9a0e76]64namespace ResolvExpr {
[d76c588]65 struct Resolver_old final : public WithIndexer, public WithGuards, public WithVisitorRef<Resolver_old>, public WithShortCircuiting, public WithStmtsToAdd {
66 Resolver_old() {}
67 Resolver_old( const SymTab::Indexer & other ) {
[a4ca48c]68 indexer = other;
[1d2b64f]69 }
[71f4e4f]70
[5170d95]71 void previsit( FunctionDecl * functionDecl );
72 void postvisit( FunctionDecl * functionDecl );
73 void previsit( ObjectDecl * objectDecll );
[a4ca48c]74 void previsit( EnumDecl * enumDecl );
[bd87b138]75 void previsit( StaticAssertDecl * assertDecl );
[a4ca48c]76
77 void previsit( ArrayType * at );
78 void previsit( PointerType * at );
79
[5170d95]80 void previsit( ExprStmt * exprStmt );
81 void previsit( AsmExpr * asmExpr );
82 void previsit( AsmStmt * asmStmt );
83 void previsit( IfStmt * ifStmt );
[3b0bc16]84 void previsit( WhileDoStmt * whileDoStmt );
[5170d95]85 void previsit( ForStmt * forStmt );
86 void previsit( SwitchStmt * switchStmt );
87 void previsit( CaseStmt * caseStmt );
88 void previsit( BranchStmt * branchStmt );
89 void previsit( ReturnStmt * returnStmt );
90 void previsit( ThrowStmt * throwStmt );
91 void previsit( CatchStmt * catchStmt );
[3b9c674]92 void postvisit( CatchStmt * catchStmt );
[695e00d]93 void previsit( WaitForStmt * stmt );
[a4ca48c]94
[5170d95]95 void previsit( SingleInit * singleInit );
96 void previsit( ListInit * listInit );
97 void previsit( ConstructorInit * ctorInit );
[a32b204]98 private:
[c28a038d]99 typedef std::list< Initializer * >::iterator InitIterator;
[94b4364]100
[40e636a]101 template< typename PtrType >
102 void handlePtrType( PtrType * type );
103
[c28a038d]104 void fallbackInit( ConstructorInit * ctorInit );
[b726084]105
[77971f6]106 Type * functionReturn = nullptr;
[e4d829b]107 CurrentObject currentObject = nullptr;
[a436947]108 bool inEnumDecl = false;
[a32b204]109 };
[d9a0e76]110
[2a6292d]111 struct ResolveWithExprs : public WithIndexer, public WithGuards, public WithVisitorRef<ResolveWithExprs>, public WithShortCircuiting, public WithStmtsToAdd {
112 void previsit( FunctionDecl * );
113 void previsit( WithStmt * );
114
115 void resolveWithExprs( std::list< Expression * > & withExprs, std::list< Statement * > & newStmts );
116 };
117
[a32b204]118 void resolve( std::list< Declaration * > translationUnit ) {
[d76c588]119 PassVisitor<Resolver_old> resolver;
[a32b204]120 acceptAll( translationUnit, resolver );
[d9a0e76]121 }
122
[5170d95]123 void resolveDecl( Declaration * decl, const SymTab::Indexer & indexer ) {
[d76c588]124 PassVisitor<Resolver_old> resolver( indexer );
[8b11840]125 maybeAccept( decl, resolver );
126 }
127
[c71b256]128 namespace {
[99d4584]129 struct DeleteFinder_old : public WithShortCircuiting {
[c71b256]130 DeletedExpr * delExpr = nullptr;
131 void previsit( DeletedExpr * expr ) {
132 if ( delExpr ) visit_children = false;
133 else delExpr = expr;
134 }
135
136 void previsit( Expression * ) {
137 if ( delExpr ) visit_children = false;
138 }
139 };
140 }
141
142 DeletedExpr * findDeletedExpr( Expression * expr ) {
[99d4584]143 PassVisitor<DeleteFinder_old> finder;
[c71b256]144 expr->accept( finder );
145 return finder.pass.delExpr;
[d9a0e76]146 }
[a32b204]147
148 namespace {
[99d4584]149 struct StripCasts_old {
[cdb990a]150 Expression * postmutate( CastExpr * castExpr ) {
151 if ( castExpr->isGenerated && ResolvExpr::typesCompatible( castExpr->arg->result, castExpr->result, SymTab::Indexer() ) ) {
152 // generated cast is to the same type as its argument, so it's unnecessary -- remove it
153 Expression * expr = castExpr->arg;
154 castExpr->arg = nullptr;
155 std::swap( expr->env, castExpr->env );
156 return expr;
157 }
158 return castExpr;
159 }
160
161 static void strip( Expression *& expr ) {
[99d4584]162 PassVisitor<StripCasts_old> stripper;
[cdb990a]163 expr = expr->acceptMutator( stripper );
164 }
165 };
166
[5170d95]167 void finishExpr( Expression *& expr, const TypeEnvironment & env, TypeSubstitution * oldenv = nullptr ) {
[7664fad]168 expr->env = oldenv ? oldenv->clone() : new TypeSubstitution;
[cdb990a]169 env.makeSubstitution( *expr->env );
[99d4584]170 StripCasts_old::strip( expr ); // remove unnecessary casts that may be buried in an expression
[a32b204]171 }
[0a22cda]172
173 void removeExtraneousCast( Expression *& expr, const SymTab::Indexer & indexer ) {
174 if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( expr ) ) {
[b7d92b96]175 if ( typesCompatible( castExpr->arg->result, castExpr->result, indexer ) ) {
[0a22cda]176 // cast is to the same type as its argument, so it's unnecessary -- remove it
177 expr = castExpr->arg;
178 castExpr->arg = nullptr;
179 std::swap( expr->env, castExpr->env );
180 delete castExpr;
181 }
182 }
183 }
[db4ecc5]184 } // namespace
[a32b204]185
[8f98b78]186 namespace {
[59cf83b]187 void findUnfinishedKindExpression(Expression * untyped, Alternative & alt, const SymTab::Indexer & indexer, const std::string & kindStr, std::function<bool(const Alternative &)> pred, ResolvMode mode = ResolvMode{} ) {
[c71b256]188 assertf( untyped, "expected a non-null expression." );
[6d6e829]189
190 // xxx - this isn't thread-safe, but should work until we parallelize the resolver
191 static unsigned recursion_level = 0;
192
193 ++recursion_level;
[8587878e]194 TypeEnvironment env;
195 AlternativeFinder finder( indexer, env );
[6d6e829]196 finder.find( untyped, recursion_level == 1 ? mode.atTopLevel() : mode );
197 --recursion_level;
[c71b256]198
199 #if 0
200 if ( finder.get_alternatives().size() != 1 ) {
201 std::cerr << "untyped expr is ";
202 untyped->print( std::cerr );
203 std::cerr << std::endl << "alternatives are:";
204 for ( const Alternative & alt : finder.get_alternatives() ) {
205 alt.print( std::cerr );
206 } // for
207 } // if
208 #endif
[8587878e]209
[6d6e829]210 // produce filtered list of alternatives
[8587878e]211 AltList candidates;
212 for ( Alternative & alt : finder.get_alternatives() ) {
[c71b256]213 if ( pred( alt ) ) {
[8587878e]214 candidates.push_back( std::move( alt ) );
215 }
216 }
217
[6d6e829]218 // produce invalid error if no candidates
219 if ( candidates.empty() ) {
[a16764a6]220 SemanticError( untyped, toString( "No reasonable alternatives for ", kindStr, (kindStr != "" ? " " : ""), "expression: ") );
[6d6e829]221 }
222
223 // search for cheapest candidate
224 AltList winners;
225 bool seen_undeleted = false;
226 for ( unsigned i = 0; i < candidates.size(); ++i ) {
227 int c = winners.empty() ? -1 : candidates[i].cost.compare( winners.front().cost );
228
229 if ( c > 0 ) continue; // skip more expensive than winner
230
231 if ( c < 0 ) {
232 // reset on new cheapest
233 seen_undeleted = ! findDeletedExpr( candidates[i].expr );
234 winners.clear();
235 } else /* if ( c == 0 ) */ {
236 if ( findDeletedExpr( candidates[i].expr ) ) {
237 // skip deleted expression if already seen one equivalent-cost not
238 if ( seen_undeleted ) continue;
239 } else if ( ! seen_undeleted ) {
240 // replace list of equivalent-cost deleted expressions with one non-deleted
241 winners.clear();
242 seen_undeleted = true;
243 }
244 }
245
[2fd9f24]246 winners.emplace_back( std::move( candidates[i] ) );
[6d6e829]247 }
248
249 // promote alternative.cvtCost to .cost
250 // xxx - I don't know why this is done, but I'm keeping the behaviour from findMinCost
251 for ( Alternative& winner : winners ) {
252 winner.cost = winner.cvtCost;
253 }
[cde3891]254
[6d6e829]255 // produce ambiguous errors, if applicable
256 if ( winners.size() != 1 ) {
[8587878e]257 std::ostringstream stream;
[c71b256]258 stream << "Cannot choose between " << winners.size() << " alternatives for " << kindStr << (kindStr != "" ? " " : "") << "expression\n";
[8587878e]259 untyped->print( stream );
[93401f8]260 stream << " Alternatives are:\n";
[8587878e]261 printAlts( winners, stream, 1 );
[a16764a6]262 SemanticError( untyped->location, stream.str() );
[8587878e]263 }
264
[6d6e829]265 // single selected choice
266 Alternative& choice = winners.front();
267
268 // fail on only expression deleted
269 if ( ! seen_undeleted ) {
[2a08c25]270 SemanticError( untyped->location, choice.expr, "Unique best alternative includes deleted identifier in " );
[c71b256]271 }
[6d6e829]272
273 // xxx - check for ambiguous expressions
[cde3891]274
[6d6e829]275 // output selected choice
[c71b256]276 alt = std::move( choice );
277 }
278
279 /// resolve `untyped` to the expression whose alternative satisfies `pred` with the lowest cost; kindStr is used for providing better error messages
[59cf83b]280 void findKindExpression(Expression *& untyped, const SymTab::Indexer & indexer, const std::string & kindStr, std::function<bool(const Alternative &)> pred, ResolvMode mode = ResolvMode{}) {
[c71b256]281 if ( ! untyped ) return;
282 Alternative choice;
[59cf83b]283 findUnfinishedKindExpression( untyped, choice, indexer, kindStr, pred, mode );
[c71b256]284 finishExpr( choice.expr, choice.env, untyped->env );
[8587878e]285 delete untyped;
[c71b256]286 untyped = choice.expr;
287 choice.expr = nullptr;
[8587878e]288 }
289
[c71b256]290 bool standardAlternativeFilter( const Alternative & ) {
291 // currently don't need to filter, under normal circumstances.
292 // in the future, this may be useful for removing deleted expressions
293 return true;
294 }
295 } // namespace
296
297 // used in resolveTypeof
[5170d95]298 Expression * resolveInVoidContext( Expression * expr, const SymTab::Indexer & indexer ) {
[c71b256]299 TypeEnvironment env;
300 return resolveInVoidContext( expr, indexer, env );
301 }
302
[5170d95]303 Expression * resolveInVoidContext( Expression * expr, const SymTab::Indexer & indexer, TypeEnvironment & env ) {
[c71b256]304 // it's a property of the language that a cast expression has either 1 or 0 interpretations; if it has 0
305 // interpretations, an exception has already been thrown.
306 assertf( expr, "expected a non-null expression." );
307
[5170d95]308 CastExpr * untyped = new CastExpr( expr ); // cast to void
309 untyped->location = expr->location;
[c71b256]310
311 // set up and resolve expression cast to void
312 Alternative choice;
[5170d95]313 findUnfinishedKindExpression( untyped, choice, indexer, "", standardAlternativeFilter, ResolvMode::withAdjustment() );
[c71b256]314 CastExpr * castExpr = strict_dynamic_cast< CastExpr * >( choice.expr );
[5170d95]315 assert( castExpr );
[c71b256]316 env = std::move( choice.env );
317
318 // clean up resolved expression
319 Expression * ret = castExpr->arg;
320 castExpr->arg = nullptr;
321
322 // unlink the arg so that it isn't deleted twice at the end of the program
[5170d95]323 untyped->arg = nullptr;
[c71b256]324 return ret;
325 }
326
[5170d95]327 void findVoidExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
[c71b256]328 resetTyVarRenaming();
329 TypeEnvironment env;
330 Expression * newExpr = resolveInVoidContext( untyped, indexer, env );
331 finishExpr( newExpr, env, untyped->env );
332 delete untyped;
333 untyped = newExpr;
334 }
335
[5170d95]336 void findSingleExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
[c71b256]337 findKindExpression( untyped, indexer, "", standardAlternativeFilter );
338 }
339
340 void findSingleExpression( Expression *& untyped, Type * type, const SymTab::Indexer & indexer ) {
341 assert( untyped && type );
[2a08c25]342 // transfer location to generated cast for error purposes
343 CodeLocation location = untyped->location;
[c71b256]344 untyped = new CastExpr( untyped, type );
[2a08c25]345 untyped->location = location;
[c71b256]346 findSingleExpression( untyped, indexer );
347 removeExtraneousCast( untyped, indexer );
348 }
349
350 namespace {
351 bool isIntegralType( const Alternative & alt ) {
352 Type * type = alt.expr->result;
[a32b204]353 if ( dynamic_cast< EnumInstType * >( type ) ) {
354 return true;
[5170d95]355 } else if ( BasicType * bt = dynamic_cast< BasicType * >( type ) ) {
[a32b204]356 return bt->isInteger();
[89e6ffc]357 } else if ( dynamic_cast< ZeroType* >( type ) != nullptr || dynamic_cast< OneType* >( type ) != nullptr ) {
358 return true;
[a32b204]359 } else {
360 return false;
361 } // if
362 }
[71f4e4f]363
[5170d95]364 void findIntegralExpression( Expression *& untyped, const SymTab::Indexer & indexer ) {
[8587878e]365 findKindExpression( untyped, indexer, "condition", isIntegralType );
[a32b204]366 }
367 }
[71f4e4f]368
[2a6292d]369
370 bool isStructOrUnion( const Alternative & alt ) {
371 Type * t = alt.expr->result->stripReferences();
372 return dynamic_cast< StructInstType * >( t ) || dynamic_cast< UnionInstType * >( t );
373 }
374
375 void resolveWithExprs( std::list< Declaration * > & translationUnit ) {
376 PassVisitor<ResolveWithExprs> resolver;
377 acceptAll( translationUnit, resolver );
378 }
379
380 void ResolveWithExprs::resolveWithExprs( std::list< Expression * > & withExprs, std::list< Statement * > & newStmts ) {
381 for ( Expression *& expr : withExprs ) {
382 // only struct- and union-typed expressions are viable candidates
383 findKindExpression( expr, indexer, "with statement", isStructOrUnion );
384
385 // if with expression might be impure, create a temporary so that it is evaluated once
386 if ( Tuples::maybeImpure( expr ) ) {
387 static UniqueName tmpNamer( "_with_tmp_" );
388 ObjectDecl * tmp = ObjectDecl::newObject( tmpNamer.newName(), expr->result->clone(), new SingleInit( expr ) );
389 expr = new VariableExpr( tmp );
390 newStmts.push_back( new DeclStmt( tmp ) );
391 if ( InitTweak::isConstructable( tmp->type ) ) {
392 // generate ctor/dtor and resolve them
393 tmp->init = InitTweak::genCtorInit( tmp );
394 tmp->accept( *visitor );
395 }
396 }
397 }
398 }
399
400 void ResolveWithExprs::previsit( WithStmt * withStmt ) {
401 resolveWithExprs( withStmt->exprs, stmtsToAddBefore );
402 }
403
404 void ResolveWithExprs::previsit( FunctionDecl * functionDecl ) {
405 {
406 // resolve with-exprs with parameters in scope and add any newly generated declarations to the
407 // front of the function body.
408 auto guard = makeFuncGuard( [this]() { indexer.enterScope(); }, [this](){ indexer.leaveScope(); } );
409 indexer.addFunctionType( functionDecl->type );
410 std::list< Statement * > newStmts;
411 resolveWithExprs( functionDecl->withExprs, newStmts );
412 if ( functionDecl->statements ) {
413 functionDecl->statements->kids.splice( functionDecl->statements->kids.begin(), newStmts );
414 } else {
415 assertf( functionDecl->withExprs.empty() && newStmts.empty(), "Function %s without a body has with-clause and/or generated with declarations.", functionDecl->name.c_str() );
416 }
417 }
418 }
419
[d76c588]420 void Resolver_old::previsit( ObjectDecl * objectDecl ) {
[4864a73]421 // To handle initialization of routine pointers, e.g., int (*fp)(int) = foo(), means that
422 // class-variable initContext is changed multiple time because the LHS is analysed twice.
423 // The second analysis changes initContext because of a function type can contain object
424 // declarations in the return and parameter types. So each value of initContext is
[6d6e829]425 // retained, so the type on the first analysis is preserved and used for selecting the RHS.
[a4ca48c]426 GuardValue( currentObject );
[e4d829b]427 currentObject = CurrentObject( objectDecl->get_type() );
428 if ( inEnumDecl && dynamic_cast< EnumInstType * >( objectDecl->get_type() ) ) {
[a436947]429 // enumerator initializers should not use the enum type to initialize, since
430 // the enum type is still incomplete at this point. Use signed int instead.
[9e7236f4]431 // TODO: BasicType::SignedInt may not longer be true
[e4d829b]432 currentObject = CurrentObject( new BasicType( Type::Qualifiers(), BasicType::SignedInt ) );
[a436947]433 }
[bfbf97f]434 }
435
[40e636a]436 template< typename PtrType >
[d76c588]437 void Resolver_old::handlePtrType( PtrType * type ) {
[40e636a]438 if ( type->get_dimension() ) {
[2bfc6b2]439 findSingleExpression( type->dimension, Validate::SizeType->clone(), indexer );
[d1d17f5]440 }
[40e636a]441 }
442
[d76c588]443 void Resolver_old::previsit( ArrayType * at ) {
[40e636a]444 handlePtrType( at );
[a32b204]445 }
[94b4364]446
[d76c588]447 void Resolver_old::previsit( PointerType * pt ) {
[40e636a]448 handlePtrType( pt );
449 }
450
[d76c588]451 void Resolver_old::previsit( FunctionDecl * functionDecl ) {
[d9a0e76]452#if 0
[a4ca48c]453 std::cerr << "resolver visiting functiondecl ";
454 functionDecl->print( std::cerr );
455 std::cerr << std::endl;
[d9a0e76]456#endif
[a4ca48c]457 GuardValue( functionReturn );
[60914351]458 functionReturn = ResolvExpr::extractResultType( functionDecl->type );
[a4ca48c]459 }
[88d1066]460
[d76c588]461 void Resolver_old::postvisit( FunctionDecl * functionDecl ) {
[4864a73]462 // default value expressions have an environment which shouldn't be there and trips up
[6d6e829]463 // later passes.
[cde3891]464 // xxx - it might be necessary to somehow keep the information from this environment, but I
[6d6e829]465 // can't currently see how it's useful.
[c28a038d]466 for ( Declaration * d : functionDecl->type->parameters ) {
[88d1066]467 if ( ObjectDecl * obj = dynamic_cast< ObjectDecl * >( d ) ) {
[c28a038d]468 if ( SingleInit * init = dynamic_cast< SingleInit * >( obj->init ) ) {
469 delete init->value->env;
470 init->value->env = nullptr;
[88d1066]471 }
472 }
473 }
[a32b204]474 }
[51b73452]475
[d76c588]476 void Resolver_old::previsit( EnumDecl * ) {
[a436947]477 // in case we decide to allow nested enums
[a4ca48c]478 GuardValue( inEnumDecl );
[a436947]479 inEnumDecl = true;
480 }
481
[d76c588]482 void Resolver_old::previsit( StaticAssertDecl * assertDecl ) {
[bd87b138]483 findIntegralExpression( assertDecl->condition, indexer );
484 }
485
[d76c588]486 void Resolver_old::previsit( ExprStmt * exprStmt ) {
[a4ca48c]487 visit_children = false;
[08da53d]488 assertf( exprStmt->expr, "ExprStmt has null Expression in resolver" );
489 findVoidExpression( exprStmt->expr, indexer );
[a32b204]490 }
[51b73452]491
[d76c588]492 void Resolver_old::previsit( AsmExpr * asmExpr ) {
[a4ca48c]493 visit_children = false;
[08da53d]494 findVoidExpression( asmExpr->operand, indexer );
[7f5566b]495 }
496
[d76c588]497 void Resolver_old::previsit( AsmStmt * asmStmt ) {
[a4ca48c]498 visit_children = false;
499 acceptAll( asmStmt->get_input(), *visitor );
500 acceptAll( asmStmt->get_output(), *visitor );
[7f5566b]501 }
502
[d76c588]503 void Resolver_old::previsit( IfStmt * ifStmt ) {
[8587878e]504 findIntegralExpression( ifStmt->condition, indexer );
[a32b204]505 }
[51b73452]506
[3b0bc16]507 void Resolver_old::previsit( WhileDoStmt * whileDoStmt ) {
508 findIntegralExpression( whileDoStmt->condition, indexer );
[a32b204]509 }
[51b73452]510
[d76c588]511 void Resolver_old::previsit( ForStmt * forStmt ) {
[08da53d]512 if ( forStmt->condition ) {
[8587878e]513 findIntegralExpression( forStmt->condition, indexer );
[a32b204]514 } // if
[71f4e4f]515
[08da53d]516 if ( forStmt->increment ) {
517 findVoidExpression( forStmt->increment, indexer );
[a32b204]518 } // if
519 }
[51b73452]520
[d76c588]521 void Resolver_old::previsit( SwitchStmt * switchStmt ) {
[a4ca48c]522 GuardValue( currentObject );
[08da53d]523 findIntegralExpression( switchStmt->condition, indexer );
[71f4e4f]524
[08da53d]525 currentObject = CurrentObject( switchStmt->condition->result );
[a32b204]526 }
[51b73452]527
[d76c588]528 void Resolver_old::previsit( CaseStmt * caseStmt ) {
[cdb990a]529 if ( caseStmt->condition ) {
[e4d829b]530 std::list< InitAlternative > initAlts = currentObject.getOptions();
531 assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral expression." );
[08da53d]532 // must remove cast from case statement because RangeExpr cannot be cast.
533 Expression * newExpr = new CastExpr( caseStmt->condition, initAlts.front().type->clone() );
534 findSingleExpression( newExpr, indexer );
[cdb990a]535 // case condition cannot have a cast in C, so it must be removed, regardless of whether it performs a conversion.
536 // Ideally we would perform the conversion internally here.
537 if ( CastExpr * castExpr = dynamic_cast< CastExpr * >( newExpr ) ) {
538 newExpr = castExpr->arg;
539 castExpr->arg = nullptr;
540 std::swap( newExpr->env, castExpr->env );
541 delete castExpr;
542 }
543 caseStmt->condition = newExpr;
[32b8144]544 }
[a32b204]545 }
[51b73452]546
[d76c588]547 void Resolver_old::previsit( BranchStmt * branchStmt ) {
[a4ca48c]548 visit_children = false;
[de62360d]549 // must resolve the argument for a computed goto
550 if ( branchStmt->get_type() == BranchStmt::Goto ) { // check for computed goto statement
[08da53d]551 if ( branchStmt->computedTarget ) {
552 // computed goto argument is void *
553 findSingleExpression( branchStmt->computedTarget, new PointerType( Type::Qualifiers(), new VoidType( Type::Qualifiers() ) ), indexer );
[de62360d]554 } // if
555 } // if
556 }
557
[d76c588]558 void Resolver_old::previsit( ReturnStmt * returnStmt ) {
[a4ca48c]559 visit_children = false;
[08da53d]560 if ( returnStmt->expr ) {
561 findSingleExpression( returnStmt->expr, functionReturn->clone(), indexer );
[a32b204]562 } // if
563 }
[51b73452]564
[d76c588]565 void Resolver_old::previsit( ThrowStmt * throwStmt ) {
[a4ca48c]566 visit_children = false;
[cbce272]567 // TODO: Replace *exception type with &exception type.
[307a732]568 if ( throwStmt->get_expr() ) {
[3090127]569 const StructDecl * exception_decl = indexer.lookupStruct( "__cfaehm_base_exception_t" );
[cbce272]570 assert( exception_decl );
[8fd52e90]571 Type * exceptType = new PointerType( noQualifiers, new StructInstType( noQualifiers, const_cast<StructDecl *>(exception_decl) ) );
[08da53d]572 findSingleExpression( throwStmt->expr, exceptType, indexer );
[307a732]573 }
574 }
575
[d76c588]576 void Resolver_old::previsit( CatchStmt * catchStmt ) {
[3b0bc16]577 // Until we are very sure this invarent (ifs that move between passes have then)
[3b9c674]578 // holds, check it. This allows a check for when to decode the mangling.
579 if ( IfStmt * ifStmt = dynamic_cast<IfStmt *>( catchStmt->body ) ) {
[3b0bc16]580 assert( ifStmt->then );
[3b9c674]581 }
582 // Encode the catchStmt so the condition can see the declaration.
[08da53d]583 if ( catchStmt->cond ) {
[3b9c674]584 IfStmt * ifStmt = new IfStmt( catchStmt->cond, nullptr, catchStmt->body );
585 catchStmt->cond = nullptr;
586 catchStmt->body = ifStmt;
587 }
588 }
589
590 void Resolver_old::postvisit( CatchStmt * catchStmt ) {
591 // Decode the catchStmt so everything is stored properly.
592 IfStmt * ifStmt = dynamic_cast<IfStmt *>( catchStmt->body );
[3b0bc16]593 if ( nullptr != ifStmt && nullptr == ifStmt->then ) {
[3b9c674]594 assert( ifStmt->condition );
[3b0bc16]595 assert( ifStmt->else_ );
[3b9c674]596 catchStmt->cond = ifStmt->condition;
[3b0bc16]597 catchStmt->body = ifStmt->else_;
[3b9c674]598 ifStmt->condition = nullptr;
[3b0bc16]599 ifStmt->else_ = nullptr;
[3b9c674]600 delete ifStmt;
[cbce272]601 }
602 }
603
[1dcd9554]604 template< typename iterator_t >
605 inline bool advance_to_mutex( iterator_t & it, const iterator_t & end ) {
606 while( it != end && !(*it)->get_type()->get_mutex() ) {
607 it++;
608 }
609
610 return it != end;
611 }
612
[d76c588]613 void Resolver_old::previsit( WaitForStmt * stmt ) {
[8f98b78]614 visit_children = false;
[1dcd9554]615
616 // Resolve all clauses first
617 for( auto& clause : stmt->clauses ) {
618
619 TypeEnvironment env;
[8f98b78]620 AlternativeFinder funcFinder( indexer, env );
[1dcd9554]621
622 // Find all alternatives for a function in canonical form
623 funcFinder.findWithAdjustment( clause.target.function );
624
625 if ( funcFinder.get_alternatives().empty() ) {
626 stringstream ss;
627 ss << "Use of undeclared indentifier '";
628 ss << strict_dynamic_cast<NameExpr*>( clause.target.function )->name;
629 ss << "' in call to waitfor";
[a16764a6]630 SemanticError( stmt->location, ss.str() );
[1dcd9554]631 }
632
[b9f383f]633 if(clause.target.arguments.empty()) {
634 SemanticError( stmt->location, "Waitfor clause must have at least one mutex parameter");
635 }
636
[1dcd9554]637 // Find all alternatives for all arguments in canonical form
[bd4f2e9]638 std::vector< AlternativeFinder > argAlternatives;
[1dcd9554]639 funcFinder.findSubExprs( clause.target.arguments.begin(), clause.target.arguments.end(), back_inserter( argAlternatives ) );
640
641 // List all combinations of arguments
[bd4f2e9]642 std::vector< AltList > possibilities;
[1dcd9554]643 combos( argAlternatives.begin(), argAlternatives.end(), back_inserter( possibilities ) );
644
645 AltList func_candidates;
646 std::vector< AltList > args_candidates;
647
648 // For every possible function :
649 // try matching the arguments to the parameters
650 // not the other way around because we have more arguments than parameters
[a16764a6]651 SemanticErrorException errors;
[1dcd9554]652 for ( Alternative & func : funcFinder.get_alternatives() ) {
653 try {
654 PointerType * pointer = dynamic_cast< PointerType* >( func.expr->get_result()->stripReferences() );
655 if( !pointer ) {
[a16764a6]656 SemanticError( func.expr->get_result(), "candidate not viable: not a pointer type\n" );
[1dcd9554]657 }
658
659 FunctionType * function = dynamic_cast< FunctionType* >( pointer->get_base() );
660 if( !function ) {
[a16764a6]661 SemanticError( pointer->get_base(), "candidate not viable: not a function type\n" );
[1dcd9554]662 }
663
664
665 {
666 auto param = function->parameters.begin();
667 auto param_end = function->parameters.end();
668
669 if( !advance_to_mutex( param, param_end ) ) {
[a16764a6]670 SemanticError(function, "candidate function not viable: no mutex parameters\n");
[1dcd9554]671 }
672 }
673
674 Alternative newFunc( func );
675 // Strip reference from function
[a181494]676 referenceToRvalueConversion( newFunc.expr, newFunc.cost );
[1dcd9554]677
678 // For all the set of arguments we have try to match it with the parameter of the current function alternative
679 for ( auto & argsList : possibilities ) {
680
681 try {
682 // Declare data structures need for resolution
683 OpenVarSet openVars;
684 AssertionSet resultNeed, resultHave;
[6f326b1]685 TypeEnvironment resultEnv( func.env );
686 makeUnifiableVars( function, openVars, resultNeed );
687 // add all type variables as open variables now so that those not used in the parameter
688 // list are still considered open.
689 resultEnv.add( function->forall );
[1dcd9554]690
691 // Load type variables from arguemnts into one shared space
692 simpleCombineEnvironments( argsList.begin(), argsList.end(), resultEnv );
693
694 // Make sure we don't widen any existing bindings
[d286cf68]695 resultEnv.forbidWidening();
[c5283ba]696
[1dcd9554]697 // Find any unbound type variables
698 resultEnv.extractOpenVars( openVars );
699
700 auto param = function->parameters.begin();
701 auto param_end = function->parameters.end();
702
[c5283ba]703 int n_mutex_param = 0;
[b9f383f]704
[1dcd9554]705 // For every arguments of its set, check if it matches one of the parameter
706 // The order is important
707 for( auto & arg : argsList ) {
708
709 // Ignore non-mutex arguments
710 if( !advance_to_mutex( param, param_end ) ) {
711 // We ran out of parameters but still have arguments
712 // this function doesn't match
[c5283ba]713 SemanticError( function, toString("candidate function not viable: too many mutex arguments, expected ", n_mutex_param, "\n" ));
[1dcd9554]714 }
715
[c5283ba]716 n_mutex_param++;
[b9f383f]717
[1dcd9554]718 // Check if the argument matches the parameter type in the current scope
[b9f383f]719 if( ! unify( arg.expr->get_result(), (*param)->get_type(), resultEnv, resultNeed, resultHave, openVars, this->indexer ) ) {
[1dcd9554]720 // Type doesn't match
721 stringstream ss;
722 ss << "candidate function not viable: no known convertion from '";
723 (*param)->get_type()->print( ss );
[b9f383f]724 ss << "' to '";
725 arg.expr->get_result()->print( ss );
[5248789]726 ss << "' with env '";
727 resultEnv.print(ss);
[1dcd9554]728 ss << "'\n";
[a16764a6]729 SemanticError( function, ss.str() );
[1dcd9554]730 }
731
732 param++;
733 }
734
735 // All arguments match !
736
737 // Check if parameters are missing
738 if( advance_to_mutex( param, param_end ) ) {
[c5283ba]739 do {
740 n_mutex_param++;
741 param++;
742 } while( advance_to_mutex( param, param_end ) );
743
[1dcd9554]744 // We ran out of arguments but still have parameters left
745 // this function doesn't match
[c5283ba]746 SemanticError( function, toString("candidate function not viable: too few mutex arguments, expected ", n_mutex_param, "\n" ));
[1dcd9554]747 }
748
749 // All parameters match !
750
751 // Finish the expressions to tie in the proper environments
752 finishExpr( newFunc.expr, resultEnv );
753 for( Alternative & alt : argsList ) {
754 finishExpr( alt.expr, resultEnv );
755 }
756
757 // This is a match store it and save it for later
758 func_candidates.push_back( newFunc );
759 args_candidates.push_back( argsList );
760
761 }
[5170d95]762 catch( SemanticErrorException & e ) {
[1dcd9554]763 errors.append( e );
764 }
765 }
766 }
[5170d95]767 catch( SemanticErrorException & e ) {
[1dcd9554]768 errors.append( e );
769 }
770 }
771
772 // Make sure we got the right number of arguments
[a16764a6]773 if( func_candidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for function in call to waitfor" ); top.append( errors ); throw top; }
774 if( args_candidates.empty() ) { SemanticErrorException top( stmt->location, "No alternatives for arguments in call to waitfor" ); top.append( errors ); throw top; }
775 if( func_candidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous function in call to waitfor" ); top.append( errors ); throw top; }
776 if( args_candidates.size() > 1 ) { SemanticErrorException top( stmt->location, "Ambiguous arguments in call to waitfor" ); top.append( errors ); throw top; }
[c71b256]777 // TODO: need to use findDeletedExpr to ensure no deleted identifiers are used.
[1dcd9554]778
779 // Swap the results from the alternative with the unresolved values.
780 // Alternatives will handle deletion on destruction
781 std::swap( clause.target.function, func_candidates.front().expr );
782 for( auto arg_pair : group_iterate( clause.target.arguments, args_candidates.front() ) ) {
783 std::swap ( std::get<0>( arg_pair), std::get<1>( arg_pair).expr );
784 }
785
786 // Resolve the conditions as if it were an IfStmt
787 // Resolve the statments normally
[08da53d]788 findSingleExpression( clause.condition, this->indexer );
[8f98b78]789 clause.statement->accept( *visitor );
[1dcd9554]790 }
791
792
793 if( stmt->timeout.statement ) {
794 // Resolve the timeout as an size_t for now
795 // Resolve the conditions as if it were an IfStmt
796 // Resolve the statments normally
[08da53d]797 findSingleExpression( stmt->timeout.time, new BasicType( noQualifiers, BasicType::LongLongUnsignedInt ), this->indexer );
798 findSingleExpression( stmt->timeout.condition, this->indexer );
[8f98b78]799 stmt->timeout.statement->accept( *visitor );
[1dcd9554]800 }
801
802 if( stmt->orelse.statement ) {
803 // Resolve the conditions as if it were an IfStmt
804 // Resolve the statments normally
[08da53d]805 findSingleExpression( stmt->orelse.condition, this->indexer );
[8f98b78]806 stmt->orelse.statement->accept( *visitor );
[1dcd9554]807 }
808 }
809
[60aaa51d]810 bool isCharType( Type * t ) {
[b5c5684]811 if ( BasicType * bt = dynamic_cast< BasicType * >( t ) ) {
[71f4e4f]812 return bt->get_kind() == BasicType::Char || bt->get_kind() == BasicType::SignedChar ||
[b5c5684]813 bt->get_kind() == BasicType::UnsignedChar;
814 }
815 return false;
816 }
817
[d76c588]818 void Resolver_old::previsit( SingleInit * singleInit ) {
[a4ca48c]819 visit_children = false;
[62423350]820 // resolve initialization using the possibilities as determined by the currentObject cursor
[0a22cda]821 Expression * newExpr = new UntypedInitExpr( singleInit->value, currentObject.getOptions() );
[08da53d]822 findSingleExpression( newExpr, indexer );
[e3e16bc]823 InitExpr * initExpr = strict_dynamic_cast< InitExpr * >( newExpr );
[62423350]824
825 // move cursor to the object that is actually initialized
[e4d829b]826 currentObject.setNext( initExpr->get_designation() );
[62423350]827
828 // discard InitExpr wrapper and retain relevant pieces
[08da53d]829 newExpr = initExpr->expr;
830 initExpr->expr = nullptr;
831 std::swap( initExpr->env, newExpr->env );
[cde3891]832 // InitExpr may have inferParams in the case where the expression specializes a function
833 // pointer, and newExpr may already have inferParams of its own, so a simple swap is not
[6d6e829]834 // sufficient.
[cdb990a]835 newExpr->spliceInferParams( initExpr );
[e4d829b]836 delete initExpr;
837
[cde3891]838 // get the actual object's type (may not exactly match what comes back from the resolver
[6d6e829]839 // due to conversions)
[62423350]840 Type * initContext = currentObject.getCurrentType();
841
[0a22cda]842 removeExtraneousCast( newExpr, indexer );
843
[62423350]844 // check if actual object's type is char[]
845 if ( ArrayType * at = dynamic_cast< ArrayType * >( initContext ) ) {
846 if ( isCharType( at->get_base() ) ) {
847 // check if the resolved type is char *
848 if ( PointerType * pt = dynamic_cast< PointerType *>( newExpr->get_result() ) ) {
849 if ( isCharType( pt->get_base() ) ) {
[5170d95]850 if ( CastExpr * ce = dynamic_cast< CastExpr * >( newExpr ) ) {
[cde3891]851 // strip cast if we're initializing a char[] with a char *,
[6d6e829]852 // e.g. char x[] = "hello";
[0a22cda]853 newExpr = ce->get_arg();
854 ce->set_arg( nullptr );
855 std::swap( ce->env, newExpr->env );
856 delete ce;
857 }
[62423350]858 }
859 }
860 }
861 }
[94b4364]862
[62423350]863 // set initializer expr to resolved express
[0a22cda]864 singleInit->value = newExpr;
[62423350]865
866 // move cursor to next object in preparation for next initializer
867 currentObject.increment();
868 }
[94b4364]869
[d76c588]870 void Resolver_old::previsit( ListInit * listInit ) {
[a4ca48c]871 visit_children = false;
[62423350]872 // move cursor into brace-enclosed initializer-list
[e4d829b]873 currentObject.enterListInit();
[cde3891]874 // xxx - fix this so that the list isn't copied, iterator should be used to change current
[6d6e829]875 // element
[e4d829b]876 std::list<Designation *> newDesignations;
877 for ( auto p : group_iterate(listInit->get_designations(), listInit->get_initializers()) ) {
[cde3891]878 // iterate designations and initializers in pairs, moving the cursor to the current
[6d6e829]879 // designated object and resolving the initializer against that object.
[e4d829b]880 Designation * des = std::get<0>(p);
881 Initializer * init = std::get<1>(p);
882 newDesignations.push_back( currentObject.findNext( des ) );
[a4ca48c]883 init->accept( *visitor );
[b5c5684]884 }
[62423350]885 // set the set of 'resolved' designations and leave the brace-enclosed initializer-list
[e4d829b]886 listInit->get_designations() = newDesignations; // xxx - memory management
887 currentObject.exitListInit();
888
[62423350]889 // xxx - this part has not be folded into CurrentObject yet
[e4d829b]890 // } else if ( TypeInstType * tt = dynamic_cast< TypeInstType * >( initContext ) ) {
891 // Type * base = tt->get_baseType()->get_base();
892 // if ( base ) {
893 // // know the implementation type, so try using that as the initContext
894 // ObjectDecl tmpObj( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, base->clone(), nullptr );
895 // currentObject = &tmpObj;
896 // visit( listInit );
897 // } else {
898 // // missing implementation type -- might be an unknown type variable, so try proceeding with the current init context
899 // Parent::visit( listInit );
900 // }
901 // } else {
[a32b204]902 }
[71f4e4f]903
[f1e012b]904 // ConstructorInit - fall back on C-style initializer
[d76c588]905 void Resolver_old::fallbackInit( ConstructorInit * ctorInit ) {
[f1e012b]906 // could not find valid constructor, or found an intrinsic constructor
907 // fall back on C-style initializer
908 delete ctorInit->get_ctor();
[6d6e829]909 ctorInit->set_ctor( nullptr );
[71a145de]910 delete ctorInit->get_dtor();
[6d6e829]911 ctorInit->set_dtor( nullptr );
[a4ca48c]912 maybeAccept( ctorInit->get_init(), *visitor );
[f1e012b]913 }
914
[1d2b64f]915 // needs to be callable from outside the resolver, so this is a standalone function
916 void resolveCtorInit( ConstructorInit * ctorInit, const SymTab::Indexer & indexer ) {
917 assert( ctorInit );
[d76c588]918 PassVisitor<Resolver_old> resolver( indexer );
[1d2b64f]919 ctorInit->accept( resolver );
920 }
921
922 void resolveStmtExpr( StmtExpr * stmtExpr, const SymTab::Indexer & indexer ) {
923 assert( stmtExpr );
[d76c588]924 PassVisitor<Resolver_old> resolver( indexer );
[1d2b64f]925 stmtExpr->accept( resolver );
[5e2c348]926 stmtExpr->computeResult();
[dd05e12]927 // xxx - aggregate the environments from all statements? Possibly in AlternativeFinder instead?
[1d2b64f]928 }
929
[d76c588]930 void Resolver_old::previsit( ConstructorInit * ctorInit ) {
[a4ca48c]931 visit_children = false;
[1ba88a0]932 // xxx - fallback init has been removed => remove fallbackInit function and remove complexity from FixInit and remove C-init from ConstructorInit
[dd05e12]933 maybeAccept( ctorInit->ctor, *visitor );
934 maybeAccept( ctorInit->dtor, *visitor );
[071a31a]935
[5b2f5bb]936 // found a constructor - can get rid of C-style initializer
[dd05e12]937 delete ctorInit->init;
938 ctorInit->init = nullptr;
[ec79847]939
940 // intrinsic single parameter constructors and destructors do nothing. Since this was
941 // implicitly generated, there's no way for it to have side effects, so get rid of it
942 // to clean up generated code.
[dd05e12]943 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->ctor ) ) {
944 delete ctorInit->ctor;
945 ctorInit->ctor = nullptr;
[ec79847]946 }
[f9cebb5]947
[dd05e12]948 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->dtor ) ) {
949 delete ctorInit->dtor;
950 ctorInit->dtor = nullptr;
[ec79847]951 }
[a465caff]952
953 // xxx - todo -- what about arrays?
[6d6e829]954 // if ( dtor == nullptr && InitTweak::isIntrinsicCallStmt( ctorInit->get_ctor() ) ) {
[a465caff]955 // // can reduce the constructor down to a SingleInit using the
956 // // second argument from the ctor call, since
957 // delete ctorInit->get_ctor();
[6d6e829]958 // ctorInit->set_ctor( nullptr );
[a465caff]959
960 // Expression * arg =
961 // ctorInit->set_init( new SingleInit( arg ) );
962 // }
[71f4e4f]963 }
[d76c588]964
965 ///////////////////////////////////////////////////////////////////////////
966 //
967 // *** NEW RESOLVER ***
968 //
969 ///////////////////////////////////////////////////////////////////////////
970
[99d4584]971 namespace {
972 /// Finds deleted expressions in an expression tree
[2dda05d]973 struct DeleteFinder_new final : public ast::WithShortCircuiting, public ast::WithVisitorRef<DeleteFinder_new> {
[e6b42e7]974 const ast::DeletedExpr * result = nullptr;
[99d4584]975
976 void previsit( const ast::DeletedExpr * expr ) {
[e6b42e7]977 if ( result ) { visit_children = false; }
978 else { result = expr; }
[99d4584]979 }
980
[361bf01]981 void previsit( const ast::Expr * expr ) {
[e6b42e7]982 if ( result ) { visit_children = false; }
[361bf01]983 if (expr->inferred.hasParams()) {
984 for (auto & imp : expr->inferred.inferParams() ) {
[2dda05d]985 imp.second.expr->accept(*visitor);
[361bf01]986 }
987 }
[99d4584]988 }
989 };
[4894239]990
991 struct ResolveDesignators_new final : public ast::WithShortCircuiting {
992 ResolveContext& context;
993 bool result = false;
994
995 ResolveDesignators_new( ResolveContext& _context ): context{_context} {};
996
997 void previsit( const ast::Node * ) {
998 // short circuit if we already know there are designations
999 if ( result ) visit_children = false;
1000 }
1001
1002 void previsit( const ast::Designation * des ) {
1003 if ( result ) visit_children = false;
1004 else if ( ! des->designators.empty() ) {
1005 if ( (des->designators.size() == 1) ) {
1006 const ast::Expr * designator = des->designators.at(0);
1007 if ( const ast::NameExpr * designatorName = dynamic_cast<const ast::NameExpr *>(designator) ) {
1008 auto candidates = context.symtab.lookupId(designatorName->name);
1009 for ( auto candidate : candidates ) {
1010 if ( dynamic_cast<const ast::EnumInstType *>(candidate.id->get_type()) ) {
1011 result = true;
1012 break;
1013 }
1014 }
1015 }
1016 }
1017 visit_children = false;
1018 }
1019 }
1020 };
[d57e349]1021 } // anonymous namespace
1022 /// Check if this expression is or includes a deleted expression
1023 const ast::DeletedExpr * findDeletedExpr( const ast::Expr * expr ) {
[e6b42e7]1024 return ast::Pass<DeleteFinder_new>::read( expr );
[d57e349]1025 }
[99d4584]1026
[d57e349]1027 namespace {
[b7d92b96]1028 /// always-accept candidate filter
1029 bool anyCandidate( const Candidate & ) { return true; }
1030
[99d4584]1031 /// Calls the CandidateFinder and finds the single best candidate
1032 CandidateRef findUnfinishedKindExpression(
[39d8950]1033 const ast::Expr * untyped, const ResolveContext & context, const std::string & kind,
[b7d92b96]1034 std::function<bool(const Candidate &)> pred = anyCandidate, ResolvMode mode = {}
[99d4584]1035 ) {
1036 if ( ! untyped ) return nullptr;
1037
1038 // xxx - this isn't thread-safe, but should work until we parallelize the resolver
1039 static unsigned recursion_level = 0;
1040
1041 ++recursion_level;
1042 ast::TypeEnvironment env;
[39d8950]1043 CandidateFinder finder( context, env );
[46da46b]1044 finder.allowVoid = true;
[99d4584]1045 finder.find( untyped, recursion_level == 1 ? mode.atTopLevel() : mode );
1046 --recursion_level;
1047
1048 // produce a filtered list of candidates
1049 CandidateList candidates;
1050 for ( auto & cand : finder.candidates ) {
1051 if ( pred( *cand ) ) { candidates.emplace_back( cand ); }
1052 }
1053
1054 // produce invalid error if no candidates
1055 if ( candidates.empty() ) {
[ef5b828]1056 SemanticError( untyped,
1057 toString( "No reasonable alternatives for ", kind, (kind != "" ? " " : ""),
[99d4584]1058 "expression: ") );
1059 }
1060
1061 // search for cheapest candidate
1062 CandidateList winners;
1063 bool seen_undeleted = false;
1064 for ( CandidateRef & cand : candidates ) {
1065 int c = winners.empty() ? -1 : cand->cost.compare( winners.front()->cost );
1066
1067 if ( c > 0 ) continue; // skip more expensive than winner
1068
1069 if ( c < 0 ) {
1070 // reset on new cheapest
1071 seen_undeleted = ! findDeletedExpr( cand->expr );
1072 winners.clear();
1073 } else /* if ( c == 0 ) */ {
1074 if ( findDeletedExpr( cand->expr ) ) {
1075 // skip deleted expression if already seen one equivalent-cost not
1076 if ( seen_undeleted ) continue;
1077 } else if ( ! seen_undeleted ) {
1078 // replace list of equivalent-cost deleted expressions with one non-deleted
1079 winners.clear();
1080 seen_undeleted = true;
1081 }
1082 }
1083
1084 winners.emplace_back( std::move( cand ) );
1085 }
1086
1087 // promote candidate.cvtCost to .cost
[46da46b]1088 // promoteCvtCost( winners );
[99d4584]1089
1090 // produce ambiguous errors, if applicable
1091 if ( winners.size() != 1 ) {
1092 std::ostringstream stream;
[ef5b828]1093 stream << "Cannot choose between " << winners.size() << " alternatives for "
[99d4584]1094 << kind << (kind != "" ? " " : "") << "expression\n";
1095 ast::print( stream, untyped );
1096 stream << " Alternatives are:\n";
1097 print( stream, winners, 1 );
1098 SemanticError( untyped->location, stream.str() );
1099 }
1100
1101 // single selected choice
1102 CandidateRef & choice = winners.front();
1103
1104 // fail on only expression deleted
1105 if ( ! seen_undeleted ) {
1106 SemanticError( untyped->location, choice->expr.get(), "Unique best alternative "
1107 "includes deleted identifier in " );
1108 }
1109
1110 return std::move( choice );
1111 }
1112
1113 /// Strips extraneous casts out of an expression
1114 struct StripCasts_new final {
[c408483]1115 const ast::Expr * postvisit( const ast::CastExpr * castExpr ) {
[ef5b828]1116 if (
[2890212]1117 castExpr->isGenerated == ast::GeneratedCast
[ef5b828]1118 && typesCompatible( castExpr->arg->result, castExpr->result )
[99d4584]1119 ) {
1120 // generated cast is the same type as its argument, remove it after keeping env
[ef5b828]1121 return ast::mutate_field(
[b7d92b96]1122 castExpr->arg.get(), &ast::Expr::env, castExpr->env );
[99d4584]1123 }
1124 return castExpr;
1125 }
1126
1127 static void strip( ast::ptr< ast::Expr > & expr ) {
1128 ast::Pass< StripCasts_new > stripper;
1129 expr = expr->accept( stripper );
1130 }
1131 };
1132
[60aaa51d]1133 /// Swaps argument into expression pointer, saving original environment
1134 void swap_and_save_env( ast::ptr< ast::Expr > & expr, const ast::Expr * newExpr ) {
1135 ast::ptr< ast::TypeSubstitution > env = expr->env;
1136 expr.set_and_mutate( newExpr )->env = env;
1137 }
1138
[b7d92b96]1139 /// Removes cast to type of argument (unlike StripCasts, also handles non-generated casts)
[918e4165]1140 void removeExtraneousCast( ast::ptr<ast::Expr> & expr ) {
[b7d92b96]1141 if ( const ast::CastExpr * castExpr = expr.as< ast::CastExpr >() ) {
[251ce80]1142 if ( typesCompatible( castExpr->arg->result, castExpr->result ) ) {
[b7d92b96]1143 // cast is to the same type as its argument, remove it
[60aaa51d]1144 swap_and_save_env( expr, castExpr->arg );
[b7d92b96]1145 }
1146 }
1147 }
1148
[6668a3e]1149
[490fb92e]1150 } // anonymous namespace
1151/// Establish post-resolver invariants for expressions
[ef5b828]1152 void finishExpr(
1153 ast::ptr< ast::Expr > & expr, const ast::TypeEnvironment & env,
[99d4584]1154 const ast::TypeSubstitution * oldenv = nullptr
1155 ) {
1156 // set up new type substitution for expression
[ef5b828]1157 ast::ptr< ast::TypeSubstitution > newenv =
[99d4584]1158 oldenv ? oldenv : new ast::TypeSubstitution{};
1159 env.writeToSubstitution( *newenv.get_and_mutate() );
1160 expr.get_and_mutate()->env = std::move( newenv );
1161 // remove unncecessary casts
1162 StripCasts_new::strip( expr );
1163 }
[ef5b828]1164
[4b7cce6]1165 ast::ptr< ast::Expr > resolveInVoidContext(
[39d8950]1166 const ast::Expr * expr, const ResolveContext & context,
1167 ast::TypeEnvironment & env
[4b7cce6]1168 ) {
1169 assertf( expr, "expected a non-null expression" );
[ef5b828]1170
[4b7cce6]1171 // set up and resolve expression cast to void
[417117e]1172 ast::ptr< ast::CastExpr > untyped = new ast::CastExpr{ expr };
[ef5b828]1173 CandidateRef choice = findUnfinishedKindExpression(
[39d8950]1174 untyped, context, "", anyCandidate, ResolvMode::withAdjustment() );
[ef5b828]1175
[4b7cce6]1176 // a cast expression has either 0 or 1 interpretations (by language rules);
1177 // if 0, an exception has already been thrown, and this code will not run
1178 const ast::CastExpr * castExpr = choice->expr.strict_as< ast::CastExpr >();
1179 env = std::move( choice->env );
1180
1181 return castExpr->arg;
1182 }
[b7d92b96]1183
[490fb92e]1184 /// Resolve `untyped` to the expression whose candidate is the best match for a `void`
[b7d92b96]1185 /// context.
[ef5b828]1186 ast::ptr< ast::Expr > findVoidExpression(
[39d8950]1187 const ast::Expr * untyped, const ResolveContext & context
[b7d92b96]1188 ) {
1189 ast::TypeEnvironment env;
[39d8950]1190 ast::ptr< ast::Expr > newExpr = resolveInVoidContext( untyped, context, env );
[b7d92b96]1191 finishExpr( newExpr, env, untyped->env );
1192 return newExpr;
1193 }
1194
[490fb92e]1195 namespace {
[6668a3e]1196
[490fb92e]1197
[ef5b828]1198 /// resolve `untyped` to the expression whose candidate satisfies `pred` with the
[99d4584]1199 /// lowest cost, returning the resolved version
1200 ast::ptr< ast::Expr > findKindExpression(
[39d8950]1201 const ast::Expr * untyped, const ResolveContext & context,
[ef5b828]1202 std::function<bool(const Candidate &)> pred = anyCandidate,
[2b59f55]1203 const std::string & kind = "", ResolvMode mode = {}
[99d4584]1204 ) {
1205 if ( ! untyped ) return {};
[ef5b828]1206 CandidateRef choice =
[39d8950]1207 findUnfinishedKindExpression( untyped, context, kind, pred, mode );
[490fb92e]1208 ResolvExpr::finishExpr( choice->expr, choice->env, untyped->env );
[99d4584]1209 return std::move( choice->expr );
1210 }
1211
[2773ab8]1212 /// Resolve `untyped` to the single expression whose candidate is the best match
[ef5b828]1213 ast::ptr< ast::Expr > findSingleExpression(
[39d8950]1214 const ast::Expr * untyped, const ResolveContext & context
[2773ab8]1215 ) {
[57e0289]1216 Stats::ResolveTime::start( untyped );
[39d8950]1217 auto res = findKindExpression( untyped, context );
[57e0289]1218 Stats::ResolveTime::stop();
1219 return res;
[2773ab8]1220 }
[18e683b]1221 } // anonymous namespace
[2773ab8]1222
[16ba4a6f]1223 ast::ptr< ast::Expr > findSingleExpression(
[39d8950]1224 const ast::Expr * untyped, const ast::Type * type,
1225 const ResolveContext & context
[16ba4a6f]1226 ) {
1227 assert( untyped && type );
1228 ast::ptr< ast::Expr > castExpr = new ast::CastExpr{ untyped, type };
[39d8950]1229 ast::ptr< ast::Expr > newExpr = findSingleExpression( castExpr, context );
[918e4165]1230 removeExtraneousCast( newExpr );
[16ba4a6f]1231 return newExpr;
1232 }
[b7d92b96]1233
[18e683b]1234 namespace {
[16ba4a6f]1235 bool structOrUnion( const Candidate & i ) {
1236 const ast::Type * t = i.expr->result->stripReferences();
1237 return dynamic_cast< const ast::StructInstType * >( t ) || dynamic_cast< const ast::UnionInstType * >( t );
1238 }
[99d4584]1239 /// Predicate for "Candidate has integral type"
1240 bool hasIntegralType( const Candidate & i ) {
1241 const ast::Type * type = i.expr->result;
[ef5b828]1242
[99d4584]1243 if ( auto bt = dynamic_cast< const ast::BasicType * >( type ) ) {
1244 return bt->isInteger();
[ef5b828]1245 } else if (
1246 dynamic_cast< const ast::EnumInstType * >( type )
[99d4584]1247 || dynamic_cast< const ast::ZeroType * >( type )
1248 || dynamic_cast< const ast::OneType * >( type )
1249 ) {
1250 return true;
1251 } else return false;
1252 }
1253
1254 /// Resolve `untyped` as an integral expression, returning the resolved version
[ef5b828]1255 ast::ptr< ast::Expr > findIntegralExpression(
[39d8950]1256 const ast::Expr * untyped, const ResolveContext & context
[99d4584]1257 ) {
[39d8950]1258 return findKindExpression( untyped, context, hasIntegralType, "condition" );
[99d4584]1259 }
[60aaa51d]1260
1261 /// check if a type is a character type
1262 bool isCharType( const ast::Type * t ) {
1263 if ( auto bt = dynamic_cast< const ast::BasicType * >( t ) ) {
[ef5b828]1264 return bt->kind == ast::BasicType::Char
1265 || bt->kind == ast::BasicType::SignedChar
[60aaa51d]1266 || bt->kind == ast::BasicType::UnsignedChar;
1267 }
1268 return false;
1269 }
[2773ab8]1270
1271 /// Advance a type itertor to the next mutex parameter
1272 template<typename Iter>
1273 inline bool nextMutex( Iter & it, const Iter & end ) {
[954c954]1274 while ( it != end && ! (*it)->is_mutex() ) { ++it; }
[2773ab8]1275 return it != end;
1276 }
[99d4584]1277 }
1278
[4864a73]1279 class Resolver_new final
1280 : public ast::WithSymbolTable, public ast::WithGuards,
1281 public ast::WithVisitorRef<Resolver_new>, public ast::WithShortCircuiting,
[0e42794]1282 public ast::WithStmtsToAdd<> {
[4864a73]1283
[2a8f0c1]1284 ast::ptr< ast::Type > functionReturn = nullptr;
[2b59f55]1285 ast::CurrentObject currentObject;
[16ba4a6f]1286 // for work previously in GenInit
1287 static InitTweak::ManagedTypes_new managedTypes;
[3bc69f2]1288 ResolveContext context;
[16ba4a6f]1289
[99d4584]1290 bool inEnumDecl = false;
[2a8f0c1]1291
[4864a73]1292 public:
[c15085d]1293 static size_t traceId;
[3bc69f2]1294 Resolver_new( const ast::TranslationGlobal & global ) :
[b9fe89b]1295 ast::WithSymbolTable(ast::SymbolTable::ErrorDetection::ValidateOnAdd),
[3bc69f2]1296 context{ symtab, global } {}
1297 Resolver_new( const ResolveContext & context ) :
1298 ast::WithSymbolTable{ context.symtab },
1299 context{ symtab, context.global } {}
[d76c588]1300
[16ba4a6f]1301 const ast::FunctionDecl * previsit( const ast::FunctionDecl * );
[99d4584]1302 const ast::FunctionDecl * postvisit( const ast::FunctionDecl * );
[16ba4a6f]1303 const ast::ObjectDecl * previsit( const ast::ObjectDecl * );
1304 void previsit( const ast::AggregateDecl * );
1305 void previsit( const ast::StructDecl * );
[99d4584]1306 void previsit( const ast::EnumDecl * );
1307 const ast::StaticAssertDecl * previsit( const ast::StaticAssertDecl * );
1308
[0f6a7752]1309 const ast::ArrayType * previsit( const ast::ArrayType * );
1310 const ast::PointerType * previsit( const ast::PointerType * );
[99d4584]1311
[2773ab8]1312 const ast::ExprStmt * previsit( const ast::ExprStmt * );
1313 const ast::AsmExpr * previsit( const ast::AsmExpr * );
1314 const ast::AsmStmt * previsit( const ast::AsmStmt * );
1315 const ast::IfStmt * previsit( const ast::IfStmt * );
[3bc69f2]1316 const ast::WhileDoStmt * previsit( const ast::WhileDoStmt * );
[2773ab8]1317 const ast::ForStmt * previsit( const ast::ForStmt * );
1318 const ast::SwitchStmt * previsit( const ast::SwitchStmt * );
[400b8be]1319 const ast::CaseClause * previsit( const ast::CaseClause * );
[2773ab8]1320 const ast::BranchStmt * previsit( const ast::BranchStmt * );
1321 const ast::ReturnStmt * previsit( const ast::ReturnStmt * );
1322 const ast::ThrowStmt * previsit( const ast::ThrowStmt * );
[400b8be]1323 const ast::CatchClause * previsit( const ast::CatchClause * );
1324 const ast::CatchClause * postvisit( const ast::CatchClause * );
[2773ab8]1325 const ast::WaitForStmt * previsit( const ast::WaitForStmt * );
[16ba4a6f]1326 const ast::WithStmt * previsit( const ast::WithStmt * );
[99d4584]1327
[2d11663]1328 const ast::SingleInit * previsit( const ast::SingleInit * );
1329 const ast::ListInit * previsit( const ast::ListInit * );
1330 const ast::ConstructorInit * previsit( const ast::ConstructorInit * );
[16ba4a6f]1331
1332 void resolveWithExprs(std::vector<ast::ptr<ast::Expr>> & exprs, std::list<ast::ptr<ast::Stmt>> & stmtsToAdd);
1333
1334 void beginScope() { managedTypes.beginScope(); }
1335 void endScope() { managedTypes.endScope(); }
[e00c22f]1336 bool on_error(ast::ptr<ast::Decl> & decl);
[d76c588]1337 };
[0d070ca]1338 // size_t Resolver_new::traceId = Stats::Heap::new_stacktrace_id("Resolver");
[d76c588]1339
[16ba4a6f]1340 InitTweak::ManagedTypes_new Resolver_new::managedTypes;
1341
[293dc1c]1342 void resolve( ast::TranslationUnit& translationUnit ) {
[3bc69f2]1343 ast::Pass< Resolver_new >::run( translationUnit, translationUnit.global );
[d76c588]1344 }
1345
[ef5b828]1346 ast::ptr< ast::Init > resolveCtorInit(
[39d8950]1347 const ast::ConstructorInit * ctorInit, const ResolveContext & context
[234b1cb]1348 ) {
1349 assert( ctorInit );
[3bc69f2]1350 ast::Pass< Resolver_new > resolver( context );
[234b1cb]1351 return ctorInit->accept( resolver );
1352 }
1353
[302ef2a]1354 const ast::Expr * resolveStmtExpr(
[39d8950]1355 const ast::StmtExpr * stmtExpr, const ResolveContext & context
[17a0ede2]1356 ) {
1357 assert( stmtExpr );
[3bc69f2]1358 ast::Pass< Resolver_new > resolver( context );
[302ef2a]1359 auto ret = mutate(stmtExpr->accept(resolver));
1360 strict_dynamic_cast< ast::StmtExpr * >( ret )->computeResult();
[17a0ede2]1361 return ret;
1362 }
1363
[16ba4a6f]1364 namespace {
[39d8950]1365 const ast::Attribute * handleAttribute(const CodeLocation & loc, const ast::Attribute * attr, const ResolveContext & context) {
[16ba4a6f]1366 std::string name = attr->normalizedName();
1367 if (name == "constructor" || name == "destructor") {
1368 if (attr->params.size() == 1) {
1369 auto arg = attr->params.front();
[39d8950]1370 auto resolved = ResolvExpr::findSingleExpression( arg, new ast::BasicType( ast::BasicType::LongLongSignedInt ), context );
[16ba4a6f]1371 auto result = eval(arg);
1372
1373 auto mutAttr = mutate(attr);
1374 mutAttr->params.front() = resolved;
[8f557161]1375 if (! result.hasKnownValue) {
[16ba4a6f]1376 SemanticWarning(loc, Warning::GccAttributes,
1377 toCString( name, " priorities must be integers from 0 to 65535 inclusive: ", arg ) );
1378 }
1379 else {
[8f557161]1380 auto priority = result.knownValue;
[16ba4a6f]1381 if (priority < 101) {
1382 SemanticWarning(loc, Warning::GccAttributes,
1383 toCString( name, " priorities from 0 to 100 are reserved for the implementation" ) );
1384 } else if (priority < 201 && ! buildingLibrary()) {
1385 SemanticWarning(loc, Warning::GccAttributes,
1386 toCString( name, " priorities from 101 to 200 are reserved for the implementation" ) );
1387 }
1388 }
1389 return mutAttr;
1390 } else if (attr->params.size() > 1) {
1391 SemanticWarning(loc, Warning::GccAttributes, toCString( "too many arguments to ", name, " attribute" ) );
1392 } else {
1393 SemanticWarning(loc, Warning::GccAttributes, toCString( "too few arguments to ", name, " attribute" ) );
1394 }
1395 }
1396 return attr;
1397 }
1398 }
1399
1400 const ast::FunctionDecl * Resolver_new::previsit( const ast::FunctionDecl * functionDecl ) {
[2a8f0c1]1401 GuardValue( functionReturn );
[16ba4a6f]1402
1403 assert (functionDecl->unique());
1404 if (!functionDecl->has_body() && !functionDecl->withExprs.empty()) {
1405 SemanticError(functionDecl->location, functionDecl, "Function without body has with declarations");
1406 }
1407
1408 if (!functionDecl->isTypeFixed) {
1409 auto mutDecl = mutate(functionDecl);
1410 auto mutType = mutDecl->type.get_and_mutate();
1411
1412 for (auto & attr: mutDecl->attributes) {
[3bc69f2]1413 attr = handleAttribute(mutDecl->location, attr, context );
[16ba4a6f]1414 }
1415
[3e5dd913]1416 // handle assertions
[16ba4a6f]1417
1418 symtab.enterScope();
[3e5dd913]1419 mutType->forall.clear();
1420 mutType->assertions.clear();
1421 for (auto & typeParam : mutDecl->type_params) {
1422 symtab.addType(typeParam);
[b230091]1423 mutType->forall.emplace_back(new ast::TypeInstType(typeParam));
[3e5dd913]1424 }
1425 for (auto & asst : mutDecl->assertions) {
[3bc69f2]1426 asst = fixObjectType(asst.strict_as<ast::ObjectDecl>(), context);
[3e5dd913]1427 symtab.addId(asst);
1428 mutType->assertions.emplace_back(new ast::VariableExpr(functionDecl->location, asst));
[16ba4a6f]1429 }
1430
1431 // temporarily adds params to symbol table.
1432 // actual scoping rules for params and withexprs differ - see Pass::visit(FunctionDecl)
1433
1434 std::vector<ast::ptr<ast::Type>> paramTypes;
1435 std::vector<ast::ptr<ast::Type>> returnTypes;
1436
1437 for (auto & param : mutDecl->params) {
[3bc69f2]1438 param = fixObjectType(param.strict_as<ast::ObjectDecl>(), context);
[16ba4a6f]1439 symtab.addId(param);
1440 paramTypes.emplace_back(param->get_type());
1441 }
1442 for (auto & ret : mutDecl->returns) {
[3bc69f2]1443 ret = fixObjectType(ret.strict_as<ast::ObjectDecl>(), context);
[16ba4a6f]1444 returnTypes.emplace_back(ret->get_type());
1445 }
1446 // since function type in decl is just a view of param types, need to update that as well
1447 mutType->params = std::move(paramTypes);
1448 mutType->returns = std::move(returnTypes);
1449
[3e5dd913]1450 auto renamedType = strict_dynamic_cast<const ast::FunctionType *>(renameTyVars(mutType, RenameMode::GEN_EXPR_ID));
1451
[16ba4a6f]1452 std::list<ast::ptr<ast::Stmt>> newStmts;
1453 resolveWithExprs (mutDecl->withExprs, newStmts);
1454
1455 if (mutDecl->stmts) {
1456 auto mutStmt = mutDecl->stmts.get_and_mutate();
1457 mutStmt->kids.splice(mutStmt->kids.begin(), std::move(newStmts));
1458 mutDecl->stmts = mutStmt;
1459 }
1460
1461 symtab.leaveScope();
1462
[3e5dd913]1463 mutDecl->type = renamedType;
[16ba4a6f]1464 mutDecl->mangleName = Mangle::mangle(mutDecl);
1465 mutDecl->isTypeFixed = true;
1466 functionDecl = mutDecl;
1467 }
1468 managedTypes.handleDWT(functionDecl);
1469
[2a8f0c1]1470 functionReturn = extractResultType( functionDecl->type );
[16ba4a6f]1471 return functionDecl;
[d76c588]1472 }
1473
[2a8f0c1]1474 const ast::FunctionDecl * Resolver_new::postvisit( const ast::FunctionDecl * functionDecl ) {
[4864a73]1475 // default value expressions have an environment which shouldn't be there and trips up
[2a8f0c1]1476 // later passes.
[e068c8a]1477 assert( functionDecl->unique() );
1478 ast::FunctionType * mutType = mutate( functionDecl->type.get() );
1479
1480 for ( unsigned i = 0 ; i < mutType->params.size() ; ++i ) {
1481 if ( const ast::ObjectDecl * obj = mutType->params[i].as< ast::ObjectDecl >() ) {
1482 if ( const ast::SingleInit * init = obj->init.as< ast::SingleInit >() ) {
1483 if ( init->value->env == nullptr ) continue;
1484 // clone initializer minus the initializer environment
1485 auto mutParam = mutate( mutType->params[i].strict_as< ast::ObjectDecl >() );
1486 auto mutInit = mutate( mutParam->init.strict_as< ast::SingleInit >() );
1487 auto mutValue = mutate( mutInit->value.get() );
1488
1489 mutValue->env = nullptr;
1490 mutInit->value = mutValue;
1491 mutParam->init = mutInit;
1492 mutType->params[i] = mutParam;
1493
1494 assert( ! mutType->params[i].strict_as< ast::ObjectDecl >()->init.strict_as< ast::SingleInit >()->value->env);
1495 }
1496 }
[2a8f0c1]1497 }
[73973b6]1498 mutate_field(functionDecl, &ast::FunctionDecl::type, mutType);
1499 return functionDecl;
[d76c588]1500 }
1501
[16ba4a6f]1502 const ast::ObjectDecl * Resolver_new::previsit( const ast::ObjectDecl * objectDecl ) {
[ef5b828]1503 // To handle initialization of routine pointers [e.g. int (*fp)(int) = foo()],
1504 // class-variable `initContext` is changed multiple times because the LHS is analyzed
1505 // twice. The second analysis changes `initContext` because a function type can contain
1506 // object declarations in the return and parameter types. Therefore each value of
1507 // `initContext` is retained so the type on the first analysis is preserved and used for
[b7d92b96]1508 // selecting the RHS.
1509 GuardValue( currentObject );
[16ba4a6f]1510
[b7d92b96]1511 if ( inEnumDecl && dynamic_cast< const ast::EnumInstType * >( objectDecl->get_type() ) ) {
[ef5b828]1512 // enumerator initializers should not use the enum type to initialize, since the
[b7d92b96]1513 // enum type is still incomplete at this point. Use `int` instead.
[4559b34]1514
[12df6fe]1515 if ( auto enumBase = dynamic_cast< const ast::EnumInstType * >
1516 ( objectDecl->get_type() )->base->base ) {
[5bb1ac1]1517 objectDecl = fixObjectType( objectDecl, context );
1518 currentObject = ast::CurrentObject{
1519 objectDecl->location,
1520 enumBase
1521 };
[4559b34]1522 } else {
[5bb1ac1]1523 objectDecl = fixObjectType( objectDecl, context );
[4559b34]1524 currentObject = ast::CurrentObject{
1525 objectDecl->location, new ast::BasicType{ ast::BasicType::SignedInt } };
1526 }
1527
[b7d92b96]1528 }
[16ba4a6f]1529 else {
[12df6fe]1530 if ( !objectDecl->isTypeFixed ) {
[3bc69f2]1531 auto newDecl = fixObjectType(objectDecl, context);
[16ba4a6f]1532 auto mutDecl = mutate(newDecl);
[4a8f150]1533
[16ba4a6f]1534 // generate CtorInit wrapper when necessary.
1535 // in certain cases, fixObjectType is called before reaching
1536 // this object in visitor pass, thus disabling CtorInit codegen.
1537 // this happens on aggregate members and function parameters.
1538 if ( InitTweak::tryConstruct( mutDecl ) && ( managedTypes.isManaged( mutDecl ) || ((! isInFunction() || mutDecl->storage.is_static ) && ! InitTweak::isConstExpr( mutDecl->init ) ) ) ) {
1539 // constructed objects cannot be designated
[92355883]1540 if ( InitTweak::isDesignated( mutDecl->init ) ) {
[4894239]1541 ast::Pass<ResolveDesignators_new> res( context );
1542 maybe_accept( mutDecl->init.get(), res );
1543 if ( !res.core.result ) {
1544 SemanticError( mutDecl, "Cannot include designations in the initializer for a managed Object. If this is really what you want, then initialize with @=.\n" );
1545 }
[92355883]1546 }
[16ba4a6f]1547 // constructed objects should not have initializers nested too deeply
1548 if ( ! InitTweak::checkInitDepth( mutDecl ) ) SemanticError( mutDecl, "Managed object's initializer is too deep " );
1549
1550 mutDecl->init = InitTweak::genCtorInit( mutDecl->location, mutDecl );
1551 }
1552
1553 objectDecl = mutDecl;
1554 }
1555 currentObject = ast::CurrentObject{ objectDecl->location, objectDecl->get_type() };
1556 }
[4a8f150]1557
[16ba4a6f]1558 return objectDecl;
1559 }
1560
1561 void Resolver_new::previsit( const ast::AggregateDecl * _aggDecl ) {
1562 auto aggDecl = mutate(_aggDecl);
1563 assertf(aggDecl == _aggDecl, "type declarations must be unique");
1564
1565 for (auto & member: aggDecl->members) {
1566 // nested type decls are hoisted already. no need to do anything
1567 if (auto obj = member.as<ast::ObjectDecl>()) {
[3bc69f2]1568 member = fixObjectType(obj, context);
[16ba4a6f]1569 }
1570 }
1571 }
1572
1573 void Resolver_new::previsit( const ast::StructDecl * structDecl ) {
1574 previsit(static_cast<const ast::AggregateDecl *>(structDecl));
1575 managedTypes.handleStruct(structDecl);
[d76c588]1576 }
1577
[99d4584]1578 void Resolver_new::previsit( const ast::EnumDecl * ) {
1579 // in case we decide to allow nested enums
1580 GuardValue( inEnumDecl );
[2890212]1581 inEnumDecl = true;
[16ba4a6f]1582 // don't need to fix types for enum fields
[d76c588]1583 }
1584
[ef5b828]1585 const ast::StaticAssertDecl * Resolver_new::previsit(
1586 const ast::StaticAssertDecl * assertDecl
[99d4584]1587 ) {
[ef5b828]1588 return ast::mutate_field(
1589 assertDecl, &ast::StaticAssertDecl::cond,
[3bc69f2]1590 findIntegralExpression( assertDecl->cond, context ) );
[b7d92b96]1591 }
1592
1593 template< typename PtrType >
[39d8950]1594 const PtrType * handlePtrType( const PtrType * type, const ResolveContext & context ) {
[0f6a7752]1595 if ( type->dimension ) {
[5cf1228]1596 const ast::Type * sizeType = context.global.sizeType.get();
[9e23b446]1597 ast::ptr< ast::Expr > dimension = findSingleExpression( type->dimension, sizeType, context );
1598 assertf(dimension->env->empty(), "array dimension expr has nonempty env");
1599 dimension.get_and_mutate()->env = nullptr;
[5cf1228]1600 ast::mutate_field( type, &PtrType::dimension, dimension );
[0f6a7752]1601 }
1602 return type;
[d76c588]1603 }
1604
[0f6a7752]1605 const ast::ArrayType * Resolver_new::previsit( const ast::ArrayType * at ) {
[3bc69f2]1606 return handlePtrType( at, context );
[d76c588]1607 }
1608
[0f6a7752]1609 const ast::PointerType * Resolver_new::previsit( const ast::PointerType * pt ) {
[3bc69f2]1610 return handlePtrType( pt, context );
[d76c588]1611 }
1612
[b7d92b96]1613 const ast::ExprStmt * Resolver_new::previsit( const ast::ExprStmt * exprStmt ) {
1614 visit_children = false;
1615 assertf( exprStmt->expr, "ExprStmt has null expression in resolver" );
[ef5b828]1616
1617 return ast::mutate_field(
[3bc69f2]1618 exprStmt, &ast::ExprStmt::expr, findVoidExpression( exprStmt->expr, context ) );
[d76c588]1619 }
1620
[b7d92b96]1621 const ast::AsmExpr * Resolver_new::previsit( const ast::AsmExpr * asmExpr ) {
1622 visit_children = false;
1623
[ef5b828]1624 asmExpr = ast::mutate_field(
[3bc69f2]1625 asmExpr, &ast::AsmExpr::operand, findVoidExpression( asmExpr->operand, context ) );
[ef5b828]1626
[b7d92b96]1627 return asmExpr;
[d76c588]1628 }
1629
[2b59f55]1630 const ast::AsmStmt * Resolver_new::previsit( const ast::AsmStmt * asmStmt ) {
1631 visitor->maybe_accept( asmStmt, &ast::AsmStmt::input );
1632 visitor->maybe_accept( asmStmt, &ast::AsmStmt::output );
1633 visit_children = false;
1634 return asmStmt;
[d76c588]1635 }
1636
[b7d92b96]1637 const ast::IfStmt * Resolver_new::previsit( const ast::IfStmt * ifStmt ) {
1638 return ast::mutate_field(
[3bc69f2]1639 ifStmt, &ast::IfStmt::cond, findIntegralExpression( ifStmt->cond, context ) );
[d76c588]1640 }
1641
[3b0bc16]1642 const ast::WhileDoStmt * Resolver_new::previsit( const ast::WhileDoStmt * whileDoStmt ) {
[ef5b828]1643 return ast::mutate_field(
[3bc69f2]1644 whileDoStmt, &ast::WhileDoStmt::cond, findIntegralExpression( whileDoStmt->cond, context ) );
[d76c588]1645 }
1646
[b7d92b96]1647 const ast::ForStmt * Resolver_new::previsit( const ast::ForStmt * forStmt ) {
1648 if ( forStmt->cond ) {
1649 forStmt = ast::mutate_field(
[3bc69f2]1650 forStmt, &ast::ForStmt::cond, findIntegralExpression( forStmt->cond, context ) );
[b7d92b96]1651 }
1652
1653 if ( forStmt->inc ) {
1654 forStmt = ast::mutate_field(
[3bc69f2]1655 forStmt, &ast::ForStmt::inc, findVoidExpression( forStmt->inc, context ) );
[b7d92b96]1656 }
1657
1658 return forStmt;
[d76c588]1659 }
1660
[b7d92b96]1661 const ast::SwitchStmt * Resolver_new::previsit( const ast::SwitchStmt * switchStmt ) {
1662 GuardValue( currentObject );
1663 switchStmt = ast::mutate_field(
[ef5b828]1664 switchStmt, &ast::SwitchStmt::cond,
[3bc69f2]1665 findIntegralExpression( switchStmt->cond, context ) );
[2b59f55]1666 currentObject = ast::CurrentObject{ switchStmt->location, switchStmt->cond->result };
[b7d92b96]1667 return switchStmt;
[d76c588]1668 }
1669
[400b8be]1670 const ast::CaseClause * Resolver_new::previsit( const ast::CaseClause * caseStmt ) {
[b7d92b96]1671 if ( caseStmt->cond ) {
[60aaa51d]1672 std::deque< ast::InitAlternative > initAlts = currentObject.getOptions();
[2b59f55]1673 assertf( initAlts.size() == 1, "SwitchStmt did not correctly resolve an integral "
1674 "expression." );
[ef5b828]1675
1676 ast::ptr< ast::Expr > untyped =
[2b59f55]1677 new ast::CastExpr{ caseStmt->location, caseStmt->cond, initAlts.front().type };
[3bc69f2]1678 ast::ptr< ast::Expr > newExpr = findSingleExpression( untyped, context );
[ef5b828]1679
1680 // case condition cannot have a cast in C, so it must be removed here, regardless of
[2b59f55]1681 // whether it would perform a conversion.
1682 if ( const ast::CastExpr * castExpr = newExpr.as< ast::CastExpr >() ) {
[60aaa51d]1683 swap_and_save_env( newExpr, castExpr->arg );
[2b59f55]1684 }
[ef5b828]1685
[400b8be]1686 caseStmt = ast::mutate_field( caseStmt, &ast::CaseClause::cond, newExpr );
[b7d92b96]1687 }
1688 return caseStmt;
[d76c588]1689 }
1690
[b7d92b96]1691 const ast::BranchStmt * Resolver_new::previsit( const ast::BranchStmt * branchStmt ) {
1692 visit_children = false;
1693 // must resolve the argument of a computed goto
1694 if ( branchStmt->kind == ast::BranchStmt::Goto && branchStmt->computedTarget ) {
1695 // computed goto argument is void*
[2773ab8]1696 ast::ptr< ast::Type > target = new ast::PointerType{ new ast::VoidType{} };
[b7d92b96]1697 branchStmt = ast::mutate_field(
[ef5b828]1698 branchStmt, &ast::BranchStmt::computedTarget,
[3bc69f2]1699 findSingleExpression( branchStmt->computedTarget, target, context ) );
[b7d92b96]1700 }
1701 return branchStmt;
[d76c588]1702 }
1703
[2b59f55]1704 const ast::ReturnStmt * Resolver_new::previsit( const ast::ReturnStmt * returnStmt ) {
1705 visit_children = false;
1706 if ( returnStmt->expr ) {
1707 returnStmt = ast::mutate_field(
[ef5b828]1708 returnStmt, &ast::ReturnStmt::expr,
[3bc69f2]1709 findSingleExpression( returnStmt->expr, functionReturn, context ) );
[2b59f55]1710 }
1711 return returnStmt;
[d76c588]1712 }
1713
[2b59f55]1714 const ast::ThrowStmt * Resolver_new::previsit( const ast::ThrowStmt * throwStmt ) {
1715 visit_children = false;
1716 if ( throwStmt->expr ) {
[ef5b828]1717 const ast::StructDecl * exceptionDecl =
[3090127]1718 symtab.lookupStruct( "__cfaehm_base_exception_t" );
[2b59f55]1719 assert( exceptionDecl );
[ef5b828]1720 ast::ptr< ast::Type > exceptType =
[2b59f55]1721 new ast::PointerType{ new ast::StructInstType{ exceptionDecl } };
1722 throwStmt = ast::mutate_field(
[ef5b828]1723 throwStmt, &ast::ThrowStmt::expr,
[3bc69f2]1724 findSingleExpression( throwStmt->expr, exceptType, context ) );
[2b59f55]1725 }
1726 return throwStmt;
[d76c588]1727 }
1728
[400b8be]1729 const ast::CatchClause * Resolver_new::previsit( const ast::CatchClause * catchClause ) {
[3b0bc16]1730 // Until we are very sure this invarent (ifs that move between passes have then)
[b9fa85b]1731 // holds, check it. This allows a check for when to decode the mangling.
[400b8be]1732 if ( auto ifStmt = catchClause->body.as<ast::IfStmt>() ) {
[3b0bc16]1733 assert( ifStmt->then );
[b9fa85b]1734 }
1735 // Encode the catchStmt so the condition can see the declaration.
[400b8be]1736 if ( catchClause->cond ) {
1737 ast::CatchClause * clause = mutate( catchClause );
1738 clause->body = new ast::IfStmt( clause->location, clause->cond, nullptr, clause->body );
1739 clause->cond = nullptr;
1740 return clause;
[b9fa85b]1741 }
[400b8be]1742 return catchClause;
[b9fa85b]1743 }
1744
[400b8be]1745 const ast::CatchClause * Resolver_new::postvisit( const ast::CatchClause * catchClause ) {
[b9fa85b]1746 // Decode the catchStmt so everything is stored properly.
[400b8be]1747 const ast::IfStmt * ifStmt = catchClause->body.as<ast::IfStmt>();
[3b0bc16]1748 if ( nullptr != ifStmt && nullptr == ifStmt->then ) {
[b9fa85b]1749 assert( ifStmt->cond );
[3b0bc16]1750 assert( ifStmt->else_ );
[400b8be]1751 ast::CatchClause * clause = ast::mutate( catchClause );
1752 clause->cond = ifStmt->cond;
1753 clause->body = ifStmt->else_;
[b9fa85b]1754 // ifStmt should be implicately deleted here.
[400b8be]1755 return clause;
[2b59f55]1756 }
[400b8be]1757 return catchClause;
[d76c588]1758 }
1759
[2773ab8]1760 const ast::WaitForStmt * Resolver_new::previsit( const ast::WaitForStmt * stmt ) {
1761 visit_children = false;
1762
1763 // Resolve all clauses first
1764 for ( unsigned i = 0; i < stmt->clauses.size(); ++i ) {
[f6e6a55]1765 const ast::WaitForClause & clause = *stmt->clauses[i];
[2773ab8]1766
1767 ast::TypeEnvironment env;
[3bc69f2]1768 CandidateFinder funcFinder( context, env );
[2773ab8]1769
1770 // Find all candidates for a function in canonical form
[c86b08d]1771 funcFinder.find( clause.target, ResolvMode::withAdjustment() );
[2773ab8]1772
1773 if ( funcFinder.candidates.empty() ) {
1774 stringstream ss;
1775 ss << "Use of undeclared indentifier '";
[c86b08d]1776 ss << clause.target.strict_as< ast::NameExpr >()->name;
[2773ab8]1777 ss << "' in call to waitfor";
1778 SemanticError( stmt->location, ss.str() );
1779 }
1780
[f6e6a55]1781 if ( clause.target_args.empty() ) {
[ef5b828]1782 SemanticError( stmt->location,
[2773ab8]1783 "Waitfor clause must have at least one mutex parameter");
1784 }
1785
1786 // Find all alternatives for all arguments in canonical form
[ef5b828]1787 std::vector< CandidateFinder > argFinders =
[f6e6a55]1788 funcFinder.findSubExprs( clause.target_args );
[ef5b828]1789
[2773ab8]1790 // List all combinations of arguments
1791 std::vector< CandidateList > possibilities;
1792 combos( argFinders.begin(), argFinders.end(), back_inserter( possibilities ) );
1793
1794 // For every possible function:
[ef5b828]1795 // * try matching the arguments to the parameters, not the other way around because
[2773ab8]1796 // more arguments than parameters
1797 CandidateList funcCandidates;
1798 std::vector< CandidateList > argsCandidates;
1799 SemanticErrorException errors;
1800 for ( CandidateRef & func : funcFinder.candidates ) {
1801 try {
[ef5b828]1802 auto pointerType = dynamic_cast< const ast::PointerType * >(
[2773ab8]1803 func->expr->result->stripReferences() );
1804 if ( ! pointerType ) {
[ef5b828]1805 SemanticError( stmt->location, func->expr->result.get(),
[2773ab8]1806 "candidate not viable: not a pointer type\n" );
1807 }
1808
1809 auto funcType = pointerType->base.as< ast::FunctionType >();
1810 if ( ! funcType ) {
[ef5b828]1811 SemanticError( stmt->location, func->expr->result.get(),
[2773ab8]1812 "candidate not viable: not a function type\n" );
1813 }
1814
1815 {
1816 auto param = funcType->params.begin();
1817 auto paramEnd = funcType->params.end();
1818
1819 if( ! nextMutex( param, paramEnd ) ) {
[ef5b828]1820 SemanticError( stmt->location, funcType,
[2773ab8]1821 "candidate function not viable: no mutex parameters\n");
1822 }
1823 }
1824
1825 CandidateRef func2{ new Candidate{ *func } };
1826 // strip reference from function
1827 func2->expr = referenceToRvalueConversion( func->expr, func2->cost );
1828
1829 // Each argument must be matched with a parameter of the current candidate
1830 for ( auto & argsList : possibilities ) {
1831 try {
1832 // Declare data structures needed for resolution
1833 ast::OpenVarSet open;
1834 ast::AssertionSet need, have;
1835 ast::TypeEnvironment resultEnv{ func->env };
[ef5b828]1836 // Add all type variables as open so that those not used in the
[2773ab8]1837 // parameter list are still considered open
1838 resultEnv.add( funcType->forall );
1839
1840 // load type variables from arguments into one shared space
1841 for ( auto & arg : argsList ) {
1842 resultEnv.simpleCombine( arg->env );
1843 }
1844
1845 // Make sure we don't widen any existing bindings
1846 resultEnv.forbidWidening();
1847
1848 // Find any unbound type variables
1849 resultEnv.extractOpenVars( open );
1850
1851 auto param = funcType->params.begin();
1852 auto paramEnd = funcType->params.end();
1853
1854 unsigned n_mutex_param = 0;
1855
[ef5b828]1856 // For every argument of its set, check if it matches one of the
[2773ab8]1857 // parameters. The order is important
1858 for ( auto & arg : argsList ) {
1859 // Ignore non-mutex arguments
1860 if ( ! nextMutex( param, paramEnd ) ) {
1861 // We ran out of parameters but still have arguments.
1862 // This function doesn't match
[ef5b828]1863 SemanticError( stmt->location, funcType,
[2773ab8]1864 toString("candidate function not viable: too many mutex "
1865 "arguments, expected ", n_mutex_param, "\n" ) );
1866 }
1867
1868 ++n_mutex_param;
1869
[ef5b828]1870 // Check if the argument matches the parameter type in the current
[2773ab8]1871 // scope
[954c954]1872 // ast::ptr< ast::Type > paramType = (*param)->get_type();
[ef5b828]1873 if (
1874 ! unify(
[251ce80]1875 arg->expr->result, *param, resultEnv, need, have, open )
[2773ab8]1876 ) {
1877 // Type doesn't match
1878 stringstream ss;
1879 ss << "candidate function not viable: no known conversion "
1880 "from '";
[954c954]1881 ast::print( ss, *param );
[2773ab8]1882 ss << "' to '";
1883 ast::print( ss, arg->expr->result );
1884 ss << "' with env '";
1885 ast::print( ss, resultEnv );
1886 ss << "'\n";
1887 SemanticError( stmt->location, funcType, ss.str() );
1888 }
1889
1890 ++param;
1891 }
1892
1893 // All arguments match!
1894
1895 // Check if parameters are missing
1896 if ( nextMutex( param, paramEnd ) ) {
1897 do {
1898 ++n_mutex_param;
1899 ++param;
1900 } while ( nextMutex( param, paramEnd ) );
1901
[ef5b828]1902 // We ran out of arguments but still have parameters left; this
[2773ab8]1903 // function doesn't match
[ef5b828]1904 SemanticError( stmt->location, funcType,
[2773ab8]1905 toString( "candidate function not viable: too few mutex "
1906 "arguments, expected ", n_mutex_param, "\n" ) );
1907 }
1908
1909 // All parameters match!
1910
1911 // Finish the expressions to tie in proper environments
1912 finishExpr( func2->expr, resultEnv );
1913 for ( CandidateRef & arg : argsList ) {
1914 finishExpr( arg->expr, resultEnv );
1915 }
1916
1917 // This is a match, store it and save it for later
1918 funcCandidates.emplace_back( std::move( func2 ) );
1919 argsCandidates.emplace_back( std::move( argsList ) );
1920
1921 } catch ( SemanticErrorException & e ) {
1922 errors.append( e );
1923 }
1924 }
1925 } catch ( SemanticErrorException & e ) {
1926 errors.append( e );
1927 }
1928 }
1929
1930 // Make sure correct number of arguments
1931 if( funcCandidates.empty() ) {
[ef5b828]1932 SemanticErrorException top( stmt->location,
[2773ab8]1933 "No alternatives for function in call to waitfor" );
1934 top.append( errors );
1935 throw top;
1936 }
1937
1938 if( argsCandidates.empty() ) {
[ef5b828]1939 SemanticErrorException top( stmt->location,
1940 "No alternatives for arguments in call to waitfor" );
[2773ab8]1941 top.append( errors );
1942 throw top;
1943 }
1944
1945 if( funcCandidates.size() > 1 ) {
[ef5b828]1946 SemanticErrorException top( stmt->location,
[2773ab8]1947 "Ambiguous function in call to waitfor" );
1948 top.append( errors );
1949 throw top;
1950 }
1951 if( argsCandidates.size() > 1 ) {
1952 SemanticErrorException top( stmt->location,
1953 "Ambiguous arguments in call to waitfor" );
1954 top.append( errors );
1955 throw top;
1956 }
1957 // TODO: need to use findDeletedExpr to ensure no deleted identifiers are used.
1958
1959 // build new clause
[f6e6a55]1960 auto clause2 = new ast::WaitForClause( clause.location );
[ef5b828]1961
[c86b08d]1962 clause2->target = funcCandidates.front()->expr;
[ef5b828]1963
[f6e6a55]1964 clause2->target_args.reserve( clause.target_args.size() );
[6668a3e]1965 const ast::StructDecl * decl_monitor = symtab.lookupStruct( "monitor$" );
[2773ab8]1966 for ( auto arg : argsCandidates.front() ) {
[6668a3e]1967 const auto & loc = stmt->location;
1968
1969 ast::Expr * init = new ast::CastExpr( loc,
1970 new ast::UntypedExpr( loc,
1971 new ast::NameExpr( loc, "get_monitor" ),
1972 { arg->expr }
1973 ),
1974 new ast::PointerType(
1975 new ast::StructInstType(
1976 decl_monitor
1977 )
1978 )
1979 );
1980
[f6e6a55]1981 clause2->target_args.emplace_back( findSingleExpression( init, context ) );
[2773ab8]1982 }
1983
1984 // Resolve the conditions as if it were an IfStmt, statements normally
[c86b08d]1985 clause2->when_cond = findSingleExpression( clause.when_cond, context );
[f6e6a55]1986 clause2->stmt = clause.stmt->accept( *visitor );
[2773ab8]1987
1988 // set results into stmt
1989 auto n = mutate( stmt );
[f6e6a55]1990 n->clauses[i] = clause2;
[2773ab8]1991 stmt = n;
1992 }
1993
[f6e6a55]1994 if ( stmt->timeout_stmt ) {
[2773ab8]1995 // resolve the timeout as a size_t, the conditions like IfStmt, and stmts normally
[ef5b828]1996 ast::ptr< ast::Type > target =
[2773ab8]1997 new ast::BasicType{ ast::BasicType::LongLongUnsignedInt };
[f6e6a55]1998 auto timeout_time = findSingleExpression( stmt->timeout_time, target, context );
1999 auto timeout_cond = findSingleExpression( stmt->timeout_cond, context );
2000 auto timeout_stmt = stmt->timeout_stmt->accept( *visitor );
[2773ab8]2001
2002 // set results into stmt
2003 auto n = mutate( stmt );
[f6e6a55]2004 n->timeout_time = std::move( timeout_time );
2005 n->timeout_cond = std::move( timeout_cond );
2006 n->timeout_stmt = std::move( timeout_stmt );
[2773ab8]2007 stmt = n;
2008 }
2009
[f6e6a55]2010 if ( stmt->else_stmt ) {
[2773ab8]2011 // resolve the condition like IfStmt, stmts normally
[f6e6a55]2012 auto else_cond = findSingleExpression( stmt->else_cond, context );
2013 auto else_stmt = stmt->else_stmt->accept( *visitor );
[2773ab8]2014
2015 // set results into stmt
2016 auto n = mutate( stmt );
[f6e6a55]2017 n->else_cond = std::move( else_cond );
2018 n->else_stmt = std::move( else_stmt );
[2773ab8]2019 stmt = n;
2020 }
2021
2022 return stmt;
[d76c588]2023 }
2024
[16ba4a6f]2025 const ast::WithStmt * Resolver_new::previsit( const ast::WithStmt * withStmt ) {
2026 auto mutStmt = mutate(withStmt);
2027 resolveWithExprs(mutStmt->exprs, stmtsToAddBefore);
2028 return mutStmt;
2029 }
2030
2031 void Resolver_new::resolveWithExprs(std::vector<ast::ptr<ast::Expr>> & exprs, std::list<ast::ptr<ast::Stmt>> & stmtsToAdd) {
2032 for (auto & expr : exprs) {
2033 // only struct- and union-typed expressions are viable candidates
[3bc69f2]2034 expr = findKindExpression( expr, context, structOrUnion, "with expression" );
[16ba4a6f]2035
2036 // if with expression might be impure, create a temporary so that it is evaluated once
2037 if ( Tuples::maybeImpure( expr ) ) {
2038 static UniqueName tmpNamer( "_with_tmp_" );
2039 const CodeLocation loc = expr->location;
2040 auto tmp = new ast::ObjectDecl(loc, tmpNamer.newName(), expr->result, new ast::SingleInit(loc, expr ) );
2041 expr = new ast::VariableExpr( loc, tmp );
2042 stmtsToAdd.push_back( new ast::DeclStmt(loc, tmp ) );
2043 if ( InitTweak::isConstructable( tmp->type ) ) {
2044 // generate ctor/dtor and resolve them
2045 tmp->init = InitTweak::genCtorInit( loc, tmp );
2046 }
2047 // since tmp is freshly created, this should modify tmp in-place
2048 tmp->accept( *visitor );
2049 }
[9e23b446]2050 else if (expr->env && expr->env->empty()) {
2051 expr = ast::mutate_field(expr.get(), &ast::Expr::env, nullptr);
2052 }
[16ba4a6f]2053 }
2054 }
[60aaa51d]2055
2056
2057 const ast::SingleInit * Resolver_new::previsit( const ast::SingleInit * singleInit ) {
2058 visit_children = false;
[ef5b828]2059 // resolve initialization using the possibilities as determined by the `currentObject`
[60aaa51d]2060 // cursor.
[ef5b828]2061 ast::ptr< ast::Expr > untyped = new ast::UntypedInitExpr{
[60aaa51d]2062 singleInit->location, singleInit->value, currentObject.getOptions() };
[3bc69f2]2063 ast::ptr<ast::Expr> newExpr = findSingleExpression( untyped, context );
[60aaa51d]2064 const ast::InitExpr * initExpr = newExpr.strict_as< ast::InitExpr >();
2065
2066 // move cursor to the object that is actually initialized
2067 currentObject.setNext( initExpr->designation );
2068
2069 // discard InitExpr wrapper and retain relevant pieces.
[ef5b828]2070 // `initExpr` may have inferred params in the case where the expression specialized a
2071 // function pointer, and newExpr may already have inferParams of its own, so a simple
[60aaa51d]2072 // swap is not sufficient
2073 ast::Expr::InferUnion inferred = initExpr->inferred;
2074 swap_and_save_env( newExpr, initExpr->expr );
2075 newExpr.get_and_mutate()->inferred.splice( std::move(inferred) );
2076
[ef5b828]2077 // get the actual object's type (may not exactly match what comes back from the resolver
[60aaa51d]2078 // due to conversions)
2079 const ast::Type * initContext = currentObject.getCurrentType();
2080
[918e4165]2081 removeExtraneousCast( newExpr );
[60aaa51d]2082
2083 // check if actual object's type is char[]
2084 if ( auto at = dynamic_cast< const ast::ArrayType * >( initContext ) ) {
2085 if ( isCharType( at->base ) ) {
2086 // check if the resolved type is char*
2087 if ( auto pt = newExpr->result.as< ast::PointerType >() ) {
2088 if ( isCharType( pt->base ) ) {
[ef5b828]2089 // strip cast if we're initializing a char[] with a char*
[60aaa51d]2090 // e.g. char x[] = "hello"
2091 if ( auto ce = newExpr.as< ast::CastExpr >() ) {
2092 swap_and_save_env( newExpr, ce->arg );
2093 }
2094 }
2095 }
2096 }
2097 }
2098
2099 // move cursor to next object in preparation for next initializer
2100 currentObject.increment();
2101
2102 // set initializer expression to resolved expression
2103 return ast::mutate_field( singleInit, &ast::SingleInit::value, std::move(newExpr) );
[d76c588]2104 }
2105
[60aaa51d]2106 const ast::ListInit * Resolver_new::previsit( const ast::ListInit * listInit ) {
2107 // move cursor into brace-enclosed initializer-list
2108 currentObject.enterListInit( listInit->location );
2109
2110 assert( listInit->designations.size() == listInit->initializers.size() );
2111 for ( unsigned i = 0; i < listInit->designations.size(); ++i ) {
[ef5b828]2112 // iterate designations and initializers in pairs, moving the cursor to the current
[60aaa51d]2113 // designated object and resolving the initializer against that object
[2d11663]2114 listInit = ast::mutate_field_index(
[ef5b828]2115 listInit, &ast::ListInit::designations, i,
[2d11663]2116 currentObject.findNext( listInit->designations[i] ) );
2117 listInit = ast::mutate_field_index(
2118 listInit, &ast::ListInit::initializers, i,
2119 listInit->initializers[i]->accept( *visitor ) );
[60aaa51d]2120 }
2121
[2d11663]2122 // move cursor out of brace-enclosed initializer-list
2123 currentObject.exitListInit();
2124
[60aaa51d]2125 visit_children = false;
2126 return listInit;
[d76c588]2127 }
2128
[2d11663]2129 const ast::ConstructorInit * Resolver_new::previsit( const ast::ConstructorInit * ctorInit ) {
2130 visitor->maybe_accept( ctorInit, &ast::ConstructorInit::ctor );
2131 visitor->maybe_accept( ctorInit, &ast::ConstructorInit::dtor );
2132
2133 // found a constructor - can get rid of C-style initializer
2134 // xxx - Rob suggests this field is dead code
2135 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::init, nullptr );
2136
[ef5b828]2137 // intrinsic single-parameter constructors and destructors do nothing. Since this was
2138 // implicitly generated, there's no way for it to have side effects, so get rid of it to
[2d11663]2139 // clean up generated code
2140 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->ctor ) ) {
2141 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::ctor, nullptr );
2142 }
2143 if ( InitTweak::isIntrinsicSingleArgCallStmt( ctorInit->dtor ) ) {
2144 ctorInit = ast::mutate_field( ctorInit, &ast::ConstructorInit::dtor, nullptr );
2145 }
2146
2147 return ctorInit;
[d76c588]2148 }
2149
[0dd9a5e]2150 // suppress error on autogen functions and mark invalid autogen as deleted.
[e00c22f]2151 bool Resolver_new::on_error(ast::ptr<ast::Decl> & decl) {
[0dd9a5e]2152 if (auto functionDecl = decl.as<ast::FunctionDecl>()) {
2153 // xxx - can intrinsic gen ever fail?
[6668a3e]2154 if (functionDecl->linkage == ast::Linkage::AutoGen) {
[0dd9a5e]2155 auto mutDecl = mutate(functionDecl);
2156 mutDecl->isDeleted = true;
2157 mutDecl->stmts = nullptr;
2158 decl = mutDecl;
2159 return false;
2160 }
2161 }
2162 return true;
2163 }
2164
[51b73452]2165} // namespace ResolvExpr
[a32b204]2166
2167// Local Variables: //
2168// tab-width: 4 //
2169// mode: c++ //
2170// compile-command: "make install" //
2171// End: //
Note: See TracBrowser for help on using the repository browser.