source: src/ResolvExpr/CandidateFinder.cpp@ f1d2c44

Last change on this file since f1d2c44 was 85855b0, checked in by JiadaL <j82liang@…>, 16 months ago
  1. Implement enum cast; 2. Change valueE so that opague enum returns quasi_void; 3. change enum hiding interpretation and pass visiting scheme
  • Property mode set to 100644
File size: 81.3 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// CandidateFinder.cpp --
8//
9// Author : Aaron B. Moss
10// Created On : Wed Jun 5 14:30:00 2019
11// Last Modified By : Andrew Beach
12// Last Modified On : Wed Mar 16 11:58:00 2022
13// Update Count : 3
14//
15
16#include "CandidateFinder.hpp"
17
18#include <deque>
19#include <iterator> // for back_inserter
20#include <sstream>
21#include <string>
22#include <unordered_map>
23#include <vector>
24
25#include "AdjustExprType.hpp"
26#include "Candidate.hpp"
27#include "CastCost.hpp" // for castCost
28#include "CompilationState.hpp"
29#include "ConversionCost.hpp" // for conversionCast
30#include "Cost.hpp"
31#include "ExplodedArg.hpp"
32#include "PolyCost.hpp"
33#include "RenameVars.hpp" // for renameTyVars
34#include "Resolver.hpp"
35#include "ResolveTypeof.hpp"
36#include "SatisfyAssertions.hpp"
37#include "SpecCost.hpp"
38#include "Typeops.hpp" // for combos
39#include "Unify.hpp"
40#include "WidenMode.hpp"
41#include "AST/Expr.hpp"
42#include "AST/Node.hpp"
43#include "AST/Pass.hpp"
44#include "AST/Print.hpp"
45#include "AST/SymbolTable.hpp"
46#include "AST/Type.hpp"
47#include "Common/Utility.hpp" // for move, copy
48#include "SymTab/Mangler.hpp"
49#include "Tuples/Tuples.hpp" // for handleTupleAssignment
50#include "InitTweak/InitTweak.hpp" // for getPointerBase
51
52#include "Common/Stats/Counter.hpp"
53
54#include "AST/Inspect.hpp" // for getFunctionName
55
56#define PRINT( text ) if ( resolvep ) { text }
57
58namespace ResolvExpr {
59
60/// Unique identifier for matching expression resolutions to their requesting expression
61ast::UniqueId globalResnSlot = 0;
62
63namespace {
64 /// First index is which argument, second is which alternative, third is which exploded element
65 using ExplodedArgs = std::deque< std::vector< ExplodedArg > >;
66
67 /// Returns a list of alternatives with the minimum cost in the given list
68 CandidateList findMinCost( const CandidateList & candidates ) {
69 CandidateList out;
70 Cost minCost = Cost::infinity;
71 for ( const CandidateRef & r : candidates ) {
72 if ( r->cost < minCost ) {
73 minCost = r->cost;
74 out.clear();
75 out.emplace_back( r );
76 } else if ( r->cost == minCost ) {
77 out.emplace_back( r );
78 }
79 }
80 return out;
81 }
82
83 /// Computes conversion cost for a given expression to a given type
84 const ast::Expr * computeExpressionConversionCost(
85 const ast::Expr * arg, const ast::Type * paramType, const ast::SymbolTable & symtab, const ast::TypeEnvironment & env, Cost & outCost
86 ) {
87 Cost convCost = computeConversionCost(
88 arg->result, paramType, arg->get_lvalue(), symtab, env );
89 outCost += convCost;
90
91 // If there is a non-zero conversion cost, ignoring poly cost, then the expression requires
92 // conversion. Ignore poly cost for now, since this requires resolution of the cast to
93 // infer parameters and this does not currently work for the reason stated below
94 Cost tmpCost = convCost;
95 tmpCost.incPoly( -tmpCost.get_polyCost() );
96 if ( tmpCost != Cost::zero ) {
97 ast::ptr< ast::Type > newType = paramType;
98 env.apply( newType );
99 return new ast::CastExpr{ arg, newType };
100
101 // xxx - *should* be able to resolve this cast, but at the moment pointers are not
102 // castable to zero_t, but are implicitly convertible. This is clearly inconsistent,
103 // once this is fixed it should be possible to resolve the cast.
104 // xxx - this isn't working, it appears because type1 (parameter) is seen as widenable,
105 // but it shouldn't be because this makes the conversion from DT* to DT* since
106 // commontype(zero_t, DT*) is DT*, rather than nothing
107
108 // CandidateFinder finder{ symtab, env };
109 // finder.find( arg, ResolveMode::withAdjustment() );
110 // assertf( finder.candidates.size() > 0,
111 // "Somehow castable expression failed to find alternatives." );
112 // assertf( finder.candidates.size() == 1,
113 // "Somehow got multiple alternatives for known cast expression." );
114 // return finder.candidates.front()->expr;
115 }
116
117 return arg;
118 }
119
120 /// Computes conversion cost for a given candidate
121 Cost computeApplicationConversionCost(
122 CandidateRef cand, const ast::SymbolTable & symtab
123 ) {
124 auto appExpr = cand->expr.strict_as< ast::ApplicationExpr >();
125 auto pointer = appExpr->func->result.strict_as< ast::PointerType >();
126 auto function = pointer->base.strict_as< ast::FunctionType >();
127
128 Cost convCost = Cost::zero;
129 const auto & params = function->params;
130 auto param = params.begin();
131 auto & args = appExpr->args;
132
133 for ( unsigned i = 0; i < args.size(); ++i ) {
134 const ast::Type * argType = args[i]->result;
135 PRINT(
136 std::cerr << "arg expression:" << std::endl;
137 ast::print( std::cerr, args[i], 2 );
138 std::cerr << "--- results are" << std::endl;
139 ast::print( std::cerr, argType, 2 );
140 )
141
142 if ( param == params.end() ) {
143 if ( function->isVarArgs ) {
144 convCost.incUnsafe();
145 PRINT( std::cerr << "end of params with varargs function: inc unsafe: "
146 << convCost << std::endl; ; )
147 // convert reference-typed expressions into value-typed expressions
148 cand->expr = ast::mutate_field_index(
149 appExpr, &ast::ApplicationExpr::args, i,
150 referenceToRvalueConversion( args[i], convCost ) );
151 continue;
152 } else return Cost::infinity;
153 }
154
155 if ( auto def = args[i].as< ast::DefaultArgExpr >() ) {
156 // Default arguments should be free - don't include conversion cost.
157 // Unwrap them here because they are not relevant to the rest of the system
158 cand->expr = ast::mutate_field_index(
159 appExpr, &ast::ApplicationExpr::args, i, def->expr );
160 ++param;
161 continue;
162 }
163
164 // mark conversion cost and also specialization cost of param type
165 // const ast::Type * paramType = (*param)->get_type();
166 cand->expr = ast::mutate_field_index(
167 appExpr, &ast::ApplicationExpr::args, i,
168 computeExpressionConversionCost(
169 args[i], *param, symtab, cand->env, convCost ) );
170 convCost.decSpec( specCost( *param ) );
171 ++param; // can't be in for-loop update because of the continue
172 }
173
174 if ( param != params.end() ) return Cost::infinity;
175
176 // specialization cost of return types can't be accounted for directly, it disables
177 // otherwise-identical calls, like this example based on auto-newline in the I/O lib:
178 //
179 // forall(otype OS) {
180 // void ?|?(OS&, int); // with newline
181 // OS& ?|?(OS&, int); // no newline, always chosen due to more specialization
182 // }
183
184 // mark type variable and specialization cost of forall clause
185 convCost.incVar( function->forall.size() );
186 convCost.decSpec( function->assertions.size() );
187
188 return convCost;
189 }
190
191 void makeUnifiableVars(
192 const ast::FunctionType * type, ast::OpenVarSet & unifiableVars,
193 ast::AssertionSet & need
194 ) {
195 for ( auto & tyvar : type->forall ) {
196 unifiableVars[ *tyvar ] = ast::TypeData{ tyvar->base };
197 }
198 for ( auto & assn : type->assertions ) {
199 need[ assn ].isUsed = true;
200 }
201 }
202
203 /// Gets a default value from an initializer, nullptr if not present
204 const ast::ConstantExpr * getDefaultValue( const ast::Init * init ) {
205 if ( auto si = dynamic_cast< const ast::SingleInit * >( init ) ) {
206 if ( auto ce = si->value.as< ast::CastExpr >() ) {
207 return ce->arg.as< ast::ConstantExpr >();
208 } else {
209 return si->value.as< ast::ConstantExpr >();
210 }
211 }
212 return nullptr;
213 }
214
215 /// State to iteratively build a match of parameter expressions to arguments
216 struct ArgPack {
217 std::size_t parent; ///< Index of parent pack
218 ast::ptr< ast::Expr > expr; ///< The argument stored here
219 Cost cost; ///< The cost of this argument
220 ast::TypeEnvironment env; ///< Environment for this pack
221 ast::AssertionSet need; ///< Assertions outstanding for this pack
222 ast::AssertionSet have; ///< Assertions found for this pack
223 ast::OpenVarSet open; ///< Open variables for this pack
224 unsigned nextArg; ///< Index of next argument in arguments list
225 unsigned tupleStart; ///< Number of tuples that start at this index
226 unsigned nextExpl; ///< Index of next exploded element
227 unsigned explAlt; ///< Index of alternative for nextExpl > 0
228
229 ArgPack()
230 : parent( 0 ), expr(), cost( Cost::zero ), env(), need(), have(), open(), nextArg( 0 ),
231 tupleStart( 0 ), nextExpl( 0 ), explAlt( 0 ) {}
232
233 ArgPack(
234 const ast::TypeEnvironment & env, const ast::AssertionSet & need,
235 const ast::AssertionSet & have, const ast::OpenVarSet & open )
236 : parent( 0 ), expr(), cost( Cost::zero ), env( env ), need( need ), have( have ),
237 open( open ), nextArg( 0 ), tupleStart( 0 ), nextExpl( 0 ), explAlt( 0 ) {}
238
239 ArgPack(
240 std::size_t parent, const ast::Expr * expr, ast::TypeEnvironment && env,
241 ast::AssertionSet && need, ast::AssertionSet && have, ast::OpenVarSet && open,
242 unsigned nextArg, unsigned tupleStart = 0, Cost cost = Cost::zero,
243 unsigned nextExpl = 0, unsigned explAlt = 0 )
244 : parent(parent), expr( expr ), cost( cost ), env( std::move( env ) ), need( std::move( need ) ),
245 have( std::move( have ) ), open( std::move( open ) ), nextArg( nextArg ), tupleStart( tupleStart ),
246 nextExpl( nextExpl ), explAlt( explAlt ) {}
247
248 ArgPack(
249 const ArgPack & o, ast::TypeEnvironment && env, ast::AssertionSet && need,
250 ast::AssertionSet && have, ast::OpenVarSet && open, unsigned nextArg, Cost added )
251 : parent( o.parent ), expr( o.expr ), cost( o.cost + added ), env( std::move( env ) ),
252 need( std::move( need ) ), have( std::move( have ) ), open( std::move( open ) ), nextArg( nextArg ),
253 tupleStart( o.tupleStart ), nextExpl( 0 ), explAlt( 0 ) {}
254
255 /// true if this pack is in the middle of an exploded argument
256 bool hasExpl() const { return nextExpl > 0; }
257
258 /// Gets the list of exploded candidates for this pack
259 const ExplodedArg & getExpl( const ExplodedArgs & args ) const {
260 return args[ nextArg-1 ][ explAlt ];
261 }
262
263 /// Ends a tuple expression, consolidating the appropriate args
264 void endTuple( const std::vector< ArgPack > & packs ) {
265 // add all expressions in tuple to list, summing cost
266 std::deque< const ast::Expr * > exprs;
267 const ArgPack * pack = this;
268 if ( expr ) { exprs.emplace_front( expr ); }
269 while ( pack->tupleStart == 0 ) {
270 pack = &packs[pack->parent];
271 exprs.emplace_front( pack->expr );
272 cost += pack->cost;
273 }
274 // reset pack to appropriate tuple
275 std::vector< ast::ptr< ast::Expr > > exprv( exprs.begin(), exprs.end() );
276 expr = new ast::TupleExpr{ expr->location, std::move( exprv ) };
277 tupleStart = pack->tupleStart - 1;
278 parent = pack->parent;
279 }
280 };
281
282 /// Instantiates an argument to match a parameter, returns false if no matching results left
283 bool instantiateArgument(
284 const CodeLocation & location,
285 const ast::Type * paramType, const ast::Init * init, const ExplodedArgs & args,
286 std::vector< ArgPack > & results, std::size_t & genStart, const ResolveContext & context,
287 unsigned nTuples = 0
288 ) {
289 if ( auto tupleType = dynamic_cast< const ast::TupleType * >( paramType ) ) {
290 // paramType is a TupleType -- group args into a TupleExpr
291 ++nTuples;
292 for ( const ast::Type * type : *tupleType ) {
293 // xxx - dropping initializer changes behaviour from previous, but seems correct
294 // ^^^ need to handle the case where a tuple has a default argument
295 if ( ! instantiateArgument( location,
296 type, nullptr, args, results, genStart, context, nTuples ) ) return false;
297 nTuples = 0;
298 }
299 // re-constitute tuples for final generation
300 for ( auto i = genStart; i < results.size(); ++i ) {
301 results[i].endTuple( results );
302 }
303 return true;
304 } else if ( const ast::TypeInstType * ttype = Tuples::isTtype( paramType ) ) {
305 // paramType is a ttype, consumes all remaining arguments
306
307 // completed tuples; will be spliced to end of results to finish
308 std::vector< ArgPack > finalResults{};
309
310 // iterate until all results completed
311 std::size_t genEnd;
312 ++nTuples;
313 do {
314 genEnd = results.size();
315
316 // add another argument to results
317 for ( std::size_t i = genStart; i < genEnd; ++i ) {
318 unsigned nextArg = results[i].nextArg;
319
320 // use next element of exploded tuple if present
321 if ( results[i].hasExpl() ) {
322 const ExplodedArg & expl = results[i].getExpl( args );
323
324 unsigned nextExpl = results[i].nextExpl + 1;
325 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
326
327 results.emplace_back(
328 i, expl.exprs[ results[i].nextExpl ], copy( results[i].env ),
329 copy( results[i].need ), copy( results[i].have ),
330 copy( results[i].open ), nextArg, nTuples, Cost::zero, nextExpl,
331 results[i].explAlt );
332
333 continue;
334 }
335
336 // finish result when out of arguments
337 if ( nextArg >= args.size() ) {
338 ArgPack newResult{
339 results[i].env, results[i].need, results[i].have, results[i].open };
340 newResult.nextArg = nextArg;
341 const ast::Type * argType = nullptr;
342
343 if ( nTuples > 0 || ! results[i].expr ) {
344 // first iteration or no expression to clone,
345 // push empty tuple expression
346 newResult.parent = i;
347 newResult.expr = new ast::TupleExpr( location, {} );
348 argType = newResult.expr->result;
349 } else {
350 // clone result to collect tuple
351 newResult.parent = results[i].parent;
352 newResult.cost = results[i].cost;
353 newResult.tupleStart = results[i].tupleStart;
354 newResult.expr = results[i].expr;
355 argType = newResult.expr->result;
356
357 if ( results[i].tupleStart > 0 && Tuples::isTtype( argType ) ) {
358 // the case where a ttype value is passed directly is special,
359 // e.g. for argument forwarding purposes
360 // xxx - what if passing multiple arguments, last of which is
361 // ttype?
362 // xxx - what would happen if unify was changed so that unifying
363 // tuple
364 // types flattened both before unifying lists? then pass in
365 // TupleType (ttype) below.
366 --newResult.tupleStart;
367 } else {
368 // collapse leftover arguments into tuple
369 newResult.endTuple( results );
370 argType = newResult.expr->result;
371 }
372 }
373
374 // check unification for ttype before adding to final
375 if (
376 unify(
377 ttype, argType, newResult.env, newResult.need, newResult.have,
378 newResult.open )
379 ) {
380 finalResults.emplace_back( std::move( newResult ) );
381 }
382
383 continue;
384 }
385
386 // add each possible next argument
387 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
388 const ExplodedArg & expl = args[nextArg][j];
389
390 // fresh copies of parent parameters for this iteration
391 ast::TypeEnvironment env = results[i].env;
392 ast::OpenVarSet open = results[i].open;
393
394 env.addActual( expl.env, open );
395
396 // skip empty tuple arguments by (nearly) cloning parent into next gen
397 if ( expl.exprs.empty() ) {
398 results.emplace_back(
399 results[i], std::move( env ), copy( results[i].need ),
400 copy( results[i].have ), std::move( open ), nextArg + 1, expl.cost );
401
402 continue;
403 }
404
405 // add new result
406 results.emplace_back(
407 i, expl.exprs.front(), std::move( env ), copy( results[i].need ),
408 copy( results[i].have ), std::move( open ), nextArg + 1, nTuples,
409 expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
410 }
411 }
412
413 // reset for next round
414 genStart = genEnd;
415 nTuples = 0;
416 } while ( genEnd != results.size() );
417
418 // splice final results onto results
419 for ( std::size_t i = 0; i < finalResults.size(); ++i ) {
420 results.emplace_back( std::move( finalResults[i] ) );
421 }
422 return ! finalResults.empty();
423 }
424
425 // iterate each current subresult
426 std::size_t genEnd = results.size();
427 for ( std::size_t i = genStart; i < genEnd; ++i ) {
428 unsigned nextArg = results[i].nextArg;
429
430 // use remainder of exploded tuple if present
431 if ( results[i].hasExpl() ) {
432 const ExplodedArg & expl = results[i].getExpl( args );
433 const ast::Expr * expr = expl.exprs[ results[i].nextExpl ];
434
435 ast::TypeEnvironment env = results[i].env;
436 ast::AssertionSet need = results[i].need, have = results[i].have;
437 ast::OpenVarSet open = results[i].open;
438
439 const ast::Type * argType = expr->result;
440
441 PRINT(
442 std::cerr << "param type is ";
443 ast::print( std::cerr, paramType );
444 std::cerr << std::endl << "arg type is ";
445 ast::print( std::cerr, argType );
446 std::cerr << std::endl;
447 )
448
449 if ( unify( paramType, argType, env, need, have, open ) ) {
450 unsigned nextExpl = results[i].nextExpl + 1;
451 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
452
453 results.emplace_back(
454 i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ), nextArg,
455 nTuples, Cost::zero, nextExpl, results[i].explAlt );
456 }
457
458 continue;
459 }
460
461 // use default initializers if out of arguments
462 if ( nextArg >= args.size() ) {
463 if ( const ast::ConstantExpr * cnst = getDefaultValue( init ) ) {
464 ast::TypeEnvironment env = results[i].env;
465 ast::AssertionSet need = results[i].need, have = results[i].have;
466 ast::OpenVarSet open = results[i].open;
467
468 if ( unify( paramType, cnst->result, env, need, have, open ) ) {
469 results.emplace_back(
470 i, new ast::DefaultArgExpr{ cnst->location, cnst }, std::move( env ),
471 std::move( need ), std::move( have ), std::move( open ), nextArg, nTuples );
472 }
473 }
474
475 continue;
476 }
477
478 // Check each possible next argument
479 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
480 const ExplodedArg & expl = args[nextArg][j];
481
482 // fresh copies of parent parameters for this iteration
483 ast::TypeEnvironment env = results[i].env;
484 ast::AssertionSet need = results[i].need, have = results[i].have;
485 ast::OpenVarSet open = results[i].open;
486
487 env.addActual( expl.env, open );
488
489 // skip empty tuple arguments by (nearly) cloning parent into next gen
490 if ( expl.exprs.empty() ) {
491 results.emplace_back(
492 results[i], std::move( env ), std::move( need ), std::move( have ), std::move( open ),
493 nextArg + 1, expl.cost );
494
495 continue;
496 }
497
498 // consider only first exploded arg
499 const ast::Expr * expr = expl.exprs.front();
500 const ast::Type * argType = expr->result;
501
502 PRINT(
503 std::cerr << "param type is ";
504 ast::print( std::cerr, paramType );
505 std::cerr << std::endl << "arg type is ";
506 ast::print( std::cerr, argType );
507 std::cerr << std::endl;
508 )
509
510 // attempt to unify types
511 ast::ptr<ast::Type> common;
512 if ( unify( paramType, argType, env, need, have, open, common ) ) {
513 // add new result
514 assert( common );
515
516 auto paramAsEnum = dynamic_cast<const ast::EnumInstType *>(paramType);
517 auto argAsEnum =dynamic_cast<const ast::EnumInstType *>(argType);
518 if (paramAsEnum && argAsEnum) {
519 if (paramAsEnum->base->name != argAsEnum->base->name) {
520 Cost c = castCost(argType, paramType, expr, context.symtab, env);
521 if (c < Cost::infinity) {
522 CandidateFinder subFinder( context, env );
523 expr = subFinder.makeEnumOffsetCast(argAsEnum, paramAsEnum, expr, c);
524 results.emplace_back(
525 i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ),
526 nextArg + 1, nTuples, expl.cost + c, expl.exprs.size() == 1 ? 0 : 1, j );
527 continue;
528 } else {
529 std::cerr << "Cannot instantiate " << paramAsEnum->base->name << " with " << argAsEnum->base->name << std::endl;
530 }
531 }
532 }
533 results.emplace_back(
534 i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ),
535 nextArg + 1, nTuples, expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
536 }
537 }
538 }
539
540 // reset for next parameter
541 genStart = genEnd;
542
543 return genEnd != results.size(); // were any new results added?
544 }
545
546 /// Generate a cast expression from `arg` to `toType`
547 const ast::Expr * restructureCast(
548 ast::ptr< ast::Expr > & arg, const ast::Type * toType, ast::GeneratedFlag isGenerated = ast::GeneratedCast
549 ) {
550 if (
551 arg->result->size() > 1
552 && ! toType->isVoid()
553 && ! dynamic_cast< const ast::ReferenceType * >( toType )
554 ) {
555 // Argument is a tuple and the target type is neither void nor a reference. Cast each
556 // member of the tuple to its corresponding target type, producing the tuple of those
557 // cast expressions. If there are more components of the tuple than components in the
558 // target type, then excess components do not come out in the result expression (but
559 // UniqueExpr ensures that the side effects will still be produced)
560 if ( Tuples::maybeImpureIgnoreUnique( arg ) ) {
561 // expressions which may contain side effects require a single unique instance of
562 // the expression
563 arg = new ast::UniqueExpr{ arg->location, arg };
564 }
565 std::vector< ast::ptr< ast::Expr > > components;
566 for ( unsigned i = 0; i < toType->size(); ++i ) {
567 // cast each component
568 ast::ptr< ast::Expr > idx = new ast::TupleIndexExpr{ arg->location, arg, i };
569 components.emplace_back(
570 restructureCast( idx, toType->getComponent( i ), isGenerated ) );
571 }
572 return new ast::TupleExpr{ arg->location, std::move( components ) };
573 } else {
574 // handle normally
575 return new ast::CastExpr{ arg->location, arg, toType, isGenerated };
576 }
577 }
578
579 /// Gets the name from an untyped member expression (must be NameExpr)
580 const std::string & getMemberName( const ast::UntypedMemberExpr * memberExpr ) {
581 if ( memberExpr->member.as< ast::ConstantExpr >() ) {
582 SemanticError( memberExpr, "Indexed access to struct fields unsupported: " );
583 }
584
585 return memberExpr->member.strict_as< ast::NameExpr >()->name;
586 }
587
588 /// Actually visits expressions to find their candidate interpretations
589 class Finder final : public ast::WithShortCircuiting {
590 const ResolveContext & context;
591 const ast::SymbolTable & symtab;
592 public:
593 // static size_t traceId;
594 CandidateFinder & selfFinder;
595 CandidateList & candidates;
596 const ast::TypeEnvironment & tenv;
597 ast::ptr< ast::Type > & targetType;
598
599 enum Errors {
600 NotFound,
601 NoMatch,
602 ArgsToFew,
603 ArgsToMany,
604 RetsToFew,
605 RetsToMany,
606 NoReason
607 };
608
609 struct {
610 Errors code = NotFound;
611 } reason;
612
613 Finder( CandidateFinder & f )
614 : context( f.context ), symtab( context.symtab ), selfFinder( f ),
615 candidates( f.candidates ), tenv( f.env ), targetType( f.targetType ) {}
616
617 void previsit( const ast::Node * ) { visit_children = false; }
618
619 /// Convenience to add candidate to list
620 template<typename... Args>
621 void addCandidate( Args &&... args ) {
622 candidates.emplace_back( new Candidate{ std::forward<Args>( args )... } );
623 reason.code = NoReason;
624 }
625
626 void postvisit( const ast::ApplicationExpr * applicationExpr ) {
627 addCandidate( applicationExpr, tenv );
628 }
629
630 /// Set up candidate assertions for inference
631 void inferParameters( CandidateRef & newCand, CandidateList & out );
632
633 /// Completes a function candidate with arguments located
634 void validateFunctionCandidate(
635 const CandidateRef & func, ArgPack & result, const std::vector< ArgPack > & results,
636 CandidateList & out );
637
638 /// Builds a list of candidates for a function, storing them in out
639 void makeFunctionCandidates(
640 const CodeLocation & location,
641 const CandidateRef & func, const ast::FunctionType * funcType,
642 const ExplodedArgs & args, CandidateList & out );
643
644 /// Adds implicit struct-conversions to the alternative list
645 void addAnonConversions( const CandidateRef & cand );
646
647 /// Adds aggregate member interpretations
648 void addAggMembers(
649 const ast::BaseInstType * aggrInst, const ast::Expr * expr,
650 const Candidate & cand, const Cost & addedCost, const std::string & name
651 );
652
653 void addEnumValueAsCandidate(const ast::EnumInstType * instType, const ast::Expr * expr,
654 const Cost & addedCost
655 );
656
657 /// Adds tuple member interpretations
658 void addTupleMembers(
659 const ast::TupleType * tupleType, const ast::Expr * expr, const Candidate & cand,
660 const Cost & addedCost, const ast::Expr * member
661 );
662
663 /// true if expression is an lvalue
664 static bool isLvalue( const ast::Expr * x ) {
665 return x->result && ( x->get_lvalue() || x->result.as< ast::ReferenceType >() );
666 }
667
668 void postvisit( const ast::UntypedExpr * untypedExpr );
669 void postvisit( const ast::VariableExpr * variableExpr );
670 void postvisit( const ast::ConstantExpr * constantExpr );
671 void postvisit( const ast::SizeofExpr * sizeofExpr );
672 void postvisit( const ast::AlignofExpr * alignofExpr );
673 void postvisit( const ast::AddressExpr * addressExpr );
674 void postvisit( const ast::LabelAddressExpr * labelExpr );
675 void postvisit( const ast::CastExpr * castExpr );
676 void postvisit( const ast::VirtualCastExpr * castExpr );
677 void postvisit( const ast::KeywordCastExpr * castExpr );
678 void postvisit( const ast::UntypedMemberExpr * memberExpr );
679 void postvisit( const ast::MemberExpr * memberExpr );
680 void postvisit( const ast::NameExpr * nameExpr );
681 void postvisit( const ast::UntypedOffsetofExpr * offsetofExpr );
682 void postvisit( const ast::OffsetofExpr * offsetofExpr );
683 void postvisit( const ast::OffsetPackExpr * offsetPackExpr );
684 void postvisit( const ast::LogicalExpr * logicalExpr );
685 void postvisit( const ast::ConditionalExpr * conditionalExpr );
686 void postvisit( const ast::CommaExpr * commaExpr );
687 void postvisit( const ast::ImplicitCopyCtorExpr * ctorExpr );
688 void postvisit( const ast::ConstructorExpr * ctorExpr );
689 void postvisit( const ast::RangeExpr * rangeExpr );
690 void postvisit( const ast::UntypedTupleExpr * tupleExpr );
691 void postvisit( const ast::TupleExpr * tupleExpr );
692 void postvisit( const ast::TupleIndexExpr * tupleExpr );
693 void postvisit( const ast::TupleAssignExpr * tupleExpr );
694 void postvisit( const ast::UniqueExpr * unqExpr );
695 void postvisit( const ast::StmtExpr * stmtExpr );
696 void postvisit( const ast::UntypedInitExpr * initExpr );
697 void postvisit( const ast::QualifiedNameExpr * qualifiedExpr );
698
699 const ast::Expr * makeEnumOffsetCast( const ast::EnumInstType * src,
700 const ast::EnumInstType * dst
701 , const ast::Expr * expr, Cost minCost );
702
703 void postvisit( const ast::InitExpr * ) {
704 assertf( false, "CandidateFinder should never see a resolved InitExpr." );
705 }
706
707 void postvisit( const ast::DeletedExpr * ) {
708 assertf( false, "CandidateFinder should never see a DeletedExpr." );
709 }
710
711 void postvisit( const ast::GenericExpr * ) {
712 assertf( false, "_Generic is not yet supported." );
713 }
714 };
715
716 /// Set up candidate assertions for inference
717 void Finder::inferParameters( CandidateRef & newCand, CandidateList & out ) {
718 // Set need bindings for any unbound assertions
719 ast::UniqueId crntResnSlot = 0; // matching ID for this expression's assertions
720 for ( auto & assn : newCand->need ) {
721 // skip already-matched assertions
722 if ( assn.second.resnSlot != 0 ) continue;
723 // assign slot for expression if needed
724 if ( crntResnSlot == 0 ) { crntResnSlot = ++globalResnSlot; }
725 // fix slot to assertion
726 assn.second.resnSlot = crntResnSlot;
727 }
728 // pair slot to expression
729 if ( crntResnSlot != 0 ) {
730 newCand->expr.get_and_mutate()->inferred.resnSlots().emplace_back( crntResnSlot );
731 }
732
733 // add to output list; assertion satisfaction will occur later
734 out.emplace_back( newCand );
735 }
736
737 /// Completes a function candidate with arguments located
738 void Finder::validateFunctionCandidate(
739 const CandidateRef & func, ArgPack & result, const std::vector< ArgPack > & results,
740 CandidateList & out
741 ) {
742 ast::ApplicationExpr * appExpr =
743 new ast::ApplicationExpr{ func->expr->location, func->expr };
744 // sum cost and accumulate arguments
745 std::deque< const ast::Expr * > args;
746 Cost cost = func->cost;
747 const ArgPack * pack = &result;
748 while ( pack->expr ) {
749 args.emplace_front( pack->expr );
750 cost += pack->cost;
751 pack = &results[pack->parent];
752 }
753 std::vector< ast::ptr< ast::Expr > > vargs( args.begin(), args.end() );
754 appExpr->args = std::move( vargs );
755 // build and validate new candidate
756 auto newCand =
757 std::make_shared<Candidate>( appExpr, result.env, result.open, result.need, cost );
758 PRINT(
759 std::cerr << "instantiate function success: " << appExpr << std::endl;
760 std::cerr << "need assertions:" << std::endl;
761 ast::print( std::cerr, result.need, 2 );
762 )
763 inferParameters( newCand, out );
764 }
765
766 /// Builds a list of candidates for a function, storing them in out
767 void Finder::makeFunctionCandidates(
768 const CodeLocation & location,
769 const CandidateRef & func, const ast::FunctionType * funcType,
770 const ExplodedArgs & args, CandidateList & out
771 ) {
772 ast::OpenVarSet funcOpen;
773 ast::AssertionSet funcNeed, funcHave;
774 ast::TypeEnvironment funcEnv{ func->env };
775 makeUnifiableVars( funcType, funcOpen, funcNeed );
776 // add all type variables as open variables now so that those not used in the
777 // parameter list are still considered open
778 funcEnv.add( funcType->forall );
779
780 if ( targetType && ! targetType->isVoid() && ! funcType->returns.empty() ) {
781 // attempt to narrow based on expected target type
782 const ast::Type * returnType = funcType->returns.front();
783 if ( selfFinder.strictMode ) {
784 if ( !unifyExact(
785 returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen, noWiden() ) // xxx - is no widening correct?
786 ) {
787 // unification failed, do not pursue this candidate
788 return;
789 }
790 } else {
791 if ( !unify(
792 returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen )
793 ) {
794 // unification failed, do not pursue this candidate
795 return;
796 }
797 }
798 }
799
800 // iteratively build matches, one parameter at a time
801 std::vector< ArgPack > results;
802 results.emplace_back( funcEnv, funcNeed, funcHave, funcOpen );
803 std::size_t genStart = 0;
804
805 // xxx - how to handle default arg after change to ftype representation?
806 if (const ast::VariableExpr * varExpr = func->expr.as<ast::VariableExpr>()) {
807 if (const ast::FunctionDecl * funcDecl = varExpr->var.as<ast::FunctionDecl>()) {
808 // function may have default args only if directly calling by name
809 // must use types on candidate however, due to RenameVars substitution
810 auto nParams = funcType->params.size();
811
812 for (size_t i=0; i<nParams; ++i) {
813 auto obj = funcDecl->params[i].strict_as<ast::ObjectDecl>();
814 if ( !instantiateArgument( location,
815 funcType->params[i], obj->init, args, results, genStart, context)) return;
816 }
817 goto endMatch;
818 }
819 }
820 for ( const auto & param : funcType->params ) {
821 // Try adding the arguments corresponding to the current parameter to the existing
822 // matches
823 // no default args for indirect calls
824 if ( !instantiateArgument( location,
825 param, nullptr, args, results, genStart, context ) ) return;
826 }
827
828 endMatch:
829 if ( funcType->isVarArgs ) {
830 // append any unused arguments to vararg pack
831 std::size_t genEnd;
832 do {
833 genEnd = results.size();
834
835 // iterate results
836 for ( std::size_t i = genStart; i < genEnd; ++i ) {
837 unsigned nextArg = results[i].nextArg;
838
839 // use remainder of exploded tuple if present
840 if ( results[i].hasExpl() ) {
841 const ExplodedArg & expl = results[i].getExpl( args );
842
843 unsigned nextExpl = results[i].nextExpl + 1;
844 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
845
846 results.emplace_back(
847 i, expl.exprs[ results[i].nextExpl ], copy( results[i].env ),
848 copy( results[i].need ), copy( results[i].have ),
849 copy( results[i].open ), nextArg, 0, Cost::zero, nextExpl,
850 results[i].explAlt );
851
852 continue;
853 }
854
855 // finish result when out of arguments
856 if ( nextArg >= args.size() ) {
857 validateFunctionCandidate( func, results[i], results, out );
858
859 continue;
860 }
861
862 // add each possible next argument
863 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
864 const ExplodedArg & expl = args[nextArg][j];
865
866 // fresh copies of parent parameters for this iteration
867 ast::TypeEnvironment env = results[i].env;
868 ast::OpenVarSet open = results[i].open;
869
870 env.addActual( expl.env, open );
871
872 // skip empty tuple arguments by (nearly) cloning parent into next gen
873 if ( expl.exprs.empty() ) {
874 results.emplace_back(
875 results[i], std::move( env ), copy( results[i].need ),
876 copy( results[i].have ), std::move( open ), nextArg + 1,
877 expl.cost );
878
879 continue;
880 }
881
882 // add new result
883 results.emplace_back(
884 i, expl.exprs.front(), std::move( env ), copy( results[i].need ),
885 copy( results[i].have ), std::move( open ), nextArg + 1, 0, expl.cost,
886 expl.exprs.size() == 1 ? 0 : 1, j );
887 }
888 }
889
890 genStart = genEnd;
891 } while( genEnd != results.size() );
892 } else {
893 // filter out the results that don't use all the arguments
894 for ( std::size_t i = genStart; i < results.size(); ++i ) {
895 ArgPack & result = results[i];
896 if ( ! result.hasExpl() && result.nextArg >= args.size() ) {
897 validateFunctionCandidate( func, result, results, out );
898 }
899 }
900 }
901 }
902
903 void Finder::addEnumValueAsCandidate( const ast::EnumInstType * enumInst, const ast::Expr * expr,
904 const Cost & addedCost
905 ) {
906 if ( enumInst->base->base ) {
907 CandidateFinder finder( context, tenv );
908 auto location = expr->location;
909 auto callExpr = new ast::UntypedExpr(
910 location, new ast::NameExpr( location, "valueE" ), {expr}
911 );
912 finder.find( callExpr );
913 CandidateList winners = findMinCost( finder.candidates );
914 if (winners.size() != 1) {
915 SemanticError( callExpr, "Ambiguous expression in valueE..." );
916 }
917 CandidateRef & choice = winners.front();
918 choice->cost += addedCost;
919 addAnonConversions(choice);
920 candidates.emplace_back( std::move(choice) );
921 }
922 }
923
924 /// Adds implicit struct-conversions to the alternative list
925 void Finder::addAnonConversions( const CandidateRef & cand ) {
926 // adds anonymous member interpretations whenever an aggregate value type is seen.
927 // it's okay for the aggregate expression to have reference type -- cast it to the
928 // base type to treat the aggregate as the referenced value
929 ast::ptr< ast::Expr > aggrExpr( cand->expr );
930 ast::ptr< ast::Type > & aggrType = aggrExpr.get_and_mutate()->result;
931 cand->env.apply( aggrType );
932
933 if ( aggrType.as< ast::ReferenceType >() ) {
934 aggrExpr = new ast::CastExpr{ aggrExpr, aggrType->stripReferences() };
935 }
936
937 if ( auto structInst = aggrExpr->result.as< ast::StructInstType >() ) {
938 addAggMembers( structInst, aggrExpr, *cand, Cost::unsafe, "" );
939 } else if ( auto unionInst = aggrExpr->result.as< ast::UnionInstType >() ) {
940 addAggMembers( unionInst, aggrExpr, *cand, Cost::unsafe, "" );
941 } else if ( auto enumInst = aggrExpr->result.as< ast::EnumInstType >() ) {
942 addEnumValueAsCandidate(enumInst, aggrExpr, Cost::unsafe);
943 }
944 }
945
946
947 /// Adds aggregate member interpretations
948 void Finder::addAggMembers(
949 const ast::BaseInstType * aggrInst, const ast::Expr * expr,
950 const Candidate & cand, const Cost & addedCost, const std::string & name
951 ) {
952 for ( const ast::Decl * decl : aggrInst->lookup( name ) ) {
953 auto dwt = strict_dynamic_cast< const ast::DeclWithType * >( decl );
954 CandidateRef newCand = std::make_shared<Candidate>(
955 cand, new ast::MemberExpr{ expr->location, dwt, expr }, addedCost );
956 // add anonymous member interpretations whenever an aggregate value type is seen
957 // as a member expression
958 addAnonConversions( newCand );
959 candidates.emplace_back( std::move( newCand ) );
960 }
961 }
962
963 /// Adds tuple member interpretations
964 void Finder::addTupleMembers(
965 const ast::TupleType * tupleType, const ast::Expr * expr, const Candidate & cand,
966 const Cost & addedCost, const ast::Expr * member
967 ) {
968 if ( auto constantExpr = dynamic_cast< const ast::ConstantExpr * >( member ) ) {
969 // get the value of the constant expression as an int, must be between 0 and the
970 // length of the tuple to have meaning
971 long long val = constantExpr->intValue();
972 if ( val >= 0 && (unsigned long long)val < tupleType->size() ) {
973 addCandidate(
974 cand, new ast::TupleIndexExpr{ expr->location, expr, (unsigned)val },
975 addedCost );
976 }
977 }
978 }
979
980 void Finder::postvisit( const ast::UntypedExpr * untypedExpr ) {
981 std::vector< CandidateFinder > argCandidates =
982 selfFinder.findSubExprs( untypedExpr->args );
983
984 // take care of possible tuple assignments
985 // if not tuple assignment, handled as normal function call
986 Tuples::handleTupleAssignment( selfFinder, untypedExpr, argCandidates );
987
988 CandidateFinder funcFinder( context, tenv );
989 std::string funcName;
990 if (auto nameExpr = untypedExpr->func.as<ast::NameExpr>()) {
991 funcName = nameExpr->name;
992 auto kind = ast::SymbolTable::getSpecialFunctionKind(nameExpr->name);
993 if (kind != ast::SymbolTable::SpecialFunctionKind::NUMBER_OF_KINDS) {
994 assertf(!argCandidates.empty(), "special function call without argument");
995 for (auto & firstArgCand: argCandidates[0]) {
996 ast::ptr<ast::Type> argType = firstArgCand->expr->result;
997 firstArgCand->env.apply(argType);
998 // strip references
999 // xxx - is this correct?
1000 while (argType.as<ast::ReferenceType>()) argType = argType.as<ast::ReferenceType>()->base;
1001
1002 // convert 1-tuple to plain type
1003 if (auto tuple = argType.as<ast::TupleType>()) {
1004 if (tuple->size() == 1) {
1005 argType = tuple->types[0];
1006 }
1007 }
1008
1009 // if argType is an unbound type parameter, all special functions need to be searched.
1010 if (isUnboundType(argType)) {
1011 funcFinder.otypeKeys.clear();
1012 break;
1013 }
1014
1015 if (argType.as<ast::PointerType>()) funcFinder.otypeKeys.insert(Mangle::Encoding::pointer);
1016 else funcFinder.otypeKeys.insert(Mangle::mangle(argType, Mangle::NoGenericParams | Mangle::Type));
1017 }
1018 }
1019 }
1020 // if candidates are already produced, do not fail
1021 // xxx - is it possible that handleTupleAssignment and main finder both produce candidates?
1022 // this means there exists ctor/assign functions with a tuple as first parameter.
1023 ResolveMode mode = {
1024 true, // adjust
1025 !untypedExpr->func.as<ast::NameExpr>(), // prune if not calling by name
1026 selfFinder.candidates.empty() // failfast if other options are not found
1027 };
1028 funcFinder.find( untypedExpr->func, mode );
1029 // short-circuit if no candidates
1030 // if ( funcFinder.candidates.empty() ) return;
1031
1032 reason.code = NoMatch;
1033
1034 // find function operators
1035 ast::ptr< ast::Expr > opExpr = new ast::NameExpr{ untypedExpr->location, "?()" }; // ??? why not ?{}
1036 CandidateFinder opFinder( context, tenv );
1037 // okay if there aren't any function operations
1038 opFinder.find( opExpr, ResolveMode::withoutFailFast() );
1039 PRINT(
1040 std::cerr << "known function ops:" << std::endl;
1041 print( std::cerr, opFinder.candidates, 1 );
1042 )
1043
1044 // pre-explode arguments
1045 ExplodedArgs argExpansions;
1046 for ( const CandidateFinder & args : argCandidates ) {
1047 argExpansions.emplace_back();
1048 auto & argE = argExpansions.back();
1049 for ( const CandidateRef & arg : args ) { argE.emplace_back( *arg, symtab ); }
1050 }
1051
1052 // Find function matches
1053 CandidateList found;
1054 SemanticErrorException errors;
1055
1056 for ( CandidateRef & func : funcFinder ) {
1057 try {
1058 PRINT(
1059 std::cerr << "working on alternative:" << std::endl;
1060 print( std::cerr, *func, 2 );
1061 )
1062
1063 // check if the type is a pointer to function
1064 const ast::Type * funcResult = func->expr->result->stripReferences();
1065 if ( auto pointer = dynamic_cast< const ast::PointerType * >( funcResult ) ) {
1066 if ( auto function = pointer->base.as< ast::FunctionType >() ) {
1067 // if (!selfFinder.allowVoid && function->returns.empty()) continue;
1068 CandidateRef newFunc{ new Candidate{ *func } };
1069 newFunc->expr =
1070 referenceToRvalueConversion( newFunc->expr, newFunc->cost );
1071 makeFunctionCandidates( untypedExpr->location,
1072 newFunc, function, argExpansions, found );
1073 }
1074 } else if (
1075 auto inst = dynamic_cast< const ast::TypeInstType * >( funcResult )
1076 ) {
1077 if ( const ast::EqvClass * clz = func->env.lookup( *inst ) ) {
1078 if ( auto function = clz->bound.as< ast::FunctionType >() ) {
1079 CandidateRef newFunc( new Candidate( *func ) );
1080 newFunc->expr =
1081 referenceToRvalueConversion( newFunc->expr, newFunc->cost );
1082 makeFunctionCandidates( untypedExpr->location,
1083 newFunc, function, argExpansions, found );
1084 }
1085 }
1086 }
1087 } catch ( SemanticErrorException & e ) { errors.append( e ); }
1088 }
1089
1090 // Find matches on function operators `?()`
1091 if ( ! opFinder.candidates.empty() ) {
1092 // add exploded function alternatives to front of argument list
1093 std::vector< ExplodedArg > funcE;
1094 funcE.reserve( funcFinder.candidates.size() );
1095 for ( const CandidateRef & func : funcFinder ) {
1096 funcE.emplace_back( *func, symtab );
1097 }
1098 argExpansions.emplace_front( std::move( funcE ) );
1099
1100 for ( const CandidateRef & op : opFinder ) {
1101 try {
1102 // check if type is pointer-to-function
1103 const ast::Type * opResult = op->expr->result->stripReferences();
1104 if ( auto pointer = dynamic_cast< const ast::PointerType * >( opResult ) ) {
1105 if ( auto function = pointer->base.as< ast::FunctionType >() ) {
1106 CandidateRef newOp{ new Candidate{ *op} };
1107 newOp->expr =
1108 referenceToRvalueConversion( newOp->expr, newOp->cost );
1109 makeFunctionCandidates( untypedExpr->location,
1110 newOp, function, argExpansions, found );
1111 }
1112 }
1113 } catch ( SemanticErrorException & e ) { errors.append( e ); }
1114 }
1115 }
1116
1117 // Implement SFINAE; resolution errors are only errors if there aren't any non-error
1118 // candidates
1119 if ( found.empty() && ! errors.isEmpty() ) { throw errors; }
1120
1121 // only keep the best matching intrinsic result to match C semantics (no unexpected narrowing/widening)
1122 // TODO: keep one for each set of argument candidates?
1123 Cost intrinsicCost = Cost::infinity;
1124 CandidateList intrinsicResult;
1125
1126 // Compute conversion costs
1127 for ( CandidateRef & withFunc : found ) {
1128 Cost cvtCost = computeApplicationConversionCost( withFunc, symtab );
1129
1130 if (funcName == "?|?") {
1131 PRINT(
1132 auto appExpr = withFunc->expr.strict_as< ast::ApplicationExpr >();
1133 auto pointer = appExpr->func->result.strict_as< ast::PointerType >();
1134 auto function = pointer->base.strict_as< ast::FunctionType >();
1135
1136 std::cerr << "Case +++++++++++++ " << appExpr->func << std::endl;
1137 std::cerr << "parameters are:" << std::endl;
1138 ast::printAll( std::cerr, function->params, 2 );
1139 std::cerr << "arguments are:" << std::endl;
1140 ast::printAll( std::cerr, appExpr->args, 2 );
1141 std::cerr << "bindings are:" << std::endl;
1142 ast::print( std::cerr, withFunc->env, 2 );
1143 std::cerr << "cost is: " << withFunc->cost << std::endl;
1144 std::cerr << "cost of conversion is:" << cvtCost << std::endl;
1145 )
1146 }
1147 if ( cvtCost != Cost::infinity ) {
1148 withFunc->cvtCost = cvtCost;
1149 withFunc->cost += cvtCost;
1150 auto func = withFunc->expr.strict_as<ast::ApplicationExpr>()->func.as<ast::VariableExpr>();
1151 if (func && func->var->linkage == ast::Linkage::Intrinsic) {
1152 if (withFunc->cost < intrinsicCost) {
1153 intrinsicResult.clear();
1154 intrinsicCost = withFunc->cost;
1155 }
1156 if (withFunc->cost == intrinsicCost) {
1157 intrinsicResult.emplace_back(std::move(withFunc));
1158 }
1159 } else {
1160 candidates.emplace_back( std::move( withFunc ) );
1161 }
1162 }
1163 }
1164 spliceBegin( candidates, intrinsicResult );
1165 found = std::move( candidates );
1166
1167 // use a new list so that candidates are not examined by addAnonConversions twice
1168 // CandidateList winners = findMinCost( found );
1169 // promoteCvtCost( winners );
1170
1171 // function may return a struct/union value, in which case we need to add candidates
1172 // for implicit conversions to each of the anonymous members, which must happen after
1173 // `findMinCost`, since anon conversions are never the cheapest
1174 for ( const CandidateRef & c : found ) {
1175 addAnonConversions( c );
1176 }
1177 // would this be too slow when we don't check cost anymore?
1178 spliceBegin( candidates, found );
1179
1180 if ( candidates.empty() && targetType && ! targetType->isVoid() && !selfFinder.strictMode ) {
1181 // If resolution is unsuccessful with a target type, try again without, since it
1182 // will sometimes succeed when it wouldn't with a target type binding.
1183 // For example:
1184 // forall( otype T ) T & ?[]( T *, ptrdiff_t );
1185 // const char * x = "hello world";
1186 // unsigned char ch = x[0];
1187 // Fails with simple return type binding (xxx -- check this!) as follows:
1188 // * T is bound to unsigned char
1189 // * (x: const char *) is unified with unsigned char *, which fails
1190 // xxx -- fix this better
1191 targetType = nullptr;
1192 postvisit( untypedExpr );
1193 }
1194 }
1195
1196 void Finder::postvisit( const ast::AddressExpr * addressExpr ) {
1197 CandidateFinder finder( context, tenv );
1198 finder.find( addressExpr->arg );
1199
1200 if ( finder.candidates.empty() ) return;
1201
1202 reason.code = NoMatch;
1203
1204 for ( CandidateRef & r : finder.candidates ) {
1205 if ( !isLvalue( r->expr ) ) continue;
1206 addCandidate( *r, new ast::AddressExpr{ addressExpr->location, r->expr } );
1207 }
1208 }
1209
1210 void Finder::postvisit( const ast::LabelAddressExpr * labelExpr ) {
1211 addCandidate( labelExpr, tenv );
1212 }
1213
1214 // src is a subset of dst
1215 const ast::Expr * Finder::makeEnumOffsetCast( const ast::EnumInstType * src,
1216 const ast::EnumInstType * dst,
1217 const ast::Expr * expr,
1218 Cost minCost ) {
1219
1220 auto srcDecl = src->base;
1221 auto dstDecl = dst->base;
1222
1223 if (srcDecl->name == dstDecl->name) return expr;
1224
1225 for (auto& dstChild: dstDecl->inlinedDecl) {
1226 Cost c = castCost(src, dstChild, false, symtab, tenv);
1227 ast::CastExpr * castToDst;
1228 if (c<minCost) {
1229 unsigned offset = dstDecl->calChildOffset(dstChild.get());
1230 if (offset > 0) {
1231 auto untyped = ast::UntypedExpr::createCall(
1232 expr->location,
1233 "?+?",
1234 { new ast::CastExpr( expr, new ast::BasicType(ast::BasicKind::SignedInt) ),
1235 ast::ConstantExpr::from_int(expr->location, offset)});
1236 CandidateFinder finder(context, tenv);
1237 finder.find( untyped );
1238 CandidateList winners = findMinCost( finder.candidates );
1239 CandidateRef & choice = winners.front();
1240 // choice->expr = referenceToRvalueConversion( choice->expr, choice->cost );
1241 choice->expr = new ast::CastExpr(expr->location, choice->expr, dstChild, ast::GeneratedFlag::ExplicitCast);
1242 // castToDst = new ast::CastExpr(choice->expr, dstChild);
1243 castToDst = new ast::CastExpr(
1244 makeEnumOffsetCast( src, dstChild, choice->expr, minCost ),
1245 dst);
1246
1247 } else {
1248 castToDst = new ast::CastExpr( expr, dst );
1249 }
1250 return castToDst;
1251 }
1252 }
1253 SemanticError(expr, src->base->name + " is not a subtype of " + dst->base->name);
1254 return nullptr;
1255 }
1256
1257 void Finder::postvisit( const ast::CastExpr * castExpr ) {
1258 ast::ptr< ast::Type > toType = castExpr->result;
1259 assert( toType );
1260 toType = resolveTypeof( toType, context );
1261 toType = adjustExprType( toType, tenv, symtab );
1262
1263 CandidateFinder finder( context, tenv, toType );
1264 if (toType->isVoid()) {
1265 finder.allowVoid = true;
1266 }
1267 if ( castExpr->kind == ast::CastExpr::Return ) {
1268 finder.strictMode = true;
1269 finder.find( castExpr->arg, ResolveMode::withAdjustment() );
1270
1271 // return casts are eliminated (merely selecting an overload, no actual operation)
1272 candidates = std::move(finder.candidates);
1273 return;
1274 }
1275 else if (toType->isVoid()) {
1276 finder.find( castExpr->arg ); // no adjust
1277 }
1278 else {
1279 finder.find( castExpr->arg, ResolveMode::withAdjustment() );
1280 }
1281
1282 if ( !finder.candidates.empty() ) reason.code = NoMatch;
1283
1284 CandidateList matches;
1285 Cost minExprCost = Cost::infinity;
1286 Cost minCastCost = Cost::infinity;
1287 for ( CandidateRef & cand : finder.candidates ) {
1288 ast::AssertionSet need( cand->need.begin(), cand->need.end() ), have;
1289 ast::OpenVarSet open( cand->open );
1290
1291 cand->env.extractOpenVars( open );
1292
1293 // It is possible that a cast can throw away some values in a multiply-valued
1294 // expression, e.g. cast-to-void, one value to zero. Figure out the prefix of the
1295 // subexpression results that are cast directly. The candidate is invalid if it
1296 // has fewer results than there are types to cast to.
1297 int discardedValues = cand->expr->result->size() - toType->size();
1298 if ( discardedValues < 0 ) continue;
1299
1300 // unification run for side-effects
1301 unify( toType, cand->expr->result, cand->env, need, have, open );
1302 Cost thisCost =
1303 (castExpr->isGenerated == ast::GeneratedFlag::GeneratedCast)
1304 ? conversionCost( cand->expr->result, toType, cand->expr->get_lvalue(), symtab, cand->env )
1305 : castCost( cand->expr->result, toType, cand->expr->get_lvalue(), symtab, cand->env );
1306
1307 // Redefine enum cast
1308 auto argAsEnum = cand->expr->result.as<ast::EnumInstType>();
1309 auto toAsEnum = toType.as<ast::EnumInstType>();
1310 if ( argAsEnum && toAsEnum && argAsEnum->name != toAsEnum->name ) {
1311 ast::ptr<ast::Expr> offsetExpr = makeEnumOffsetCast(argAsEnum, toAsEnum, cand->expr, thisCost);
1312 cand->expr = offsetExpr;
1313 }
1314
1315 PRINT(
1316 std::cerr << "working on cast with result: " << toType << std::endl;
1317 std::cerr << "and expr type: " << cand->expr->result << std::endl;
1318 std::cerr << "env: " << cand->env << std::endl;
1319 )
1320 if ( thisCost != Cost::infinity ) {
1321 PRINT(
1322 std::cerr << "has finite cost." << std::endl;
1323 )
1324 // count one safe conversion for each value that is thrown away
1325 thisCost.incSafe( discardedValues );
1326 // select first on argument cost, then conversion cost
1327 if ( cand->cost < minExprCost || ( cand->cost == minExprCost && thisCost < minCastCost ) ) {
1328 minExprCost = cand->cost;
1329 minCastCost = thisCost;
1330 matches.clear();
1331 }
1332 // ambigious case, still output candidates to print in error message
1333 if ( cand->cost == minExprCost && thisCost == minCastCost ) {
1334 CandidateRef newCand = std::make_shared<Candidate>(
1335 restructureCast( cand->expr, toType, castExpr->isGenerated ),
1336 copy( cand->env ), std::move( open ), std::move( need ), cand->cost + thisCost);
1337 // currently assertions are always resolved immediately so this should have no effect.
1338 // if this somehow changes in the future (e.g. delayed by indeterminate return type)
1339 // we may need to revisit the logic.
1340 inferParameters( newCand, matches );
1341 }
1342 // else skip, better alternatives found
1343
1344 }
1345 }
1346 candidates = std::move(matches);
1347 //CandidateList minArgCost = findMinCost( matches );
1348 //promoteCvtCost( minArgCost );
1349 //candidates = findMinCost( minArgCost );
1350 }
1351
1352 void Finder::postvisit( const ast::VirtualCastExpr * castExpr ) {
1353 assertf( castExpr->result, "Implicit virtual cast targets not yet supported." );
1354 CandidateFinder finder( context, tenv );
1355 // don't prune here, all alternatives guaranteed to have same type
1356 finder.find( castExpr->arg, ResolveMode::withoutPrune() );
1357 for ( CandidateRef & r : finder.candidates ) {
1358 addCandidate(
1359 *r,
1360 new ast::VirtualCastExpr{ castExpr->location, r->expr, castExpr->result } );
1361 }
1362 }
1363
1364 void Finder::postvisit( const ast::KeywordCastExpr * castExpr ) {
1365 const auto & loc = castExpr->location;
1366 assertf( castExpr->result, "Cast target should have been set in Validate." );
1367 auto ref = castExpr->result.strict_as<ast::ReferenceType>();
1368 auto inst = ref->base.strict_as<ast::StructInstType>();
1369 auto target = inst->base.get();
1370
1371 CandidateFinder finder( context, tenv );
1372
1373 auto pick_alternatives = [target, this](CandidateList & found, bool expect_ref) {
1374 for (auto & cand : found) {
1375 const ast::Type * expr = cand->expr->result.get();
1376 if (expect_ref) {
1377 auto res = dynamic_cast<const ast::ReferenceType*>(expr);
1378 if (!res) { continue; }
1379 expr = res->base.get();
1380 }
1381
1382 if (auto insttype = dynamic_cast<const ast::TypeInstType*>(expr)) {
1383 auto td = cand->env.lookup(*insttype);
1384 if (!td) { continue; }
1385 expr = td->bound.get();
1386 }
1387
1388 if (auto base = dynamic_cast<const ast::StructInstType*>(expr)) {
1389 if (base->base == target) {
1390 candidates.push_back( std::move(cand) );
1391 reason.code = NoReason;
1392 }
1393 }
1394 }
1395 };
1396
1397 try {
1398 // Attempt 1 : turn (thread&)X into (thread$&)X.__thrd
1399 // Clone is purely for memory management
1400 std::unique_ptr<const ast::Expr> tech1 { new ast::UntypedMemberExpr(loc, new ast::NameExpr(loc, castExpr->concrete_target.field), castExpr->arg) };
1401
1402 // don't prune here, since it's guaranteed all alternatives will have the same type
1403 finder.find( tech1.get(), ResolveMode::withoutPrune() );
1404 pick_alternatives(finder.candidates, false);
1405
1406 return;
1407 } catch(SemanticErrorException & ) {}
1408
1409 // Fallback : turn (thread&)X into (thread$&)get_thread(X)
1410 std::unique_ptr<const ast::Expr> fallback { ast::UntypedExpr::createDeref(loc, new ast::UntypedExpr(loc, new ast::NameExpr(loc, castExpr->concrete_target.getter), { castExpr->arg })) };
1411 // don't prune here, since it's guaranteed all alternatives will have the same type
1412 finder.find( fallback.get(), ResolveMode::withoutPrune() );
1413
1414 pick_alternatives(finder.candidates, true);
1415
1416 // Whatever happens here, we have no more fallbacks
1417 }
1418
1419 void Finder::postvisit( const ast::UntypedMemberExpr * memberExpr ) {
1420 CandidateFinder aggFinder( context, tenv );
1421 aggFinder.find( memberExpr->aggregate, ResolveMode::withAdjustment() );
1422 for ( CandidateRef & agg : aggFinder.candidates ) {
1423 // it's okay for the aggregate expression to have reference type -- cast it to the
1424 // base type to treat the aggregate as the referenced value
1425 Cost addedCost = Cost::zero;
1426 agg->expr = referenceToRvalueConversion( agg->expr, addedCost );
1427
1428 // find member of the given type
1429 if ( auto structInst = agg->expr->result.as< ast::StructInstType >() ) {
1430 addAggMembers(
1431 structInst, agg->expr, *agg, addedCost, getMemberName( memberExpr ) );
1432 } else if ( auto unionInst = agg->expr->result.as< ast::UnionInstType >() ) {
1433 addAggMembers(
1434 unionInst, agg->expr, *agg, addedCost, getMemberName( memberExpr ) );
1435 } else if ( auto tupleType = agg->expr->result.as< ast::TupleType >() ) {
1436 addTupleMembers( tupleType, agg->expr, *agg, addedCost, memberExpr->member );
1437 }
1438 }
1439 }
1440
1441 void Finder::postvisit( const ast::MemberExpr * memberExpr ) {
1442 addCandidate( memberExpr, tenv );
1443 }
1444
1445 void Finder::postvisit( const ast::NameExpr * nameExpr ) {
1446 std::vector< ast::SymbolTable::IdData > declList;
1447 if (!selfFinder.otypeKeys.empty()) {
1448 auto kind = ast::SymbolTable::getSpecialFunctionKind(nameExpr->name);
1449 assertf(kind != ast::SymbolTable::SpecialFunctionKind::NUMBER_OF_KINDS, "special lookup with non-special target: %s", nameExpr->name.c_str());
1450
1451 for (auto & otypeKey: selfFinder.otypeKeys) {
1452 auto result = symtab.specialLookupId(kind, otypeKey);
1453 declList.insert(declList.end(), std::make_move_iterator(result.begin()), std::make_move_iterator(result.end()));
1454 }
1455 } else {
1456 declList = symtab.lookupIdIgnoreHidden( nameExpr->name );
1457 }
1458 PRINT( std::cerr << "nameExpr is " << nameExpr->name << std::endl; )
1459
1460 if ( declList.empty() ) return;
1461
1462 reason.code = NoMatch;
1463
1464 for ( auto & data : declList ) {
1465 Cost cost = Cost::zero;
1466 ast::Expr * newExpr = data.combine( nameExpr->location, cost );
1467
1468 CandidateRef newCand = std::make_shared<Candidate>(
1469 newExpr, copy( tenv ), ast::OpenVarSet{}, ast::AssertionSet{}, Cost::zero,
1470 cost );
1471 if (newCand->expr->env) {
1472 newCand->env.add(*newCand->expr->env);
1473 auto mutExpr = newCand->expr.get_and_mutate();
1474 mutExpr->env = nullptr;
1475 newCand->expr = mutExpr;
1476 }
1477
1478 PRINT(
1479 std::cerr << "decl is ";
1480 ast::print( std::cerr, data.id );
1481 std::cerr << std::endl;
1482 std::cerr << "newExpr is ";
1483 ast::print( std::cerr, newExpr );
1484 std::cerr << std::endl;
1485 )
1486 newCand->expr = ast::mutate_field(
1487 newCand->expr.get(), &ast::Expr::result,
1488 renameTyVars( newCand->expr->result ) );
1489 // add anonymous member interpretations whenever an aggregate value type is seen
1490 // as a name expression
1491 addAnonConversions( newCand );
1492 candidates.emplace_back( std::move( newCand ) );
1493 }
1494 }
1495
1496 void Finder::postvisit(const ast::VariableExpr *variableExpr) {
1497 // not sufficient to just pass `variableExpr` here, type might have changed
1498
1499 auto cand = new Candidate(variableExpr, tenv);
1500 candidates.emplace_back(cand);
1501 }
1502
1503 void Finder::postvisit( const ast::ConstantExpr * constantExpr ) {
1504 addCandidate( constantExpr, tenv );
1505 }
1506
1507 void Finder::postvisit( const ast::SizeofExpr * sizeofExpr ) {
1508 if ( sizeofExpr->type ) {
1509 addCandidate(
1510 new ast::SizeofExpr{
1511 sizeofExpr->location, resolveTypeof( sizeofExpr->type, context ) },
1512 tenv );
1513 } else {
1514 // find all candidates for the argument to sizeof
1515 CandidateFinder finder( context, tenv );
1516 finder.find( sizeofExpr->expr );
1517 // find the lowest-cost candidate, otherwise ambiguous
1518 CandidateList winners = findMinCost( finder.candidates );
1519 if ( winners.size() != 1 ) {
1520 SemanticError(
1521 sizeofExpr->expr.get(), "Ambiguous expression in sizeof operand: " );
1522 }
1523 // return the lowest-cost candidate
1524 CandidateRef & choice = winners.front();
1525 choice->expr = referenceToRvalueConversion( choice->expr, choice->cost );
1526 choice->cost = Cost::zero;
1527 addCandidate( *choice, new ast::SizeofExpr{ sizeofExpr->location, choice->expr } );
1528 }
1529 }
1530
1531 void Finder::postvisit( const ast::AlignofExpr * alignofExpr ) {
1532 if ( alignofExpr->type ) {
1533 addCandidate(
1534 new ast::AlignofExpr{
1535 alignofExpr->location, resolveTypeof( alignofExpr->type, context ) },
1536 tenv );
1537 } else {
1538 // find all candidates for the argument to alignof
1539 CandidateFinder finder( context, tenv );
1540 finder.find( alignofExpr->expr );
1541 // find the lowest-cost candidate, otherwise ambiguous
1542 CandidateList winners = findMinCost( finder.candidates );
1543 if ( winners.size() != 1 ) {
1544 SemanticError(
1545 alignofExpr->expr.get(), "Ambiguous expression in alignof operand: " );
1546 }
1547 // return the lowest-cost candidate
1548 CandidateRef & choice = winners.front();
1549 choice->expr = referenceToRvalueConversion( choice->expr, choice->cost );
1550 choice->cost = Cost::zero;
1551 addCandidate(
1552 *choice, new ast::AlignofExpr{ alignofExpr->location, choice->expr } );
1553 }
1554 }
1555
1556 void Finder::postvisit( const ast::UntypedOffsetofExpr * offsetofExpr ) {
1557 const ast::BaseInstType * aggInst;
1558 if (( aggInst = offsetofExpr->type.as< ast::StructInstType >() )) ;
1559 else if (( aggInst = offsetofExpr->type.as< ast::UnionInstType >() )) ;
1560 else return;
1561
1562 for ( const ast::Decl * member : aggInst->lookup( offsetofExpr->member ) ) {
1563 auto dwt = strict_dynamic_cast< const ast::DeclWithType * >( member );
1564 addCandidate(
1565 new ast::OffsetofExpr{ offsetofExpr->location, aggInst, dwt }, tenv );
1566 }
1567 }
1568
1569 void Finder::postvisit( const ast::OffsetofExpr * offsetofExpr ) {
1570 addCandidate( offsetofExpr, tenv );
1571 }
1572
1573 void Finder::postvisit( const ast::OffsetPackExpr * offsetPackExpr ) {
1574 addCandidate( offsetPackExpr, tenv );
1575 }
1576
1577 void Finder::postvisit( const ast::LogicalExpr * logicalExpr ) {
1578 CandidateFinder finder1( context, tenv );
1579 ast::ptr<ast::Expr> arg1 = createCondExpr( logicalExpr->arg1 );
1580 finder1.find( arg1, ResolveMode::withAdjustment() );
1581 if ( finder1.candidates.empty() ) return;
1582
1583 CandidateFinder finder2( context, tenv );
1584 ast::ptr<ast::Expr> arg2 = createCondExpr( logicalExpr->arg2 );
1585 finder2.find( arg2, ResolveMode::withAdjustment() );
1586 if ( finder2.candidates.empty() ) return;
1587
1588 reason.code = NoMatch;
1589
1590 for ( const CandidateRef & r1 : finder1.candidates ) {
1591 for ( const CandidateRef & r2 : finder2.candidates ) {
1592 ast::TypeEnvironment env{ r1->env };
1593 env.simpleCombine( r2->env );
1594 ast::OpenVarSet open{ r1->open };
1595 mergeOpenVars( open, r2->open );
1596 ast::AssertionSet need;
1597 mergeAssertionSet( need, r1->need );
1598 mergeAssertionSet( need, r2->need );
1599
1600 addCandidate(
1601 new ast::LogicalExpr{
1602 logicalExpr->location, r1->expr, r2->expr, logicalExpr->isAnd },
1603 std::move( env ), std::move( open ), std::move( need ), r1->cost + r2->cost );
1604 }
1605 }
1606 }
1607
1608 void Finder::postvisit( const ast::ConditionalExpr * conditionalExpr ) {
1609 // candidates for condition
1610 ast::ptr<ast::Expr> arg1 = createCondExpr( conditionalExpr->arg1 );
1611 CandidateFinder finder1( context, tenv );
1612 finder1.find( arg1, ResolveMode::withAdjustment() );
1613 if ( finder1.candidates.empty() ) return;
1614
1615 // candidates for true result
1616 // FIX ME: resolves and runs arg1 twice when arg2 is missing.
1617 ast::Expr const * arg2 = conditionalExpr->arg2;
1618 arg2 = arg2 ? arg2 : conditionalExpr->arg1.get();
1619 CandidateFinder finder2( context, tenv );
1620 finder2.allowVoid = true;
1621 finder2.find( arg2, ResolveMode::withAdjustment() );
1622 if ( finder2.candidates.empty() ) return;
1623
1624 // candidates for false result
1625 CandidateFinder finder3( context, tenv );
1626 finder3.allowVoid = true;
1627 finder3.find( conditionalExpr->arg3, ResolveMode::withAdjustment() );
1628 if ( finder3.candidates.empty() ) return;
1629
1630 reason.code = NoMatch;
1631
1632 for ( const CandidateRef & r1 : finder1.candidates ) {
1633 for ( const CandidateRef & r2 : finder2.candidates ) {
1634 for ( const CandidateRef & r3 : finder3.candidates ) {
1635 ast::TypeEnvironment env{ r1->env };
1636 env.simpleCombine( r2->env );
1637 env.simpleCombine( r3->env );
1638 ast::OpenVarSet open{ r1->open };
1639 mergeOpenVars( open, r2->open );
1640 mergeOpenVars( open, r3->open );
1641 ast::AssertionSet need;
1642 mergeAssertionSet( need, r1->need );
1643 mergeAssertionSet( need, r2->need );
1644 mergeAssertionSet( need, r3->need );
1645 ast::AssertionSet have;
1646
1647 // unify true and false results, then infer parameters to produce new
1648 // candidates
1649 ast::ptr< ast::Type > common;
1650 if (
1651 unify(
1652 r2->expr->result, r3->expr->result, env, need, have, open,
1653 common )
1654 ) {
1655 // generate typed expression
1656 ast::ConditionalExpr * newExpr = new ast::ConditionalExpr{
1657 conditionalExpr->location, r1->expr, r2->expr, r3->expr };
1658 newExpr->result = common ? common : r2->expr->result;
1659 // convert both options to result type
1660 Cost cost = r1->cost + r2->cost + r3->cost;
1661 newExpr->arg2 = computeExpressionConversionCost(
1662 newExpr->arg2, newExpr->result, symtab, env, cost );
1663 newExpr->arg3 = computeExpressionConversionCost(
1664 newExpr->arg3, newExpr->result, symtab, env, cost );
1665 // output candidate
1666 CandidateRef newCand = std::make_shared<Candidate>(
1667 newExpr, std::move( env ), std::move( open ), std::move( need ), cost );
1668 inferParameters( newCand, candidates );
1669 }
1670 }
1671 }
1672 }
1673 }
1674
1675 void Finder::postvisit( const ast::CommaExpr * commaExpr ) {
1676 ast::TypeEnvironment env{ tenv };
1677 ast::ptr< ast::Expr > arg1 = resolveInVoidContext( commaExpr->arg1, context, env );
1678
1679 CandidateFinder finder2( context, env );
1680 finder2.find( commaExpr->arg2, ResolveMode::withAdjustment() );
1681
1682 for ( const CandidateRef & r2 : finder2.candidates ) {
1683 addCandidate( *r2, new ast::CommaExpr{ commaExpr->location, arg1, r2->expr } );
1684 }
1685 }
1686
1687 void Finder::postvisit( const ast::ImplicitCopyCtorExpr * ctorExpr ) {
1688 addCandidate( ctorExpr, tenv );
1689 }
1690
1691 void Finder::postvisit( const ast::ConstructorExpr * ctorExpr ) {
1692 CandidateFinder finder( context, tenv );
1693 finder.allowVoid = true;
1694 finder.find( ctorExpr->callExpr, ResolveMode::withoutPrune() );
1695 for ( CandidateRef & r : finder.candidates ) {
1696 addCandidate( *r, new ast::ConstructorExpr{ ctorExpr->location, r->expr } );
1697 }
1698 }
1699
1700 void Finder::postvisit( const ast::RangeExpr * rangeExpr ) {
1701 // resolve low and high, accept candidates where low and high types unify
1702 CandidateFinder finder1( context, tenv );
1703 finder1.find( rangeExpr->low, ResolveMode::withAdjustment() );
1704 if ( finder1.candidates.empty() ) return;
1705
1706 CandidateFinder finder2( context, tenv );
1707 finder2.find( rangeExpr->high, ResolveMode::withAdjustment() );
1708 if ( finder2.candidates.empty() ) return;
1709
1710 reason.code = NoMatch;
1711
1712 for ( const CandidateRef & r1 : finder1.candidates ) {
1713 for ( const CandidateRef & r2 : finder2.candidates ) {
1714 ast::TypeEnvironment env{ r1->env };
1715 env.simpleCombine( r2->env );
1716 ast::OpenVarSet open{ r1->open };
1717 mergeOpenVars( open, r2->open );
1718 ast::AssertionSet need;
1719 mergeAssertionSet( need, r1->need );
1720 mergeAssertionSet( need, r2->need );
1721 ast::AssertionSet have;
1722
1723 ast::ptr< ast::Type > common;
1724 if (
1725 unify(
1726 r1->expr->result, r2->expr->result, env, need, have, open,
1727 common )
1728 ) {
1729 // generate new expression
1730 ast::RangeExpr * newExpr =
1731 new ast::RangeExpr{ rangeExpr->location, r1->expr, r2->expr };
1732 newExpr->result = common ? common : r1->expr->result;
1733 // add candidate
1734 CandidateRef newCand = std::make_shared<Candidate>(
1735 newExpr, std::move( env ), std::move( open ), std::move( need ),
1736 r1->cost + r2->cost );
1737 inferParameters( newCand, candidates );
1738 }
1739 }
1740 }
1741 }
1742
1743 void Finder::postvisit( const ast::UntypedTupleExpr * tupleExpr ) {
1744 std::vector< CandidateFinder > subCandidates =
1745 selfFinder.findSubExprs( tupleExpr->exprs );
1746 std::vector< CandidateList > possibilities;
1747 combos( subCandidates.begin(), subCandidates.end(), back_inserter( possibilities ) );
1748
1749 for ( const CandidateList & subs : possibilities ) {
1750 std::vector< ast::ptr< ast::Expr > > exprs;
1751 exprs.reserve( subs.size() );
1752 for ( const CandidateRef & sub : subs ) { exprs.emplace_back( sub->expr ); }
1753
1754 ast::TypeEnvironment env;
1755 ast::OpenVarSet open;
1756 ast::AssertionSet need;
1757 for ( const CandidateRef & sub : subs ) {
1758 env.simpleCombine( sub->env );
1759 mergeOpenVars( open, sub->open );
1760 mergeAssertionSet( need, sub->need );
1761 }
1762
1763 addCandidate(
1764 new ast::TupleExpr{ tupleExpr->location, std::move( exprs ) },
1765 std::move( env ), std::move( open ), std::move( need ), sumCost( subs ) );
1766 }
1767 }
1768
1769 void Finder::postvisit( const ast::TupleExpr * tupleExpr ) {
1770 addCandidate( tupleExpr, tenv );
1771 }
1772
1773 void Finder::postvisit( const ast::TupleIndexExpr * tupleExpr ) {
1774 addCandidate( tupleExpr, tenv );
1775 }
1776
1777 void Finder::postvisit( const ast::TupleAssignExpr * tupleExpr ) {
1778 addCandidate( tupleExpr, tenv );
1779 }
1780
1781 void Finder::postvisit( const ast::UniqueExpr * unqExpr ) {
1782 CandidateFinder finder( context, tenv );
1783 finder.find( unqExpr->expr, ResolveMode::withAdjustment() );
1784 for ( CandidateRef & r : finder.candidates ) {
1785 // ensure that the the id is passed on so that the expressions are "linked"
1786 addCandidate( *r, new ast::UniqueExpr{ unqExpr->location, r->expr, unqExpr->id } );
1787 }
1788 }
1789
1790 void Finder::postvisit( const ast::StmtExpr * stmtExpr ) {
1791 addCandidate( resolveStmtExpr( stmtExpr, context ), tenv );
1792 }
1793
1794 void Finder::postvisit( const ast::UntypedInitExpr * initExpr ) {
1795 // handle each option like a cast
1796 CandidateList matches;
1797 PRINT(
1798 std::cerr << "untyped init expr: " << initExpr << std::endl;
1799 )
1800 // O(n^2) checks of d-types with e-types
1801 for ( const ast::InitAlternative & initAlt : initExpr->initAlts ) {
1802 // calculate target type
1803 const ast::Type * toType = resolveTypeof( initAlt.type, context );
1804 toType = adjustExprType( toType, tenv, symtab );
1805 // The call to find must occur inside this loop, otherwise polymorphic return
1806 // types are not bound to the initialization type, since return type variables are
1807 // only open for the duration of resolving the UntypedExpr.
1808 CandidateFinder finder( context, tenv, toType );
1809 finder.find( initExpr->expr, ResolveMode::withAdjustment() );
1810
1811 Cost minExprCost = Cost::infinity;
1812 Cost minCastCost = Cost::infinity;
1813 for ( CandidateRef & cand : finder.candidates ) {
1814 if (reason.code == NotFound) reason.code = NoMatch;
1815
1816 ast::TypeEnvironment env{ cand->env };
1817 ast::AssertionSet need( cand->need.begin(), cand->need.end() ), have;
1818 ast::OpenVarSet open{ cand->open };
1819
1820 PRINT(
1821 std::cerr << " @ " << toType << " " << initAlt.designation << std::endl;
1822 )
1823
1824 // It is possible that a cast can throw away some values in a multiply-valued
1825 // expression, e.g. cast-to-void, one value to zero. Figure out the prefix of
1826 // the subexpression results that are cast directly. The candidate is invalid
1827 // if it has fewer results than there are types to cast to.
1828 int discardedValues = cand->expr->result->size() - toType->size();
1829 if ( discardedValues < 0 ) continue;
1830
1831 // unification run for side-effects
1832 ast::ptr<ast::Type> common;
1833 bool canUnify = unify( toType, cand->expr->result, env, need, have, open, common );
1834 (void) canUnify;
1835 Cost thisCost = computeConversionCost( cand->expr->result, toType, cand->expr->get_lvalue(),
1836 symtab, env );
1837 PRINT(
1838 Cost legacyCost = castCost( cand->expr->result, toType, cand->expr->get_lvalue(),
1839 symtab, env );
1840 std::cerr << "Considering initialization:";
1841 std::cerr << std::endl << " FROM: " << cand->expr->result << std::endl;
1842 std::cerr << std::endl << " TO: " << toType << std::endl;
1843 std::cerr << std::endl << " Unification " << (canUnify ? "succeeded" : "failed");
1844 std::cerr << std::endl << " Legacy cost " << legacyCost;
1845 std::cerr << std::endl << " New cost " << thisCost;
1846 std::cerr << std::endl;
1847 )
1848 if ( thisCost != Cost::infinity ) {
1849 // count one safe conversion for each value that is thrown away
1850 thisCost.incSafe( discardedValues );
1851 if ( cand->cost < minExprCost || ( cand->cost == minExprCost && thisCost < minCastCost ) ) {
1852 minExprCost = cand->cost;
1853 minCastCost = thisCost;
1854 matches.clear();
1855 }
1856 CandidateRef newCand = std::make_shared<Candidate>(
1857 new ast::InitExpr{
1858 initExpr->location,
1859 restructureCast( cand->expr, toType ),
1860 initAlt.designation },
1861 std::move(env), std::move( open ), std::move( need ), cand->cost + thisCost );
1862 // currently assertions are always resolved immediately so this should have no effect.
1863 // if this somehow changes in the future (e.g. delayed by indeterminate return type)
1864 // we may need to revisit the logic.
1865 inferParameters( newCand, matches );
1866 }
1867 }
1868 }
1869
1870 // select first on argument cost, then conversion cost
1871 // CandidateList minArgCost = findMinCost( matches );
1872 // promoteCvtCost( minArgCost );
1873 // candidates = findMinCost( minArgCost );
1874 candidates = std::move(matches);
1875 }
1876
1877 void Finder::postvisit( const ast::QualifiedNameExpr * expr ) {
1878 std::vector< ast::SymbolTable::IdData > declList = symtab.lookupId( expr->name );
1879 if ( declList.empty() ) return;
1880
1881 for ( ast::SymbolTable::IdData & data: declList ) {
1882 const ast::Type * t = data.id->get_type()->stripReferences();
1883 if ( const ast::EnumInstType * enumInstType =
1884 dynamic_cast<const ast::EnumInstType *>( t ) ) {
1885 if ( (enumInstType->base->name == expr->type_name)
1886 || (expr->type_decl && enumInstType->base->name == expr->type_decl->name) ) {
1887 Cost cost = Cost::zero;
1888 ast::Expr * newExpr = data.combine( expr->location, cost );
1889 CandidateRef newCand =
1890 std::make_shared<Candidate>(
1891 newExpr, copy( tenv ), ast::OpenVarSet{},
1892 ast::AssertionSet{}, Cost::zero, cost
1893 );
1894 if (newCand->expr->env) {
1895 newCand->env.add(*newCand->expr->env);
1896 auto mutExpr = newCand->expr.get_and_mutate();
1897 mutExpr->env = nullptr;
1898 newCand->expr = mutExpr;
1899 }
1900
1901 newCand->expr = ast::mutate_field(
1902 newCand->expr.get(), &ast::Expr::result,
1903 renameTyVars( newCand->expr->result ) );
1904 addAnonConversions( newCand );
1905 candidates.emplace_back( std::move( newCand ) );
1906 }
1907 }
1908 }
1909 }
1910 // size_t Finder::traceId = Stats::Heap::new_stacktrace_id("Finder");
1911 /// Prunes a list of candidates down to those that have the minimum conversion cost for a given
1912 /// return type. Skips ambiguous candidates.
1913
1914} // anonymous namespace
1915
1916bool CandidateFinder::pruneCandidates( CandidateList & candidates, CandidateList & out, std::vector<std::string> & errors ) {
1917 struct PruneStruct {
1918 CandidateRef candidate;
1919 bool ambiguous;
1920
1921 PruneStruct() = default;
1922 PruneStruct( const CandidateRef & c ) : candidate( c ), ambiguous( false ) {}
1923 };
1924
1925 // find lowest-cost candidate for each type
1926 std::unordered_map< std::string, PruneStruct > selected;
1927 // attempt to skip satisfyAssertions on more expensive alternatives if better options have been found
1928 std::sort(candidates.begin(), candidates.end(), [](const CandidateRef & x, const CandidateRef & y){return x->cost < y->cost;});
1929 for ( CandidateRef & candidate : candidates ) {
1930 std::string mangleName;
1931 {
1932 ast::ptr< ast::Type > newType = candidate->expr->result;
1933 assertf(candidate->expr->result, "Result of expression %p for candidate is null", candidate->expr.get());
1934 candidate->env.apply( newType );
1935 mangleName = Mangle::mangle( newType );
1936 }
1937
1938 auto found = selected.find( mangleName );
1939 if (found != selected.end() && found->second.candidate->cost < candidate->cost) {
1940 PRINT(
1941 std::cerr << "cost " << candidate->cost << " loses to "
1942 << found->second.candidate->cost << std::endl;
1943 )
1944 continue;
1945 }
1946
1947 // xxx - when do satisfyAssertions produce more than 1 result?
1948 // this should only happen when initial result type contains
1949 // unbound type parameters, then it should never be pruned by
1950 // the previous step, since renameTyVars guarantees the mangled name
1951 // is unique.
1952 CandidateList satisfied;
1953 bool needRecomputeKey = false;
1954 if (candidate->need.empty()) {
1955 satisfied.emplace_back(candidate);
1956 }
1957 else {
1958 satisfyAssertions(candidate, context.symtab, satisfied, errors);
1959 needRecomputeKey = true;
1960 }
1961
1962 for (auto & newCand : satisfied) {
1963 // recomputes type key, if satisfyAssertions changed it
1964 if (needRecomputeKey)
1965 {
1966 ast::ptr< ast::Type > newType = newCand->expr->result;
1967 assertf(newCand->expr->result, "Result of expression %p for candidate is null", newCand->expr.get());
1968 newCand->env.apply( newType );
1969 mangleName = Mangle::mangle( newType );
1970 }
1971 auto found = selected.find( mangleName );
1972 if ( found != selected.end() ) {
1973 // tiebreaking by picking the lower cost on CURRENT expression
1974 // NOTE: this behavior is different from C semantics.
1975 // Specific remediations are performed for C operators at postvisit(UntypedExpr).
1976 // Further investigations may take place.
1977 if ( newCand->cost < found->second.candidate->cost
1978 || (newCand->cost == found->second.candidate->cost && newCand->cvtCost < found->second.candidate->cvtCost) ) {
1979 PRINT(
1980 std::cerr << "cost " << newCand->cost << " beats "
1981 << found->second.candidate->cost << std::endl;
1982 )
1983
1984 found->second = PruneStruct{ newCand };
1985 } else if ( newCand->cost == found->second.candidate->cost && newCand->cvtCost == found->second.candidate->cvtCost ) {
1986 // if one of the candidates contains a deleted identifier, can pick the other,
1987 // since deleted expressions should not be ambiguous if there is another option
1988 // that is at least as good
1989 if ( findDeletedExpr( newCand->expr ) ) {
1990 // do nothing
1991 PRINT( std::cerr << "candidate is deleted" << std::endl; )
1992 } else if ( findDeletedExpr( found->second.candidate->expr ) ) {
1993 PRINT( std::cerr << "current is deleted" << std::endl; )
1994 found->second = PruneStruct{ newCand };
1995 } else {
1996 PRINT( std::cerr << "marking ambiguous" << std::endl; )
1997 found->second.ambiguous = true;
1998 }
1999 } else {
2000 // xxx - can satisfyAssertions increase the cost?
2001 PRINT(
2002 std::cerr << "cost " << newCand->cost << " loses to "
2003 << found->second.candidate->cost << std::endl;
2004 )
2005 }
2006 } else {
2007 selected.emplace_hint( found, mangleName, newCand );
2008 }
2009 }
2010 }
2011
2012 // report unambiguous min-cost candidates
2013 // CandidateList out;
2014 for ( auto & target : selected ) {
2015 if ( target.second.ambiguous ) continue;
2016
2017 CandidateRef cand = target.second.candidate;
2018
2019 ast::ptr< ast::Type > newResult = cand->expr->result;
2020 cand->env.applyFree( newResult );
2021 cand->expr = ast::mutate_field(
2022 cand->expr.get(), &ast::Expr::result, std::move( newResult ) );
2023
2024 out.emplace_back( cand );
2025 }
2026 // if everything is lost in satisfyAssertions, report the error
2027 return !selected.empty();
2028}
2029
2030void CandidateFinder::find( const ast::Expr * expr, ResolveMode mode ) {
2031 // Find alternatives for expression
2032 ast::Pass<Finder> finder{ *this };
2033 expr->accept( finder );
2034
2035 if ( mode.failFast && candidates.empty() ) {
2036 switch(finder.core.reason.code) {
2037 case Finder::NotFound:
2038 { SemanticError( expr, "No alternatives for expression " ); break; }
2039 case Finder::NoMatch:
2040 { SemanticError( expr, "Invalid application of existing declaration(s) in expression " ); break; }
2041 case Finder::ArgsToFew:
2042 case Finder::ArgsToMany:
2043 case Finder::RetsToFew:
2044 case Finder::RetsToMany:
2045 case Finder::NoReason:
2046 default:
2047 { SemanticError( expr->location, "No reasonable alternatives for expression : reasons unkown" ); }
2048 }
2049 }
2050
2051 /*
2052 if ( mode.satisfyAssns || mode.prune ) {
2053 // trim candidates to just those where the assertions are satisfiable
2054 // - necessary pre-requisite to pruning
2055 CandidateList satisfied;
2056 std::vector< std::string > errors;
2057 for ( CandidateRef & candidate : candidates ) {
2058 satisfyAssertions( candidate, localSyms, satisfied, errors );
2059 }
2060
2061 // fail early if none such
2062 if ( mode.failFast && satisfied.empty() ) {
2063 std::ostringstream stream;
2064 stream << "No alternatives with satisfiable assertions for " << expr << "\n";
2065 for ( const auto& err : errors ) {
2066 stream << err;
2067 }
2068 SemanticError( expr->location, stream.str() );
2069 }
2070
2071 // reset candidates
2072 candidates = move( satisfied );
2073 }
2074 */
2075
2076 // optimization: don't prune for NameExpr since it never has cost
2077 if ( mode.prune && !dynamic_cast<const ast::NameExpr *>(expr) ) {
2078 // trim candidates to single best one
2079 PRINT(
2080 std::cerr << "alternatives before prune:" << std::endl;
2081 print( std::cerr, candidates );
2082 )
2083
2084 CandidateList pruned;
2085 std::vector<std::string> errors;
2086 bool found = pruneCandidates( candidates, pruned, errors );
2087
2088 if ( mode.failFast && pruned.empty() ) {
2089 std::ostringstream stream;
2090 if (found) {
2091 CandidateList winners = findMinCost( candidates );
2092 stream << "Cannot choose between " << winners.size() << " alternatives for "
2093 "expression\n";
2094 ast::print( stream, expr );
2095 stream << " Alternatives are:\n";
2096 print( stream, winners, 1 );
2097 SemanticError( expr->location, stream.str() );
2098 }
2099 else {
2100 stream << "No alternatives with satisfiable assertions for " << expr << "\n";
2101 for ( const auto& err : errors ) {
2102 stream << err;
2103 }
2104 SemanticError( expr->location, stream.str() );
2105 }
2106 }
2107
2108 auto oldsize = candidates.size();
2109 candidates = std::move( pruned );
2110
2111 PRINT(
2112 std::cerr << "there are " << oldsize << " alternatives before elimination" << std::endl;
2113 )
2114 PRINT(
2115 std::cerr << "there are " << candidates.size() << " alternatives after elimination"
2116 << std::endl;
2117 )
2118 }
2119
2120 // adjust types after pruning so that types substituted by pruneAlternatives are correctly
2121 // adjusted
2122 if ( mode.adjust ) {
2123 for ( CandidateRef & r : candidates ) {
2124 r->expr = ast::mutate_field(
2125 r->expr.get(), &ast::Expr::result,
2126 adjustExprType( r->expr->result, r->env, context.symtab ) );
2127 }
2128 }
2129
2130 // Central location to handle gcc extension keyword, etc. for all expressions
2131 for ( CandidateRef & r : candidates ) {
2132 if ( r->expr->extension != expr->extension ) {
2133 r->expr.get_and_mutate()->extension = expr->extension;
2134 }
2135 }
2136}
2137
2138std::vector< CandidateFinder > CandidateFinder::findSubExprs(
2139 const std::vector< ast::ptr< ast::Expr > > & xs
2140) {
2141 std::vector< CandidateFinder > out;
2142
2143 for ( const auto & x : xs ) {
2144 out.emplace_back( context, env );
2145 out.back().find( x, ResolveMode::withAdjustment() );
2146
2147 PRINT(
2148 std::cerr << "findSubExprs" << std::endl;
2149 print( std::cerr, out.back().candidates );
2150 )
2151 }
2152
2153 return out;
2154}
2155
2156const ast::Expr * referenceToRvalueConversion( const ast::Expr * expr, Cost & cost ) {
2157 if ( expr->result.as< ast::ReferenceType >() ) {
2158 // cast away reference from expr
2159 cost.incReference();
2160 return new ast::CastExpr{ expr, expr->result->stripReferences() };
2161 }
2162
2163 return expr;
2164}
2165
2166const ast::Expr * CandidateFinder::makeEnumOffsetCast( const ast::EnumInstType * src,
2167 const ast::EnumInstType * dst,
2168 const ast::Expr * expr,
2169 Cost minCost ) {
2170
2171 auto srcDecl = src->base;
2172 auto dstDecl = dst->base;
2173
2174 if (srcDecl->name == dstDecl->name) return expr;
2175
2176 for (auto& dstChild: dstDecl->inlinedDecl) {
2177 Cost c = castCost(src, dstChild, false, context.symtab, env);
2178 ast::CastExpr * castToDst;
2179 if (c<minCost) {
2180 unsigned offset = dstDecl->calChildOffset(dstChild.get());
2181 if (offset > 0) {
2182 auto untyped = ast::UntypedExpr::createCall(
2183 expr->location,
2184 "?+?",
2185 { new ast::CastExpr( expr, new ast::BasicType(ast::BasicKind::SignedInt) ),
2186 ast::ConstantExpr::from_int(expr->location, offset)});
2187 CandidateFinder finder(context, env);
2188 finder.find( untyped );
2189 CandidateList winners = findMinCost( finder.candidates );
2190 CandidateRef & choice = winners.front();
2191 choice->expr = new ast::CastExpr(expr->location, choice->expr, dstChild, ast::GeneratedFlag::ExplicitCast);
2192 castToDst = new ast::CastExpr(
2193 makeEnumOffsetCast( src, dstChild, choice->expr, minCost ),
2194 dst);
2195 } else {
2196 castToDst = new ast::CastExpr( expr, dst );
2197 }
2198 return castToDst;
2199 }
2200 }
2201 SemanticError(expr, src->base->name + " is not a subtype of " + dst->base->name);
2202 return nullptr;
2203}
2204
2205Cost computeConversionCost(
2206 const ast::Type * argType, const ast::Type * paramType, bool argIsLvalue,
2207 const ast::SymbolTable & symtab, const ast::TypeEnvironment & env
2208) {
2209 PRINT(
2210 std::cerr << std::endl << "converting ";
2211 ast::print( std::cerr, argType, 2 );
2212 std::cerr << std::endl << " to ";
2213 ast::print( std::cerr, paramType, 2 );
2214 std::cerr << std::endl << "environment is: ";
2215 ast::print( std::cerr, env, 2 );
2216 std::cerr << std::endl;
2217 )
2218 Cost convCost = conversionCost( argType, paramType, argIsLvalue, symtab, env );
2219 PRINT(
2220 std::cerr << std::endl << "cost is " << convCost << std::endl;
2221 )
2222 if ( convCost == Cost::infinity ) return convCost;
2223 convCost.incPoly( polyCost( paramType, symtab, env ) + polyCost( argType, symtab, env ) );
2224 PRINT(
2225 std::cerr << "cost with polycost is " << convCost << std::endl;
2226 )
2227 return convCost;
2228}
2229
2230const ast::Expr * createCondExpr( const ast::Expr * expr ) {
2231 assert( expr );
2232 return new ast::CastExpr( expr->location,
2233 ast::UntypedExpr::createCall( expr->location,
2234 "?!=?",
2235 {
2236 expr,
2237 new ast::ConstantExpr( expr->location,
2238 new ast::ZeroType(), "0", std::make_optional( 0ull )
2239 ),
2240 }
2241 ),
2242 new ast::BasicType( ast::BasicKind::SignedInt )
2243 );
2244}
2245
2246} // namespace ResolvExpr
2247
2248// Local Variables: //
2249// tab-width: 4 //
2250// mode: c++ //
2251// compile-command: "make install" //
2252// End: //
Note: See TracBrowser for help on using the repository browser.