source: src/ResolvExpr/CandidateFinder.cpp@ d4264e8

Last change on this file since d4264e8 was 7aa209e7, checked in by Andrew Beach <ajbeach@…>, 18 months ago

Fixing some whitespace around a recent merge. That lead to some general clean-up, including removing tailing whitespace and removing some unneeded dependences.

  • Property mode set to 100644
File size: 79.4 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// CandidateFinder.cpp --
8//
9// Author : Aaron B. Moss
10// Created On : Wed Jun 5 14:30:00 2019
11// Last Modified By : Andrew Beach
12// Last Modified On : Wed Mar 16 11:58:00 2022
13// Update Count : 3
14//
15
16#include "CandidateFinder.hpp"
17
18#include <deque>
19#include <iterator> // for back_inserter
20#include <sstream>
21#include <string>
22#include <unordered_map>
23#include <vector>
24
25#include "AdjustExprType.hpp"
26#include "Candidate.hpp"
27#include "CastCost.hpp" // for castCost
28#include "CompilationState.h"
29#include "ConversionCost.h" // for conversionCast
30#include "Cost.h"
31#include "ExplodedArg.hpp"
32#include "PolyCost.hpp"
33#include "RenameVars.h" // for renameTyVars
34#include "Resolver.h"
35#include "ResolveTypeof.h"
36#include "SatisfyAssertions.hpp"
37#include "SpecCost.hpp"
38#include "typeops.h" // for combos
39#include "Unify.h"
40#include "WidenMode.h"
41#include "AST/Expr.hpp"
42#include "AST/Node.hpp"
43#include "AST/Pass.hpp"
44#include "AST/Print.hpp"
45#include "AST/SymbolTable.hpp"
46#include "AST/Type.hpp"
47#include "Common/utility.h" // for move, copy
48#include "SymTab/Mangler.h"
49#include "Tuples/Tuples.h" // for handleTupleAssignment
50#include "InitTweak/InitTweak.h" // for getPointerBase
51
52#include "Common/Stats/Counter.h"
53
54#include "AST/Inspect.hpp" // for getFunctionName
55
56#define PRINT( text ) if ( resolvep ) { text }
57
58namespace ResolvExpr {
59
60/// Unique identifier for matching expression resolutions to their requesting expression
61ast::UniqueId globalResnSlot = 0;
62
63namespace {
64 /// First index is which argument, second is which alternative, third is which exploded element
65 using ExplodedArgs = std::deque< std::vector< ExplodedArg > >;
66
67 /// Returns a list of alternatives with the minimum cost in the given list
68 CandidateList findMinCost( const CandidateList & candidates ) {
69 CandidateList out;
70 Cost minCost = Cost::infinity;
71 for ( const CandidateRef & r : candidates ) {
72 if ( r->cost < minCost ) {
73 minCost = r->cost;
74 out.clear();
75 out.emplace_back( r );
76 } else if ( r->cost == minCost ) {
77 out.emplace_back( r );
78 }
79 }
80 return out;
81 }
82
83 /// Computes conversion cost for a given expression to a given type
84 const ast::Expr * computeExpressionConversionCost(
85 const ast::Expr * arg, const ast::Type * paramType, const ast::SymbolTable & symtab, const ast::TypeEnvironment & env, Cost & outCost
86 ) {
87 Cost convCost = computeConversionCost(
88 arg->result, paramType, arg->get_lvalue(), symtab, env );
89 outCost += convCost;
90
91 // If there is a non-zero conversion cost, ignoring poly cost, then the expression requires
92 // conversion. Ignore poly cost for now, since this requires resolution of the cast to
93 // infer parameters and this does not currently work for the reason stated below
94 Cost tmpCost = convCost;
95 tmpCost.incPoly( -tmpCost.get_polyCost() );
96 if ( tmpCost != Cost::zero ) {
97 ast::ptr< ast::Type > newType = paramType;
98 env.apply( newType );
99 return new ast::CastExpr{ arg, newType };
100
101 // xxx - *should* be able to resolve this cast, but at the moment pointers are not
102 // castable to zero_t, but are implicitly convertible. This is clearly inconsistent,
103 // once this is fixed it should be possible to resolve the cast.
104 // xxx - this isn't working, it appears because type1 (parameter) is seen as widenable,
105 // but it shouldn't be because this makes the conversion from DT* to DT* since
106 // commontype(zero_t, DT*) is DT*, rather than nothing
107
108 // CandidateFinder finder{ symtab, env };
109 // finder.find( arg, ResolveMode::withAdjustment() );
110 // assertf( finder.candidates.size() > 0,
111 // "Somehow castable expression failed to find alternatives." );
112 // assertf( finder.candidates.size() == 1,
113 // "Somehow got multiple alternatives for known cast expression." );
114 // return finder.candidates.front()->expr;
115 }
116
117 return arg;
118 }
119
120 /// Computes conversion cost for a given candidate
121 Cost computeApplicationConversionCost(
122 CandidateRef cand, const ast::SymbolTable & symtab
123 ) {
124 auto appExpr = cand->expr.strict_as< ast::ApplicationExpr >();
125 auto pointer = appExpr->func->result.strict_as< ast::PointerType >();
126 auto function = pointer->base.strict_as< ast::FunctionType >();
127
128 Cost convCost = Cost::zero;
129 const auto & params = function->params;
130 auto param = params.begin();
131 auto & args = appExpr->args;
132
133 for ( unsigned i = 0; i < args.size(); ++i ) {
134 const ast::Type * argType = args[i]->result;
135 PRINT(
136 std::cerr << "arg expression:" << std::endl;
137 ast::print( std::cerr, args[i], 2 );
138 std::cerr << "--- results are" << std::endl;
139 ast::print( std::cerr, argType, 2 );
140 )
141
142 if ( param == params.end() ) {
143 if ( function->isVarArgs ) {
144 convCost.incUnsafe();
145 PRINT( std::cerr << "end of params with varargs function: inc unsafe: "
146 << convCost << std::endl; ; )
147 // convert reference-typed expressions into value-typed expressions
148 cand->expr = ast::mutate_field_index(
149 appExpr, &ast::ApplicationExpr::args, i,
150 referenceToRvalueConversion( args[i], convCost ) );
151 continue;
152 } else return Cost::infinity;
153 }
154
155 if ( auto def = args[i].as< ast::DefaultArgExpr >() ) {
156 // Default arguments should be free - don't include conversion cost.
157 // Unwrap them here because they are not relevant to the rest of the system
158 cand->expr = ast::mutate_field_index(
159 appExpr, &ast::ApplicationExpr::args, i, def->expr );
160 ++param;
161 continue;
162 }
163
164 // mark conversion cost and also specialization cost of param type
165 // const ast::Type * paramType = (*param)->get_type();
166 cand->expr = ast::mutate_field_index(
167 appExpr, &ast::ApplicationExpr::args, i,
168 computeExpressionConversionCost(
169 args[i], *param, symtab, cand->env, convCost ) );
170 convCost.decSpec( specCost( *param ) );
171 ++param; // can't be in for-loop update because of the continue
172 }
173
174 if ( param != params.end() ) return Cost::infinity;
175
176 // specialization cost of return types can't be accounted for directly, it disables
177 // otherwise-identical calls, like this example based on auto-newline in the I/O lib:
178 //
179 // forall(otype OS) {
180 // void ?|?(OS&, int); // with newline
181 // OS& ?|?(OS&, int); // no newline, always chosen due to more specialization
182 // }
183
184 // mark type variable and specialization cost of forall clause
185 convCost.incVar( function->forall.size() );
186 convCost.decSpec( function->assertions.size() );
187
188 return convCost;
189 }
190
191 void makeUnifiableVars(
192 const ast::FunctionType * type, ast::OpenVarSet & unifiableVars,
193 ast::AssertionSet & need
194 ) {
195 for ( auto & tyvar : type->forall ) {
196 unifiableVars[ *tyvar ] = ast::TypeData{ tyvar->base };
197 }
198 for ( auto & assn : type->assertions ) {
199 need[ assn ].isUsed = true;
200 }
201 }
202
203 /// Gets a default value from an initializer, nullptr if not present
204 const ast::ConstantExpr * getDefaultValue( const ast::Init * init ) {
205 if ( auto si = dynamic_cast< const ast::SingleInit * >( init ) ) {
206 if ( auto ce = si->value.as< ast::CastExpr >() ) {
207 return ce->arg.as< ast::ConstantExpr >();
208 } else {
209 return si->value.as< ast::ConstantExpr >();
210 }
211 }
212 return nullptr;
213 }
214
215 /// State to iteratively build a match of parameter expressions to arguments
216 struct ArgPack {
217 std::size_t parent; ///< Index of parent pack
218 ast::ptr< ast::Expr > expr; ///< The argument stored here
219 Cost cost; ///< The cost of this argument
220 ast::TypeEnvironment env; ///< Environment for this pack
221 ast::AssertionSet need; ///< Assertions outstanding for this pack
222 ast::AssertionSet have; ///< Assertions found for this pack
223 ast::OpenVarSet open; ///< Open variables for this pack
224 unsigned nextArg; ///< Index of next argument in arguments list
225 unsigned tupleStart; ///< Number of tuples that start at this index
226 unsigned nextExpl; ///< Index of next exploded element
227 unsigned explAlt; ///< Index of alternative for nextExpl > 0
228
229 ArgPack()
230 : parent( 0 ), expr(), cost( Cost::zero ), env(), need(), have(), open(), nextArg( 0 ),
231 tupleStart( 0 ), nextExpl( 0 ), explAlt( 0 ) {}
232
233 ArgPack(
234 const ast::TypeEnvironment & env, const ast::AssertionSet & need,
235 const ast::AssertionSet & have, const ast::OpenVarSet & open )
236 : parent( 0 ), expr(), cost( Cost::zero ), env( env ), need( need ), have( have ),
237 open( open ), nextArg( 0 ), tupleStart( 0 ), nextExpl( 0 ), explAlt( 0 ) {}
238
239 ArgPack(
240 std::size_t parent, const ast::Expr * expr, ast::TypeEnvironment && env,
241 ast::AssertionSet && need, ast::AssertionSet && have, ast::OpenVarSet && open,
242 unsigned nextArg, unsigned tupleStart = 0, Cost cost = Cost::zero,
243 unsigned nextExpl = 0, unsigned explAlt = 0 )
244 : parent(parent), expr( expr ), cost( cost ), env( std::move( env ) ), need( std::move( need ) ),
245 have( std::move( have ) ), open( std::move( open ) ), nextArg( nextArg ), tupleStart( tupleStart ),
246 nextExpl( nextExpl ), explAlt( explAlt ) {}
247
248 ArgPack(
249 const ArgPack & o, ast::TypeEnvironment && env, ast::AssertionSet && need,
250 ast::AssertionSet && have, ast::OpenVarSet && open, unsigned nextArg, Cost added )
251 : parent( o.parent ), expr( o.expr ), cost( o.cost + added ), env( std::move( env ) ),
252 need( std::move( need ) ), have( std::move( have ) ), open( std::move( open ) ), nextArg( nextArg ),
253 tupleStart( o.tupleStart ), nextExpl( 0 ), explAlt( 0 ) {}
254
255 /// true if this pack is in the middle of an exploded argument
256 bool hasExpl() const { return nextExpl > 0; }
257
258 /// Gets the list of exploded candidates for this pack
259 const ExplodedArg & getExpl( const ExplodedArgs & args ) const {
260 return args[ nextArg-1 ][ explAlt ];
261 }
262
263 /// Ends a tuple expression, consolidating the appropriate args
264 void endTuple( const std::vector< ArgPack > & packs ) {
265 // add all expressions in tuple to list, summing cost
266 std::deque< const ast::Expr * > exprs;
267 const ArgPack * pack = this;
268 if ( expr ) { exprs.emplace_front( expr ); }
269 while ( pack->tupleStart == 0 ) {
270 pack = &packs[pack->parent];
271 exprs.emplace_front( pack->expr );
272 cost += pack->cost;
273 }
274 // reset pack to appropriate tuple
275 std::vector< ast::ptr< ast::Expr > > exprv( exprs.begin(), exprs.end() );
276 expr = new ast::TupleExpr{ expr->location, std::move( exprv ) };
277 tupleStart = pack->tupleStart - 1;
278 parent = pack->parent;
279 }
280 };
281
282 /// Instantiates an argument to match a parameter, returns false if no matching results left
283 bool instantiateArgument(
284 const CodeLocation & location,
285 const ast::Type * paramType, const ast::Init * init, const ExplodedArgs & args,
286 std::vector< ArgPack > & results, std::size_t & genStart, const ResolveContext & context,
287 unsigned nTuples = 0
288 ) {
289 if ( auto tupleType = dynamic_cast< const ast::TupleType * >( paramType ) ) {
290 // paramType is a TupleType -- group args into a TupleExpr
291 ++nTuples;
292 for ( const ast::Type * type : *tupleType ) {
293 // xxx - dropping initializer changes behaviour from previous, but seems correct
294 // ^^^ need to handle the case where a tuple has a default argument
295 if ( ! instantiateArgument( location,
296 type, nullptr, args, results, genStart, context, nTuples ) ) return false;
297 nTuples = 0;
298 }
299 // re-constitute tuples for final generation
300 for ( auto i = genStart; i < results.size(); ++i ) {
301 results[i].endTuple( results );
302 }
303 return true;
304 } else if ( const ast::TypeInstType * ttype = Tuples::isTtype( paramType ) ) {
305 // paramType is a ttype, consumes all remaining arguments
306
307 // completed tuples; will be spliced to end of results to finish
308 std::vector< ArgPack > finalResults{};
309
310 // iterate until all results completed
311 std::size_t genEnd;
312 ++nTuples;
313 do {
314 genEnd = results.size();
315
316 // add another argument to results
317 for ( std::size_t i = genStart; i < genEnd; ++i ) {
318 unsigned nextArg = results[i].nextArg;
319
320 // use next element of exploded tuple if present
321 if ( results[i].hasExpl() ) {
322 const ExplodedArg & expl = results[i].getExpl( args );
323
324 unsigned nextExpl = results[i].nextExpl + 1;
325 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
326
327 results.emplace_back(
328 i, expl.exprs[ results[i].nextExpl ], copy( results[i].env ),
329 copy( results[i].need ), copy( results[i].have ),
330 copy( results[i].open ), nextArg, nTuples, Cost::zero, nextExpl,
331 results[i].explAlt );
332
333 continue;
334 }
335
336 // finish result when out of arguments
337 if ( nextArg >= args.size() ) {
338 ArgPack newResult{
339 results[i].env, results[i].need, results[i].have, results[i].open };
340 newResult.nextArg = nextArg;
341 const ast::Type * argType = nullptr;
342
343 if ( nTuples > 0 || ! results[i].expr ) {
344 // first iteration or no expression to clone,
345 // push empty tuple expression
346 newResult.parent = i;
347 newResult.expr = new ast::TupleExpr( location, {} );
348 argType = newResult.expr->result;
349 } else {
350 // clone result to collect tuple
351 newResult.parent = results[i].parent;
352 newResult.cost = results[i].cost;
353 newResult.tupleStart = results[i].tupleStart;
354 newResult.expr = results[i].expr;
355 argType = newResult.expr->result;
356
357 if ( results[i].tupleStart > 0 && Tuples::isTtype( argType ) ) {
358 // the case where a ttype value is passed directly is special,
359 // e.g. for argument forwarding purposes
360 // xxx - what if passing multiple arguments, last of which is
361 // ttype?
362 // xxx - what would happen if unify was changed so that unifying
363 // tuple
364 // types flattened both before unifying lists? then pass in
365 // TupleType (ttype) below.
366 --newResult.tupleStart;
367 } else {
368 // collapse leftover arguments into tuple
369 newResult.endTuple( results );
370 argType = newResult.expr->result;
371 }
372 }
373
374 // check unification for ttype before adding to final
375 if (
376 unify(
377 ttype, argType, newResult.env, newResult.need, newResult.have,
378 newResult.open )
379 ) {
380 finalResults.emplace_back( std::move( newResult ) );
381 }
382
383 continue;
384 }
385
386 // add each possible next argument
387 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
388 const ExplodedArg & expl = args[nextArg][j];
389
390 // fresh copies of parent parameters for this iteration
391 ast::TypeEnvironment env = results[i].env;
392 ast::OpenVarSet open = results[i].open;
393
394 env.addActual( expl.env, open );
395
396 // skip empty tuple arguments by (nearly) cloning parent into next gen
397 if ( expl.exprs.empty() ) {
398 results.emplace_back(
399 results[i], std::move( env ), copy( results[i].need ),
400 copy( results[i].have ), std::move( open ), nextArg + 1, expl.cost );
401
402 continue;
403 }
404
405 // add new result
406 results.emplace_back(
407 i, expl.exprs.front(), std::move( env ), copy( results[i].need ),
408 copy( results[i].have ), std::move( open ), nextArg + 1, nTuples,
409 expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
410 }
411 }
412
413 // reset for next round
414 genStart = genEnd;
415 nTuples = 0;
416 } while ( genEnd != results.size() );
417
418 // splice final results onto results
419 for ( std::size_t i = 0; i < finalResults.size(); ++i ) {
420 results.emplace_back( std::move( finalResults[i] ) );
421 }
422 return ! finalResults.empty();
423 }
424
425 // iterate each current subresult
426 std::size_t genEnd = results.size();
427 for ( std::size_t i = genStart; i < genEnd; ++i ) {
428 unsigned nextArg = results[i].nextArg;
429
430 // use remainder of exploded tuple if present
431 if ( results[i].hasExpl() ) {
432 const ExplodedArg & expl = results[i].getExpl( args );
433 const ast::Expr * expr = expl.exprs[ results[i].nextExpl ];
434
435 ast::TypeEnvironment env = results[i].env;
436 ast::AssertionSet need = results[i].need, have = results[i].have;
437 ast::OpenVarSet open = results[i].open;
438
439 const ast::Type * argType = expr->result;
440
441 PRINT(
442 std::cerr << "param type is ";
443 ast::print( std::cerr, paramType );
444 std::cerr << std::endl << "arg type is ";
445 ast::print( std::cerr, argType );
446 std::cerr << std::endl;
447 )
448
449 if ( unify( paramType, argType, env, need, have, open ) ) {
450 unsigned nextExpl = results[i].nextExpl + 1;
451 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
452
453 results.emplace_back(
454 i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ), nextArg,
455 nTuples, Cost::zero, nextExpl, results[i].explAlt );
456 }
457
458 continue;
459 }
460
461 // use default initializers if out of arguments
462 if ( nextArg >= args.size() ) {
463 if ( const ast::ConstantExpr * cnst = getDefaultValue( init ) ) {
464 ast::TypeEnvironment env = results[i].env;
465 ast::AssertionSet need = results[i].need, have = results[i].have;
466 ast::OpenVarSet open = results[i].open;
467
468 if ( unify( paramType, cnst->result, env, need, have, open ) ) {
469 results.emplace_back(
470 i, new ast::DefaultArgExpr{ cnst->location, cnst }, std::move( env ),
471 std::move( need ), std::move( have ), std::move( open ), nextArg, nTuples );
472 }
473 }
474
475 continue;
476 }
477
478 // Check each possible next argument
479 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
480 const ExplodedArg & expl = args[nextArg][j];
481
482 // fresh copies of parent parameters for this iteration
483 ast::TypeEnvironment env = results[i].env;
484 ast::AssertionSet need = results[i].need, have = results[i].have;
485 ast::OpenVarSet open = results[i].open;
486
487 env.addActual( expl.env, open );
488
489 // skip empty tuple arguments by (nearly) cloning parent into next gen
490 if ( expl.exprs.empty() ) {
491 results.emplace_back(
492 results[i], std::move( env ), std::move( need ), std::move( have ), std::move( open ),
493 nextArg + 1, expl.cost );
494
495 continue;
496 }
497
498 // consider only first exploded arg
499 const ast::Expr * expr = expl.exprs.front();
500 const ast::Type * argType = expr->result;
501
502 PRINT(
503 std::cerr << "param type is ";
504 ast::print( std::cerr, paramType );
505 std::cerr << std::endl << "arg type is ";
506 ast::print( std::cerr, argType );
507 std::cerr << std::endl;
508 )
509
510 // attempt to unify types
511 ast::ptr<ast::Type> common;
512 if ( unify( paramType, argType, env, need, have, open, common ) ) {
513 // add new result
514 assert( common );
515 // auto attrType = common.as<ast::EnumAttrType>();
516 // if ( attrType && ( attrType->attr == ast::EnumAttribute::Value ) ) {
517 // auto callExpr = new ast::UntypedExpr(
518 // expr->location, new ast::NameExpr( expr->location, "valueE"), {expr} );
519 // CandidateFinder finder( context, env );
520 // finder.find( callExpr );
521 // CandidateList winners = findMinCost( finder.candidates );
522 // if (winners.size() != 1) {
523 // SemanticError( callExpr, "Ambiguous expression in valueE" );
524 // }
525 // CandidateRef & choice = winners.front();
526 // choice->expr = referenceToRvalueConversion( choice->expr, choice->cost );
527
528 // results.emplace_back(
529 // i, choice->expr,
530 // std::move( env ), std::move( need ), std::move( have ), std::move( open ),
531 // nextArg + 1, nTuples, expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
532 // } else {
533 results.emplace_back(
534 i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ),
535 nextArg + 1, nTuples, expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
536 //}
537 }
538 }
539 }
540
541 // reset for next parameter
542 genStart = genEnd;
543
544 return genEnd != results.size(); // were any new results added?
545 }
546
547 /// Generate a cast expression from `arg` to `toType`
548 const ast::Expr * restructureCast(
549 ast::ptr< ast::Expr > & arg, const ast::Type * toType, ast::GeneratedFlag isGenerated = ast::GeneratedCast
550 ) {
551 if (
552 arg->result->size() > 1
553 && ! toType->isVoid()
554 && ! dynamic_cast< const ast::ReferenceType * >( toType )
555 ) {
556 // Argument is a tuple and the target type is neither void nor a reference. Cast each
557 // member of the tuple to its corresponding target type, producing the tuple of those
558 // cast expressions. If there are more components of the tuple than components in the
559 // target type, then excess components do not come out in the result expression (but
560 // UniqueExpr ensures that the side effects will still be produced)
561 if ( Tuples::maybeImpureIgnoreUnique( arg ) ) {
562 // expressions which may contain side effects require a single unique instance of
563 // the expression
564 arg = new ast::UniqueExpr{ arg->location, arg };
565 }
566 std::vector< ast::ptr< ast::Expr > > components;
567 for ( unsigned i = 0; i < toType->size(); ++i ) {
568 // cast each component
569 ast::ptr< ast::Expr > idx = new ast::TupleIndexExpr{ arg->location, arg, i };
570 components.emplace_back(
571 restructureCast( idx, toType->getComponent( i ), isGenerated ) );
572 }
573 return new ast::TupleExpr{ arg->location, std::move( components ) };
574 } else {
575 // handle normally
576 return new ast::CastExpr{ arg->location, arg, toType, isGenerated };
577 }
578 }
579
580 /// Gets the name from an untyped member expression (must be NameExpr)
581 const std::string & getMemberName( const ast::UntypedMemberExpr * memberExpr ) {
582 if ( memberExpr->member.as< ast::ConstantExpr >() ) {
583 SemanticError( memberExpr, "Indexed access to struct fields unsupported: " );
584 }
585
586 return memberExpr->member.strict_as< ast::NameExpr >()->name;
587 }
588
589 /// Actually visits expressions to find their candidate interpretations
590 class Finder final : public ast::WithShortCircuiting {
591 const ResolveContext & context;
592 const ast::SymbolTable & symtab;
593 public:
594 // static size_t traceId;
595 CandidateFinder & selfFinder;
596 CandidateList & candidates;
597 const ast::TypeEnvironment & tenv;
598 ast::ptr< ast::Type > & targetType;
599
600 enum Errors {
601 NotFound,
602 NoMatch,
603 ArgsToFew,
604 ArgsToMany,
605 RetsToFew,
606 RetsToMany,
607 NoReason
608 };
609
610 struct {
611 Errors code = NotFound;
612 } reason;
613
614 Finder( CandidateFinder & f )
615 : context( f.context ), symtab( context.symtab ), selfFinder( f ),
616 candidates( f.candidates ), tenv( f.env ), targetType( f.targetType ) {}
617
618 void previsit( const ast::Node * ) { visit_children = false; }
619
620 /// Convenience to add candidate to list
621 template<typename... Args>
622 void addCandidate( Args &&... args ) {
623 candidates.emplace_back( new Candidate{ std::forward<Args>( args )... } );
624 reason.code = NoReason;
625 }
626
627 void postvisit( const ast::ApplicationExpr * applicationExpr ) {
628 addCandidate( applicationExpr, tenv );
629 }
630
631 /// Set up candidate assertions for inference
632 void inferParameters( CandidateRef & newCand, CandidateList & out );
633
634 /// Completes a function candidate with arguments located
635 void validateFunctionCandidate(
636 const CandidateRef & func, ArgPack & result, const std::vector< ArgPack > & results,
637 CandidateList & out );
638
639 /// Builds a list of candidates for a function, storing them in out
640 void makeFunctionCandidates(
641 const CodeLocation & location,
642 const CandidateRef & func, const ast::FunctionType * funcType,
643 const ExplodedArgs & args, CandidateList & out );
644
645 /// Adds implicit struct-conversions to the alternative list
646 void addAnonConversions( const CandidateRef & cand );
647
648 /// Adds aggregate member interpretations
649 void addAggMembers(
650 const ast::BaseInstType * aggrInst, const ast::Expr * expr,
651 const Candidate & cand, const Cost & addedCost, const std::string & name
652 );
653
654 /// Adds tuple member interpretations
655 void addTupleMembers(
656 const ast::TupleType * tupleType, const ast::Expr * expr, const Candidate & cand,
657 const Cost & addedCost, const ast::Expr * member
658 );
659
660 /// true if expression is an lvalue
661 static bool isLvalue( const ast::Expr * x ) {
662 return x->result && ( x->get_lvalue() || x->result.as< ast::ReferenceType >() );
663 }
664
665 void postvisit( const ast::UntypedExpr * untypedExpr );
666 void postvisit( const ast::VariableExpr * variableExpr );
667 void postvisit( const ast::ConstantExpr * constantExpr );
668 void postvisit( const ast::SizeofExpr * sizeofExpr );
669 void postvisit( const ast::AlignofExpr * alignofExpr );
670 void postvisit( const ast::AddressExpr * addressExpr );
671 void postvisit( const ast::LabelAddressExpr * labelExpr );
672 void postvisit( const ast::CastExpr * castExpr );
673 void postvisit( const ast::VirtualCastExpr * castExpr );
674 void postvisit( const ast::KeywordCastExpr * castExpr );
675 void postvisit( const ast::UntypedMemberExpr * memberExpr );
676 void postvisit( const ast::MemberExpr * memberExpr );
677 void postvisit( const ast::NameExpr * nameExpr );
678 void postvisit( const ast::UntypedOffsetofExpr * offsetofExpr );
679 void postvisit( const ast::OffsetofExpr * offsetofExpr );
680 void postvisit( const ast::OffsetPackExpr * offsetPackExpr );
681 void postvisit( const ast::LogicalExpr * logicalExpr );
682 void postvisit( const ast::ConditionalExpr * conditionalExpr );
683 void postvisit( const ast::CommaExpr * commaExpr );
684 void postvisit( const ast::ImplicitCopyCtorExpr * ctorExpr );
685 void postvisit( const ast::ConstructorExpr * ctorExpr );
686 void postvisit( const ast::RangeExpr * rangeExpr );
687 void postvisit( const ast::UntypedTupleExpr * tupleExpr );
688 void postvisit( const ast::TupleExpr * tupleExpr );
689 void postvisit( const ast::TupleIndexExpr * tupleExpr );
690 void postvisit( const ast::TupleAssignExpr * tupleExpr );
691 void postvisit( const ast::UniqueExpr * unqExpr );
692 void postvisit( const ast::StmtExpr * stmtExpr );
693 void postvisit( const ast::UntypedInitExpr * initExpr );
694 void postvisit( const ast::QualifiedNameExpr * qualifiedExpr );
695
696 void postvisit( const ast::InitExpr * ) {
697 assertf( false, "CandidateFinder should never see a resolved InitExpr." );
698 }
699
700 void postvisit( const ast::DeletedExpr * ) {
701 assertf( false, "CandidateFinder should never see a DeletedExpr." );
702 }
703
704 void postvisit( const ast::GenericExpr * ) {
705 assertf( false, "_Generic is not yet supported." );
706 }
707 };
708
709 /// Set up candidate assertions for inference
710 void Finder::inferParameters( CandidateRef & newCand, CandidateList & out ) {
711 // Set need bindings for any unbound assertions
712 ast::UniqueId crntResnSlot = 0; // matching ID for this expression's assertions
713 for ( auto & assn : newCand->need ) {
714 // skip already-matched assertions
715 if ( assn.second.resnSlot != 0 ) continue;
716 // assign slot for expression if needed
717 if ( crntResnSlot == 0 ) { crntResnSlot = ++globalResnSlot; }
718 // fix slot to assertion
719 assn.second.resnSlot = crntResnSlot;
720 }
721 // pair slot to expression
722 if ( crntResnSlot != 0 ) {
723 newCand->expr.get_and_mutate()->inferred.resnSlots().emplace_back( crntResnSlot );
724 }
725
726 // add to output list; assertion satisfaction will occur later
727 out.emplace_back( newCand );
728 }
729
730 /// Completes a function candidate with arguments located
731 void Finder::validateFunctionCandidate(
732 const CandidateRef & func, ArgPack & result, const std::vector< ArgPack > & results,
733 CandidateList & out
734 ) {
735 ast::ApplicationExpr * appExpr =
736 new ast::ApplicationExpr{ func->expr->location, func->expr };
737 // sum cost and accumulate arguments
738 std::deque< const ast::Expr * > args;
739 Cost cost = func->cost;
740 const ArgPack * pack = &result;
741 while ( pack->expr ) {
742 args.emplace_front( pack->expr );
743 cost += pack->cost;
744 pack = &results[pack->parent];
745 }
746 std::vector< ast::ptr< ast::Expr > > vargs( args.begin(), args.end() );
747 appExpr->args = std::move( vargs );
748 // build and validate new candidate
749 auto newCand =
750 std::make_shared<Candidate>( appExpr, result.env, result.open, result.need, cost );
751 PRINT(
752 std::cerr << "instantiate function success: " << appExpr << std::endl;
753 std::cerr << "need assertions:" << std::endl;
754 ast::print( std::cerr, result.need, 2 );
755 )
756 inferParameters( newCand, out );
757 }
758
759 /// Builds a list of candidates for a function, storing them in out
760 void Finder::makeFunctionCandidates(
761 const CodeLocation & location,
762 const CandidateRef & func, const ast::FunctionType * funcType,
763 const ExplodedArgs & args, CandidateList & out
764 ) {
765 ast::OpenVarSet funcOpen;
766 ast::AssertionSet funcNeed, funcHave;
767 ast::TypeEnvironment funcEnv{ func->env };
768 makeUnifiableVars( funcType, funcOpen, funcNeed );
769 // add all type variables as open variables now so that those not used in the
770 // parameter list are still considered open
771 funcEnv.add( funcType->forall );
772
773 if ( targetType && ! targetType->isVoid() && ! funcType->returns.empty() ) {
774 // attempt to narrow based on expected target type
775 const ast::Type * returnType = funcType->returns.front();
776 if ( selfFinder.strictMode ) {
777 if ( !unifyExact(
778 returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen, noWiden() ) // xxx - is no widening correct?
779 ) {
780 // unification failed, do not pursue this candidate
781 return;
782 }
783 } else {
784 if ( !unify(
785 returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen )
786 ) {
787 // unification failed, do not pursue this candidate
788 return;
789 }
790 }
791 }
792
793 // iteratively build matches, one parameter at a time
794 std::vector< ArgPack > results;
795 results.emplace_back( funcEnv, funcNeed, funcHave, funcOpen );
796 std::size_t genStart = 0;
797
798 // xxx - how to handle default arg after change to ftype representation?
799 if (const ast::VariableExpr * varExpr = func->expr.as<ast::VariableExpr>()) {
800 if (const ast::FunctionDecl * funcDecl = varExpr->var.as<ast::FunctionDecl>()) {
801 // function may have default args only if directly calling by name
802 // must use types on candidate however, due to RenameVars substitution
803 auto nParams = funcType->params.size();
804
805 for (size_t i=0; i<nParams; ++i) {
806 auto obj = funcDecl->params[i].strict_as<ast::ObjectDecl>();
807 if ( !instantiateArgument( location,
808 funcType->params[i], obj->init, args, results, genStart, context)) return;
809 }
810 goto endMatch;
811 }
812 }
813 for ( const auto & param : funcType->params ) {
814 // Try adding the arguments corresponding to the current parameter to the existing
815 // matches
816 // no default args for indirect calls
817 if ( !instantiateArgument( location,
818 param, nullptr, args, results, genStart, context ) ) return;
819 }
820
821 endMatch:
822 if ( funcType->isVarArgs ) {
823 // append any unused arguments to vararg pack
824 std::size_t genEnd;
825 do {
826 genEnd = results.size();
827
828 // iterate results
829 for ( std::size_t i = genStart; i < genEnd; ++i ) {
830 unsigned nextArg = results[i].nextArg;
831
832 // use remainder of exploded tuple if present
833 if ( results[i].hasExpl() ) {
834 const ExplodedArg & expl = results[i].getExpl( args );
835
836 unsigned nextExpl = results[i].nextExpl + 1;
837 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
838
839 results.emplace_back(
840 i, expl.exprs[ results[i].nextExpl ], copy( results[i].env ),
841 copy( results[i].need ), copy( results[i].have ),
842 copy( results[i].open ), nextArg, 0, Cost::zero, nextExpl,
843 results[i].explAlt );
844
845 continue;
846 }
847
848 // finish result when out of arguments
849 if ( nextArg >= args.size() ) {
850 validateFunctionCandidate( func, results[i], results, out );
851
852 continue;
853 }
854
855 // add each possible next argument
856 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
857 const ExplodedArg & expl = args[nextArg][j];
858
859 // fresh copies of parent parameters for this iteration
860 ast::TypeEnvironment env = results[i].env;
861 ast::OpenVarSet open = results[i].open;
862
863 env.addActual( expl.env, open );
864
865 // skip empty tuple arguments by (nearly) cloning parent into next gen
866 if ( expl.exprs.empty() ) {
867 results.emplace_back(
868 results[i], std::move( env ), copy( results[i].need ),
869 copy( results[i].have ), std::move( open ), nextArg + 1,
870 expl.cost );
871
872 continue;
873 }
874
875 // add new result
876 results.emplace_back(
877 i, expl.exprs.front(), std::move( env ), copy( results[i].need ),
878 copy( results[i].have ), std::move( open ), nextArg + 1, 0, expl.cost,
879 expl.exprs.size() == 1 ? 0 : 1, j );
880 }
881 }
882
883 genStart = genEnd;
884 } while( genEnd != results.size() );
885 } else {
886 // filter out the results that don't use all the arguments
887 for ( std::size_t i = genStart; i < results.size(); ++i ) {
888 ArgPack & result = results[i];
889 if ( ! result.hasExpl() && result.nextArg >= args.size() ) {
890 validateFunctionCandidate( func, result, results, out );
891 }
892 }
893 }
894 }
895
896 /// Adds implicit struct-conversions to the alternative list
897 void Finder::addAnonConversions( const CandidateRef & cand ) {
898 // adds anonymous member interpretations whenever an aggregate value type is seen.
899 // it's okay for the aggregate expression to have reference type -- cast it to the
900 // base type to treat the aggregate as the referenced value
901 ast::ptr< ast::Expr > aggrExpr( cand->expr );
902 ast::ptr< ast::Type > & aggrType = aggrExpr.get_and_mutate()->result;
903 cand->env.apply( aggrType );
904
905 if ( aggrType.as< ast::ReferenceType >() ) {
906 aggrExpr = new ast::CastExpr{ aggrExpr, aggrType->stripReferences() };
907 }
908
909 if ( auto structInst = aggrExpr->result.as< ast::StructInstType >() ) {
910 addAggMembers( structInst, aggrExpr, *cand, Cost::unsafe, "" );
911 } else if ( auto unionInst = aggrExpr->result.as< ast::UnionInstType >() ) {
912 addAggMembers( unionInst, aggrExpr, *cand, Cost::unsafe, "" );
913 } else if ( auto enumInst = aggrExpr->result.as< ast::EnumInstType >() ) {
914 if ( enumInst->base->base ) {
915 CandidateFinder finder( context, tenv );
916 auto location = aggrExpr->location;
917 auto callExpr = new ast::UntypedExpr(
918 location, new ast::NameExpr( location, "valueE" ), {aggrExpr}
919 );
920 finder.find( callExpr );
921 CandidateList winners = findMinCost( finder.candidates );
922 if (winners.size() != 1) {
923 SemanticError( callExpr, "Ambiguous expression in valueE" );
924 }
925 CandidateRef & choice = winners.front();
926 // choice->cost.incSafe();
927 candidates.emplace_back( std::move(choice) );
928 }
929
930 }
931 }
932
933 /// Adds aggregate member interpretations
934 void Finder::addAggMembers(
935 const ast::BaseInstType * aggrInst, const ast::Expr * expr,
936 const Candidate & cand, const Cost & addedCost, const std::string & name
937 ) {
938 for ( const ast::Decl * decl : aggrInst->lookup( name ) ) {
939 auto dwt = strict_dynamic_cast< const ast::DeclWithType * >( decl );
940 CandidateRef newCand = std::make_shared<Candidate>(
941 cand, new ast::MemberExpr{ expr->location, dwt, expr }, addedCost );
942 // add anonymous member interpretations whenever an aggregate value type is seen
943 // as a member expression
944 addAnonConversions( newCand );
945 candidates.emplace_back( std::move( newCand ) );
946 }
947 }
948
949 /// Adds tuple member interpretations
950 void Finder::addTupleMembers(
951 const ast::TupleType * tupleType, const ast::Expr * expr, const Candidate & cand,
952 const Cost & addedCost, const ast::Expr * member
953 ) {
954 if ( auto constantExpr = dynamic_cast< const ast::ConstantExpr * >( member ) ) {
955 // get the value of the constant expression as an int, must be between 0 and the
956 // length of the tuple to have meaning
957 long long val = constantExpr->intValue();
958 if ( val >= 0 && (unsigned long long)val < tupleType->size() ) {
959 addCandidate(
960 cand, new ast::TupleIndexExpr{ expr->location, expr, (unsigned)val },
961 addedCost );
962 }
963 }
964 }
965
966 void Finder::postvisit( const ast::UntypedExpr * untypedExpr ) {
967 std::vector< CandidateFinder > argCandidates =
968 selfFinder.findSubExprs( untypedExpr->args );
969
970 // take care of possible tuple assignments
971 // if not tuple assignment, handled as normal function call
972 Tuples::handleTupleAssignment( selfFinder, untypedExpr, argCandidates );
973
974 CandidateFinder funcFinder( context, tenv );
975 if (auto nameExpr = untypedExpr->func.as<ast::NameExpr>()) {
976 auto kind = ast::SymbolTable::getSpecialFunctionKind(nameExpr->name);
977 if (kind != ast::SymbolTable::SpecialFunctionKind::NUMBER_OF_KINDS) {
978 assertf(!argCandidates.empty(), "special function call without argument");
979 for (auto & firstArgCand: argCandidates[0]) {
980 ast::ptr<ast::Type> argType = firstArgCand->expr->result;
981 firstArgCand->env.apply(argType);
982 // strip references
983 // xxx - is this correct?
984 while (argType.as<ast::ReferenceType>()) argType = argType.as<ast::ReferenceType>()->base;
985
986 // convert 1-tuple to plain type
987 if (auto tuple = argType.as<ast::TupleType>()) {
988 if (tuple->size() == 1) {
989 argType = tuple->types[0];
990 }
991 }
992
993 // if argType is an unbound type parameter, all special functions need to be searched.
994 if (isUnboundType(argType)) {
995 funcFinder.otypeKeys.clear();
996 break;
997 }
998
999 if (argType.as<ast::PointerType>()) funcFinder.otypeKeys.insert(Mangle::Encoding::pointer);
1000 else funcFinder.otypeKeys.insert(Mangle::mangle(argType, Mangle::NoGenericParams | Mangle::Type));
1001 }
1002 }
1003 }
1004 // if candidates are already produced, do not fail
1005 // xxx - is it possible that handleTupleAssignment and main finder both produce candidates?
1006 // this means there exists ctor/assign functions with a tuple as first parameter.
1007 ResolveMode mode = {
1008 true, // adjust
1009 !untypedExpr->func.as<ast::NameExpr>(), // prune if not calling by name
1010 selfFinder.candidates.empty() // failfast if other options are not found
1011 };
1012 funcFinder.find( untypedExpr->func, mode );
1013 // short-circuit if no candidates
1014 // if ( funcFinder.candidates.empty() ) return;
1015
1016 reason.code = NoMatch;
1017
1018 // find function operators
1019 ast::ptr< ast::Expr > opExpr = new ast::NameExpr{ untypedExpr->location, "?()" }; // ??? why not ?{}
1020 CandidateFinder opFinder( context, tenv );
1021 // okay if there aren't any function operations
1022 opFinder.find( opExpr, ResolveMode::withoutFailFast() );
1023 PRINT(
1024 std::cerr << "known function ops:" << std::endl;
1025 print( std::cerr, opFinder.candidates, 1 );
1026 )
1027
1028 // pre-explode arguments
1029 ExplodedArgs argExpansions;
1030 for ( const CandidateFinder & args : argCandidates ) {
1031 argExpansions.emplace_back();
1032 auto & argE = argExpansions.back();
1033 for ( const CandidateRef & arg : args ) { argE.emplace_back( *arg, symtab ); }
1034 }
1035
1036 // Find function matches
1037 CandidateList found;
1038 SemanticErrorException errors;
1039 for ( CandidateRef & func : funcFinder ) {
1040 try {
1041 PRINT(
1042 std::cerr << "working on alternative:" << std::endl;
1043 print( std::cerr, *func, 2 );
1044 )
1045
1046 // check if the type is a pointer to function
1047 const ast::Type * funcResult = func->expr->result->stripReferences();
1048 if ( auto pointer = dynamic_cast< const ast::PointerType * >( funcResult ) ) {
1049 if ( auto function = pointer->base.as< ast::FunctionType >() ) {
1050 // if (!selfFinder.allowVoid && function->returns.empty()) continue;
1051 CandidateRef newFunc{ new Candidate{ *func } };
1052 newFunc->expr =
1053 referenceToRvalueConversion( newFunc->expr, newFunc->cost );
1054 makeFunctionCandidates( untypedExpr->location,
1055 newFunc, function, argExpansions, found );
1056 }
1057 } else if (
1058 auto inst = dynamic_cast< const ast::TypeInstType * >( funcResult )
1059 ) {
1060 if ( const ast::EqvClass * clz = func->env.lookup( *inst ) ) {
1061 if ( auto function = clz->bound.as< ast::FunctionType >() ) {
1062 CandidateRef newFunc( new Candidate( *func ) );
1063 newFunc->expr =
1064 referenceToRvalueConversion( newFunc->expr, newFunc->cost );
1065 makeFunctionCandidates( untypedExpr->location,
1066 newFunc, function, argExpansions, found );
1067 }
1068 }
1069 }
1070 } catch ( SemanticErrorException & e ) { errors.append( e ); }
1071 }
1072
1073 // Find matches on function operators `?()`
1074 if ( ! opFinder.candidates.empty() ) {
1075 // add exploded function alternatives to front of argument list
1076 std::vector< ExplodedArg > funcE;
1077 funcE.reserve( funcFinder.candidates.size() );
1078 for ( const CandidateRef & func : funcFinder ) {
1079 funcE.emplace_back( *func, symtab );
1080 }
1081 argExpansions.emplace_front( std::move( funcE ) );
1082
1083 for ( const CandidateRef & op : opFinder ) {
1084 try {
1085 // check if type is pointer-to-function
1086 const ast::Type * opResult = op->expr->result->stripReferences();
1087 if ( auto pointer = dynamic_cast< const ast::PointerType * >( opResult ) ) {
1088 if ( auto function = pointer->base.as< ast::FunctionType >() ) {
1089 CandidateRef newOp{ new Candidate{ *op} };
1090 newOp->expr =
1091 referenceToRvalueConversion( newOp->expr, newOp->cost );
1092 makeFunctionCandidates( untypedExpr->location,
1093 newOp, function, argExpansions, found );
1094 }
1095 }
1096 } catch ( SemanticErrorException & e ) { errors.append( e ); }
1097 }
1098 }
1099
1100 // Implement SFINAE; resolution errors are only errors if there aren't any non-error
1101 // candidates
1102 if ( found.empty() && ! errors.isEmpty() ) { throw errors; }
1103
1104 // only keep the best matching intrinsic result to match C semantics (no unexpected narrowing/widening)
1105 // TODO: keep one for each set of argument candidates?
1106 Cost intrinsicCost = Cost::infinity;
1107 CandidateList intrinsicResult;
1108
1109 // Compute conversion costs
1110 for ( CandidateRef & withFunc : found ) {
1111 Cost cvtCost = computeApplicationConversionCost( withFunc, symtab );
1112
1113 PRINT(
1114 auto appExpr = withFunc->expr.strict_as< ast::ApplicationExpr >();
1115 auto pointer = appExpr->func->result.strict_as< ast::PointerType >();
1116 auto function = pointer->base.strict_as< ast::FunctionType >();
1117
1118 std::cerr << "Case +++++++++++++ " << appExpr->func << std::endl;
1119 std::cerr << "parameters are:" << std::endl;
1120 ast::printAll( std::cerr, function->params, 2 );
1121 std::cerr << "arguments are:" << std::endl;
1122 ast::printAll( std::cerr, appExpr->args, 2 );
1123 std::cerr << "bindings are:" << std::endl;
1124 ast::print( std::cerr, withFunc->env, 2 );
1125 std::cerr << "cost is: " << withFunc->cost << std::endl;
1126 std::cerr << "cost of conversion is:" << cvtCost << std::endl;
1127 )
1128
1129 if ( cvtCost != Cost::infinity ) {
1130 withFunc->cvtCost = cvtCost;
1131 withFunc->cost += cvtCost;
1132 auto func = withFunc->expr.strict_as<ast::ApplicationExpr>()->func.as<ast::VariableExpr>();
1133 if (func && func->var->linkage == ast::Linkage::Intrinsic) {
1134 if (withFunc->cost < intrinsicCost) {
1135 intrinsicResult.clear();
1136 intrinsicCost = withFunc->cost;
1137 }
1138 if (withFunc->cost == intrinsicCost) {
1139 intrinsicResult.emplace_back(std::move(withFunc));
1140 }
1141 } else {
1142 candidates.emplace_back( std::move( withFunc ) );
1143 }
1144 }
1145 }
1146 spliceBegin( candidates, intrinsicResult );
1147 found = std::move( candidates );
1148
1149 // use a new list so that candidates are not examined by addAnonConversions twice
1150 // CandidateList winners = findMinCost( found );
1151 // promoteCvtCost( winners );
1152
1153 // function may return a struct/union value, in which case we need to add candidates
1154 // for implicit conversions to each of the anonymous members, which must happen after
1155 // `findMinCost`, since anon conversions are never the cheapest
1156 for ( const CandidateRef & c : found ) {
1157 addAnonConversions( c );
1158 }
1159 // would this be too slow when we don't check cost anymore?
1160 spliceBegin( candidates, found );
1161
1162 if ( candidates.empty() && targetType && ! targetType->isVoid() && !selfFinder.strictMode ) {
1163 // If resolution is unsuccessful with a target type, try again without, since it
1164 // will sometimes succeed when it wouldn't with a target type binding.
1165 // For example:
1166 // forall( otype T ) T & ?[]( T *, ptrdiff_t );
1167 // const char * x = "hello world";
1168 // unsigned char ch = x[0];
1169 // Fails with simple return type binding (xxx -- check this!) as follows:
1170 // * T is bound to unsigned char
1171 // * (x: const char *) is unified with unsigned char *, which fails
1172 // xxx -- fix this better
1173 targetType = nullptr;
1174 postvisit( untypedExpr );
1175 }
1176 }
1177
1178 void Finder::postvisit( const ast::AddressExpr * addressExpr ) {
1179 CandidateFinder finder( context, tenv );
1180 finder.find( addressExpr->arg );
1181
1182 if ( finder.candidates.empty() ) return;
1183
1184 reason.code = NoMatch;
1185
1186 for ( CandidateRef & r : finder.candidates ) {
1187 if ( !isLvalue( r->expr ) ) continue;
1188 addCandidate( *r, new ast::AddressExpr{ addressExpr->location, r->expr } );
1189 }
1190 }
1191
1192 void Finder::postvisit( const ast::LabelAddressExpr * labelExpr ) {
1193 addCandidate( labelExpr, tenv );
1194 }
1195
1196 void Finder::postvisit( const ast::CastExpr * castExpr ) {
1197 ast::ptr< ast::Type > toType = castExpr->result;
1198 assert( toType );
1199 toType = resolveTypeof( toType, context );
1200 toType = adjustExprType( toType, tenv, symtab );
1201
1202 CandidateFinder finder( context, tenv, toType );
1203 if (toType->isVoid()) {
1204 finder.allowVoid = true;
1205 }
1206 if ( castExpr->kind == ast::CastExpr::Return ) {
1207 finder.strictMode = true;
1208 finder.find( castExpr->arg, ResolveMode::withAdjustment() );
1209
1210 // return casts are eliminated (merely selecting an overload, no actual operation)
1211 candidates = std::move(finder.candidates);
1212 }
1213 finder.find( castExpr->arg, ResolveMode::withAdjustment() );
1214
1215 if ( !finder.candidates.empty() ) reason.code = NoMatch;
1216
1217 CandidateList matches;
1218 Cost minExprCost = Cost::infinity;
1219 Cost minCastCost = Cost::infinity;
1220 for ( CandidateRef & cand : finder.candidates ) {
1221 ast::AssertionSet need( cand->need.begin(), cand->need.end() ), have;
1222 ast::OpenVarSet open( cand->open );
1223
1224 cand->env.extractOpenVars( open );
1225
1226 // It is possible that a cast can throw away some values in a multiply-valued
1227 // expression, e.g. cast-to-void, one value to zero. Figure out the prefix of the
1228 // subexpression results that are cast directly. The candidate is invalid if it
1229 // has fewer results than there are types to cast to.
1230 int discardedValues = cand->expr->result->size() - toType->size();
1231 if ( discardedValues < 0 ) continue;
1232
1233 // unification run for side-effects
1234 unify( toType, cand->expr->result, cand->env, need, have, open );
1235 Cost thisCost =
1236 (castExpr->isGenerated == ast::GeneratedFlag::GeneratedCast)
1237 ? conversionCost( cand->expr->result, toType, cand->expr->get_lvalue(), symtab, cand->env )
1238 : castCost( cand->expr->result, toType, cand->expr->get_lvalue(), symtab, cand->env );
1239
1240 PRINT(
1241 std::cerr << "working on cast with result: " << toType << std::endl;
1242 std::cerr << "and expr type: " << cand->expr->result << std::endl;
1243 std::cerr << "env: " << cand->env << std::endl;
1244 )
1245 if ( thisCost != Cost::infinity ) {
1246 PRINT(
1247 std::cerr << "has finite cost." << std::endl;
1248 )
1249 // count one safe conversion for each value that is thrown away
1250 thisCost.incSafe( discardedValues );
1251 // select first on argument cost, then conversion cost
1252 if ( cand->cost < minExprCost || ( cand->cost == minExprCost && thisCost < minCastCost ) ) {
1253 minExprCost = cand->cost;
1254 minCastCost = thisCost;
1255 matches.clear();
1256
1257
1258 }
1259 // ambiguous case, still output candidates to print in error message
1260 if ( cand->cost == minExprCost && thisCost == minCastCost ) {
1261 CandidateRef newCand = std::make_shared<Candidate>(
1262 restructureCast( cand->expr, toType, castExpr->isGenerated ),
1263 copy( cand->env ), std::move( open ), std::move( need ), cand->cost + thisCost);
1264 // currently assertions are always resolved immediately so this should have no effect.
1265 // if this somehow changes in the future (e.g. delayed by indeterminate return type)
1266 // we may need to revisit the logic.
1267 inferParameters( newCand, matches );
1268 }
1269 // else skip, better alternatives found
1270
1271 }
1272 }
1273 candidates = std::move(matches);
1274
1275 //CandidateList minArgCost = findMinCost( matches );
1276 //promoteCvtCost( minArgCost );
1277 //candidates = findMinCost( minArgCost );
1278 }
1279
1280 void Finder::postvisit( const ast::VirtualCastExpr * castExpr ) {
1281 assertf( castExpr->result, "Implicit virtual cast targets not yet supported." );
1282 CandidateFinder finder( context, tenv );
1283 // don't prune here, all alternatives guaranteed to have same type
1284 finder.find( castExpr->arg, ResolveMode::withoutPrune() );
1285 for ( CandidateRef & r : finder.candidates ) {
1286 addCandidate(
1287 *r,
1288 new ast::VirtualCastExpr{ castExpr->location, r->expr, castExpr->result } );
1289 }
1290 }
1291
1292 void Finder::postvisit( const ast::KeywordCastExpr * castExpr ) {
1293 const auto & loc = castExpr->location;
1294 assertf( castExpr->result, "Cast target should have been set in Validate." );
1295 auto ref = castExpr->result.strict_as<ast::ReferenceType>();
1296 auto inst = ref->base.strict_as<ast::StructInstType>();
1297 auto target = inst->base.get();
1298
1299 CandidateFinder finder( context, tenv );
1300
1301 auto pick_alternatives = [target, this](CandidateList & found, bool expect_ref) {
1302 for (auto & cand : found) {
1303 const ast::Type * expr = cand->expr->result.get();
1304 if (expect_ref) {
1305 auto res = dynamic_cast<const ast::ReferenceType*>(expr);
1306 if (!res) { continue; }
1307 expr = res->base.get();
1308 }
1309
1310 if (auto insttype = dynamic_cast<const ast::TypeInstType*>(expr)) {
1311 auto td = cand->env.lookup(*insttype);
1312 if (!td) { continue; }
1313 expr = td->bound.get();
1314 }
1315
1316 if (auto base = dynamic_cast<const ast::StructInstType*>(expr)) {
1317 if (base->base == target) {
1318 candidates.push_back( std::move(cand) );
1319 reason.code = NoReason;
1320 }
1321 }
1322 }
1323 };
1324
1325 try {
1326 // Attempt 1 : turn (thread&)X into (thread$&)X.__thrd
1327 // Clone is purely for memory management
1328 std::unique_ptr<const ast::Expr> tech1 { new ast::UntypedMemberExpr(loc, new ast::NameExpr(loc, castExpr->concrete_target.field), castExpr->arg) };
1329
1330 // don't prune here, since it's guaranteed all alternatives will have the same type
1331 finder.find( tech1.get(), ResolveMode::withoutPrune() );
1332 pick_alternatives(finder.candidates, false);
1333
1334 return;
1335 } catch(SemanticErrorException & ) {}
1336
1337 // Fallback : turn (thread&)X into (thread$&)get_thread(X)
1338 std::unique_ptr<const ast::Expr> fallback { ast::UntypedExpr::createDeref(loc, new ast::UntypedExpr(loc, new ast::NameExpr(loc, castExpr->concrete_target.getter), { castExpr->arg })) };
1339 // don't prune here, since it's guaranteed all alternatives will have the same type
1340 finder.find( fallback.get(), ResolveMode::withoutPrune() );
1341
1342 pick_alternatives(finder.candidates, true);
1343
1344 // Whatever happens here, we have no more fallbacks
1345 }
1346
1347 void Finder::postvisit( const ast::UntypedMemberExpr * memberExpr ) {
1348 CandidateFinder aggFinder( context, tenv );
1349 aggFinder.find( memberExpr->aggregate, ResolveMode::withAdjustment() );
1350 for ( CandidateRef & agg : aggFinder.candidates ) {
1351 // it's okay for the aggregate expression to have reference type -- cast it to the
1352 // base type to treat the aggregate as the referenced value
1353 Cost addedCost = Cost::zero;
1354 agg->expr = referenceToRvalueConversion( agg->expr, addedCost );
1355
1356 // find member of the given type
1357 if ( auto structInst = agg->expr->result.as< ast::StructInstType >() ) {
1358 addAggMembers(
1359 structInst, agg->expr, *agg, addedCost, getMemberName( memberExpr ) );
1360 } else if ( auto unionInst = agg->expr->result.as< ast::UnionInstType >() ) {
1361 addAggMembers(
1362 unionInst, agg->expr, *agg, addedCost, getMemberName( memberExpr ) );
1363 } else if ( auto tupleType = agg->expr->result.as< ast::TupleType >() ) {
1364 addTupleMembers( tupleType, agg->expr, *agg, addedCost, memberExpr->member );
1365 }
1366 }
1367 }
1368
1369 void Finder::postvisit( const ast::MemberExpr * memberExpr ) {
1370 addCandidate( memberExpr, tenv );
1371 }
1372
1373 void Finder::postvisit( const ast::NameExpr * nameExpr ) {
1374 std::vector< ast::SymbolTable::IdData > declList;
1375 if (!selfFinder.otypeKeys.empty()) {
1376 auto kind = ast::SymbolTable::getSpecialFunctionKind(nameExpr->name);
1377 assertf(kind != ast::SymbolTable::SpecialFunctionKind::NUMBER_OF_KINDS, "special lookup with non-special target: %s", nameExpr->name.c_str());
1378
1379 for (auto & otypeKey: selfFinder.otypeKeys) {
1380 auto result = symtab.specialLookupId(kind, otypeKey);
1381 declList.insert(declList.end(), std::make_move_iterator(result.begin()), std::make_move_iterator(result.end()));
1382 }
1383 } else {
1384 declList = symtab.lookupId( nameExpr->name );
1385 }
1386 PRINT( std::cerr << "nameExpr is " << nameExpr->name << std::endl; )
1387
1388 if ( declList.empty() ) return;
1389
1390 reason.code = NoMatch;
1391
1392 for ( auto & data : declList ) {
1393 Cost cost = Cost::zero;
1394 ast::Expr * newExpr = data.combine( nameExpr->location, cost );
1395
1396 bool bentConversion = false;
1397 if ( auto inst = newExpr->result.as<ast::EnumInstType>() ) {
1398 if ( inst->base && inst->base->base ) {
1399 bentConversion = true;
1400 }
1401 }
1402
1403 CandidateRef newCand = std::make_shared<Candidate>(
1404 newExpr, copy( tenv ), ast::OpenVarSet{}, ast::AssertionSet{}, bentConversion? Cost::safe: Cost::zero,
1405 cost );
1406
1407 if (newCand->expr->env) {
1408 newCand->env.add(*newCand->expr->env);
1409 auto mutExpr = newCand->expr.get_and_mutate();
1410 mutExpr->env = nullptr;
1411 newCand->expr = mutExpr;
1412 }
1413
1414 PRINT(
1415 std::cerr << "decl is ";
1416 ast::print( std::cerr, data.id );
1417 std::cerr << std::endl;
1418 std::cerr << "newExpr is ";
1419 ast::print( std::cerr, newExpr );
1420 std::cerr << std::endl;
1421 )
1422 newCand->expr = ast::mutate_field(
1423 newCand->expr.get(), &ast::Expr::result,
1424 renameTyVars( newCand->expr->result ) );
1425 // add anonymous member interpretations whenever an aggregate value type is seen
1426 // as a name expression
1427 addAnonConversions( newCand );
1428 candidates.emplace_back( std::move( newCand ) );
1429 }
1430 }
1431
1432 void Finder::postvisit(const ast::VariableExpr *variableExpr) {
1433 // not sufficient to just pass `variableExpr` here, type might have changed
1434
1435 auto cand = new Candidate(variableExpr, tenv);
1436 candidates.emplace_back(cand);
1437 }
1438
1439 void Finder::postvisit( const ast::ConstantExpr * constantExpr ) {
1440 addCandidate( constantExpr, tenv );
1441 }
1442
1443 void Finder::postvisit( const ast::SizeofExpr * sizeofExpr ) {
1444 if ( sizeofExpr->type ) {
1445 addCandidate(
1446 new ast::SizeofExpr{
1447 sizeofExpr->location, resolveTypeof( sizeofExpr->type, context ) },
1448 tenv );
1449 } else {
1450 // find all candidates for the argument to sizeof
1451 CandidateFinder finder( context, tenv );
1452 finder.find( sizeofExpr->expr );
1453 // find the lowest-cost candidate, otherwise ambiguous
1454 CandidateList winners = findMinCost( finder.candidates );
1455 if ( winners.size() != 1 ) {
1456 SemanticError(
1457 sizeofExpr->expr.get(), "Ambiguous expression in sizeof operand: " );
1458 }
1459 // return the lowest-cost candidate
1460 CandidateRef & choice = winners.front();
1461 choice->expr = referenceToRvalueConversion( choice->expr, choice->cost );
1462 choice->cost = Cost::zero;
1463 addCandidate( *choice, new ast::SizeofExpr{ sizeofExpr->location, choice->expr } );
1464 }
1465 }
1466
1467 void Finder::postvisit( const ast::AlignofExpr * alignofExpr ) {
1468 if ( alignofExpr->type ) {
1469 addCandidate(
1470 new ast::AlignofExpr{
1471 alignofExpr->location, resolveTypeof( alignofExpr->type, context ) },
1472 tenv );
1473 } else {
1474 // find all candidates for the argument to alignof
1475 CandidateFinder finder( context, tenv );
1476 finder.find( alignofExpr->expr );
1477 // find the lowest-cost candidate, otherwise ambiguous
1478 CandidateList winners = findMinCost( finder.candidates );
1479 if ( winners.size() != 1 ) {
1480 SemanticError(
1481 alignofExpr->expr.get(), "Ambiguous expression in alignof operand: " );
1482 }
1483 // return the lowest-cost candidate
1484 CandidateRef & choice = winners.front();
1485 choice->expr = referenceToRvalueConversion( choice->expr, choice->cost );
1486 choice->cost = Cost::zero;
1487 addCandidate(
1488 *choice, new ast::AlignofExpr{ alignofExpr->location, choice->expr } );
1489 }
1490 }
1491
1492 void Finder::postvisit( const ast::UntypedOffsetofExpr * offsetofExpr ) {
1493 const ast::BaseInstType * aggInst;
1494 if (( aggInst = offsetofExpr->type.as< ast::StructInstType >() )) ;
1495 else if (( aggInst = offsetofExpr->type.as< ast::UnionInstType >() )) ;
1496 else return;
1497
1498 for ( const ast::Decl * member : aggInst->lookup( offsetofExpr->member ) ) {
1499 auto dwt = strict_dynamic_cast< const ast::DeclWithType * >( member );
1500 addCandidate(
1501 new ast::OffsetofExpr{ offsetofExpr->location, aggInst, dwt }, tenv );
1502 }
1503 }
1504
1505 void Finder::postvisit( const ast::OffsetofExpr * offsetofExpr ) {
1506 addCandidate( offsetofExpr, tenv );
1507 }
1508
1509 void Finder::postvisit( const ast::OffsetPackExpr * offsetPackExpr ) {
1510 addCandidate( offsetPackExpr, tenv );
1511 }
1512
1513 void Finder::postvisit( const ast::LogicalExpr * logicalExpr ) {
1514 CandidateFinder finder1( context, tenv );
1515 ast::ptr<ast::Expr> arg1 = createCondExpr( logicalExpr->arg1 );
1516 finder1.find( arg1, ResolveMode::withAdjustment() );
1517 if ( finder1.candidates.empty() ) return;
1518
1519 CandidateFinder finder2( context, tenv );
1520 ast::ptr<ast::Expr> arg2 = createCondExpr( logicalExpr->arg2 );
1521 finder2.find( arg2, ResolveMode::withAdjustment() );
1522 if ( finder2.candidates.empty() ) return;
1523
1524 reason.code = NoMatch;
1525
1526 for ( const CandidateRef & r1 : finder1.candidates ) {
1527 for ( const CandidateRef & r2 : finder2.candidates ) {
1528 ast::TypeEnvironment env{ r1->env };
1529 env.simpleCombine( r2->env );
1530 ast::OpenVarSet open{ r1->open };
1531 mergeOpenVars( open, r2->open );
1532 ast::AssertionSet need;
1533 mergeAssertionSet( need, r1->need );
1534 mergeAssertionSet( need, r2->need );
1535
1536 addCandidate(
1537 new ast::LogicalExpr{
1538 logicalExpr->location, r1->expr, r2->expr, logicalExpr->isAnd },
1539 std::move( env ), std::move( open ), std::move( need ), r1->cost + r2->cost );
1540 }
1541 }
1542 }
1543
1544 void Finder::postvisit( const ast::ConditionalExpr * conditionalExpr ) {
1545 // candidates for condition
1546 ast::ptr<ast::Expr> arg1 = createCondExpr( conditionalExpr->arg1 );
1547 CandidateFinder finder1( context, tenv );
1548 finder1.find( arg1, ResolveMode::withAdjustment() );
1549 if ( finder1.candidates.empty() ) return;
1550
1551 // candidates for true result
1552 // FIX ME: resolves and runs arg1 twice when arg2 is missing.
1553 ast::Expr const * arg2 = conditionalExpr->arg2;
1554 arg2 = arg2 ? arg2 : conditionalExpr->arg1.get();
1555 CandidateFinder finder2( context, tenv );
1556 finder2.allowVoid = true;
1557 finder2.find( arg2, ResolveMode::withAdjustment() );
1558 if ( finder2.candidates.empty() ) return;
1559
1560 // candidates for false result
1561 CandidateFinder finder3( context, tenv );
1562 finder3.allowVoid = true;
1563 finder3.find( conditionalExpr->arg3, ResolveMode::withAdjustment() );
1564 if ( finder3.candidates.empty() ) return;
1565
1566 reason.code = NoMatch;
1567
1568 for ( const CandidateRef & r1 : finder1.candidates ) {
1569 for ( const CandidateRef & r2 : finder2.candidates ) {
1570 for ( const CandidateRef & r3 : finder3.candidates ) {
1571 ast::TypeEnvironment env{ r1->env };
1572 env.simpleCombine( r2->env );
1573 env.simpleCombine( r3->env );
1574 ast::OpenVarSet open{ r1->open };
1575 mergeOpenVars( open, r2->open );
1576 mergeOpenVars( open, r3->open );
1577 ast::AssertionSet need;
1578 mergeAssertionSet( need, r1->need );
1579 mergeAssertionSet( need, r2->need );
1580 mergeAssertionSet( need, r3->need );
1581 ast::AssertionSet have;
1582
1583 // unify true and false results, then infer parameters to produce new
1584 // candidates
1585 ast::ptr< ast::Type > common;
1586 if (
1587 unify(
1588 r2->expr->result, r3->expr->result, env, need, have, open,
1589 common )
1590 ) {
1591 // generate typed expression
1592 ast::ConditionalExpr * newExpr = new ast::ConditionalExpr{
1593 conditionalExpr->location, r1->expr, r2->expr, r3->expr };
1594 newExpr->result = common ? common : r2->expr->result;
1595 // convert both options to result type
1596 Cost cost = r1->cost + r2->cost + r3->cost;
1597 newExpr->arg2 = computeExpressionConversionCost(
1598 newExpr->arg2, newExpr->result, symtab, env, cost );
1599 newExpr->arg3 = computeExpressionConversionCost(
1600 newExpr->arg3, newExpr->result, symtab, env, cost );
1601 // output candidate
1602 CandidateRef newCand = std::make_shared<Candidate>(
1603 newExpr, std::move( env ), std::move( open ), std::move( need ), cost );
1604 inferParameters( newCand, candidates );
1605 }
1606 }
1607 }
1608 }
1609 }
1610
1611 void Finder::postvisit( const ast::CommaExpr * commaExpr ) {
1612 ast::TypeEnvironment env{ tenv };
1613 ast::ptr< ast::Expr > arg1 = resolveInVoidContext( commaExpr->arg1, context, env );
1614
1615 CandidateFinder finder2( context, env );
1616 finder2.find( commaExpr->arg2, ResolveMode::withAdjustment() );
1617
1618 for ( const CandidateRef & r2 : finder2.candidates ) {
1619 addCandidate( *r2, new ast::CommaExpr{ commaExpr->location, arg1, r2->expr } );
1620 }
1621 }
1622
1623 void Finder::postvisit( const ast::ImplicitCopyCtorExpr * ctorExpr ) {
1624 addCandidate( ctorExpr, tenv );
1625 }
1626
1627 void Finder::postvisit( const ast::ConstructorExpr * ctorExpr ) {
1628 CandidateFinder finder( context, tenv );
1629 finder.allowVoid = true;
1630 finder.find( ctorExpr->callExpr, ResolveMode::withoutPrune() );
1631 for ( CandidateRef & r : finder.candidates ) {
1632 addCandidate( *r, new ast::ConstructorExpr{ ctorExpr->location, r->expr } );
1633 }
1634 }
1635
1636 void Finder::postvisit( const ast::RangeExpr * rangeExpr ) {
1637 // resolve low and high, accept candidates where low and high types unify
1638 CandidateFinder finder1( context, tenv );
1639 finder1.find( rangeExpr->low, ResolveMode::withAdjustment() );
1640 if ( finder1.candidates.empty() ) return;
1641
1642 CandidateFinder finder2( context, tenv );
1643 finder2.find( rangeExpr->high, ResolveMode::withAdjustment() );
1644 if ( finder2.candidates.empty() ) return;
1645
1646 reason.code = NoMatch;
1647
1648 for ( const CandidateRef & r1 : finder1.candidates ) {
1649 for ( const CandidateRef & r2 : finder2.candidates ) {
1650 ast::TypeEnvironment env{ r1->env };
1651 env.simpleCombine( r2->env );
1652 ast::OpenVarSet open{ r1->open };
1653 mergeOpenVars( open, r2->open );
1654 ast::AssertionSet need;
1655 mergeAssertionSet( need, r1->need );
1656 mergeAssertionSet( need, r2->need );
1657 ast::AssertionSet have;
1658
1659 ast::ptr< ast::Type > common;
1660 if (
1661 unify(
1662 r1->expr->result, r2->expr->result, env, need, have, open,
1663 common )
1664 ) {
1665 // generate new expression
1666 ast::RangeExpr * newExpr =
1667 new ast::RangeExpr{ rangeExpr->location, r1->expr, r2->expr };
1668 newExpr->result = common ? common : r1->expr->result;
1669 // add candidate
1670 CandidateRef newCand = std::make_shared<Candidate>(
1671 newExpr, std::move( env ), std::move( open ), std::move( need ),
1672 r1->cost + r2->cost );
1673 inferParameters( newCand, candidates );
1674 }
1675 }
1676 }
1677 }
1678
1679 void Finder::postvisit( const ast::UntypedTupleExpr * tupleExpr ) {
1680 std::vector< CandidateFinder > subCandidates =
1681 selfFinder.findSubExprs( tupleExpr->exprs );
1682 std::vector< CandidateList > possibilities;
1683 combos( subCandidates.begin(), subCandidates.end(), back_inserter( possibilities ) );
1684
1685 for ( const CandidateList & subs : possibilities ) {
1686 std::vector< ast::ptr< ast::Expr > > exprs;
1687 exprs.reserve( subs.size() );
1688 for ( const CandidateRef & sub : subs ) { exprs.emplace_back( sub->expr ); }
1689
1690 ast::TypeEnvironment env;
1691 ast::OpenVarSet open;
1692 ast::AssertionSet need;
1693 for ( const CandidateRef & sub : subs ) {
1694 env.simpleCombine( sub->env );
1695 mergeOpenVars( open, sub->open );
1696 mergeAssertionSet( need, sub->need );
1697 }
1698
1699 addCandidate(
1700 new ast::TupleExpr{ tupleExpr->location, std::move( exprs ) },
1701 std::move( env ), std::move( open ), std::move( need ), sumCost( subs ) );
1702 }
1703 }
1704
1705 void Finder::postvisit( const ast::TupleExpr * tupleExpr ) {
1706 addCandidate( tupleExpr, tenv );
1707 }
1708
1709 void Finder::postvisit( const ast::TupleIndexExpr * tupleExpr ) {
1710 addCandidate( tupleExpr, tenv );
1711 }
1712
1713 void Finder::postvisit( const ast::TupleAssignExpr * tupleExpr ) {
1714 addCandidate( tupleExpr, tenv );
1715 }
1716
1717 void Finder::postvisit( const ast::UniqueExpr * unqExpr ) {
1718 CandidateFinder finder( context, tenv );
1719 finder.find( unqExpr->expr, ResolveMode::withAdjustment() );
1720 for ( CandidateRef & r : finder.candidates ) {
1721 // ensure that the the id is passed on so that the expressions are "linked"
1722 addCandidate( *r, new ast::UniqueExpr{ unqExpr->location, r->expr, unqExpr->id } );
1723 }
1724 }
1725
1726 void Finder::postvisit( const ast::StmtExpr * stmtExpr ) {
1727 addCandidate( resolveStmtExpr( stmtExpr, context ), tenv );
1728 }
1729
1730 void Finder::postvisit( const ast::UntypedInitExpr * initExpr ) {
1731 // handle each option like a cast
1732 CandidateList matches;
1733 PRINT(
1734 std::cerr << "untyped init expr: " << initExpr << std::endl;
1735 )
1736 // O(n^2) checks of d-types with e-types
1737 for ( const ast::InitAlternative & initAlt : initExpr->initAlts ) {
1738 // calculate target type
1739 const ast::Type * toType = resolveTypeof( initAlt.type, context );
1740 toType = adjustExprType( toType, tenv, symtab );
1741 // The call to find must occur inside this loop, otherwise polymorphic return
1742 // types are not bound to the initialization type, since return type variables are
1743 // only open for the duration of resolving the UntypedExpr.
1744 CandidateFinder finder( context, tenv, toType );
1745 finder.find( initExpr->expr, ResolveMode::withAdjustment() );
1746
1747 Cost minExprCost = Cost::infinity;
1748 Cost minCastCost = Cost::infinity;
1749 for ( CandidateRef & cand : finder.candidates ) {
1750 if (reason.code == NotFound) reason.code = NoMatch;
1751
1752 ast::TypeEnvironment env{ cand->env };
1753 ast::AssertionSet need( cand->need.begin(), cand->need.end() ), have;
1754 ast::OpenVarSet open{ cand->open };
1755
1756 PRINT(
1757 std::cerr << " @ " << toType << " " << initAlt.designation << std::endl;
1758 )
1759
1760 // It is possible that a cast can throw away some values in a multiply-valued
1761 // expression, e.g. cast-to-void, one value to zero. Figure out the prefix of
1762 // the subexpression results that are cast directly. The candidate is invalid
1763 // if it has fewer results than there are types to cast to.
1764 int discardedValues = cand->expr->result->size() - toType->size();
1765 if ( discardedValues < 0 ) continue;
1766
1767 // unification run for side-effects
1768 ast::ptr<ast::Type> common;
1769 bool canUnify = unify( toType, cand->expr->result, env, need, have, open, common );
1770 (void) canUnify;
1771 Cost thisCost = computeConversionCost( cand->expr->result, toType, cand->expr->get_lvalue(),
1772 symtab, env );
1773 PRINT(
1774 Cost legacyCost = castCost( cand->expr->result, toType, cand->expr->get_lvalue(),
1775 symtab, env );
1776 std::cerr << "Considering initialization:";
1777 std::cerr << std::endl << " FROM: " << cand->expr->result << std::endl;
1778 std::cerr << std::endl << " TO: " << toType << std::endl;
1779 std::cerr << std::endl << " Unification " << (canUnify ? "succeeded" : "failed");
1780 std::cerr << std::endl << " Legacy cost " << legacyCost;
1781 std::cerr << std::endl << " New cost " << thisCost;
1782 std::cerr << std::endl;
1783 )
1784 if ( thisCost != Cost::infinity ) {
1785 // count one safe conversion for each value that is thrown away
1786 thisCost.incSafe( discardedValues );
1787 if ( cand->cost < minExprCost || ( cand->cost == minExprCost && thisCost < minCastCost ) ) {
1788 minExprCost = cand->cost;
1789 minCastCost = thisCost;
1790 matches.clear();
1791 }
1792 // ambiguous case, still output candidates to print in error message
1793 if ( cand->cost == minExprCost && thisCost == minCastCost ) {
1794 auto commonAsEnumAttr = common.as<ast::EnumAttrType>();
1795 if ( commonAsEnumAttr && commonAsEnumAttr->attr == ast::EnumAttribute::Value ) {
1796 auto callExpr = new ast::UntypedExpr(
1797 cand->expr->location, new ast::NameExpr( cand->expr->location, "valueE"), {cand->expr} );
1798 CandidateFinder finder( context, env );
1799 finder.find( callExpr );
1800 CandidateList winners = findMinCost( finder.candidates );
1801 if (winners.size() != 1) {
1802 SemanticError( callExpr, "Ambiguous expression in valueE" );
1803 }
1804 CandidateRef & choice = winners.front();
1805 // assert( valueCall->result );
1806 CandidateRef newCand = std::make_shared<Candidate>(
1807 new ast::InitExpr{
1808 initExpr->location,
1809 // restructureCast( cand->expr, toType ),
1810 choice->expr,
1811 initAlt.designation },
1812 std::move(env), std::move( open ), std::move( need ), cand->cost + thisCost );
1813 inferParameters( newCand, matches );
1814 } else {
1815 CandidateRef newCand = std::make_shared<Candidate>(
1816 new ast::InitExpr{
1817 initExpr->location,
1818 restructureCast( cand->expr, toType ),
1819 initAlt.designation },
1820 std::move(env), std::move( open ), std::move( need ), cand->cost + thisCost );
1821 // currently assertions are always resolved immediately so this should have no effect.
1822 // if this somehow changes in the future (e.g. delayed by indeterminate return type)
1823 // we may need to revisit the logic.
1824 inferParameters( newCand, matches );
1825 }
1826 }
1827 }
1828 }
1829 }
1830
1831 // select first on argument cost, then conversion cost
1832 // CandidateList minArgCost = findMinCost( matches );
1833 // promoteCvtCost( minArgCost );
1834 // candidates = findMinCost( minArgCost );
1835 candidates = std::move(matches);
1836 }
1837
1838 void Finder::postvisit( const ast::QualifiedNameExpr * expr ) {
1839 std::vector< ast::SymbolTable::IdData > declList = symtab.lookupId( expr->name );
1840 if ( declList.empty() ) return;
1841
1842 for ( ast::SymbolTable::IdData & data: declList ) {
1843 const ast::Type * t = data.id->get_type()->stripReferences();
1844 if ( const ast::EnumInstType * enumInstType =
1845 dynamic_cast<const ast::EnumInstType *>( t ) ) {
1846 if ( enumInstType->base->name == expr->type_decl->name ) {
1847 Cost cost = Cost::zero;
1848 ast::Expr * newExpr = data.combine( expr->location, cost );
1849 CandidateRef newCand =
1850 std::make_shared<Candidate>(
1851 newExpr, copy( tenv ), ast::OpenVarSet{},
1852 ast::AssertionSet{}, Cost::safe, cost
1853 );
1854
1855 if (newCand->expr->env) {
1856 newCand->env.add(*newCand->expr->env);
1857 auto mutExpr = newCand->expr.get_and_mutate();
1858 mutExpr->env = nullptr;
1859 newCand->expr = mutExpr;
1860 }
1861
1862 newCand->expr = ast::mutate_field(
1863 newCand->expr.get(), &ast::Expr::result,
1864 renameTyVars( newCand->expr->result ) );
1865 addAnonConversions( newCand );
1866 candidates.emplace_back( std::move( newCand ) );
1867 }
1868 }
1869 }
1870 }
1871 // size_t Finder::traceId = Stats::Heap::new_stacktrace_id("Finder");
1872 /// Prunes a list of candidates down to those that have the minimum conversion cost for a given
1873 /// return type. Skips ambiguous candidates.
1874
1875} // anonymous namespace
1876
1877bool CandidateFinder::pruneCandidates( CandidateList & candidates, CandidateList & out, std::vector<std::string> & errors ) {
1878 struct PruneStruct {
1879 CandidateRef candidate;
1880 bool ambiguous;
1881
1882 PruneStruct() = default;
1883 PruneStruct( const CandidateRef & c ) : candidate( c ), ambiguous( false ) {}
1884 };
1885
1886 // find lowest-cost candidate for each type
1887 std::unordered_map< std::string, PruneStruct > selected;
1888 // attempt to skip satisfyAssertions on more expensive alternatives if better options have been found
1889 std::sort(candidates.begin(), candidates.end(), [](const CandidateRef & x, const CandidateRef & y){return x->cost < y->cost;});
1890 for ( CandidateRef & candidate : candidates ) {
1891 std::string mangleName;
1892 {
1893 ast::ptr< ast::Type > newType = candidate->expr->result;
1894 assertf(candidate->expr->result, "Result of expression %p for candidate is null", candidate->expr.get());
1895 candidate->env.apply( newType );
1896 mangleName = Mangle::mangle( newType );
1897 }
1898
1899 auto found = selected.find( mangleName );
1900 if (found != selected.end() && found->second.candidate->cost < candidate->cost) {
1901 PRINT(
1902 std::cerr << "cost " << candidate->cost << " loses to "
1903 << found->second.candidate->cost << std::endl;
1904 )
1905 continue;
1906 }
1907
1908 // xxx - when do satisfyAssertions produce more than 1 result?
1909 // this should only happen when initial result type contains
1910 // unbound type parameters, then it should never be pruned by
1911 // the previous step, since renameTyVars guarantees the mangled name
1912 // is unique.
1913 CandidateList satisfied;
1914 bool needRecomputeKey = false;
1915 if (candidate->need.empty()) {
1916 satisfied.emplace_back(candidate);
1917 }
1918 else {
1919 satisfyAssertions(candidate, context.symtab, satisfied, errors);
1920 needRecomputeKey = true;
1921 }
1922
1923 for (auto & newCand : satisfied) {
1924 // recomputes type key, if satisfyAssertions changed it
1925 if (needRecomputeKey)
1926 {
1927 ast::ptr< ast::Type > newType = newCand->expr->result;
1928 assertf(newCand->expr->result, "Result of expression %p for candidate is null", newCand->expr.get());
1929 newCand->env.apply( newType );
1930 mangleName = Mangle::mangle( newType );
1931 }
1932 auto found = selected.find( mangleName );
1933 if ( found != selected.end() ) {
1934 // tiebreaking by picking the lower cost on CURRENT expression
1935 // NOTE: this behavior is different from C semantics.
1936 // Specific remediations are performed for C operators at postvisit(UntypedExpr).
1937 // Further investigations may take place.
1938 if ( newCand->cost < found->second.candidate->cost
1939 || (newCand->cost == found->second.candidate->cost && newCand->cvtCost < found->second.candidate->cvtCost) ) {
1940 PRINT(
1941 std::cerr << "cost " << newCand->cost << " beats "
1942 << found->second.candidate->cost << std::endl;
1943 )
1944
1945 found->second = PruneStruct{ newCand };
1946 } else if ( newCand->cost == found->second.candidate->cost && newCand->cvtCost == found->second.candidate->cvtCost ) {
1947 // if one of the candidates contains a deleted identifier, can pick the other,
1948 // since deleted expressions should not be ambiguous if there is another option
1949 // that is at least as good
1950 if ( findDeletedExpr( newCand->expr ) ) {
1951 // do nothing
1952 PRINT( std::cerr << "candidate is deleted" << std::endl; )
1953 } else if ( findDeletedExpr( found->second.candidate->expr ) ) {
1954 PRINT( std::cerr << "current is deleted" << std::endl; )
1955 found->second = PruneStruct{ newCand };
1956 } else {
1957 PRINT( std::cerr << "marking ambiguous" << std::endl; )
1958 found->second.ambiguous = true;
1959 }
1960 } else {
1961 // xxx - can satisfyAssertions increase the cost?
1962 PRINT(
1963 std::cerr << "cost " << newCand->cost << " loses to "
1964 << found->second.candidate->cost << std::endl;
1965 )
1966 }
1967 } else {
1968 selected.emplace_hint( found, mangleName, newCand );
1969 }
1970 }
1971 }
1972
1973 // report unambiguous min-cost candidates
1974 // CandidateList out;
1975 for ( auto & target : selected ) {
1976 if ( target.second.ambiguous ) continue;
1977
1978 CandidateRef cand = target.second.candidate;
1979
1980 ast::ptr< ast::Type > newResult = cand->expr->result;
1981 cand->env.applyFree( newResult );
1982 cand->expr = ast::mutate_field(
1983 cand->expr.get(), &ast::Expr::result, std::move( newResult ) );
1984
1985 out.emplace_back( cand );
1986 }
1987 // if everything is lost in satisfyAssertions, report the error
1988 return !selected.empty();
1989}
1990
1991void CandidateFinder::find( const ast::Expr * expr, ResolveMode mode ) {
1992 // Find alternatives for expression
1993 ast::Pass<Finder> finder{ *this };
1994 expr->accept( finder );
1995
1996 if ( mode.failFast && candidates.empty() ) {
1997 switch(finder.core.reason.code) {
1998 case Finder::NotFound:
1999 { SemanticError( expr, "No alternatives for expression " ); break; }
2000 case Finder::NoMatch:
2001 { SemanticError( expr, "Invalid application of existing declaration(s) in expression " ); break; }
2002 case Finder::ArgsToFew:
2003 case Finder::ArgsToMany:
2004 case Finder::RetsToFew:
2005 case Finder::RetsToMany:
2006 case Finder::NoReason:
2007 default:
2008 { SemanticError( expr->location, "No reasonable alternatives for expression : reasons unkown" ); }
2009 }
2010 }
2011
2012 /*
2013 if ( mode.satisfyAssns || mode.prune ) {
2014 // trim candidates to just those where the assertions are satisfiable
2015 // - necessary pre-requisite to pruning
2016 CandidateList satisfied;
2017 std::vector< std::string > errors;
2018 for ( CandidateRef & candidate : candidates ) {
2019 satisfyAssertions( candidate, localSyms, satisfied, errors );
2020 }
2021
2022 // fail early if none such
2023 if ( mode.failFast && satisfied.empty() ) {
2024 std::ostringstream stream;
2025 stream << "No alternatives with satisfiable assertions for " << expr << "\n";
2026 for ( const auto& err : errors ) {
2027 stream << err;
2028 }
2029 SemanticError( expr->location, stream.str() );
2030 }
2031
2032 // reset candidates
2033 candidates = move( satisfied );
2034 }
2035 */
2036
2037 // optimization: don't prune for NameExpr since it never has cost
2038 if ( mode.prune && !dynamic_cast<const ast::NameExpr *>(expr) ) {
2039 // trim candidates to single best one
2040 PRINT(
2041 std::cerr << "alternatives before prune:" << std::endl;
2042 print( std::cerr, candidates );
2043 )
2044
2045 CandidateList pruned;
2046 std::vector<std::string> errors;
2047 bool found = pruneCandidates( candidates, pruned, errors );
2048
2049 if ( mode.failFast && pruned.empty() ) {
2050 std::ostringstream stream;
2051 if (found) {
2052 CandidateList winners = findMinCost( candidates );
2053 stream << "Cannot choose between " << winners.size() << " alternatives for "
2054 "expression\n";
2055 ast::print( stream, expr );
2056 stream << " Alternatives are:\n";
2057 print( stream, winners, 1 );
2058 SemanticError( expr->location, stream.str() );
2059 }
2060 else {
2061 stream << "No alternatives with satisfiable assertions for " << expr << "\n";
2062 for ( const auto& err : errors ) {
2063 stream << err;
2064 }
2065 SemanticError( expr->location, stream.str() );
2066 }
2067 }
2068
2069 auto oldsize = candidates.size();
2070 candidates = std::move( pruned );
2071
2072 PRINT(
2073 std::cerr << "there are " << oldsize << " alternatives before elimination" << std::endl;
2074 )
2075 PRINT(
2076 std::cerr << "there are " << candidates.size() << " alternatives after elimination"
2077 << std::endl;
2078 )
2079 }
2080
2081 // adjust types after pruning so that types substituted by pruneAlternatives are correctly
2082 // adjusted
2083 if ( mode.adjust ) {
2084 for ( CandidateRef & r : candidates ) {
2085 r->expr = ast::mutate_field(
2086 r->expr.get(), &ast::Expr::result,
2087 adjustExprType( r->expr->result, r->env, context.symtab ) );
2088 }
2089 }
2090
2091 // Central location to handle gcc extension keyword, etc. for all expressions
2092 for ( CandidateRef & r : candidates ) {
2093 if ( r->expr->extension != expr->extension ) {
2094 r->expr.get_and_mutate()->extension = expr->extension;
2095 }
2096 }
2097}
2098
2099std::vector< CandidateFinder > CandidateFinder::findSubExprs(
2100 const std::vector< ast::ptr< ast::Expr > > & xs
2101) {
2102 std::vector< CandidateFinder > out;
2103
2104 for ( const auto & x : xs ) {
2105 out.emplace_back( context, env );
2106 out.back().find( x, ResolveMode::withAdjustment() );
2107
2108 PRINT(
2109 std::cerr << "findSubExprs" << std::endl;
2110 print( std::cerr, out.back().candidates );
2111 )
2112 }
2113
2114 return out;
2115}
2116
2117const ast::Expr * referenceToRvalueConversion( const ast::Expr * expr, Cost & cost ) {
2118 if ( expr->result.as< ast::ReferenceType >() ) {
2119 // cast away reference from expr
2120 cost.incReference();
2121 return new ast::CastExpr{ expr, expr->result->stripReferences() };
2122 }
2123
2124 return expr;
2125}
2126
2127Cost computeConversionCost(
2128 const ast::Type * argType, const ast::Type * paramType, bool argIsLvalue,
2129 const ast::SymbolTable & symtab, const ast::TypeEnvironment & env
2130) {
2131 PRINT(
2132 std::cerr << std::endl << "converting ";
2133 ast::print( std::cerr, argType, 2 );
2134 std::cerr << std::endl << " to ";
2135 ast::print( std::cerr, paramType, 2 );
2136 std::cerr << std::endl << "environment is: ";
2137 ast::print( std::cerr, env, 2 );
2138 std::cerr << std::endl;
2139 )
2140 Cost convCost = conversionCost( argType, paramType, argIsLvalue, symtab, env );
2141 PRINT(
2142 std::cerr << std::endl << "cost is " << convCost << std::endl;
2143 )
2144 if ( convCost == Cost::infinity ) return convCost;
2145 convCost.incPoly( polyCost( paramType, symtab, env ) + polyCost( argType, symtab, env ) );
2146 PRINT(
2147 std::cerr << "cost with polycost is " << convCost << std::endl;
2148 )
2149 return convCost;
2150}
2151
2152const ast::Expr * getValueEnumCall( const ast::Expr * expr,
2153 const ResolveContext & context, const ast::TypeEnvironment & env ) {
2154 auto callExpr = new ast::UntypedExpr(
2155 expr->location, new ast::NameExpr( expr->location, "valueE"), {expr} );
2156 CandidateFinder finder( context, env );
2157 finder.find( callExpr );
2158 CandidateList winners = findMinCost( finder.candidates );
2159 if (winners.size() != 1) {
2160 SemanticError( callExpr, "Ambiguous expression in valueE" );
2161 }
2162 CandidateRef & choice = winners.front();
2163 return choice->expr;
2164}
2165
2166const ast::Expr * createCondExpr( const ast::Expr * expr ) {
2167 assert( expr );
2168 return new ast::CastExpr( expr->location,
2169 ast::UntypedExpr::createCall( expr->location,
2170 "?!=?",
2171 {
2172 expr,
2173 new ast::ConstantExpr( expr->location,
2174 new ast::ZeroType(), "0", std::make_optional( 0ull )
2175 ),
2176 }
2177 ),
2178 new ast::BasicType( ast::BasicType::SignedInt )
2179 );
2180}
2181
2182} // namespace ResolvExpr
2183
2184// Local Variables: //
2185// tab-width: 4 //
2186// mode: c++ //
2187// compile-command: "make install" //
2188// End: //
Note: See TracBrowser for help on using the repository browser.