source: src/ResolvExpr/CandidateFinder.cpp@ c3c9325

Last change on this file since c3c9325 was ab780e6, checked in by Andrew Beach <ajbeach@…>, 18 months ago

notZeroExpr (in the parser) has become createCondExpr (in the resolver). A small part of this, with expressions, had been done previously.

  • Property mode set to 100644
File size: 81.0 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// CandidateFinder.cpp --
8//
9// Author : Aaron B. Moss
10// Created On : Wed Jun 5 14:30:00 2019
11// Last Modified By : Andrew Beach
12// Last Modified On : Wed Mar 16 11:58:00 2022
13// Update Count : 3
14//
15
16#include "CandidateFinder.hpp"
17
18#include <deque>
19#include <iterator> // for back_inserter
20#include <sstream>
21#include <string>
22#include <unordered_map>
23#include <vector>
24
25#include "AdjustExprType.hpp"
26#include "Candidate.hpp"
27#include "CastCost.hpp" // for castCost
28#include "CompilationState.h"
29#include "ConversionCost.h" // for conversionCast
30#include "Cost.h"
31#include "ExplodedArg.hpp"
32#include "PolyCost.hpp"
33#include "RenameVars.h" // for renameTyVars
34#include "Resolver.h"
35#include "ResolveTypeof.h"
36#include "SatisfyAssertions.hpp"
37#include "SpecCost.hpp"
38#include "typeops.h" // for combos
39#include "Unify.h"
40#include "WidenMode.h"
41#include "AST/Expr.hpp"
42#include "AST/Node.hpp"
43#include "AST/Pass.hpp"
44#include "AST/Print.hpp"
45#include "AST/SymbolTable.hpp"
46#include "AST/Type.hpp"
47#include "Common/utility.h" // for move, copy
48#include "SymTab/Mangler.h"
49#include "Tuples/Tuples.h" // for handleTupleAssignment
50#include "InitTweak/InitTweak.h" // for getPointerBase
51
52#include "Common/Stats/Counter.h"
53
54#include "AST/Inspect.hpp" // for getFunctionName
55
56#define PRINT( text ) if ( resolvep ) { text }
57
58namespace ResolvExpr {
59
60/// Unique identifier for matching expression resolutions to their requesting expression
61ast::UniqueId globalResnSlot = 0;
62
63namespace {
64 /// First index is which argument, second is which alternative, third is which exploded element
65 using ExplodedArgs = std::deque< std::vector< ExplodedArg > >;
66
67 /// Returns a list of alternatives with the minimum cost in the given list
68 CandidateList findMinCost( const CandidateList & candidates ) {
69 CandidateList out;
70 Cost minCost = Cost::infinity;
71 for ( const CandidateRef & r : candidates ) {
72 if ( r->cost < minCost ) {
73 minCost = r->cost;
74 out.clear();
75 out.emplace_back( r );
76 } else if ( r->cost == minCost ) {
77 out.emplace_back( r );
78 }
79 }
80 return out;
81 }
82
83 /// Computes conversion cost for a given expression to a given type
84 const ast::Expr * computeExpressionConversionCost(
85 const ast::Expr * arg, const ast::Type * paramType, const ast::SymbolTable & symtab, const ast::TypeEnvironment & env, Cost & outCost
86 ) {
87 Cost convCost = computeConversionCost(
88 arg->result, paramType, arg->get_lvalue(), symtab, env );
89 outCost += convCost;
90
91 // If there is a non-zero conversion cost, ignoring poly cost, then the expression requires
92 // conversion. Ignore poly cost for now, since this requires resolution of the cast to
93 // infer parameters and this does not currently work for the reason stated below
94 Cost tmpCost = convCost;
95 tmpCost.incPoly( -tmpCost.get_polyCost() );
96 if ( tmpCost != Cost::zero ) {
97 ast::ptr< ast::Type > newType = paramType;
98 env.apply( newType );
99 return new ast::CastExpr{ arg, newType };
100
101 // xxx - *should* be able to resolve this cast, but at the moment pointers are not
102 // castable to zero_t, but are implicitly convertible. This is clearly inconsistent,
103 // once this is fixed it should be possible to resolve the cast.
104 // xxx - this isn't working, it appears because type1 (parameter) is seen as widenable,
105 // but it shouldn't be because this makes the conversion from DT* to DT* since
106 // commontype(zero_t, DT*) is DT*, rather than nothing
107
108 // CandidateFinder finder{ symtab, env };
109 // finder.find( arg, ResolveMode::withAdjustment() );
110 // assertf( finder.candidates.size() > 0,
111 // "Somehow castable expression failed to find alternatives." );
112 // assertf( finder.candidates.size() == 1,
113 // "Somehow got multiple alternatives for known cast expression." );
114 // return finder.candidates.front()->expr;
115 }
116
117 return arg;
118 }
119
120 /// Computes conversion cost for a given candidate
121 Cost computeApplicationConversionCost(
122 CandidateRef cand, const ast::SymbolTable & symtab
123 ) {
124 auto appExpr = cand->expr.strict_as< ast::ApplicationExpr >();
125 auto pointer = appExpr->func->result.strict_as< ast::PointerType >();
126 auto function = pointer->base.strict_as< ast::FunctionType >();
127
128 Cost convCost = Cost::zero;
129 const auto & params = function->params;
130 auto param = params.begin();
131 auto & args = appExpr->args;
132
133 for ( unsigned i = 0; i < args.size(); ++i ) {
134 const ast::Type * argType = args[i]->result;
135 PRINT(
136 std::cerr << "arg expression:" << std::endl;
137 ast::print( std::cerr, args[i], 2 );
138 std::cerr << "--- results are" << std::endl;
139 ast::print( std::cerr, argType, 2 );
140 )
141
142 if ( param == params.end() ) {
143 if ( function->isVarArgs ) {
144 convCost.incUnsafe();
145 PRINT( std::cerr << "end of params with varargs function: inc unsafe: "
146 << convCost << std::endl; ; )
147 // convert reference-typed expressions into value-typed expressions
148 cand->expr = ast::mutate_field_index(
149 appExpr, &ast::ApplicationExpr::args, i,
150 referenceToRvalueConversion( args[i], convCost ) );
151 continue;
152 } else return Cost::infinity;
153 }
154
155 if ( auto def = args[i].as< ast::DefaultArgExpr >() ) {
156 // Default arguments should be free - don't include conversion cost.
157 // Unwrap them here because they are not relevant to the rest of the system
158 cand->expr = ast::mutate_field_index(
159 appExpr, &ast::ApplicationExpr::args, i, def->expr );
160 ++param;
161 continue;
162 }
163
164 // mark conversion cost and also specialization cost of param type
165 // const ast::Type * paramType = (*param)->get_type();
166 cand->expr = ast::mutate_field_index(
167 appExpr, &ast::ApplicationExpr::args, i,
168 computeExpressionConversionCost(
169 args[i], *param, symtab, cand->env, convCost ) );
170 convCost.decSpec( specCost( *param ) );
171 ++param; // can't be in for-loop update because of the continue
172 }
173
174 if ( param != params.end() ) return Cost::infinity;
175
176 // specialization cost of return types can't be accounted for directly, it disables
177 // otherwise-identical calls, like this example based on auto-newline in the I/O lib:
178 //
179 // forall(otype OS) {
180 // void ?|?(OS&, int); // with newline
181 // OS& ?|?(OS&, int); // no newline, always chosen due to more specialization
182 // }
183
184 // mark type variable and specialization cost of forall clause
185 convCost.incVar( function->forall.size() );
186 convCost.decSpec( function->assertions.size() );
187
188 return convCost;
189 }
190
191 void makeUnifiableVars(
192 const ast::FunctionType * type, ast::OpenVarSet & unifiableVars,
193 ast::AssertionSet & need
194 ) {
195 for ( auto & tyvar : type->forall ) {
196 unifiableVars[ *tyvar ] = ast::TypeData{ tyvar->base };
197 }
198 for ( auto & assn : type->assertions ) {
199 need[ assn ].isUsed = true;
200 }
201 }
202
203 /// Gets a default value from an initializer, nullptr if not present
204 const ast::ConstantExpr * getDefaultValue( const ast::Init * init ) {
205 if ( auto si = dynamic_cast< const ast::SingleInit * >( init ) ) {
206 if ( auto ce = si->value.as< ast::CastExpr >() ) {
207 return ce->arg.as< ast::ConstantExpr >();
208 } else {
209 return si->value.as< ast::ConstantExpr >();
210 }
211 }
212 return nullptr;
213 }
214
215 /// State to iteratively build a match of parameter expressions to arguments
216 struct ArgPack {
217 std::size_t parent; ///< Index of parent pack
218 ast::ptr< ast::Expr > expr; ///< The argument stored here
219 Cost cost; ///< The cost of this argument
220 ast::TypeEnvironment env; ///< Environment for this pack
221 ast::AssertionSet need; ///< Assertions outstanding for this pack
222 ast::AssertionSet have; ///< Assertions found for this pack
223 ast::OpenVarSet open; ///< Open variables for this pack
224 unsigned nextArg; ///< Index of next argument in arguments list
225 unsigned tupleStart; ///< Number of tuples that start at this index
226 unsigned nextExpl; ///< Index of next exploded element
227 unsigned explAlt; ///< Index of alternative for nextExpl > 0
228
229 ArgPack()
230 : parent( 0 ), expr(), cost( Cost::zero ), env(), need(), have(), open(), nextArg( 0 ),
231 tupleStart( 0 ), nextExpl( 0 ), explAlt( 0 ) {}
232
233 ArgPack(
234 const ast::TypeEnvironment & env, const ast::AssertionSet & need,
235 const ast::AssertionSet & have, const ast::OpenVarSet & open )
236 : parent( 0 ), expr(), cost( Cost::zero ), env( env ), need( need ), have( have ),
237 open( open ), nextArg( 0 ), tupleStart( 0 ), nextExpl( 0 ), explAlt( 0 ) {}
238
239 ArgPack(
240 std::size_t parent, const ast::Expr * expr, ast::TypeEnvironment && env,
241 ast::AssertionSet && need, ast::AssertionSet && have, ast::OpenVarSet && open,
242 unsigned nextArg, unsigned tupleStart = 0, Cost cost = Cost::zero,
243 unsigned nextExpl = 0, unsigned explAlt = 0 )
244 : parent(parent), expr( expr ), cost( cost ), env( std::move( env ) ), need( std::move( need ) ),
245 have( std::move( have ) ), open( std::move( open ) ), nextArg( nextArg ), tupleStart( tupleStart ),
246 nextExpl( nextExpl ), explAlt( explAlt ) {}
247
248 ArgPack(
249 const ArgPack & o, ast::TypeEnvironment && env, ast::AssertionSet && need,
250 ast::AssertionSet && have, ast::OpenVarSet && open, unsigned nextArg, Cost added )
251 : parent( o.parent ), expr( o.expr ), cost( o.cost + added ), env( std::move( env ) ),
252 need( std::move( need ) ), have( std::move( have ) ), open( std::move( open ) ), nextArg( nextArg ),
253 tupleStart( o.tupleStart ), nextExpl( 0 ), explAlt( 0 ) {}
254
255 /// true if this pack is in the middle of an exploded argument
256 bool hasExpl() const { return nextExpl > 0; }
257
258 /// Gets the list of exploded candidates for this pack
259 const ExplodedArg & getExpl( const ExplodedArgs & args ) const {
260 return args[ nextArg-1 ][ explAlt ];
261 }
262
263 /// Ends a tuple expression, consolidating the appropriate args
264 void endTuple( const std::vector< ArgPack > & packs ) {
265 // add all expressions in tuple to list, summing cost
266 std::deque< const ast::Expr * > exprs;
267 const ArgPack * pack = this;
268 if ( expr ) { exprs.emplace_front( expr ); }
269 while ( pack->tupleStart == 0 ) {
270 pack = &packs[pack->parent];
271 exprs.emplace_front( pack->expr );
272 cost += pack->cost;
273 }
274 // reset pack to appropriate tuple
275 std::vector< ast::ptr< ast::Expr > > exprv( exprs.begin(), exprs.end() );
276 expr = new ast::TupleExpr{ expr->location, std::move( exprv ) };
277 tupleStart = pack->tupleStart - 1;
278 parent = pack->parent;
279 }
280 };
281
282 /// Instantiates an argument to match a parameter, returns false if no matching results left
283 bool instantiateArgument(
284 const CodeLocation & location,
285 const ast::Type * paramType, const ast::Init * init, const ExplodedArgs & args,
286 std::vector< ArgPack > & results, std::size_t & genStart, const ast::SymbolTable & symtab,
287 unsigned nTuples = 0
288 ) {
289 if ( auto tupleType = dynamic_cast< const ast::TupleType * >( paramType ) ) {
290 // paramType is a TupleType -- group args into a TupleExpr
291 ++nTuples;
292 for ( const ast::Type * type : *tupleType ) {
293 // xxx - dropping initializer changes behaviour from previous, but seems correct
294 // ^^^ need to handle the case where a tuple has a default argument
295 if ( ! instantiateArgument( location,
296 type, nullptr, args, results, genStart, symtab, nTuples ) ) return false;
297 nTuples = 0;
298 }
299 // re-constitute tuples for final generation
300 for ( auto i = genStart; i < results.size(); ++i ) {
301 results[i].endTuple( results );
302 }
303 return true;
304 } else if ( const ast::TypeInstType * ttype = Tuples::isTtype( paramType ) ) {
305 // paramType is a ttype, consumes all remaining arguments
306
307 // completed tuples; will be spliced to end of results to finish
308 std::vector< ArgPack > finalResults{};
309
310 // iterate until all results completed
311 std::size_t genEnd;
312 ++nTuples;
313 do {
314 genEnd = results.size();
315
316 // add another argument to results
317 for ( std::size_t i = genStart; i < genEnd; ++i ) {
318 unsigned nextArg = results[i].nextArg;
319
320 // use next element of exploded tuple if present
321 if ( results[i].hasExpl() ) {
322 const ExplodedArg & expl = results[i].getExpl( args );
323
324 unsigned nextExpl = results[i].nextExpl + 1;
325 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
326
327 results.emplace_back(
328 i, expl.exprs[ results[i].nextExpl ], copy( results[i].env ),
329 copy( results[i].need ), copy( results[i].have ),
330 copy( results[i].open ), nextArg, nTuples, Cost::zero, nextExpl,
331 results[i].explAlt );
332
333 continue;
334 }
335
336 // finish result when out of arguments
337 if ( nextArg >= args.size() ) {
338 ArgPack newResult{
339 results[i].env, results[i].need, results[i].have, results[i].open };
340 newResult.nextArg = nextArg;
341 const ast::Type * argType = nullptr;
342
343 if ( nTuples > 0 || ! results[i].expr ) {
344 // first iteration or no expression to clone,
345 // push empty tuple expression
346 newResult.parent = i;
347 newResult.expr = new ast::TupleExpr( location, {} );
348 argType = newResult.expr->result;
349 } else {
350 // clone result to collect tuple
351 newResult.parent = results[i].parent;
352 newResult.cost = results[i].cost;
353 newResult.tupleStart = results[i].tupleStart;
354 newResult.expr = results[i].expr;
355 argType = newResult.expr->result;
356
357 if ( results[i].tupleStart > 0 && Tuples::isTtype( argType ) ) {
358 // the case where a ttype value is passed directly is special,
359 // e.g. for argument forwarding purposes
360 // xxx - what if passing multiple arguments, last of which is
361 // ttype?
362 // xxx - what would happen if unify was changed so that unifying
363 // tuple
364 // types flattened both before unifying lists? then pass in
365 // TupleType (ttype) below.
366 --newResult.tupleStart;
367 } else {
368 // collapse leftover arguments into tuple
369 newResult.endTuple( results );
370 argType = newResult.expr->result;
371 }
372 }
373
374 // check unification for ttype before adding to final
375 if (
376 unify(
377 ttype, argType, newResult.env, newResult.need, newResult.have,
378 newResult.open )
379 ) {
380 finalResults.emplace_back( std::move( newResult ) );
381 }
382
383 continue;
384 }
385
386 // add each possible next argument
387 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
388 const ExplodedArg & expl = args[nextArg][j];
389
390 // fresh copies of parent parameters for this iteration
391 ast::TypeEnvironment env = results[i].env;
392 ast::OpenVarSet open = results[i].open;
393
394 env.addActual( expl.env, open );
395
396 // skip empty tuple arguments by (nearly) cloning parent into next gen
397 if ( expl.exprs.empty() ) {
398 results.emplace_back(
399 results[i], std::move( env ), copy( results[i].need ),
400 copy( results[i].have ), std::move( open ), nextArg + 1, expl.cost );
401
402 continue;
403 }
404
405 // add new result
406 results.emplace_back(
407 i, expl.exprs.front(), std::move( env ), copy( results[i].need ),
408 copy( results[i].have ), std::move( open ), nextArg + 1, nTuples,
409 expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
410 }
411 }
412
413 // reset for next round
414 genStart = genEnd;
415 nTuples = 0;
416 } while ( genEnd != results.size() );
417
418 // splice final results onto results
419 for ( std::size_t i = 0; i < finalResults.size(); ++i ) {
420 results.emplace_back( std::move( finalResults[i] ) );
421 }
422 return ! finalResults.empty();
423 }
424
425 // iterate each current subresult
426 std::size_t genEnd = results.size();
427 for ( std::size_t i = genStart; i < genEnd; ++i ) {
428 unsigned nextArg = results[i].nextArg;
429
430 // use remainder of exploded tuple if present
431 if ( results[i].hasExpl() ) {
432 const ExplodedArg & expl = results[i].getExpl( args );
433 const ast::Expr * expr = expl.exprs[ results[i].nextExpl ];
434
435 ast::TypeEnvironment env = results[i].env;
436 ast::AssertionSet need = results[i].need, have = results[i].have;
437 ast::OpenVarSet open = results[i].open;
438
439 const ast::Type * argType = expr->result;
440
441 PRINT(
442 std::cerr << "param type is ";
443 ast::print( std::cerr, paramType );
444 std::cerr << std::endl << "arg type is ";
445 ast::print( std::cerr, argType );
446 std::cerr << std::endl;
447 )
448
449 if ( unify( paramType, argType, env, need, have, open ) ) {
450 unsigned nextExpl = results[i].nextExpl + 1;
451 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
452
453 results.emplace_back(
454 i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ), nextArg,
455 nTuples, Cost::zero, nextExpl, results[i].explAlt );
456 }
457
458 continue;
459 }
460
461 // use default initializers if out of arguments
462 if ( nextArg >= args.size() ) {
463 if ( const ast::ConstantExpr * cnst = getDefaultValue( init ) ) {
464 ast::TypeEnvironment env = results[i].env;
465 ast::AssertionSet need = results[i].need, have = results[i].have;
466 ast::OpenVarSet open = results[i].open;
467
468 if ( unify( paramType, cnst->result, env, need, have, open ) ) {
469 results.emplace_back(
470 i, new ast::DefaultArgExpr{ cnst->location, cnst }, std::move( env ),
471 std::move( need ), std::move( have ), std::move( open ), nextArg, nTuples );
472 }
473 }
474
475 continue;
476 }
477
478 // Check each possible next argument
479 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
480 const ExplodedArg & expl = args[nextArg][j];
481
482 // fresh copies of parent parameters for this iteration
483 ast::TypeEnvironment env = results[i].env;
484 ast::AssertionSet need = results[i].need, have = results[i].have;
485 ast::OpenVarSet open = results[i].open;
486
487 env.addActual( expl.env, open );
488
489 // skip empty tuple arguments by (nearly) cloning parent into next gen
490 if ( expl.exprs.empty() ) {
491 results.emplace_back(
492 results[i], std::move( env ), std::move( need ), std::move( have ), std::move( open ),
493 nextArg + 1, expl.cost );
494
495 continue;
496 }
497
498 // consider only first exploded arg
499 const ast::Expr * expr = expl.exprs.front();
500 const ast::Type * argType = expr->result;
501
502 PRINT(
503 std::cerr << "param type is ";
504 ast::print( std::cerr, paramType );
505 std::cerr << std::endl << "arg type is ";
506 ast::print( std::cerr, argType );
507 std::cerr << std::endl;
508 )
509
510 // attempt to unify types
511 if ( unify( paramType, argType, env, need, have, open ) ) {
512 // add new result
513 results.emplace_back(
514 i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ),
515 nextArg + 1, nTuples, expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
516 }
517 }
518 }
519
520 // reset for next parameter
521 genStart = genEnd;
522
523 return genEnd != results.size(); // were any new results added?
524 }
525
526 /// Generate a cast expression from `arg` to `toType`
527 const ast::Expr * restructureCast(
528 ast::ptr< ast::Expr > & arg, const ast::Type * toType, ast::GeneratedFlag isGenerated = ast::GeneratedCast
529 ) {
530 if (
531 arg->result->size() > 1
532 && ! toType->isVoid()
533 && ! dynamic_cast< const ast::ReferenceType * >( toType )
534 ) {
535 // Argument is a tuple and the target type is neither void nor a reference. Cast each
536 // member of the tuple to its corresponding target type, producing the tuple of those
537 // cast expressions. If there are more components of the tuple than components in the
538 // target type, then excess components do not come out in the result expression (but
539 // UniqueExpr ensures that the side effects will still be produced)
540 if ( Tuples::maybeImpureIgnoreUnique( arg ) ) {
541 // expressions which may contain side effects require a single unique instance of
542 // the expression
543 arg = new ast::UniqueExpr{ arg->location, arg };
544 }
545 std::vector< ast::ptr< ast::Expr > > components;
546 for ( unsigned i = 0; i < toType->size(); ++i ) {
547 // cast each component
548 ast::ptr< ast::Expr > idx = new ast::TupleIndexExpr{ arg->location, arg, i };
549 components.emplace_back(
550 restructureCast( idx, toType->getComponent( i ), isGenerated ) );
551 }
552 return new ast::TupleExpr{ arg->location, std::move( components ) };
553 } else {
554 // handle normally
555 return new ast::CastExpr{ arg->location, arg, toType, isGenerated };
556 }
557 }
558
559 /// Gets the name from an untyped member expression (must be NameExpr)
560 const std::string & getMemberName( const ast::UntypedMemberExpr * memberExpr ) {
561 if ( memberExpr->member.as< ast::ConstantExpr >() ) {
562 SemanticError( memberExpr, "Indexed access to struct fields unsupported: " );
563 }
564
565 return memberExpr->member.strict_as< ast::NameExpr >()->name;
566 }
567
568 /// Actually visits expressions to find their candidate interpretations
569 class Finder final : public ast::WithShortCircuiting {
570 const ResolveContext & context;
571 const ast::SymbolTable & symtab;
572 public:
573 // static size_t traceId;
574 CandidateFinder & selfFinder;
575 CandidateList & candidates;
576 const ast::TypeEnvironment & tenv;
577 ast::ptr< ast::Type > & targetType;
578
579 enum Errors {
580 NotFound,
581 NoMatch,
582 ArgsToFew,
583 ArgsToMany,
584 RetsToFew,
585 RetsToMany,
586 NoReason
587 };
588
589 struct {
590 Errors code = NotFound;
591 } reason;
592
593 Finder( CandidateFinder & f )
594 : context( f.context ), symtab( context.symtab ), selfFinder( f ),
595 candidates( f.candidates ), tenv( f.env ), targetType( f.targetType ) {}
596
597 void previsit( const ast::Node * ) { visit_children = false; }
598
599 /// Convenience to add candidate to list
600 template<typename... Args>
601 void addCandidate( Args &&... args ) {
602 candidates.emplace_back( new Candidate{ std::forward<Args>( args )... } );
603 reason.code = NoReason;
604 }
605
606 void postvisit( const ast::ApplicationExpr * applicationExpr ) {
607 addCandidate( applicationExpr, tenv );
608 }
609
610 /// Set up candidate assertions for inference
611 void inferParameters( CandidateRef & newCand, CandidateList & out );
612
613 /// Completes a function candidate with arguments located
614 void validateFunctionCandidate(
615 const CandidateRef & func, ArgPack & result, const std::vector< ArgPack > & results,
616 CandidateList & out );
617
618 /// Builds a list of candidates for a function, storing them in out
619 void makeFunctionCandidates(
620 const CodeLocation & location,
621 const CandidateRef & func, const ast::FunctionType * funcType,
622 const ExplodedArgs & args, CandidateList & out );
623
624 /// Adds implicit struct-conversions to the alternative list
625 void addAnonConversions( const CandidateRef & cand );
626
627 /// Adds aggregate member interpretations
628 void addAggMembers(
629 const ast::BaseInstType * aggrInst, const ast::Expr * expr,
630 const Candidate & cand, const Cost & addedCost, const std::string & name
631 );
632
633 /// Adds tuple member interpretations
634 void addTupleMembers(
635 const ast::TupleType * tupleType, const ast::Expr * expr, const Candidate & cand,
636 const Cost & addedCost, const ast::Expr * member
637 );
638
639 /// true if expression is an lvalue
640 static bool isLvalue( const ast::Expr * x ) {
641 return x->result && ( x->get_lvalue() || x->result.as< ast::ReferenceType >() );
642 }
643
644 void postvisit( const ast::UntypedExpr * untypedExpr );
645 void postvisit( const ast::VariableExpr * variableExpr );
646 void postvisit( const ast::ConstantExpr * constantExpr );
647 void postvisit( const ast::SizeofExpr * sizeofExpr );
648 void postvisit( const ast::AlignofExpr * alignofExpr );
649 void postvisit( const ast::AddressExpr * addressExpr );
650 void postvisit( const ast::LabelAddressExpr * labelExpr );
651 void postvisit( const ast::CastExpr * castExpr );
652 void postvisit( const ast::VirtualCastExpr * castExpr );
653 void postvisit( const ast::KeywordCastExpr * castExpr );
654 void postvisit( const ast::UntypedMemberExpr * memberExpr );
655 void postvisit( const ast::MemberExpr * memberExpr );
656 void postvisit( const ast::NameExpr * nameExpr );
657 void postvisit( const ast::UntypedOffsetofExpr * offsetofExpr );
658 void postvisit( const ast::OffsetofExpr * offsetofExpr );
659 void postvisit( const ast::OffsetPackExpr * offsetPackExpr );
660 void postvisit( const ast::LogicalExpr * logicalExpr );
661 void postvisit( const ast::ConditionalExpr * conditionalExpr );
662 void postvisit( const ast::CommaExpr * commaExpr );
663 void postvisit( const ast::ImplicitCopyCtorExpr * ctorExpr );
664 void postvisit( const ast::ConstructorExpr * ctorExpr );
665 void postvisit( const ast::RangeExpr * rangeExpr );
666 void postvisit( const ast::UntypedTupleExpr * tupleExpr );
667 void postvisit( const ast::TupleExpr * tupleExpr );
668 void postvisit( const ast::TupleIndexExpr * tupleExpr );
669 void postvisit( const ast::TupleAssignExpr * tupleExpr );
670 void postvisit( const ast::UniqueExpr * unqExpr );
671 void postvisit( const ast::StmtExpr * stmtExpr );
672 void postvisit( const ast::UntypedInitExpr * initExpr );
673 void postvisit( const ast::QualifiedNameExpr * qualifiedExpr );
674
675 void postvisit( const ast::InitExpr * ) {
676 assertf( false, "CandidateFinder should never see a resolved InitExpr." );
677 }
678
679 void postvisit( const ast::DeletedExpr * ) {
680 assertf( false, "CandidateFinder should never see a DeletedExpr." );
681 }
682
683 void postvisit( const ast::GenericExpr * ) {
684 assertf( false, "_Generic is not yet supported." );
685 }
686 };
687
688 /// Set up candidate assertions for inference
689 void Finder::inferParameters( CandidateRef & newCand, CandidateList & out ) {
690 // Set need bindings for any unbound assertions
691 ast::UniqueId crntResnSlot = 0; // matching ID for this expression's assertions
692 for ( auto & assn : newCand->need ) {
693 // skip already-matched assertions
694 if ( assn.second.resnSlot != 0 ) continue;
695 // assign slot for expression if needed
696 if ( crntResnSlot == 0 ) { crntResnSlot = ++globalResnSlot; }
697 // fix slot to assertion
698 assn.second.resnSlot = crntResnSlot;
699 }
700 // pair slot to expression
701 if ( crntResnSlot != 0 ) {
702 newCand->expr.get_and_mutate()->inferred.resnSlots().emplace_back( crntResnSlot );
703 }
704
705 // add to output list; assertion satisfaction will occur later
706 out.emplace_back( newCand );
707 }
708
709 /// Completes a function candidate with arguments located
710 void Finder::validateFunctionCandidate(
711 const CandidateRef & func, ArgPack & result, const std::vector< ArgPack > & results,
712 CandidateList & out
713 ) {
714 ast::ApplicationExpr * appExpr =
715 new ast::ApplicationExpr{ func->expr->location, func->expr };
716 // sum cost and accumulate arguments
717 std::deque< const ast::Expr * > args;
718 Cost cost = func->cost;
719 const ArgPack * pack = &result;
720 while ( pack->expr ) {
721 args.emplace_front( pack->expr );
722 cost += pack->cost;
723 pack = &results[pack->parent];
724 }
725 std::vector< ast::ptr< ast::Expr > > vargs( args.begin(), args.end() );
726 appExpr->args = std::move( vargs );
727 // build and validate new candidate
728 auto newCand =
729 std::make_shared<Candidate>( appExpr, result.env, result.open, result.need, cost );
730 PRINT(
731 std::cerr << "instantiate function success: " << appExpr << std::endl;
732 std::cerr << "need assertions:" << std::endl;
733 ast::print( std::cerr, result.need, 2 );
734 )
735 inferParameters( newCand, out );
736 }
737
738 /// Builds a list of candidates for a function, storing them in out
739 void Finder::makeFunctionCandidates(
740 const CodeLocation & location,
741 const CandidateRef & func, const ast::FunctionType * funcType,
742 const ExplodedArgs & args, CandidateList & out
743 ) {
744 ast::OpenVarSet funcOpen;
745 ast::AssertionSet funcNeed, funcHave;
746 ast::TypeEnvironment funcEnv{ func->env };
747 makeUnifiableVars( funcType, funcOpen, funcNeed );
748 // add all type variables as open variables now so that those not used in the
749 // parameter list are still considered open
750 funcEnv.add( funcType->forall );
751
752 if ( targetType && ! targetType->isVoid() && ! funcType->returns.empty() ) {
753 // attempt to narrow based on expected target type
754 const ast::Type * returnType = funcType->returns.front();
755 if ( selfFinder.strictMode ) {
756 if ( !unifyExact(
757 returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen, noWiden() ) // xxx - is no widening correct?
758 ) {
759 // unification failed, do not pursue this candidate
760 return;
761 }
762 } else {
763 if ( !unify(
764 returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen )
765 ) {
766 // unification failed, do not pursue this candidate
767 return;
768 }
769 }
770 }
771
772 // iteratively build matches, one parameter at a time
773 std::vector< ArgPack > results;
774 results.emplace_back( funcEnv, funcNeed, funcHave, funcOpen );
775 std::size_t genStart = 0;
776
777 // xxx - how to handle default arg after change to ftype representation?
778 if (const ast::VariableExpr * varExpr = func->expr.as<ast::VariableExpr>()) {
779 if (const ast::FunctionDecl * funcDecl = varExpr->var.as<ast::FunctionDecl>()) {
780 // function may have default args only if directly calling by name
781 // must use types on candidate however, due to RenameVars substitution
782 auto nParams = funcType->params.size();
783
784 for (size_t i=0; i<nParams; ++i) {
785 auto obj = funcDecl->params[i].strict_as<ast::ObjectDecl>();
786 if ( !instantiateArgument( location,
787 funcType->params[i], obj->init, args, results, genStart, symtab)) return;
788 }
789 goto endMatch;
790 }
791 }
792 for ( const auto & param : funcType->params ) {
793 // Try adding the arguments corresponding to the current parameter to the existing
794 // matches
795 // no default args for indirect calls
796 if ( !instantiateArgument( location,
797 param, nullptr, args, results, genStart, symtab ) ) return;
798 }
799
800 endMatch:
801 if ( funcType->isVarArgs ) {
802 // append any unused arguments to vararg pack
803 std::size_t genEnd;
804 do {
805 genEnd = results.size();
806
807 // iterate results
808 for ( std::size_t i = genStart; i < genEnd; ++i ) {
809 unsigned nextArg = results[i].nextArg;
810
811 // use remainder of exploded tuple if present
812 if ( results[i].hasExpl() ) {
813 const ExplodedArg & expl = results[i].getExpl( args );
814
815 unsigned nextExpl = results[i].nextExpl + 1;
816 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
817
818 results.emplace_back(
819 i, expl.exprs[ results[i].nextExpl ], copy( results[i].env ),
820 copy( results[i].need ), copy( results[i].have ),
821 copy( results[i].open ), nextArg, 0, Cost::zero, nextExpl,
822 results[i].explAlt );
823
824 continue;
825 }
826
827 // finish result when out of arguments
828 if ( nextArg >= args.size() ) {
829 validateFunctionCandidate( func, results[i], results, out );
830
831 continue;
832 }
833
834 // add each possible next argument
835 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
836 const ExplodedArg & expl = args[nextArg][j];
837
838 // fresh copies of parent parameters for this iteration
839 ast::TypeEnvironment env = results[i].env;
840 ast::OpenVarSet open = results[i].open;
841
842 env.addActual( expl.env, open );
843
844 // skip empty tuple arguments by (nearly) cloning parent into next gen
845 if ( expl.exprs.empty() ) {
846 results.emplace_back(
847 results[i], std::move( env ), copy( results[i].need ),
848 copy( results[i].have ), std::move( open ), nextArg + 1,
849 expl.cost );
850
851 continue;
852 }
853
854 // add new result
855 results.emplace_back(
856 i, expl.exprs.front(), std::move( env ), copy( results[i].need ),
857 copy( results[i].have ), std::move( open ), nextArg + 1, 0, expl.cost,
858 expl.exprs.size() == 1 ? 0 : 1, j );
859 }
860 }
861
862 genStart = genEnd;
863 } while( genEnd != results.size() );
864 } else {
865 // filter out the results that don't use all the arguments
866 for ( std::size_t i = genStart; i < results.size(); ++i ) {
867 ArgPack & result = results[i];
868 if ( ! result.hasExpl() && result.nextArg >= args.size() ) {
869 validateFunctionCandidate( func, result, results, out );
870 }
871 }
872 }
873 }
874
875 /// Adds implicit struct-conversions to the alternative list
876 void Finder::addAnonConversions( const CandidateRef & cand ) {
877 // adds anonymous member interpretations whenever an aggregate value type is seen.
878 // it's okay for the aggregate expression to have reference type -- cast it to the
879 // base type to treat the aggregate as the referenced value
880 ast::ptr< ast::Expr > aggrExpr( cand->expr );
881 ast::ptr< ast::Type > & aggrType = aggrExpr.get_and_mutate()->result;
882 cand->env.apply( aggrType );
883
884 if ( aggrType.as< ast::ReferenceType >() ) {
885 aggrExpr = new ast::CastExpr{ aggrExpr, aggrType->stripReferences() };
886 }
887
888 if ( auto structInst = aggrExpr->result.as< ast::StructInstType >() ) {
889 addAggMembers( structInst, aggrExpr, *cand, Cost::unsafe, "" );
890 } else if ( auto unionInst = aggrExpr->result.as< ast::UnionInstType >() ) {
891 addAggMembers( unionInst, aggrExpr, *cand, Cost::unsafe, "" );
892 }
893 else if ( auto enumInst = aggrExpr->result.as< ast::EnumInstType >() ) {
894 if (enumInst->base && enumInst->base->base) {
895 const CodeLocation &location = cand->expr->location;
896
897 CandidateFinder funcFinder(context, tenv);
898 auto nameExpr = new ast::NameExpr(location, "valueE");
899 ResolveMode mode = {true, false, selfFinder.candidates.empty()};
900 funcFinder.find( nameExpr, mode );
901
902 // make variableExpr itself the candidate for the value Call
903 ExplodedArgs argExpansions;
904 argExpansions.emplace_back();
905 auto &argE = argExpansions.back();
906
907 argE.emplace_back(*cand, symtab); // Use the typed name expr as param for value
908
909 CandidateList found;
910 SemanticErrorException errors;
911
912 for (CandidateRef &func : funcFinder) {
913 try {
914 const ast::Type *funcResult =
915 func->expr->result->stripReferences();
916 if (auto pointer = dynamic_cast<const ast::PointerType *>(
917 funcResult)) {
918 if (auto function =
919 pointer->base.as<ast::FunctionType>()) {
920 CandidateRef newFunc{new Candidate{*func}};
921 newFunc->expr = referenceToRvalueConversion(
922 newFunc->expr, newFunc->cost);
923 makeFunctionCandidates( location,
924 newFunc, function,
925 argExpansions, found );
926 }
927 }
928 } catch (SemanticErrorException &e) {
929 std::cerr
930 << "Resolving value function should cause an error"
931 << std::endl;
932 errors.append(e);
933 }
934 }
935
936 if (found.empty()) {
937 std::cerr << "Resolve value function should always success"
938 << std::endl;
939 }
940
941 for (CandidateRef &withFunc : found) {
942 withFunc->cost.incSafe();
943 Cost cvtCost =
944 computeApplicationConversionCost(withFunc, symtab);
945 assert(cvtCost != Cost::infinity);
946
947 candidates.emplace_back(std::move(withFunc));
948 }
949 }
950 }
951 }
952
953 /// Adds aggregate member interpretations
954 void Finder::addAggMembers(
955 const ast::BaseInstType * aggrInst, const ast::Expr * expr,
956 const Candidate & cand, const Cost & addedCost, const std::string & name
957 ) {
958 for ( const ast::Decl * decl : aggrInst->lookup( name ) ) {
959 auto dwt = strict_dynamic_cast< const ast::DeclWithType * >( decl );
960 CandidateRef newCand = std::make_shared<Candidate>(
961 cand, new ast::MemberExpr{ expr->location, dwt, expr }, addedCost );
962 // add anonymous member interpretations whenever an aggregate value type is seen
963 // as a member expression
964 addAnonConversions( newCand );
965 candidates.emplace_back( std::move( newCand ) );
966 }
967 }
968
969 /// Adds tuple member interpretations
970 void Finder::addTupleMembers(
971 const ast::TupleType * tupleType, const ast::Expr * expr, const Candidate & cand,
972 const Cost & addedCost, const ast::Expr * member
973 ) {
974 if ( auto constantExpr = dynamic_cast< const ast::ConstantExpr * >( member ) ) {
975 // get the value of the constant expression as an int, must be between 0 and the
976 // length of the tuple to have meaning
977 long long val = constantExpr->intValue();
978 if ( val >= 0 && (unsigned long long)val < tupleType->size() ) {
979 addCandidate(
980 cand, new ast::TupleIndexExpr{ expr->location, expr, (unsigned)val },
981 addedCost );
982 }
983 }
984 }
985
986 void Finder::postvisit( const ast::UntypedExpr * untypedExpr ) {
987 std::vector< CandidateFinder > argCandidates =
988 selfFinder.findSubExprs( untypedExpr->args );
989
990 // take care of possible tuple assignments
991 // if not tuple assignment, handled as normal function call
992 Tuples::handleTupleAssignment( selfFinder, untypedExpr, argCandidates );
993
994 CandidateFinder funcFinder( context, tenv );
995 if (auto nameExpr = untypedExpr->func.as<ast::NameExpr>()) {
996 auto kind = ast::SymbolTable::getSpecialFunctionKind(nameExpr->name);
997 if (kind != ast::SymbolTable::SpecialFunctionKind::NUMBER_OF_KINDS) {
998 assertf(!argCandidates.empty(), "special function call without argument");
999 for (auto & firstArgCand: argCandidates[0]) {
1000 ast::ptr<ast::Type> argType = firstArgCand->expr->result;
1001 firstArgCand->env.apply(argType);
1002 // strip references
1003 // xxx - is this correct?
1004 while (argType.as<ast::ReferenceType>()) argType = argType.as<ast::ReferenceType>()->base;
1005
1006 // convert 1-tuple to plain type
1007 if (auto tuple = argType.as<ast::TupleType>()) {
1008 if (tuple->size() == 1) {
1009 argType = tuple->types[0];
1010 }
1011 }
1012
1013 // if argType is an unbound type parameter, all special functions need to be searched.
1014 if (isUnboundType(argType)) {
1015 funcFinder.otypeKeys.clear();
1016 break;
1017 }
1018
1019 if (argType.as<ast::PointerType>()) funcFinder.otypeKeys.insert(Mangle::Encoding::pointer);
1020 else funcFinder.otypeKeys.insert(Mangle::mangle(argType, Mangle::NoGenericParams | Mangle::Type));
1021 }
1022 }
1023 }
1024 // if candidates are already produced, do not fail
1025 // xxx - is it possible that handleTupleAssignment and main finder both produce candidates?
1026 // this means there exists ctor/assign functions with a tuple as first parameter.
1027 ResolveMode mode = {
1028 true, // adjust
1029 !untypedExpr->func.as<ast::NameExpr>(), // prune if not calling by name
1030 selfFinder.candidates.empty() // failfast if other options are not found
1031 };
1032 funcFinder.find( untypedExpr->func, mode );
1033 // short-circuit if no candidates
1034 // if ( funcFinder.candidates.empty() ) return;
1035
1036 reason.code = NoMatch;
1037
1038 // find function operators
1039 ast::ptr< ast::Expr > opExpr = new ast::NameExpr{ untypedExpr->location, "?()" }; // ??? why not ?{}
1040 CandidateFinder opFinder( context, tenv );
1041 // okay if there aren't any function operations
1042 opFinder.find( opExpr, ResolveMode::withoutFailFast() );
1043 PRINT(
1044 std::cerr << "known function ops:" << std::endl;
1045 print( std::cerr, opFinder.candidates, 1 );
1046 )
1047
1048 // pre-explode arguments
1049 ExplodedArgs argExpansions;
1050 for ( const CandidateFinder & args : argCandidates ) {
1051 argExpansions.emplace_back();
1052 auto & argE = argExpansions.back();
1053 for ( const CandidateRef & arg : args ) { argE.emplace_back( *arg, symtab ); }
1054 }
1055
1056 // Find function matches
1057 CandidateList found;
1058 SemanticErrorException errors;
1059 for ( CandidateRef & func : funcFinder ) {
1060 try {
1061 PRINT(
1062 std::cerr << "working on alternative:" << std::endl;
1063 print( std::cerr, *func, 2 );
1064 )
1065
1066 // check if the type is a pointer to function
1067 const ast::Type * funcResult = func->expr->result->stripReferences();
1068 if ( auto pointer = dynamic_cast< const ast::PointerType * >( funcResult ) ) {
1069 if ( auto function = pointer->base.as< ast::FunctionType >() ) {
1070 // if (!selfFinder.allowVoid && function->returns.empty()) continue;
1071 CandidateRef newFunc{ new Candidate{ *func } };
1072 newFunc->expr =
1073 referenceToRvalueConversion( newFunc->expr, newFunc->cost );
1074 makeFunctionCandidates( untypedExpr->location,
1075 newFunc, function, argExpansions, found );
1076 }
1077 } else if (
1078 auto inst = dynamic_cast< const ast::TypeInstType * >( funcResult )
1079 ) {
1080 if ( const ast::EqvClass * clz = func->env.lookup( *inst ) ) {
1081 if ( auto function = clz->bound.as< ast::FunctionType >() ) {
1082 CandidateRef newFunc( new Candidate( *func ) );
1083 newFunc->expr =
1084 referenceToRvalueConversion( newFunc->expr, newFunc->cost );
1085 makeFunctionCandidates( untypedExpr->location,
1086 newFunc, function, argExpansions, found );
1087 }
1088 }
1089 }
1090 } catch ( SemanticErrorException & e ) { errors.append( e ); }
1091 }
1092
1093 // Find matches on function operators `?()`
1094 if ( ! opFinder.candidates.empty() ) {
1095 // add exploded function alternatives to front of argument list
1096 std::vector< ExplodedArg > funcE;
1097 funcE.reserve( funcFinder.candidates.size() );
1098 for ( const CandidateRef & func : funcFinder ) {
1099 funcE.emplace_back( *func, symtab );
1100 }
1101 argExpansions.emplace_front( std::move( funcE ) );
1102
1103 for ( const CandidateRef & op : opFinder ) {
1104 try {
1105 // check if type is pointer-to-function
1106 const ast::Type * opResult = op->expr->result->stripReferences();
1107 if ( auto pointer = dynamic_cast< const ast::PointerType * >( opResult ) ) {
1108 if ( auto function = pointer->base.as< ast::FunctionType >() ) {
1109 CandidateRef newOp{ new Candidate{ *op} };
1110 newOp->expr =
1111 referenceToRvalueConversion( newOp->expr, newOp->cost );
1112 makeFunctionCandidates( untypedExpr->location,
1113 newOp, function, argExpansions, found );
1114 }
1115 }
1116 } catch ( SemanticErrorException & e ) { errors.append( e ); }
1117 }
1118 }
1119
1120 // Implement SFINAE; resolution errors are only errors if there aren't any non-error
1121 // candidates
1122 if ( found.empty() && ! errors.isEmpty() ) { throw errors; }
1123
1124 // only keep the best matching intrinsic result to match C semantics (no unexpected narrowing/widening)
1125 // TODO: keep one for each set of argument candidates?
1126 Cost intrinsicCost = Cost::infinity;
1127 CandidateList intrinsicResult;
1128
1129 // Compute conversion costs
1130 for ( CandidateRef & withFunc : found ) {
1131 Cost cvtCost = computeApplicationConversionCost( withFunc, symtab );
1132
1133 PRINT(
1134 auto appExpr = withFunc->expr.strict_as< ast::ApplicationExpr >();
1135 auto pointer = appExpr->func->result.strict_as< ast::PointerType >();
1136 auto function = pointer->base.strict_as< ast::FunctionType >();
1137
1138 std::cerr << "Case +++++++++++++ " << appExpr->func << std::endl;
1139 std::cerr << "parameters are:" << std::endl;
1140 ast::printAll( std::cerr, function->params, 2 );
1141 std::cerr << "arguments are:" << std::endl;
1142 ast::printAll( std::cerr, appExpr->args, 2 );
1143 std::cerr << "bindings are:" << std::endl;
1144 ast::print( std::cerr, withFunc->env, 2 );
1145 std::cerr << "cost is: " << withFunc->cost << std::endl;
1146 std::cerr << "cost of conversion is:" << cvtCost << std::endl;
1147 )
1148
1149 if ( cvtCost != Cost::infinity ) {
1150 withFunc->cvtCost = cvtCost;
1151 withFunc->cost += cvtCost;
1152 auto func = withFunc->expr.strict_as<ast::ApplicationExpr>()->func.as<ast::VariableExpr>();
1153 if (func && func->var->linkage == ast::Linkage::Intrinsic) {
1154 if (withFunc->cost < intrinsicCost) {
1155 intrinsicResult.clear();
1156 intrinsicCost = withFunc->cost;
1157 }
1158 if (withFunc->cost == intrinsicCost) {
1159 intrinsicResult.emplace_back(std::move(withFunc));
1160 }
1161 } else {
1162 candidates.emplace_back( std::move( withFunc ) );
1163 }
1164 }
1165 }
1166 spliceBegin( candidates, intrinsicResult );
1167 found = std::move( candidates );
1168
1169 // use a new list so that candidates are not examined by addAnonConversions twice
1170 // CandidateList winners = findMinCost( found );
1171 // promoteCvtCost( winners );
1172
1173 // function may return a struct/union value, in which case we need to add candidates
1174 // for implicit conversions to each of the anonymous members, which must happen after
1175 // `findMinCost`, since anon conversions are never the cheapest
1176 for ( const CandidateRef & c : found ) {
1177 addAnonConversions( c );
1178 }
1179 // would this be too slow when we don't check cost anymore?
1180 spliceBegin( candidates, found );
1181
1182 if ( candidates.empty() && targetType && ! targetType->isVoid() && !selfFinder.strictMode ) {
1183 // If resolution is unsuccessful with a target type, try again without, since it
1184 // will sometimes succeed when it wouldn't with a target type binding.
1185 // For example:
1186 // forall( otype T ) T & ?[]( T *, ptrdiff_t );
1187 // const char * x = "hello world";
1188 // unsigned char ch = x[0];
1189 // Fails with simple return type binding (xxx -- check this!) as follows:
1190 // * T is bound to unsigned char
1191 // * (x: const char *) is unified with unsigned char *, which fails
1192 // xxx -- fix this better
1193 targetType = nullptr;
1194 postvisit( untypedExpr );
1195 }
1196 }
1197
1198 void Finder::postvisit( const ast::AddressExpr * addressExpr ) {
1199 CandidateFinder finder( context, tenv );
1200 finder.find( addressExpr->arg );
1201
1202 if ( finder.candidates.empty() ) return;
1203
1204 reason.code = NoMatch;
1205
1206 for ( CandidateRef & r : finder.candidates ) {
1207 if ( !isLvalue( r->expr ) ) continue;
1208 addCandidate( *r, new ast::AddressExpr{ addressExpr->location, r->expr } );
1209 }
1210 }
1211
1212 void Finder::postvisit( const ast::LabelAddressExpr * labelExpr ) {
1213 addCandidate( labelExpr, tenv );
1214 }
1215
1216 void Finder::postvisit( const ast::CastExpr * castExpr ) {
1217 ast::ptr< ast::Type > toType = castExpr->result;
1218 assert( toType );
1219 toType = resolveTypeof( toType, context );
1220 toType = adjustExprType( toType, tenv, symtab );
1221
1222 CandidateFinder finder( context, tenv, toType );
1223 if (toType->isVoid()) {
1224 finder.allowVoid = true;
1225 }
1226 if ( castExpr->kind == ast::CastExpr::Return ) {
1227 finder.strictMode = true;
1228 finder.find( castExpr->arg, ResolveMode::withAdjustment() );
1229
1230 // return casts are eliminated (merely selecting an overload, no actual operation)
1231 candidates = std::move(finder.candidates);
1232 }
1233 finder.find( castExpr->arg, ResolveMode::withAdjustment() );
1234
1235 if ( !finder.candidates.empty() ) reason.code = NoMatch;
1236
1237 CandidateList matches;
1238 Cost minExprCost = Cost::infinity;
1239 Cost minCastCost = Cost::infinity;
1240 for ( CandidateRef & cand : finder.candidates ) {
1241 ast::AssertionSet need( cand->need.begin(), cand->need.end() ), have;
1242 ast::OpenVarSet open( cand->open );
1243
1244 cand->env.extractOpenVars( open );
1245
1246 // It is possible that a cast can throw away some values in a multiply-valued
1247 // expression, e.g. cast-to-void, one value to zero. Figure out the prefix of the
1248 // subexpression results that are cast directly. The candidate is invalid if it
1249 // has fewer results than there are types to cast to.
1250 int discardedValues = cand->expr->result->size() - toType->size();
1251 if ( discardedValues < 0 ) continue;
1252
1253 // unification run for side-effects
1254 unify( toType, cand->expr->result, cand->env, need, have, open );
1255 Cost thisCost =
1256 (castExpr->isGenerated == ast::GeneratedFlag::GeneratedCast)
1257 ? conversionCost( cand->expr->result, toType, cand->expr->get_lvalue(), symtab, cand->env )
1258 : castCost( cand->expr->result, toType, cand->expr->get_lvalue(), symtab, cand->env );
1259
1260 PRINT(
1261 std::cerr << "working on cast with result: " << toType << std::endl;
1262 std::cerr << "and expr type: " << cand->expr->result << std::endl;
1263 std::cerr << "env: " << cand->env << std::endl;
1264 )
1265 if ( thisCost != Cost::infinity ) {
1266 PRINT(
1267 std::cerr << "has finite cost." << std::endl;
1268 )
1269 // count one safe conversion for each value that is thrown away
1270 thisCost.incSafe( discardedValues );
1271 // select first on argument cost, then conversion cost
1272 if ( cand->cost < minExprCost || ( cand->cost == minExprCost && thisCost < minCastCost ) ) {
1273 minExprCost = cand->cost;
1274 minCastCost = thisCost;
1275 matches.clear();
1276
1277
1278 }
1279 // ambiguous case, still output candidates to print in error message
1280 if ( cand->cost == minExprCost && thisCost == minCastCost ) {
1281 CandidateRef newCand = std::make_shared<Candidate>(
1282 restructureCast( cand->expr, toType, castExpr->isGenerated ),
1283 copy( cand->env ), std::move( open ), std::move( need ), cand->cost + thisCost);
1284 // currently assertions are always resolved immediately so this should have no effect.
1285 // if this somehow changes in the future (e.g. delayed by indeterminate return type)
1286 // we may need to revisit the logic.
1287 inferParameters( newCand, matches );
1288 }
1289 // else skip, better alternatives found
1290
1291 }
1292 }
1293 candidates = std::move(matches);
1294
1295 //CandidateList minArgCost = findMinCost( matches );
1296 //promoteCvtCost( minArgCost );
1297 //candidates = findMinCost( minArgCost );
1298 }
1299
1300 void Finder::postvisit( const ast::VirtualCastExpr * castExpr ) {
1301 assertf( castExpr->result, "Implicit virtual cast targets not yet supported." );
1302 CandidateFinder finder( context, tenv );
1303 // don't prune here, all alternatives guaranteed to have same type
1304 finder.find( castExpr->arg, ResolveMode::withoutPrune() );
1305 for ( CandidateRef & r : finder.candidates ) {
1306 addCandidate(
1307 *r,
1308 new ast::VirtualCastExpr{ castExpr->location, r->expr, castExpr->result } );
1309 }
1310 }
1311
1312 void Finder::postvisit( const ast::KeywordCastExpr * castExpr ) {
1313 const auto & loc = castExpr->location;
1314 assertf( castExpr->result, "Cast target should have been set in Validate." );
1315 auto ref = castExpr->result.strict_as<ast::ReferenceType>();
1316 auto inst = ref->base.strict_as<ast::StructInstType>();
1317 auto target = inst->base.get();
1318
1319 CandidateFinder finder( context, tenv );
1320
1321 auto pick_alternatives = [target, this](CandidateList & found, bool expect_ref) {
1322 for (auto & cand : found) {
1323 const ast::Type * expr = cand->expr->result.get();
1324 if (expect_ref) {
1325 auto res = dynamic_cast<const ast::ReferenceType*>(expr);
1326 if (!res) { continue; }
1327 expr = res->base.get();
1328 }
1329
1330 if (auto insttype = dynamic_cast<const ast::TypeInstType*>(expr)) {
1331 auto td = cand->env.lookup(*insttype);
1332 if (!td) { continue; }
1333 expr = td->bound.get();
1334 }
1335
1336 if (auto base = dynamic_cast<const ast::StructInstType*>(expr)) {
1337 if (base->base == target) {
1338 candidates.push_back( std::move(cand) );
1339 reason.code = NoReason;
1340 }
1341 }
1342 }
1343 };
1344
1345 try {
1346 // Attempt 1 : turn (thread&)X into (thread$&)X.__thrd
1347 // Clone is purely for memory management
1348 std::unique_ptr<const ast::Expr> tech1 { new ast::UntypedMemberExpr(loc, new ast::NameExpr(loc, castExpr->concrete_target.field), castExpr->arg) };
1349
1350 // don't prune here, since it's guaranteed all alternatives will have the same type
1351 finder.find( tech1.get(), ResolveMode::withoutPrune() );
1352 pick_alternatives(finder.candidates, false);
1353
1354 return;
1355 } catch(SemanticErrorException & ) {}
1356
1357 // Fallback : turn (thread&)X into (thread$&)get_thread(X)
1358 std::unique_ptr<const ast::Expr> fallback { ast::UntypedExpr::createDeref(loc, new ast::UntypedExpr(loc, new ast::NameExpr(loc, castExpr->concrete_target.getter), { castExpr->arg })) };
1359 // don't prune here, since it's guaranteed all alternatives will have the same type
1360 finder.find( fallback.get(), ResolveMode::withoutPrune() );
1361
1362 pick_alternatives(finder.candidates, true);
1363
1364 // Whatever happens here, we have no more fallbacks
1365 }
1366
1367 void Finder::postvisit( const ast::UntypedMemberExpr * memberExpr ) {
1368 CandidateFinder aggFinder( context, tenv );
1369 aggFinder.find( memberExpr->aggregate, ResolveMode::withAdjustment() );
1370 for ( CandidateRef & agg : aggFinder.candidates ) {
1371 // it's okay for the aggregate expression to have reference type -- cast it to the
1372 // base type to treat the aggregate as the referenced value
1373 Cost addedCost = Cost::zero;
1374 agg->expr = referenceToRvalueConversion( agg->expr, addedCost );
1375
1376 // find member of the given type
1377 if ( auto structInst = agg->expr->result.as< ast::StructInstType >() ) {
1378 addAggMembers(
1379 structInst, agg->expr, *agg, addedCost, getMemberName( memberExpr ) );
1380 } else if ( auto unionInst = agg->expr->result.as< ast::UnionInstType >() ) {
1381 addAggMembers(
1382 unionInst, agg->expr, *agg, addedCost, getMemberName( memberExpr ) );
1383 } else if ( auto tupleType = agg->expr->result.as< ast::TupleType >() ) {
1384 addTupleMembers( tupleType, agg->expr, *agg, addedCost, memberExpr->member );
1385 }
1386 }
1387 }
1388
1389 void Finder::postvisit( const ast::MemberExpr * memberExpr ) {
1390 addCandidate( memberExpr, tenv );
1391 }
1392
1393 void Finder::postvisit( const ast::NameExpr * nameExpr ) {
1394 std::vector< ast::SymbolTable::IdData > declList;
1395 if (!selfFinder.otypeKeys.empty()) {
1396 auto kind = ast::SymbolTable::getSpecialFunctionKind(nameExpr->name);
1397 assertf(kind != ast::SymbolTable::SpecialFunctionKind::NUMBER_OF_KINDS, "special lookup with non-special target: %s", nameExpr->name.c_str());
1398
1399 for (auto & otypeKey: selfFinder.otypeKeys) {
1400 auto result = symtab.specialLookupId(kind, otypeKey);
1401 declList.insert(declList.end(), std::make_move_iterator(result.begin()), std::make_move_iterator(result.end()));
1402 }
1403 } else {
1404 declList = symtab.lookupId( nameExpr->name );
1405 }
1406 PRINT( std::cerr << "nameExpr is " << nameExpr->name << std::endl; )
1407
1408 if ( declList.empty() ) return;
1409
1410 reason.code = NoMatch;
1411
1412 for ( auto & data : declList ) {
1413 Cost cost = Cost::zero;
1414 ast::Expr * newExpr = data.combine( nameExpr->location, cost );
1415
1416 CandidateRef newCand = std::make_shared<Candidate>(
1417 newExpr, copy( tenv ), ast::OpenVarSet{}, ast::AssertionSet{}, Cost::zero,
1418 cost );
1419
1420 if (newCand->expr->env) {
1421 newCand->env.add(*newCand->expr->env);
1422 auto mutExpr = newCand->expr.get_and_mutate();
1423 mutExpr->env = nullptr;
1424 newCand->expr = mutExpr;
1425 }
1426
1427 PRINT(
1428 std::cerr << "decl is ";
1429 ast::print( std::cerr, data.id );
1430 std::cerr << std::endl;
1431 std::cerr << "newExpr is ";
1432 ast::print( std::cerr, newExpr );
1433 std::cerr << std::endl;
1434 )
1435 newCand->expr = ast::mutate_field(
1436 newCand->expr.get(), &ast::Expr::result,
1437 renameTyVars( newCand->expr->result ) );
1438 // add anonymous member interpretations whenever an aggregate value type is seen
1439 // as a name expression
1440 addAnonConversions( newCand );
1441 candidates.emplace_back( std::move( newCand ) );
1442 }
1443 }
1444
1445 void Finder::postvisit(const ast::VariableExpr *variableExpr) {
1446 // not sufficient to just pass `variableExpr` here, type might have changed
1447
1448 auto cand = new Candidate(variableExpr, tenv);
1449 candidates.emplace_back(cand);
1450
1451 if (auto enumInst = dynamic_cast<const ast::EnumInstType *>(
1452 variableExpr->var->get_type())) {
1453 if (enumInst->base && enumInst->base->base) {
1454 const CodeLocation &location = cand->expr->location;
1455
1456 CandidateFinder funcFinder(context, tenv);
1457 auto nameExpr = new ast::NameExpr(location, "valueE");
1458 ResolveMode mode = {true, false, selfFinder.candidates.empty()};
1459 funcFinder.find( nameExpr, mode );
1460
1461 // make variableExpr itself the candidate for the value Call
1462 ExplodedArgs argExpansions;
1463 argExpansions.emplace_back();
1464 auto &argE = argExpansions.back();
1465
1466 argE.emplace_back(*cand, symtab);
1467
1468 CandidateList found;
1469 SemanticErrorException errors;
1470
1471 for (CandidateRef &func : funcFinder) {
1472 try {
1473 const ast::Type *funcResult =
1474 func->expr->result->stripReferences();
1475 if (auto pointer = dynamic_cast<const ast::PointerType *>(
1476 funcResult)) {
1477 if (auto function =
1478 pointer->base.as<ast::FunctionType>()) {
1479 CandidateRef newFunc{new Candidate{*func}};
1480 newFunc->expr = referenceToRvalueConversion(
1481 newFunc->expr, newFunc->cost);
1482 makeFunctionCandidates(variableExpr->location,
1483 newFunc, function,
1484 argExpansions, found);
1485 }
1486 }
1487 } catch (SemanticErrorException &e) {
1488 std::cerr
1489 << "Resolving value function should cause an error"
1490 << std::endl;
1491 errors.append(e);
1492 }
1493 }
1494
1495 if (found.empty()) {
1496 std::cerr << "Resolve value function should always success"
1497 << std::endl;
1498 }
1499
1500 for (CandidateRef &withFunc : found) {
1501 withFunc->cost.incSafe();
1502 Cost cvtCost =
1503 computeApplicationConversionCost(withFunc, symtab);
1504 assert(cvtCost != Cost::infinity);
1505
1506 candidates.emplace_back(std::move(withFunc));
1507 }
1508 }
1509 }
1510 }
1511
1512 void Finder::postvisit( const ast::ConstantExpr * constantExpr ) {
1513 addCandidate( constantExpr, tenv );
1514 }
1515
1516 void Finder::postvisit( const ast::SizeofExpr * sizeofExpr ) {
1517 if ( sizeofExpr->type ) {
1518 addCandidate(
1519 new ast::SizeofExpr{
1520 sizeofExpr->location, resolveTypeof( sizeofExpr->type, context ) },
1521 tenv );
1522 } else {
1523 // find all candidates for the argument to sizeof
1524 CandidateFinder finder( context, tenv );
1525 finder.find( sizeofExpr->expr );
1526 // find the lowest-cost candidate, otherwise ambiguous
1527 CandidateList winners = findMinCost( finder.candidates );
1528 if ( winners.size() != 1 ) {
1529 SemanticError(
1530 sizeofExpr->expr.get(), "Ambiguous expression in sizeof operand: " );
1531 }
1532 // return the lowest-cost candidate
1533 CandidateRef & choice = winners.front();
1534 choice->expr = referenceToRvalueConversion( choice->expr, choice->cost );
1535 choice->cost = Cost::zero;
1536 addCandidate( *choice, new ast::SizeofExpr{ sizeofExpr->location, choice->expr } );
1537 }
1538 }
1539
1540 void Finder::postvisit( const ast::AlignofExpr * alignofExpr ) {
1541 if ( alignofExpr->type ) {
1542 addCandidate(
1543 new ast::AlignofExpr{
1544 alignofExpr->location, resolveTypeof( alignofExpr->type, context ) },
1545 tenv );
1546 } else {
1547 // find all candidates for the argument to alignof
1548 CandidateFinder finder( context, tenv );
1549 finder.find( alignofExpr->expr );
1550 // find the lowest-cost candidate, otherwise ambiguous
1551 CandidateList winners = findMinCost( finder.candidates );
1552 if ( winners.size() != 1 ) {
1553 SemanticError(
1554 alignofExpr->expr.get(), "Ambiguous expression in alignof operand: " );
1555 }
1556 // return the lowest-cost candidate
1557 CandidateRef & choice = winners.front();
1558 choice->expr = referenceToRvalueConversion( choice->expr, choice->cost );
1559 choice->cost = Cost::zero;
1560 addCandidate(
1561 *choice, new ast::AlignofExpr{ alignofExpr->location, choice->expr } );
1562 }
1563 }
1564
1565 void Finder::postvisit( const ast::UntypedOffsetofExpr * offsetofExpr ) {
1566 const ast::BaseInstType * aggInst;
1567 if (( aggInst = offsetofExpr->type.as< ast::StructInstType >() )) ;
1568 else if (( aggInst = offsetofExpr->type.as< ast::UnionInstType >() )) ;
1569 else return;
1570
1571 for ( const ast::Decl * member : aggInst->lookup( offsetofExpr->member ) ) {
1572 auto dwt = strict_dynamic_cast< const ast::DeclWithType * >( member );
1573 addCandidate(
1574 new ast::OffsetofExpr{ offsetofExpr->location, aggInst, dwt }, tenv );
1575 }
1576 }
1577
1578 void Finder::postvisit( const ast::OffsetofExpr * offsetofExpr ) {
1579 addCandidate( offsetofExpr, tenv );
1580 }
1581
1582 void Finder::postvisit( const ast::OffsetPackExpr * offsetPackExpr ) {
1583 addCandidate( offsetPackExpr, tenv );
1584 }
1585
1586 void Finder::postvisit( const ast::LogicalExpr * logicalExpr ) {
1587 CandidateFinder finder1( context, tenv );
1588 ast::ptr<ast::Expr> arg1 = createCondExpr( logicalExpr->arg1 );
1589 finder1.find( arg1, ResolveMode::withAdjustment() );
1590 if ( finder1.candidates.empty() ) return;
1591
1592 CandidateFinder finder2( context, tenv );
1593 ast::ptr<ast::Expr> arg2 = createCondExpr( logicalExpr->arg2 );
1594 finder2.find( arg2, ResolveMode::withAdjustment() );
1595 if ( finder2.candidates.empty() ) return;
1596
1597 reason.code = NoMatch;
1598
1599 for ( const CandidateRef & r1 : finder1.candidates ) {
1600 for ( const CandidateRef & r2 : finder2.candidates ) {
1601 ast::TypeEnvironment env{ r1->env };
1602 env.simpleCombine( r2->env );
1603 ast::OpenVarSet open{ r1->open };
1604 mergeOpenVars( open, r2->open );
1605 ast::AssertionSet need;
1606 mergeAssertionSet( need, r1->need );
1607 mergeAssertionSet( need, r2->need );
1608
1609 addCandidate(
1610 new ast::LogicalExpr{
1611 logicalExpr->location, r1->expr, r2->expr, logicalExpr->isAnd },
1612 std::move( env ), std::move( open ), std::move( need ), r1->cost + r2->cost );
1613 }
1614 }
1615 }
1616
1617 void Finder::postvisit( const ast::ConditionalExpr * conditionalExpr ) {
1618 // candidates for condition
1619 ast::ptr<ast::Expr> arg1 = createCondExpr( conditionalExpr->arg1 );
1620 CandidateFinder finder1( context, tenv );
1621 finder1.find( arg1, ResolveMode::withAdjustment() );
1622 if ( finder1.candidates.empty() ) return;
1623
1624 // candidates for true result
1625 // FIX ME: resolves and runs arg1 twice when arg2 is missing.
1626 ast::Expr const * arg2 = conditionalExpr->arg2;
1627 arg2 = arg2 ? arg2 : conditionalExpr->arg1.get();
1628 CandidateFinder finder2( context, tenv );
1629 finder2.allowVoid = true;
1630 finder2.find( arg2, ResolveMode::withAdjustment() );
1631 if ( finder2.candidates.empty() ) return;
1632
1633 // candidates for false result
1634 CandidateFinder finder3( context, tenv );
1635 finder3.allowVoid = true;
1636 finder3.find( conditionalExpr->arg3, ResolveMode::withAdjustment() );
1637 if ( finder3.candidates.empty() ) return;
1638
1639 reason.code = NoMatch;
1640
1641 for ( const CandidateRef & r1 : finder1.candidates ) {
1642 for ( const CandidateRef & r2 : finder2.candidates ) {
1643 for ( const CandidateRef & r3 : finder3.candidates ) {
1644 ast::TypeEnvironment env{ r1->env };
1645 env.simpleCombine( r2->env );
1646 env.simpleCombine( r3->env );
1647 ast::OpenVarSet open{ r1->open };
1648 mergeOpenVars( open, r2->open );
1649 mergeOpenVars( open, r3->open );
1650 ast::AssertionSet need;
1651 mergeAssertionSet( need, r1->need );
1652 mergeAssertionSet( need, r2->need );
1653 mergeAssertionSet( need, r3->need );
1654 ast::AssertionSet have;
1655
1656 // unify true and false results, then infer parameters to produce new
1657 // candidates
1658 ast::ptr< ast::Type > common;
1659 if (
1660 unify(
1661 r2->expr->result, r3->expr->result, env, need, have, open,
1662 common )
1663 ) {
1664 // generate typed expression
1665 ast::ConditionalExpr * newExpr = new ast::ConditionalExpr{
1666 conditionalExpr->location, r1->expr, r2->expr, r3->expr };
1667 newExpr->result = common ? common : r2->expr->result;
1668 // convert both options to result type
1669 Cost cost = r1->cost + r2->cost + r3->cost;
1670 newExpr->arg2 = computeExpressionConversionCost(
1671 newExpr->arg2, newExpr->result, symtab, env, cost );
1672 newExpr->arg3 = computeExpressionConversionCost(
1673 newExpr->arg3, newExpr->result, symtab, env, cost );
1674 // output candidate
1675 CandidateRef newCand = std::make_shared<Candidate>(
1676 newExpr, std::move( env ), std::move( open ), std::move( need ), cost );
1677 inferParameters( newCand, candidates );
1678 }
1679 }
1680 }
1681 }
1682 }
1683
1684 void Finder::postvisit( const ast::CommaExpr * commaExpr ) {
1685 ast::TypeEnvironment env{ tenv };
1686 ast::ptr< ast::Expr > arg1 = resolveInVoidContext( commaExpr->arg1, context, env );
1687
1688 CandidateFinder finder2( context, env );
1689 finder2.find( commaExpr->arg2, ResolveMode::withAdjustment() );
1690
1691 for ( const CandidateRef & r2 : finder2.candidates ) {
1692 addCandidate( *r2, new ast::CommaExpr{ commaExpr->location, arg1, r2->expr } );
1693 }
1694 }
1695
1696 void Finder::postvisit( const ast::ImplicitCopyCtorExpr * ctorExpr ) {
1697 addCandidate( ctorExpr, tenv );
1698 }
1699
1700 void Finder::postvisit( const ast::ConstructorExpr * ctorExpr ) {
1701 CandidateFinder finder( context, tenv );
1702 finder.allowVoid = true;
1703 finder.find( ctorExpr->callExpr, ResolveMode::withoutPrune() );
1704 for ( CandidateRef & r : finder.candidates ) {
1705 addCandidate( *r, new ast::ConstructorExpr{ ctorExpr->location, r->expr } );
1706 }
1707 }
1708
1709 void Finder::postvisit( const ast::RangeExpr * rangeExpr ) {
1710 // resolve low and high, accept candidates where low and high types unify
1711 CandidateFinder finder1( context, tenv );
1712 finder1.find( rangeExpr->low, ResolveMode::withAdjustment() );
1713 if ( finder1.candidates.empty() ) return;
1714
1715 CandidateFinder finder2( context, tenv );
1716 finder2.find( rangeExpr->high, ResolveMode::withAdjustment() );
1717 if ( finder2.candidates.empty() ) return;
1718
1719 reason.code = NoMatch;
1720
1721 for ( const CandidateRef & r1 : finder1.candidates ) {
1722 for ( const CandidateRef & r2 : finder2.candidates ) {
1723 ast::TypeEnvironment env{ r1->env };
1724 env.simpleCombine( r2->env );
1725 ast::OpenVarSet open{ r1->open };
1726 mergeOpenVars( open, r2->open );
1727 ast::AssertionSet need;
1728 mergeAssertionSet( need, r1->need );
1729 mergeAssertionSet( need, r2->need );
1730 ast::AssertionSet have;
1731
1732 ast::ptr< ast::Type > common;
1733 if (
1734 unify(
1735 r1->expr->result, r2->expr->result, env, need, have, open,
1736 common )
1737 ) {
1738 // generate new expression
1739 ast::RangeExpr * newExpr =
1740 new ast::RangeExpr{ rangeExpr->location, r1->expr, r2->expr };
1741 newExpr->result = common ? common : r1->expr->result;
1742 // add candidate
1743 CandidateRef newCand = std::make_shared<Candidate>(
1744 newExpr, std::move( env ), std::move( open ), std::move( need ),
1745 r1->cost + r2->cost );
1746 inferParameters( newCand, candidates );
1747 }
1748 }
1749 }
1750 }
1751
1752 void Finder::postvisit( const ast::UntypedTupleExpr * tupleExpr ) {
1753 std::vector< CandidateFinder > subCandidates =
1754 selfFinder.findSubExprs( tupleExpr->exprs );
1755 std::vector< CandidateList > possibilities;
1756 combos( subCandidates.begin(), subCandidates.end(), back_inserter( possibilities ) );
1757
1758 for ( const CandidateList & subs : possibilities ) {
1759 std::vector< ast::ptr< ast::Expr > > exprs;
1760 exprs.reserve( subs.size() );
1761 for ( const CandidateRef & sub : subs ) { exprs.emplace_back( sub->expr ); }
1762
1763 ast::TypeEnvironment env;
1764 ast::OpenVarSet open;
1765 ast::AssertionSet need;
1766 for ( const CandidateRef & sub : subs ) {
1767 env.simpleCombine( sub->env );
1768 mergeOpenVars( open, sub->open );
1769 mergeAssertionSet( need, sub->need );
1770 }
1771
1772 addCandidate(
1773 new ast::TupleExpr{ tupleExpr->location, std::move( exprs ) },
1774 std::move( env ), std::move( open ), std::move( need ), sumCost( subs ) );
1775 }
1776 }
1777
1778 void Finder::postvisit( const ast::TupleExpr * tupleExpr ) {
1779 addCandidate( tupleExpr, tenv );
1780 }
1781
1782 void Finder::postvisit( const ast::TupleIndexExpr * tupleExpr ) {
1783 addCandidate( tupleExpr, tenv );
1784 }
1785
1786 void Finder::postvisit( const ast::TupleAssignExpr * tupleExpr ) {
1787 addCandidate( tupleExpr, tenv );
1788 }
1789
1790 void Finder::postvisit( const ast::UniqueExpr * unqExpr ) {
1791 CandidateFinder finder( context, tenv );
1792 finder.find( unqExpr->expr, ResolveMode::withAdjustment() );
1793 for ( CandidateRef & r : finder.candidates ) {
1794 // ensure that the the id is passed on so that the expressions are "linked"
1795 addCandidate( *r, new ast::UniqueExpr{ unqExpr->location, r->expr, unqExpr->id } );
1796 }
1797 }
1798
1799 void Finder::postvisit( const ast::StmtExpr * stmtExpr ) {
1800 addCandidate( resolveStmtExpr( stmtExpr, context ), tenv );
1801 }
1802
1803 void Finder::postvisit( const ast::UntypedInitExpr * initExpr ) {
1804 // handle each option like a cast
1805 CandidateList matches;
1806 PRINT(
1807 std::cerr << "untyped init expr: " << initExpr << std::endl;
1808 )
1809 // O(n^2) checks of d-types with e-types
1810 for ( const ast::InitAlternative & initAlt : initExpr->initAlts ) {
1811 // calculate target type
1812 const ast::Type * toType = resolveTypeof( initAlt.type, context );
1813 toType = adjustExprType( toType, tenv, symtab );
1814 // The call to find must occur inside this loop, otherwise polymorphic return
1815 // types are not bound to the initialization type, since return type variables are
1816 // only open for the duration of resolving the UntypedExpr.
1817 CandidateFinder finder( context, tenv, toType );
1818 finder.find( initExpr->expr, ResolveMode::withAdjustment() );
1819
1820 Cost minExprCost = Cost::infinity;
1821 Cost minCastCost = Cost::infinity;
1822 for ( CandidateRef & cand : finder.candidates ) {
1823 if (reason.code == NotFound) reason.code = NoMatch;
1824
1825 ast::TypeEnvironment env{ cand->env };
1826 ast::AssertionSet need( cand->need.begin(), cand->need.end() ), have;
1827 ast::OpenVarSet open{ cand->open };
1828
1829 PRINT(
1830 std::cerr << " @ " << toType << " " << initAlt.designation << std::endl;
1831 )
1832
1833 // It is possible that a cast can throw away some values in a multiply-valued
1834 // expression, e.g. cast-to-void, one value to zero. Figure out the prefix of
1835 // the subexpression results that are cast directly. The candidate is invalid
1836 // if it has fewer results than there are types to cast to.
1837 int discardedValues = cand->expr->result->size() - toType->size();
1838 if ( discardedValues < 0 ) continue;
1839
1840 // unification run for side-effects
1841 bool canUnify = unify( toType, cand->expr->result, env, need, have, open );
1842 (void) canUnify;
1843 Cost thisCost = computeConversionCost( cand->expr->result, toType, cand->expr->get_lvalue(),
1844 symtab, env );
1845 PRINT(
1846 Cost legacyCost = castCost( cand->expr->result, toType, cand->expr->get_lvalue(),
1847 symtab, env );
1848 std::cerr << "Considering initialization:";
1849 std::cerr << std::endl << " FROM: " << cand->expr->result << std::endl;
1850 std::cerr << std::endl << " TO: " << toType << std::endl;
1851 std::cerr << std::endl << " Unification " << (canUnify ? "succeeded" : "failed");
1852 std::cerr << std::endl << " Legacy cost " << legacyCost;
1853 std::cerr << std::endl << " New cost " << thisCost;
1854 std::cerr << std::endl;
1855 )
1856 if ( thisCost != Cost::infinity ) {
1857 // count one safe conversion for each value that is thrown away
1858 thisCost.incSafe( discardedValues );
1859 if ( cand->cost < minExprCost || ( cand->cost == minExprCost && thisCost < minCastCost ) ) {
1860 minExprCost = cand->cost;
1861 minCastCost = thisCost;
1862 matches.clear();
1863 }
1864 // ambiguous case, still output candidates to print in error message
1865 if ( cand->cost == minExprCost && thisCost == minCastCost ) {
1866 CandidateRef newCand = std::make_shared<Candidate>(
1867 new ast::InitExpr{
1868 initExpr->location,
1869 restructureCast( cand->expr, toType ),
1870 initAlt.designation },
1871 std::move(env), std::move( open ), std::move( need ), cand->cost + thisCost );
1872 // currently assertions are always resolved immediately so this should have no effect.
1873 // if this somehow changes in the future (e.g. delayed by indeterminate return type)
1874 // we may need to revisit the logic.
1875 inferParameters( newCand, matches );
1876 }
1877 }
1878 }
1879 }
1880
1881 // select first on argument cost, then conversion cost
1882 // CandidateList minArgCost = findMinCost( matches );
1883 // promoteCvtCost( minArgCost );
1884 // candidates = findMinCost( minArgCost );
1885 candidates = std::move(matches);
1886 }
1887
1888 void Finder::postvisit( const ast::QualifiedNameExpr * expr ) {
1889 std::vector< ast::SymbolTable::IdData > declList = symtab.lookupId( expr->name );
1890 if ( declList.empty() ) return;
1891
1892 for ( ast::SymbolTable::IdData & data: declList ) {
1893 const ast::Type * t = data.id->get_type()->stripReferences();
1894 if ( const ast::EnumInstType * enumInstType =
1895 dynamic_cast<const ast::EnumInstType *>( t ) ) {
1896 if ( enumInstType->base->name == expr->type_decl->name ) {
1897 Cost cost = Cost::zero;
1898 ast::Expr * newExpr = data.combine( expr->location, cost );
1899 CandidateRef newCand =
1900 std::make_shared<Candidate>(
1901 newExpr, copy( tenv ), ast::OpenVarSet{},
1902 ast::AssertionSet{}, Cost::zero, cost
1903 );
1904
1905 if (newCand->expr->env) {
1906 newCand->env.add(*newCand->expr->env);
1907 auto mutExpr = newCand->expr.get_and_mutate();
1908 mutExpr->env = nullptr;
1909 newCand->expr = mutExpr;
1910 }
1911
1912 newCand->expr = ast::mutate_field(
1913 newCand->expr.get(), &ast::Expr::result,
1914 renameTyVars( newCand->expr->result ) );
1915 addAnonConversions( newCand );
1916 candidates.emplace_back( std::move( newCand ) );
1917 }
1918 }
1919 }
1920 }
1921 // size_t Finder::traceId = Stats::Heap::new_stacktrace_id("Finder");
1922 /// Prunes a list of candidates down to those that have the minimum conversion cost for a given
1923 /// return type. Skips ambiguous candidates.
1924
1925} // anonymous namespace
1926
1927bool CandidateFinder::pruneCandidates( CandidateList & candidates, CandidateList & out, std::vector<std::string> & errors ) {
1928 struct PruneStruct {
1929 CandidateRef candidate;
1930 bool ambiguous;
1931
1932 PruneStruct() = default;
1933 PruneStruct( const CandidateRef & c ) : candidate( c ), ambiguous( false ) {}
1934 };
1935
1936 // find lowest-cost candidate for each type
1937 std::unordered_map< std::string, PruneStruct > selected;
1938 // attempt to skip satisfyAssertions on more expensive alternatives if better options have been found
1939 std::sort(candidates.begin(), candidates.end(), [](const CandidateRef & x, const CandidateRef & y){return x->cost < y->cost;});
1940 for ( CandidateRef & candidate : candidates ) {
1941 std::string mangleName;
1942 {
1943 ast::ptr< ast::Type > newType = candidate->expr->result;
1944 assertf(candidate->expr->result, "Result of expression %p for candidate is null", candidate->expr.get());
1945 candidate->env.apply( newType );
1946 mangleName = Mangle::mangle( newType );
1947 }
1948
1949 auto found = selected.find( mangleName );
1950 if (found != selected.end() && found->second.candidate->cost < candidate->cost) {
1951 PRINT(
1952 std::cerr << "cost " << candidate->cost << " loses to "
1953 << found->second.candidate->cost << std::endl;
1954 )
1955 continue;
1956 }
1957
1958 // xxx - when do satisfyAssertions produce more than 1 result?
1959 // this should only happen when initial result type contains
1960 // unbound type parameters, then it should never be pruned by
1961 // the previous step, since renameTyVars guarantees the mangled name
1962 // is unique.
1963 CandidateList satisfied;
1964 bool needRecomputeKey = false;
1965 if (candidate->need.empty()) {
1966 satisfied.emplace_back(candidate);
1967 }
1968 else {
1969 satisfyAssertions(candidate, context.symtab, satisfied, errors);
1970 needRecomputeKey = true;
1971 }
1972
1973 for (auto & newCand : satisfied) {
1974 // recomputes type key, if satisfyAssertions changed it
1975 if (needRecomputeKey)
1976 {
1977 ast::ptr< ast::Type > newType = newCand->expr->result;
1978 assertf(newCand->expr->result, "Result of expression %p for candidate is null", newCand->expr.get());
1979 newCand->env.apply( newType );
1980 mangleName = Mangle::mangle( newType );
1981 }
1982 auto found = selected.find( mangleName );
1983 if ( found != selected.end() ) {
1984 // tiebreaking by picking the lower cost on CURRENT expression
1985 // NOTE: this behavior is different from C semantics.
1986 // Specific remediations are performed for C operators at postvisit(UntypedExpr).
1987 // Further investigations may take place.
1988 if ( newCand->cost < found->second.candidate->cost
1989 || (newCand->cost == found->second.candidate->cost && newCand->cvtCost < found->second.candidate->cvtCost) ) {
1990 PRINT(
1991 std::cerr << "cost " << newCand->cost << " beats "
1992 << found->second.candidate->cost << std::endl;
1993 )
1994
1995 found->second = PruneStruct{ newCand };
1996 } else if ( newCand->cost == found->second.candidate->cost && newCand->cvtCost == found->second.candidate->cvtCost ) {
1997 // if one of the candidates contains a deleted identifier, can pick the other,
1998 // since deleted expressions should not be ambiguous if there is another option
1999 // that is at least as good
2000 if ( findDeletedExpr( newCand->expr ) ) {
2001 // do nothing
2002 PRINT( std::cerr << "candidate is deleted" << std::endl; )
2003 } else if ( findDeletedExpr( found->second.candidate->expr ) ) {
2004 PRINT( std::cerr << "current is deleted" << std::endl; )
2005 found->second = PruneStruct{ newCand };
2006 } else {
2007 PRINT( std::cerr << "marking ambiguous" << std::endl; )
2008 found->second.ambiguous = true;
2009 }
2010 } else {
2011 // xxx - can satisfyAssertions increase the cost?
2012 PRINT(
2013 std::cerr << "cost " << newCand->cost << " loses to "
2014 << found->second.candidate->cost << std::endl;
2015 )
2016 }
2017 } else {
2018 selected.emplace_hint( found, mangleName, newCand );
2019 }
2020 }
2021 }
2022
2023 // report unambiguous min-cost candidates
2024 // CandidateList out;
2025 for ( auto & target : selected ) {
2026 if ( target.second.ambiguous ) continue;
2027
2028 CandidateRef cand = target.second.candidate;
2029
2030 ast::ptr< ast::Type > newResult = cand->expr->result;
2031 cand->env.applyFree( newResult );
2032 cand->expr = ast::mutate_field(
2033 cand->expr.get(), &ast::Expr::result, std::move( newResult ) );
2034
2035 out.emplace_back( cand );
2036 }
2037 // if everything is lost in satisfyAssertions, report the error
2038 return !selected.empty();
2039}
2040
2041void CandidateFinder::find( const ast::Expr * expr, ResolveMode mode ) {
2042 // Find alternatives for expression
2043 ast::Pass<Finder> finder{ *this };
2044 expr->accept( finder );
2045
2046 if ( mode.failFast && candidates.empty() ) {
2047 switch(finder.core.reason.code) {
2048 case Finder::NotFound:
2049 { SemanticError( expr, "No alternatives for expression " ); break; }
2050 case Finder::NoMatch:
2051 { SemanticError( expr, "Invalid application of existing declaration(s) in expression " ); break; }
2052 case Finder::ArgsToFew:
2053 case Finder::ArgsToMany:
2054 case Finder::RetsToFew:
2055 case Finder::RetsToMany:
2056 case Finder::NoReason:
2057 default:
2058 { SemanticError( expr->location, "No reasonable alternatives for expression : reasons unkown" ); }
2059 }
2060 }
2061
2062 /*
2063 if ( mode.satisfyAssns || mode.prune ) {
2064 // trim candidates to just those where the assertions are satisfiable
2065 // - necessary pre-requisite to pruning
2066 CandidateList satisfied;
2067 std::vector< std::string > errors;
2068 for ( CandidateRef & candidate : candidates ) {
2069 satisfyAssertions( candidate, localSyms, satisfied, errors );
2070 }
2071
2072 // fail early if none such
2073 if ( mode.failFast && satisfied.empty() ) {
2074 std::ostringstream stream;
2075 stream << "No alternatives with satisfiable assertions for " << expr << "\n";
2076 for ( const auto& err : errors ) {
2077 stream << err;
2078 }
2079 SemanticError( expr->location, stream.str() );
2080 }
2081
2082 // reset candidates
2083 candidates = move( satisfied );
2084 }
2085 */
2086
2087 // optimization: don't prune for NameExpr since it never has cost
2088 if ( mode.prune && !dynamic_cast<const ast::NameExpr *>(expr) ) {
2089 // trim candidates to single best one
2090 PRINT(
2091 std::cerr << "alternatives before prune:" << std::endl;
2092 print( std::cerr, candidates );
2093 )
2094
2095 CandidateList pruned;
2096 std::vector<std::string> errors;
2097 bool found = pruneCandidates( candidates, pruned, errors );
2098
2099 if ( mode.failFast && pruned.empty() ) {
2100 std::ostringstream stream;
2101 if (found) {
2102 CandidateList winners = findMinCost( candidates );
2103 stream << "Cannot choose between " << winners.size() << " alternatives for "
2104 "expression\n";
2105 ast::print( stream, expr );
2106 stream << " Alternatives are:\n";
2107 print( stream, winners, 1 );
2108 SemanticError( expr->location, stream.str() );
2109 }
2110 else {
2111 stream << "No alternatives with satisfiable assertions for " << expr << "\n";
2112 for ( const auto& err : errors ) {
2113 stream << err;
2114 }
2115 SemanticError( expr->location, stream.str() );
2116 }
2117 }
2118
2119 auto oldsize = candidates.size();
2120 candidates = std::move( pruned );
2121
2122 PRINT(
2123 std::cerr << "there are " << oldsize << " alternatives before elimination" << std::endl;
2124 )
2125 PRINT(
2126 std::cerr << "there are " << candidates.size() << " alternatives after elimination"
2127 << std::endl;
2128 )
2129 }
2130
2131 // adjust types after pruning so that types substituted by pruneAlternatives are correctly
2132 // adjusted
2133 if ( mode.adjust ) {
2134 for ( CandidateRef & r : candidates ) {
2135 r->expr = ast::mutate_field(
2136 r->expr.get(), &ast::Expr::result,
2137 adjustExprType( r->expr->result, r->env, context.symtab ) );
2138 }
2139 }
2140
2141 // Central location to handle gcc extension keyword, etc. for all expressions
2142 for ( CandidateRef & r : candidates ) {
2143 if ( r->expr->extension != expr->extension ) {
2144 r->expr.get_and_mutate()->extension = expr->extension;
2145 }
2146 }
2147}
2148
2149std::vector< CandidateFinder > CandidateFinder::findSubExprs(
2150 const std::vector< ast::ptr< ast::Expr > > & xs
2151) {
2152 std::vector< CandidateFinder > out;
2153
2154 for ( const auto & x : xs ) {
2155 out.emplace_back( context, env );
2156 out.back().find( x, ResolveMode::withAdjustment() );
2157
2158 PRINT(
2159 std::cerr << "findSubExprs" << std::endl;
2160 print( std::cerr, out.back().candidates );
2161 )
2162 }
2163
2164 return out;
2165}
2166
2167const ast::Expr * referenceToRvalueConversion( const ast::Expr * expr, Cost & cost ) {
2168 if ( expr->result.as< ast::ReferenceType >() ) {
2169 // cast away reference from expr
2170 cost.incReference();
2171 return new ast::CastExpr{ expr, expr->result->stripReferences() };
2172 }
2173
2174 return expr;
2175}
2176
2177Cost computeConversionCost(
2178 const ast::Type * argType, const ast::Type * paramType, bool argIsLvalue,
2179 const ast::SymbolTable & symtab, const ast::TypeEnvironment & env
2180) {
2181 PRINT(
2182 std::cerr << std::endl << "converting ";
2183 ast::print( std::cerr, argType, 2 );
2184 std::cerr << std::endl << " to ";
2185 ast::print( std::cerr, paramType, 2 );
2186 std::cerr << std::endl << "environment is: ";
2187 ast::print( std::cerr, env, 2 );
2188 std::cerr << std::endl;
2189 )
2190 Cost convCost = conversionCost( argType, paramType, argIsLvalue, symtab, env );
2191 PRINT(
2192 std::cerr << std::endl << "cost is " << convCost << std::endl;
2193 )
2194 if ( convCost == Cost::infinity ) return convCost;
2195 convCost.incPoly( polyCost( paramType, symtab, env ) + polyCost( argType, symtab, env ) );
2196 PRINT(
2197 std::cerr << "cost with polycost is " << convCost << std::endl;
2198 )
2199 return convCost;
2200}
2201
2202const ast::Expr * createCondExpr( const ast::Expr * expr ) {
2203 assert( expr );
2204 return new ast::CastExpr( expr->location,
2205 ast::UntypedExpr::createCall( expr->location,
2206 "?!=?",
2207 {
2208 expr,
2209 new ast::ConstantExpr( expr->location,
2210 new ast::ZeroType(), "0", std::make_optional( 0ull )
2211 ),
2212 }
2213 ),
2214 new ast::BasicType( ast::BasicType::SignedInt )
2215 );
2216}
2217
2218} // namespace ResolvExpr
2219
2220// Local Variables: //
2221// tab-width: 4 //
2222// mode: c++ //
2223// compile-command: "make install" //
2224// End: //
Note: See TracBrowser for help on using the repository browser.