source: src/ResolvExpr/CandidateFinder.cpp@ a750c71b

Last change on this file since a750c71b was 6b95feb, checked in by Fangren Yu <f37yu@…>, 9 months ago

implement return cast for other types of expressions

  • Property mode set to 100644
File size: 81.0 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// CandidateFinder.cpp --
8//
9// Author : Aaron B. Moss
10// Created On : Wed Jun 5 14:30:00 2019
11// Last Modified By : Peter A. Buhr
12// Last Modified On : Mon Sep 9 11:30:11 2024
13// Update Count : 5
14//
15
16#include "CandidateFinder.hpp"
17
18#include <deque>
19#include <iterator> // for back_inserter
20#include <sstream>
21#include <string>
22#include <unordered_map>
23#include <vector>
24
25#include "AdjustExprType.hpp"
26#include "Candidate.hpp"
27#include "CastCost.hpp" // for castCost
28#include "CompilationState.hpp"
29#include "ConversionCost.hpp" // for conversionCast
30#include "Cost.hpp"
31#include "ExplodedArg.hpp"
32#include "PolyCost.hpp"
33#include "RenameVars.hpp" // for renameTyVars
34#include "Resolver.hpp"
35#include "ResolveTypeof.hpp"
36#include "SatisfyAssertions.hpp"
37#include "SpecCost.hpp"
38#include "Typeops.hpp" // for combos
39#include "Unify.hpp"
40#include "WidenMode.hpp"
41#include "AST/Expr.hpp"
42#include "AST/Node.hpp"
43#include "AST/Pass.hpp"
44#include "AST/Print.hpp"
45#include "AST/SymbolTable.hpp"
46#include "AST/Type.hpp"
47#include "Common/Utility.hpp" // for move, copy
48#include "SymTab/Mangler.hpp"
49#include "Tuples/Tuples.hpp" // for handleTupleAssignment
50#include "InitTweak/InitTweak.hpp" // for getPointerBase
51
52#include "Common/Stats/Counter.hpp"
53
54#include "AST/Inspect.hpp" // for getFunctionName
55
56#define PRINT( text ) if ( resolvep ) { text }
57
58namespace ResolvExpr {
59
60/// Unique identifier for matching expression resolutions to their requesting expression
61ast::UniqueId globalResnSlot = 0;
62
63namespace {
64 /// First index is which argument, second is which alternative, third is which exploded element
65 using ExplodedArgs = std::deque< std::vector< ExplodedArg > >;
66
67 /// Returns a list of alternatives with the minimum cost in the given list
68 CandidateList findMinCost( const CandidateList & candidates ) {
69 CandidateList out;
70 Cost minCost = Cost::infinity;
71 for ( const CandidateRef & r : candidates ) {
72 if ( r->cost < minCost ) {
73 minCost = r->cost;
74 out.clear();
75 out.emplace_back( r );
76 } else if ( r->cost == minCost ) {
77 out.emplace_back( r );
78 }
79 }
80 return out;
81 }
82
83 /// Computes conversion cost for a given expression to a given type
84 const ast::Expr * computeExpressionConversionCost(
85 const ast::Expr * arg, const ast::Type * paramType, const ast::SymbolTable & symtab, const ast::TypeEnvironment & env, Cost & outCost
86 ) {
87 Cost convCost = computeConversionCost(
88 arg->result, paramType, arg->get_lvalue(), symtab, env );
89 outCost += convCost;
90
91 // If there is a non-zero conversion cost, ignoring poly cost, then the expression requires
92 // conversion. Ignore poly cost for now, since this requires resolution of the cast to
93 // infer parameters and this does not currently work for the reason stated below
94 Cost tmpCost = convCost;
95 tmpCost.incPoly( -tmpCost.get_polyCost() );
96 if ( tmpCost != Cost::zero ) {
97 ast::ptr< ast::Type > newType = paramType;
98 env.apply( newType );
99 return new ast::CastExpr{ arg, newType };
100
101 // xxx - *should* be able to resolve this cast, but at the moment pointers are not
102 // castable to zero_t, but are implicitly convertible. This is clearly inconsistent,
103 // once this is fixed it should be possible to resolve the cast.
104 // xxx - this isn't working, it appears because type1 (parameter) is seen as widenable,
105 // but it shouldn't be because this makes the conversion from DT* to DT* since
106 // commontype(zero_t, DT*) is DT*, rather than nothing
107
108 // CandidateFinder finder{ symtab, env };
109 // finder.find( arg, ResolveMode::withAdjustment() );
110 // assertf( finder.candidates.size() > 0,
111 // "Somehow castable expression failed to find alternatives." );
112 // assertf( finder.candidates.size() == 1,
113 // "Somehow got multiple alternatives for known cast expression." );
114 // return finder.candidates.front()->expr;
115 }
116
117 return arg;
118 }
119
120 /// Computes conversion cost for a given candidate
121 Cost computeApplicationConversionCost(
122 CandidateRef cand, const ast::SymbolTable & symtab
123 ) {
124 auto appExpr = cand->expr.strict_as< ast::ApplicationExpr >();
125 auto pointer = appExpr->func->result.strict_as< ast::PointerType >();
126 auto function = pointer->base.strict_as< ast::FunctionType >();
127
128 Cost convCost = Cost::zero;
129 const auto & params = function->params;
130 auto param = params.begin();
131 auto & args = appExpr->args;
132
133 for ( unsigned i = 0; i < args.size(); ++i ) {
134 const ast::Type * argType = args[i]->result;
135 PRINT(
136 std::cerr << "arg expression:" << std::endl;
137 ast::print( std::cerr, args[i], 2 );
138 std::cerr << "--- results are" << std::endl;
139 ast::print( std::cerr, argType, 2 );
140 )
141
142 if ( param == params.end() ) {
143 if ( function->isVarArgs ) {
144 convCost.incUnsafe();
145 PRINT( std::cerr << "end of params with varargs function: inc unsafe: "
146 << convCost << std::endl; ; )
147 // convert reference-typed expressions into value-typed expressions
148 cand->expr = ast::mutate_field_index(
149 appExpr, &ast::ApplicationExpr::args, i,
150 referenceToRvalueConversion( args[i], convCost ) );
151 continue;
152 } else return Cost::infinity;
153 }
154
155 if ( auto def = args[i].as< ast::DefaultArgExpr >() ) {
156 // Default arguments should be free - don't include conversion cost.
157 // Unwrap them here because they are not relevant to the rest of the system
158 cand->expr = ast::mutate_field_index(
159 appExpr, &ast::ApplicationExpr::args, i, def->expr );
160 ++param;
161 continue;
162 }
163
164 // mark conversion cost and also specialization cost of param type
165 // const ast::Type * paramType = (*param)->get_type();
166 cand->expr = ast::mutate_field_index(
167 appExpr, &ast::ApplicationExpr::args, i,
168 computeExpressionConversionCost(
169 args[i], *param, symtab, cand->env, convCost ) );
170 convCost.decSpec( specCost( *param ) );
171 ++param; // can't be in for-loop update because of the continue
172 }
173
174 if ( param != params.end() ) return Cost::infinity;
175
176 // specialization cost of return types can't be accounted for directly, it disables
177 // otherwise-identical calls, like this example based on auto-newline in the I/O lib:
178 //
179 // forall(otype OS) {
180 // void ?|?(OS&, int); // with newline
181 // OS& ?|?(OS&, int); // no newline, always chosen due to more specialization
182 // }
183
184 // mark type variable and specialization cost of forall clause
185 convCost.incVar( function->forall.size() );
186 convCost.decSpec( function->assertions.size() );
187
188 return convCost;
189 }
190
191 void makeUnifiableVars(
192 const ast::FunctionType * type, ast::OpenVarSet & unifiableVars,
193 ast::AssertionSet & need
194 ) {
195 for ( auto & tyvar : type->forall ) {
196 unifiableVars[ *tyvar ] = ast::TypeData{ tyvar->base };
197 }
198 for ( auto & assn : type->assertions ) {
199 need[ assn ].isUsed = true;
200 }
201 }
202
203 /// Gets a default value from an initializer, nullptr if not present
204 const ast::ConstantExpr * getDefaultValue( const ast::Init * init ) {
205 if ( auto si = dynamic_cast< const ast::SingleInit * >( init ) ) {
206 if ( auto ce = si->value.as< ast::CastExpr >() ) {
207 return ce->arg.as< ast::ConstantExpr >();
208 } else {
209 return si->value.as< ast::ConstantExpr >();
210 }
211 }
212 return nullptr;
213 }
214
215 /// State to iteratively build a match of parameter expressions to arguments
216 struct ArgPack {
217 std::size_t parent; ///< Index of parent pack
218 ast::ptr< ast::Expr > expr; ///< The argument stored here
219 Cost cost; ///< The cost of this argument
220 ast::TypeEnvironment env; ///< Environment for this pack
221 ast::AssertionSet need; ///< Assertions outstanding for this pack
222 ast::AssertionSet have; ///< Assertions found for this pack
223 ast::OpenVarSet open; ///< Open variables for this pack
224 unsigned nextArg; ///< Index of next argument in arguments list
225 unsigned tupleStart; ///< Number of tuples that start at this index
226 unsigned nextExpl; ///< Index of next exploded element
227 unsigned explAlt; ///< Index of alternative for nextExpl > 0
228
229 ArgPack()
230 : parent( 0 ), expr(), cost( Cost::zero ), env(), need(), have(), open(), nextArg( 0 ),
231 tupleStart( 0 ), nextExpl( 0 ), explAlt( 0 ) {}
232
233 ArgPack(
234 const ast::TypeEnvironment & env, const ast::AssertionSet & need,
235 const ast::AssertionSet & have, const ast::OpenVarSet & open )
236 : parent( 0 ), expr(), cost( Cost::zero ), env( env ), need( need ), have( have ),
237 open( open ), nextArg( 0 ), tupleStart( 0 ), nextExpl( 0 ), explAlt( 0 ) {}
238
239 ArgPack(
240 std::size_t parent, const ast::Expr * expr, ast::TypeEnvironment && env,
241 ast::AssertionSet && need, ast::AssertionSet && have, ast::OpenVarSet && open,
242 unsigned nextArg, unsigned tupleStart = 0, Cost cost = Cost::zero,
243 unsigned nextExpl = 0, unsigned explAlt = 0 )
244 : parent(parent), expr( expr ), cost( cost ), env( std::move( env ) ), need( std::move( need ) ),
245 have( std::move( have ) ), open( std::move( open ) ), nextArg( nextArg ), tupleStart( tupleStart ),
246 nextExpl( nextExpl ), explAlt( explAlt ) {}
247
248 ArgPack(
249 const ArgPack & o, ast::TypeEnvironment && env, ast::AssertionSet && need,
250 ast::AssertionSet && have, ast::OpenVarSet && open, unsigned nextArg, Cost added )
251 : parent( o.parent ), expr( o.expr ), cost( o.cost + added ), env( std::move( env ) ),
252 need( std::move( need ) ), have( std::move( have ) ), open( std::move( open ) ), nextArg( nextArg ),
253 tupleStart( o.tupleStart ), nextExpl( 0 ), explAlt( 0 ) {}
254
255 /// true if this pack is in the middle of an exploded argument
256 bool hasExpl() const { return nextExpl > 0; }
257
258 /// Gets the list of exploded candidates for this pack
259 const ExplodedArg & getExpl( const ExplodedArgs & args ) const {
260 return args[ nextArg-1 ][ explAlt ];
261 }
262
263 /// Ends a tuple expression, consolidating the appropriate args
264 void endTuple( const std::vector< ArgPack > & packs ) {
265 // add all expressions in tuple to list, summing cost
266 std::deque< const ast::Expr * > exprs;
267 const ArgPack * pack = this;
268 if ( expr ) { exprs.emplace_front( expr ); }
269 while ( pack->tupleStart == 0 ) {
270 pack = &packs[pack->parent];
271 exprs.emplace_front( pack->expr );
272 cost += pack->cost;
273 }
274 // reset pack to appropriate tuple
275 std::vector< ast::ptr< ast::Expr > > exprv( exprs.begin(), exprs.end() );
276 expr = new ast::TupleExpr{ expr->location, std::move( exprv ) };
277 tupleStart = pack->tupleStart - 1;
278 parent = pack->parent;
279 }
280 };
281
282 /// Instantiates an argument to match a parameter, returns false if no matching results left
283 bool instantiateArgument(
284 const CodeLocation & location,
285 const ast::Type * paramType, const ast::Init * init, const ExplodedArgs & args,
286 std::vector< ArgPack > & results, std::size_t & genStart, const ResolveContext & context,
287 unsigned nTuples = 0
288 ) {
289 if ( auto tupleType = dynamic_cast< const ast::TupleType * >( paramType ) ) {
290 // paramType is a TupleType -- group args into a TupleExpr
291 ++nTuples;
292 for ( const ast::Type * type : *tupleType ) {
293 // xxx - dropping initializer changes behaviour from previous, but seems correct
294 // ^^^ need to handle the case where a tuple has a default argument
295 if ( ! instantiateArgument( location,
296 type, nullptr, args, results, genStart, context, nTuples ) ) return false;
297 nTuples = 0;
298 }
299 // re-constitute tuples for final generation
300 for ( auto i = genStart; i < results.size(); ++i ) {
301 results[i].endTuple( results );
302 }
303 return true;
304 } else if ( const ast::TypeInstType * ttype = Tuples::isTtype( paramType ) ) {
305 // paramType is a ttype, consumes all remaining arguments
306
307 // completed tuples; will be spliced to end of results to finish
308 std::vector< ArgPack > finalResults{};
309
310 // iterate until all results completed
311 std::size_t genEnd;
312 ++nTuples;
313 do {
314 genEnd = results.size();
315
316 // add another argument to results
317 for ( std::size_t i = genStart; i < genEnd; ++i ) {
318 unsigned nextArg = results[i].nextArg;
319
320 // use next element of exploded tuple if present
321 if ( results[i].hasExpl() ) {
322 const ExplodedArg & expl = results[i].getExpl( args );
323
324 unsigned nextExpl = results[i].nextExpl + 1;
325 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
326
327 results.emplace_back(
328 i, expl.exprs[ results[i].nextExpl ], copy( results[i].env ),
329 copy( results[i].need ), copy( results[i].have ),
330 copy( results[i].open ), nextArg, nTuples, Cost::zero, nextExpl,
331 results[i].explAlt );
332
333 continue;
334 }
335
336 // finish result when out of arguments
337 if ( nextArg >= args.size() ) {
338 ArgPack newResult{
339 results[i].env, results[i].need, results[i].have, results[i].open };
340 newResult.nextArg = nextArg;
341 const ast::Type * argType = nullptr;
342
343 if ( nTuples > 0 || ! results[i].expr ) {
344 // first iteration or no expression to clone,
345 // push empty tuple expression
346 newResult.parent = i;
347 newResult.expr = new ast::TupleExpr( location, {} );
348 argType = newResult.expr->result;
349 } else {
350 // clone result to collect tuple
351 newResult.parent = results[i].parent;
352 newResult.cost = results[i].cost;
353 newResult.tupleStart = results[i].tupleStart;
354 newResult.expr = results[i].expr;
355 argType = newResult.expr->result;
356
357 if ( results[i].tupleStart > 0 && Tuples::isTtype( argType ) ) {
358 // the case where a ttype value is passed directly is special,
359 // e.g. for argument forwarding purposes
360 // xxx - what if passing multiple arguments, last of which is
361 // ttype?
362 // xxx - what would happen if unify was changed so that unifying
363 // tuple
364 // types flattened both before unifying lists? then pass in
365 // TupleType (ttype) below.
366 --newResult.tupleStart;
367 } else {
368 // collapse leftover arguments into tuple
369 newResult.endTuple( results );
370 argType = newResult.expr->result;
371 }
372 }
373
374 // check unification for ttype before adding to final
375 if (
376 unify(
377 ttype, argType, newResult.env, newResult.need, newResult.have,
378 newResult.open )
379 ) {
380 finalResults.emplace_back( std::move( newResult ) );
381 }
382
383 continue;
384 }
385
386 // add each possible next argument
387 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
388 const ExplodedArg & expl = args[nextArg][j];
389
390 // fresh copies of parent parameters for this iteration
391 ast::TypeEnvironment env = results[i].env;
392 ast::OpenVarSet open = results[i].open;
393
394 env.addActual( expl.env, open );
395
396 // skip empty tuple arguments by (nearly) cloning parent into next gen
397 if ( expl.exprs.empty() ) {
398 results.emplace_back(
399 results[i], std::move( env ), copy( results[i].need ),
400 copy( results[i].have ), std::move( open ), nextArg + 1, expl.cost );
401
402 continue;
403 }
404
405 // add new result
406 results.emplace_back(
407 i, expl.exprs.front(), std::move( env ), copy( results[i].need ),
408 copy( results[i].have ), std::move( open ), nextArg + 1, nTuples,
409 expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
410 }
411 }
412
413 // reset for next round
414 genStart = genEnd;
415 nTuples = 0;
416 } while ( genEnd != results.size() );
417
418 // splice final results onto results
419 for ( std::size_t i = 0; i < finalResults.size(); ++i ) {
420 results.emplace_back( std::move( finalResults[i] ) );
421 }
422 return ! finalResults.empty();
423 }
424
425 // iterate each current subresult
426 std::size_t genEnd = results.size();
427 for ( std::size_t i = genStart; i < genEnd; ++i ) {
428 unsigned nextArg = results[i].nextArg;
429
430 // use remainder of exploded tuple if present
431 if ( results[i].hasExpl() ) {
432 const ExplodedArg & expl = results[i].getExpl( args );
433 const ast::Expr * expr = expl.exprs[ results[i].nextExpl ];
434
435 ast::TypeEnvironment env = results[i].env;
436 ast::AssertionSet need = results[i].need, have = results[i].have;
437 ast::OpenVarSet open = results[i].open;
438
439 const ast::Type * argType = expr->result;
440
441 PRINT(
442 std::cerr << "param type is ";
443 ast::print( std::cerr, paramType );
444 std::cerr << std::endl << "arg type is ";
445 ast::print( std::cerr, argType );
446 std::cerr << std::endl;
447 )
448
449 if ( unify( paramType, argType, env, need, have, open ) ) {
450 unsigned nextExpl = results[i].nextExpl + 1;
451 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
452
453 results.emplace_back(
454 i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ), nextArg,
455 nTuples, Cost::zero, nextExpl, results[i].explAlt );
456 }
457
458 continue;
459 }
460
461 // use default initializers if out of arguments
462 if ( nextArg >= args.size() ) {
463 if ( const ast::ConstantExpr * cnst = getDefaultValue( init ) ) {
464 ast::TypeEnvironment env = results[i].env;
465 ast::AssertionSet need = results[i].need, have = results[i].have;
466 ast::OpenVarSet open = results[i].open;
467
468 if ( unify( paramType, cnst->result, env, need, have, open ) ) {
469 results.emplace_back(
470 i, new ast::DefaultArgExpr{ cnst->location, cnst }, std::move( env ),
471 std::move( need ), std::move( have ), std::move( open ), nextArg, nTuples );
472 }
473 }
474
475 continue;
476 }
477
478 // Check each possible next argument
479 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
480 const ExplodedArg & expl = args[nextArg][j];
481
482 // fresh copies of parent parameters for this iteration
483 ast::TypeEnvironment env = results[i].env;
484 ast::AssertionSet need = results[i].need, have = results[i].have;
485 ast::OpenVarSet open = results[i].open;
486
487 env.addActual( expl.env, open );
488
489 // skip empty tuple arguments by (nearly) cloning parent into next gen
490 if ( expl.exprs.empty() ) {
491 results.emplace_back(
492 results[i], std::move( env ), std::move( need ), std::move( have ), std::move( open ),
493 nextArg + 1, expl.cost );
494
495 continue;
496 }
497
498 // consider only first exploded arg
499 const ast::Expr * expr = expl.exprs.front();
500 const ast::Type * argType = expr->result;
501
502 PRINT(
503 std::cerr << "param type is ";
504 ast::print( std::cerr, paramType );
505 std::cerr << std::endl << "arg type is ";
506 ast::print( std::cerr, argType );
507 std::cerr << std::endl;
508 )
509
510 // attempt to unify types
511 ast::ptr<ast::Type> common;
512 if ( unify( paramType, argType, env, need, have, open, common ) ) {
513 // add new result
514 assert( common );
515
516 auto paramAsEnum = dynamic_cast<const ast::EnumInstType *>(paramType);
517 auto argAsEnum =dynamic_cast<const ast::EnumInstType *>(argType);
518 if (paramAsEnum && argAsEnum) {
519 if (paramAsEnum->base->name != argAsEnum->base->name) {
520 Cost c = castCost(argType, paramType, expr, context.symtab, env);
521 if (c < Cost::infinity) {
522 CandidateFinder subFinder( context, env );
523 expr = subFinder.makeEnumOffsetCast(argAsEnum, paramAsEnum, expr, c);
524 if ( expr )
525 results.emplace_back(
526 i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ),
527 nextArg + 1, nTuples, expl.cost + c, expl.exprs.size() == 1 ? 0 : 1, j );
528 continue;
529 } else {
530 std::cerr << "Cannot instantiate " << paramAsEnum->base->name << " with " << argAsEnum->base->name << std::endl;
531 }
532 }
533 }
534 results.emplace_back(
535 i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ),
536 nextArg + 1, nTuples, expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
537 }
538 }
539 }
540
541 // reset for next parameter
542 genStart = genEnd;
543
544 return genEnd != results.size(); // were any new results added?
545 }
546
547 /// Generate a cast expression from `arg` to `toType`
548 const ast::Expr * restructureCast(
549 ast::ptr< ast::Expr > & arg, const ast::Type * toType, ast::GeneratedFlag isGenerated = ast::GeneratedCast
550 ) {
551 if (
552 arg->result->size() > 1
553 && ! toType->isVoid()
554 && ! dynamic_cast< const ast::ReferenceType * >( toType )
555 ) {
556 // Argument is a tuple and the target type is neither void nor a reference. Cast each
557 // member of the tuple to its corresponding target type, producing the tuple of those
558 // cast expressions. If there are more components of the tuple than components in the
559 // target type, then excess components do not come out in the result expression (but
560 // UniqueExpr ensures that the side effects will still be produced)
561 if ( Tuples::maybeImpureIgnoreUnique( arg ) ) {
562 // expressions which may contain side effects require a single unique instance of
563 // the expression
564 arg = new ast::UniqueExpr{ arg->location, arg };
565 }
566 std::vector< ast::ptr< ast::Expr > > components;
567 for ( unsigned i = 0; i < toType->size(); ++i ) {
568 // cast each component
569 ast::ptr< ast::Expr > idx = new ast::TupleIndexExpr{ arg->location, arg, i };
570 components.emplace_back(
571 restructureCast( idx, toType->getComponent( i ), isGenerated ) );
572 }
573 return new ast::TupleExpr{ arg->location, std::move( components ) };
574 } else {
575 // handle normally
576 return new ast::CastExpr{ arg->location, arg, toType, isGenerated };
577 }
578 }
579
580 /// Gets the name from an untyped member expression (must be NameExpr)
581 const std::string & getMemberName( const ast::UntypedMemberExpr * memberExpr ) {
582 if ( memberExpr->member.as< ast::ConstantExpr >() ) {
583 SemanticError( memberExpr, "Indexed access to struct fields unsupported: " );
584 }
585
586 return memberExpr->member.strict_as< ast::NameExpr >()->name;
587 }
588
589 /// Actually visits expressions to find their candidate interpretations
590 class Finder final : public ast::WithShortCircuiting {
591 const ResolveContext & context;
592 const ast::SymbolTable & symtab;
593 public:
594 // static size_t traceId;
595 CandidateFinder & selfFinder;
596 CandidateList & candidates;
597 const ast::TypeEnvironment & tenv;
598 ast::ptr< ast::Type > & targetType;
599
600 enum Errors {
601 NotFound,
602 NoMatch,
603 ArgsToFew,
604 ArgsToMany,
605 RetsToFew,
606 RetsToMany,
607 NoReason
608 };
609
610 struct {
611 Errors code = NotFound;
612 } reason;
613
614 Finder( CandidateFinder & f )
615 : context( f.context ), symtab( context.symtab ), selfFinder( f ),
616 candidates( f.candidates ), tenv( f.env ), targetType( f.targetType ) {}
617
618 void previsit( const ast::Node * ) { visit_children = false; }
619
620 /// Convenience to add candidate to list
621 template<typename... Args>
622 void addCandidate( Args &&... args ) {
623 candidates.emplace_back( new Candidate{ std::forward<Args>( args )... } );
624 reason.code = NoReason;
625 }
626
627 void postvisit( const ast::ApplicationExpr * applicationExpr ) {
628 addCandidate( applicationExpr, tenv );
629 }
630
631 /// Set up candidate assertions for inference
632 void inferParameters( CandidateRef & newCand, CandidateList & out );
633
634 /// Completes a function candidate with arguments located
635 void validateFunctionCandidate(
636 const CandidateRef & func, ArgPack & result, const std::vector< ArgPack > & results,
637 CandidateList & out );
638
639 /// Builds a list of candidates for a function, storing them in out
640 void makeFunctionCandidates(
641 const CodeLocation & location,
642 const CandidateRef & func, const ast::FunctionType * funcType,
643 const ExplodedArgs & args, CandidateList & out );
644
645 /// Adds implicit struct-conversions to the alternative list
646 void addAnonConversions( const CandidateRef & cand );
647
648 /// Adds aggregate member interpretations
649 void addAggMembers(
650 const ast::BaseInstType * aggrInst, const ast::Expr * expr,
651 const Candidate & cand, const Cost & addedCost, const std::string & name
652 );
653
654 void addEnumValueAsCandidate(const ast::EnumInstType * instType, const ast::Expr * expr,
655 const Cost & addedCost
656 );
657
658 /// Adds tuple member interpretations
659 void addTupleMembers(
660 const ast::TupleType * tupleType, const ast::Expr * expr, const Candidate & cand,
661 const Cost & addedCost, const ast::Expr * member
662 );
663
664 /// true if expression is an lvalue
665 static bool isLvalue( const ast::Expr * x ) {
666 return x->result && ( x->get_lvalue() || x->result.as< ast::ReferenceType >() );
667 }
668
669 void postvisit( const ast::UntypedExpr * untypedExpr );
670 void postvisit( const ast::VariableExpr * variableExpr );
671 void postvisit( const ast::ConstantExpr * constantExpr );
672 void postvisit( const ast::SizeofExpr * sizeofExpr );
673 void postvisit( const ast::AlignofExpr * alignofExpr );
674 void postvisit( const ast::AddressExpr * addressExpr );
675 void postvisit( const ast::LabelAddressExpr * labelExpr );
676 void postvisit( const ast::CastExpr * castExpr );
677 void postvisit( const ast::VirtualCastExpr * castExpr );
678 void postvisit( const ast::KeywordCastExpr * castExpr );
679 void postvisit( const ast::UntypedMemberExpr * memberExpr );
680 void postvisit( const ast::MemberExpr * memberExpr );
681 void postvisit( const ast::NameExpr * nameExpr );
682 void postvisit( const ast::UntypedOffsetofExpr * offsetofExpr );
683 void postvisit( const ast::OffsetofExpr * offsetofExpr );
684 void postvisit( const ast::OffsetPackExpr * offsetPackExpr );
685 void postvisit( const ast::LogicalExpr * logicalExpr );
686 void postvisit( const ast::ConditionalExpr * conditionalExpr );
687 void postvisit( const ast::CommaExpr * commaExpr );
688 void postvisit( const ast::ImplicitCopyCtorExpr * ctorExpr );
689 void postvisit( const ast::ConstructorExpr * ctorExpr );
690 void postvisit( const ast::RangeExpr * rangeExpr );
691 void postvisit( const ast::UntypedTupleExpr * tupleExpr );
692 void postvisit( const ast::TupleExpr * tupleExpr );
693 void postvisit( const ast::TupleIndexExpr * tupleExpr );
694 void postvisit( const ast::TupleAssignExpr * tupleExpr );
695 void postvisit( const ast::UniqueExpr * unqExpr );
696 void postvisit( const ast::StmtExpr * stmtExpr );
697 void postvisit( const ast::UntypedInitExpr * initExpr );
698 void postvisit( const ast::QualifiedNameExpr * qualifiedExpr );
699 void postvisit( const ast::CountExpr * countExpr );
700
701 void postvisit( const ast::InitExpr * ) {
702 assertf( false, "CandidateFinder should never see a resolved InitExpr." );
703 }
704
705 void postvisit( const ast::DeletedExpr * ) {
706 assertf( false, "CandidateFinder should never see a DeletedExpr." );
707 }
708
709 void postvisit( const ast::GenericExpr * ) {
710 assertf( false, "_Generic is not yet supported." );
711 }
712 };
713
714 /// Set up candidate assertions for inference
715 void Finder::inferParameters( CandidateRef & newCand, CandidateList & out ) {
716 // Set need bindings for any unbound assertions
717 ast::UniqueId crntResnSlot = 0; // matching ID for this expression's assertions
718 for ( auto & assn : newCand->need ) {
719 // skip already-matched assertions
720 if ( assn.second.resnSlot != 0 ) continue;
721 // assign slot for expression if needed
722 if ( crntResnSlot == 0 ) { crntResnSlot = ++globalResnSlot; }
723 // fix slot to assertion
724 assn.second.resnSlot = crntResnSlot;
725 }
726 // pair slot to expression
727 if ( crntResnSlot != 0 ) {
728 newCand->expr.get_and_mutate()->inferred.resnSlots().emplace_back( crntResnSlot );
729 }
730
731 // add to output list; assertion satisfaction will occur later
732 out.emplace_back( newCand );
733 }
734
735 /// Completes a function candidate with arguments located
736 void Finder::validateFunctionCandidate(
737 const CandidateRef & func, ArgPack & result, const std::vector< ArgPack > & results,
738 CandidateList & out
739 ) {
740 ast::ApplicationExpr * appExpr =
741 new ast::ApplicationExpr{ func->expr->location, func->expr };
742 // sum cost and accumulate arguments
743 std::deque< const ast::Expr * > args;
744 Cost cost = func->cost;
745 const ArgPack * pack = &result;
746 while ( pack->expr ) {
747 args.emplace_front( pack->expr );
748 cost += pack->cost;
749 pack = &results[pack->parent];
750 }
751 std::vector< ast::ptr< ast::Expr > > vargs( args.begin(), args.end() );
752 appExpr->args = std::move( vargs );
753 // build and validate new candidate
754 auto newCand =
755 std::make_shared<Candidate>( appExpr, result.env, result.open, result.need, cost );
756 PRINT(
757 std::cerr << "instantiate function success: " << appExpr << std::endl;
758 std::cerr << "need assertions:" << std::endl;
759 ast::print( std::cerr, result.need, 2 );
760 )
761 inferParameters( newCand, out );
762 }
763
764 /// Builds a list of candidates for a function, storing them in out
765 void Finder::makeFunctionCandidates(
766 const CodeLocation & location,
767 const CandidateRef & func, const ast::FunctionType * funcType,
768 const ExplodedArgs & args, CandidateList & out
769 ) {
770 ast::OpenVarSet funcOpen;
771 ast::AssertionSet funcNeed, funcHave;
772 ast::TypeEnvironment funcEnv{ func->env };
773 makeUnifiableVars( funcType, funcOpen, funcNeed );
774 // add all type variables as open variables now so that those not used in the
775 // parameter list are still considered open
776 funcEnv.add( funcType->forall );
777
778 if ( targetType && ! targetType->isVoid() && ! funcType->returns.empty() ) {
779 // attempt to narrow based on expected target type
780 const ast::Type * returnType = funcType->returns.front();
781 if ( selfFinder.strictMode ) {
782 if ( !unifyExact(
783 returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen, noWiden() ) // xxx - is no widening correct?
784 ) {
785 // unification failed, do not pursue this candidate
786 return;
787 }
788 } else {
789 if ( !unify(
790 returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen )
791 ) {
792 // unification failed, do not pursue this candidate
793 return;
794 }
795 }
796 }
797
798 // iteratively build matches, one parameter at a time
799 std::vector< ArgPack > results;
800 results.emplace_back( funcEnv, funcNeed, funcHave, funcOpen );
801 std::size_t genStart = 0;
802
803 // xxx - how to handle default arg after change to ftype representation?
804 if (const ast::VariableExpr * varExpr = func->expr.as<ast::VariableExpr>()) {
805 if (const ast::FunctionDecl * funcDecl = varExpr->var.as<ast::FunctionDecl>()) {
806 // function may have default args only if directly calling by name
807 // must use types on candidate however, due to RenameVars substitution
808 auto nParams = funcType->params.size();
809
810 for (size_t i=0; i<nParams; ++i) {
811 auto obj = funcDecl->params[i].strict_as<ast::ObjectDecl>();
812 if ( !instantiateArgument( location,
813 funcType->params[i], obj->init, args, results, genStart, context)) return;
814 }
815 goto endMatch;
816 }
817 }
818 for ( const auto & param : funcType->params ) {
819 // Try adding the arguments corresponding to the current parameter to the existing
820 // matches
821 // no default args for indirect calls
822 if ( !instantiateArgument( location,
823 param, nullptr, args, results, genStart, context ) ) return;
824 }
825
826 endMatch:
827 if ( funcType->isVarArgs ) {
828 // append any unused arguments to vararg pack
829 std::size_t genEnd;
830 do {
831 genEnd = results.size();
832
833 // iterate results
834 for ( std::size_t i = genStart; i < genEnd; ++i ) {
835 unsigned nextArg = results[i].nextArg;
836
837 // use remainder of exploded tuple if present
838 if ( results[i].hasExpl() ) {
839 const ExplodedArg & expl = results[i].getExpl( args );
840
841 unsigned nextExpl = results[i].nextExpl + 1;
842 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
843
844 results.emplace_back(
845 i, expl.exprs[ results[i].nextExpl ], copy( results[i].env ),
846 copy( results[i].need ), copy( results[i].have ),
847 copy( results[i].open ), nextArg, 0, Cost::zero, nextExpl,
848 results[i].explAlt );
849
850 continue;
851 }
852
853 // finish result when out of arguments
854 if ( nextArg >= args.size() ) {
855 validateFunctionCandidate( func, results[i], results, out );
856
857 continue;
858 }
859
860 // add each possible next argument
861 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
862 const ExplodedArg & expl = args[nextArg][j];
863
864 // fresh copies of parent parameters for this iteration
865 ast::TypeEnvironment env = results[i].env;
866 ast::OpenVarSet open = results[i].open;
867
868 env.addActual( expl.env, open );
869
870 // skip empty tuple arguments by (nearly) cloning parent into next gen
871 if ( expl.exprs.empty() ) {
872 results.emplace_back(
873 results[i], std::move( env ), copy( results[i].need ),
874 copy( results[i].have ), std::move( open ), nextArg + 1,
875 expl.cost );
876
877 continue;
878 }
879
880 // add new result
881 results.emplace_back(
882 i, expl.exprs.front(), std::move( env ), copy( results[i].need ),
883 copy( results[i].have ), std::move( open ), nextArg + 1, 0, expl.cost,
884 expl.exprs.size() == 1 ? 0 : 1, j );
885 }
886 }
887
888 genStart = genEnd;
889 } while( genEnd != results.size() );
890 } else {
891 // filter out the results that don't use all the arguments
892 for ( std::size_t i = genStart; i < results.size(); ++i ) {
893 ArgPack & result = results[i];
894 if ( ! result.hasExpl() && result.nextArg >= args.size() ) {
895 validateFunctionCandidate( func, result, results, out );
896 }
897 }
898 }
899 }
900
901 void Finder::addEnumValueAsCandidate( const ast::EnumInstType * enumInst, const ast::Expr * expr,
902 const Cost & addedCost
903 ) {
904 if ( enumInst->base->base ) {
905 CandidateFinder finder( context, tenv );
906 auto location = expr->location;
907 auto callExpr = new ast::UntypedExpr(
908 location, new ast::NameExpr( location, "value" ), {expr}
909 );
910 finder.find( callExpr );
911 CandidateList winners = findMinCost( finder.candidates );
912 if (winners.size() != 1) {
913 SemanticError( callExpr, "Ambiguous expression in value..." );
914 }
915 CandidateRef & choice = winners.front();
916 choice->cost += addedCost;
917 addAnonConversions(choice);
918 candidates.emplace_back( std::move(choice) );
919 }
920 }
921
922 /// Adds implicit struct-conversions to the alternative list
923 void Finder::addAnonConversions( const CandidateRef & cand ) {
924 // adds anonymous member interpretations whenever an aggregate value type is seen.
925 // it's okay for the aggregate expression to have reference type -- cast it to the
926 // base type to treat the aggregate as the referenced value
927 ast::ptr< ast::Expr > aggrExpr( cand->expr );
928 ast::ptr< ast::Type > & aggrType = aggrExpr.get_and_mutate()->result;
929 cand->env.apply( aggrType );
930
931 if ( aggrType.as< ast::ReferenceType >() ) {
932 aggrExpr = new ast::CastExpr{ aggrExpr, aggrType->stripReferences() };
933 }
934
935 if ( auto structInst = aggrExpr->result.as< ast::StructInstType >() ) {
936 addAggMembers( structInst, aggrExpr, *cand, Cost::unsafe, "" );
937 } else if ( auto unionInst = aggrExpr->result.as< ast::UnionInstType >() ) {
938 addAggMembers( unionInst, aggrExpr, *cand, Cost::unsafe, "" );
939 } else if ( auto enumInst = aggrExpr->result.as< ast::EnumInstType >() ) {
940 addEnumValueAsCandidate( enumInst, aggrExpr, Cost::implicit );
941 }
942 }
943
944
945 /// Adds aggregate member interpretations
946 void Finder::addAggMembers(
947 const ast::BaseInstType * aggrInst, const ast::Expr * expr,
948 const Candidate & cand, const Cost & addedCost, const std::string & name
949 ) {
950 for ( const ast::Decl * decl : aggrInst->lookup( name ) ) {
951 auto dwt = strict_dynamic_cast< const ast::DeclWithType * >( decl );
952 CandidateRef newCand = std::make_shared<Candidate>(
953 cand, new ast::MemberExpr{ expr->location, dwt, expr }, addedCost );
954 // add anonymous member interpretations whenever an aggregate value type is seen
955 // as a member expression
956 addAnonConversions( newCand );
957 candidates.emplace_back( std::move( newCand ) );
958 }
959 }
960
961 /// Adds tuple member interpretations
962 void Finder::addTupleMembers(
963 const ast::TupleType * tupleType, const ast::Expr * expr, const Candidate & cand,
964 const Cost & addedCost, const ast::Expr * member
965 ) {
966 if ( auto constantExpr = dynamic_cast< const ast::ConstantExpr * >( member ) ) {
967 // get the value of the constant expression as an int, must be between 0 and the
968 // length of the tuple to have meaning
969 long long val = constantExpr->intValue();
970 if ( val >= 0 && (unsigned long long)val < tupleType->size() ) {
971 addCandidate(
972 cand, new ast::TupleIndexExpr{ expr->location, expr, (unsigned)val },
973 addedCost );
974 }
975 }
976 }
977
978 void Finder::postvisit( const ast::UntypedExpr * untypedExpr ) {
979 std::vector< CandidateFinder > argCandidates =
980 selfFinder.findSubExprs( untypedExpr->args );
981
982 // take care of possible tuple assignments
983 // if not tuple assignment, handled as normal function call
984 Tuples::handleTupleAssignment( selfFinder, untypedExpr, argCandidates );
985
986 CandidateFinder funcFinder( context, tenv );
987 std::string funcName;
988 if (auto nameExpr = untypedExpr->func.as<ast::NameExpr>()) {
989 funcName = nameExpr->name;
990 auto kind = ast::SymbolTable::getSpecialFunctionKind(nameExpr->name);
991 if (kind != ast::SymbolTable::SpecialFunctionKind::NUMBER_OF_KINDS) {
992 assertf(!argCandidates.empty(), "special function call without argument");
993 for (auto & firstArgCand: argCandidates[0]) {
994 ast::ptr<ast::Type> argType = firstArgCand->expr->result;
995 firstArgCand->env.apply(argType);
996 // strip references
997 // xxx - is this correct?
998 while (argType.as<ast::ReferenceType>()) argType = argType.as<ast::ReferenceType>()->base;
999
1000 // convert 1-tuple to plain type
1001 if (auto tuple = argType.as<ast::TupleType>()) {
1002 if (tuple->size() == 1) {
1003 argType = tuple->types[0];
1004 }
1005 }
1006
1007 // if argType is an unbound type parameter, all special functions need to be searched.
1008 if (isUnboundType(argType)) {
1009 funcFinder.otypeKeys.clear();
1010 break;
1011 }
1012
1013 if (argType.as<ast::PointerType>()) funcFinder.otypeKeys.insert(Mangle::Encoding::pointer);
1014 else funcFinder.otypeKeys.insert(Mangle::mangle(argType, Mangle::NoGenericParams | Mangle::Type));
1015 }
1016 }
1017 }
1018 // if candidates are already produced, do not fail
1019 // xxx - is it possible that handleTupleAssignment and main finder both produce candidates?
1020 // this means there exists ctor/assign functions with a tuple as first parameter.
1021 ResolveMode mode = {
1022 true, // adjust
1023 !untypedExpr->func.as<ast::NameExpr>(), // prune if not calling by name
1024 selfFinder.candidates.empty() // failfast if other options are not found
1025 };
1026 funcFinder.find( untypedExpr->func, mode );
1027 // short-circuit if no candidates
1028 // if ( funcFinder.candidates.empty() ) return;
1029
1030 reason.code = NoMatch;
1031
1032 // find function operators
1033 ast::ptr< ast::Expr > opExpr = new ast::NameExpr{ untypedExpr->location, "?()" }; // ??? why not ?{}
1034 CandidateFinder opFinder( context, tenv );
1035 // okay if there aren't any function operations
1036 opFinder.find( opExpr, ResolveMode::withoutFailFast() );
1037 PRINT(
1038 std::cerr << "known function ops:" << std::endl;
1039 print( std::cerr, opFinder.candidates, 1 );
1040 )
1041
1042 // pre-explode arguments
1043 ExplodedArgs argExpansions;
1044 for ( const CandidateFinder & args : argCandidates ) {
1045 argExpansions.emplace_back();
1046 auto & argE = argExpansions.back();
1047 for ( const CandidateRef & arg : args ) { argE.emplace_back( *arg, symtab ); }
1048 }
1049
1050 // Find function matches
1051 CandidateList found;
1052 SemanticErrorException errors;
1053
1054 for ( CandidateRef & func : funcFinder ) {
1055 try {
1056 PRINT(
1057 std::cerr << "working on alternative:" << std::endl;
1058 print( std::cerr, *func, 2 );
1059 )
1060
1061 // check if the type is a pointer to function
1062 const ast::Type * funcResult = func->expr->result->stripReferences();
1063 if ( auto pointer = dynamic_cast< const ast::PointerType * >( funcResult ) ) {
1064 if ( auto function = pointer->base.as< ast::FunctionType >() ) {
1065 // if (!selfFinder.allowVoid && function->returns.empty()) continue;
1066 CandidateRef newFunc{ new Candidate{ *func } };
1067 newFunc->expr =
1068 referenceToRvalueConversion( newFunc->expr, newFunc->cost );
1069 makeFunctionCandidates( untypedExpr->location,
1070 newFunc, function, argExpansions, found );
1071 }
1072 } else if (
1073 auto inst = dynamic_cast< const ast::TypeInstType * >( funcResult )
1074 ) {
1075 if ( const ast::EqvClass * clz = func->env.lookup( *inst ) ) {
1076 if ( auto function = clz->bound.as< ast::FunctionType >() ) {
1077 CandidateRef newFunc( new Candidate( *func ) );
1078 newFunc->expr =
1079 referenceToRvalueConversion( newFunc->expr, newFunc->cost );
1080 makeFunctionCandidates( untypedExpr->location,
1081 newFunc, function, argExpansions, found );
1082 }
1083 }
1084 }
1085 } catch ( SemanticErrorException & e ) { errors.append( e ); }
1086 }
1087
1088 // Find matches on function operators `?()`
1089 if ( ! opFinder.candidates.empty() ) {
1090 // add exploded function alternatives to front of argument list
1091 std::vector< ExplodedArg > funcE;
1092 funcE.reserve( funcFinder.candidates.size() );
1093 for ( const CandidateRef & func : funcFinder ) {
1094 funcE.emplace_back( *func, symtab );
1095 }
1096 argExpansions.emplace_front( std::move( funcE ) );
1097
1098 for ( const CandidateRef & op : opFinder ) {
1099 try {
1100 // check if type is pointer-to-function
1101 const ast::Type * opResult = op->expr->result->stripReferences();
1102 if ( auto pointer = dynamic_cast< const ast::PointerType * >( opResult ) ) {
1103 if ( auto function = pointer->base.as< ast::FunctionType >() ) {
1104 CandidateRef newOp{ new Candidate{ *op} };
1105 newOp->expr =
1106 referenceToRvalueConversion( newOp->expr, newOp->cost );
1107 makeFunctionCandidates( untypedExpr->location,
1108 newOp, function, argExpansions, found );
1109 }
1110 }
1111 } catch ( SemanticErrorException & e ) { errors.append( e ); }
1112 }
1113 }
1114
1115 // Implement SFINAE; resolution errors are only errors if there aren't any non-error
1116 // candidates
1117 if ( found.empty() ) errors.throwIfNonEmpty();
1118
1119 // only keep the best matching intrinsic result to match C semantics (no unexpected narrowing/widening)
1120 // TODO: keep one for each set of argument candidates?
1121 Cost intrinsicCost = Cost::infinity;
1122 CandidateList intrinsicResult;
1123
1124 // Compute conversion costs
1125 for ( CandidateRef & withFunc : found ) {
1126 Cost cvtCost = computeApplicationConversionCost( withFunc, symtab );
1127
1128 if (funcName == "?|?") {
1129 PRINT(
1130 auto appExpr = withFunc->expr.strict_as< ast::ApplicationExpr >();
1131 auto pointer = appExpr->func->result.strict_as< ast::PointerType >();
1132 auto function = pointer->base.strict_as< ast::FunctionType >();
1133
1134 std::cerr << "Case +++++++++++++ " << appExpr->func << std::endl;
1135 std::cerr << "parameters are:" << std::endl;
1136 ast::printAll( std::cerr, function->params, 2 );
1137 std::cerr << "arguments are:" << std::endl;
1138 ast::printAll( std::cerr, appExpr->args, 2 );
1139 std::cerr << "bindings are:" << std::endl;
1140 ast::print( std::cerr, withFunc->env, 2 );
1141 std::cerr << "cost is: " << withFunc->cost << std::endl;
1142 std::cerr << "cost of conversion is:" << cvtCost << std::endl;
1143 )
1144 }
1145 if ( cvtCost != Cost::infinity ) {
1146 withFunc->cvtCost = cvtCost;
1147 withFunc->cost += cvtCost;
1148 auto func = withFunc->expr.strict_as<ast::ApplicationExpr>()->func.as<ast::VariableExpr>();
1149 if (func && func->var->linkage == ast::Linkage::Intrinsic) {
1150 if (withFunc->cost < intrinsicCost) {
1151 intrinsicResult.clear();
1152 intrinsicCost = withFunc->cost;
1153 }
1154 if (withFunc->cost == intrinsicCost) {
1155 intrinsicResult.emplace_back(std::move(withFunc));
1156 }
1157 } else {
1158 candidates.emplace_back( std::move( withFunc ) );
1159 }
1160 }
1161 }
1162 spliceBegin( candidates, intrinsicResult );
1163 found = std::move( candidates );
1164
1165 // use a new list so that candidates are not examined by addAnonConversions twice
1166 // CandidateList winners = findMinCost( found );
1167 // promoteCvtCost( winners );
1168
1169 // function may return a struct/union value, in which case we need to add candidates
1170 // for implicit conversions to each of the anonymous members, which must happen after
1171 // `findMinCost`, since anon conversions are never the cheapest
1172 for ( const CandidateRef & c : found ) {
1173 addAnonConversions( c );
1174 }
1175 // would this be too slow when we don't check cost anymore?
1176 spliceBegin( candidates, found );
1177
1178 if ( candidates.empty() && targetType && ! targetType->isVoid() && !selfFinder.strictMode ) {
1179 // If resolution is unsuccessful with a target type, try again without, since it
1180 // will sometimes succeed when it wouldn't with a target type binding.
1181 // For example:
1182 // forall( otype T ) T & ?[]( T *, ptrdiff_t );
1183 // const char * x = "hello world";
1184 // unsigned char ch = x[0];
1185 // Fails with simple return type binding (xxx -- check this!) as follows:
1186 // * T is bound to unsigned char
1187 // * (x: const char *) is unified with unsigned char *, which fails
1188 // xxx -- fix this better
1189 targetType = nullptr;
1190 postvisit( untypedExpr );
1191 }
1192 }
1193
1194 void Finder::postvisit( const ast::AddressExpr * addressExpr ) {
1195 CandidateFinder finder( context, tenv );
1196 finder.find( addressExpr->arg );
1197
1198 if ( finder.candidates.empty() ) return;
1199
1200 reason.code = NoMatch;
1201
1202 for ( CandidateRef & r : finder.candidates ) {
1203 if ( !isLvalue( r->expr ) ) continue;
1204 addCandidate( *r, new ast::AddressExpr{ addressExpr->location, r->expr } );
1205 }
1206 }
1207
1208 void Finder::postvisit( const ast::LabelAddressExpr * labelExpr ) {
1209 addCandidate( labelExpr, tenv );
1210 }
1211
1212 void Finder::postvisit( const ast::CastExpr * castExpr ) {
1213 ast::ptr< ast::Type > toType = castExpr->result;
1214 assert( toType );
1215 toType = resolveTypeof( toType, context );
1216 toType = adjustExprType( toType, tenv, symtab );
1217
1218 CandidateFinder finder( context, tenv, toType );
1219 if (toType->isVoid()) {
1220 finder.allowVoid = true;
1221 }
1222 if ( ast::ReturnCast == castExpr->kind ) {
1223 finder.strictMode = true;
1224 finder.find( castExpr->arg, ResolveMode::withAdjustment() );
1225
1226 // return casts are eliminated (merely selecting an overload, no actual operation)
1227 for (auto & cand : finder.candidates) {
1228 if (typesCompatibleIgnoreQualifiers(toType, cand->expr->result, cand->env)) {
1229 candidates.push_back (cand);
1230 }
1231 }
1232 // candidates = std::move(finder.candidates);
1233 return;
1234 }
1235 else if (toType->isVoid()) {
1236 finder.find( castExpr->arg ); // no adjust
1237 }
1238 else {
1239 finder.find( castExpr->arg, ResolveMode::withAdjustment() );
1240 }
1241
1242 if ( !finder.candidates.empty() ) reason.code = NoMatch;
1243
1244 CandidateList matches;
1245 Cost minExprCost = Cost::infinity;
1246 // Cost minCastCost = Cost::infinity;
1247 for ( CandidateRef & cand : finder.candidates ) {
1248 ast::ptr< ast::Type > fromType = cand->expr->result;
1249 assert( fromType );
1250 fromType = resolveTypeof( fromType, context );
1251 fromType = adjustExprType( fromType, tenv, symtab );
1252
1253 ast::AssertionSet need( cand->need.begin(), cand->need.end() ), have;
1254 ast::OpenVarSet open( cand->open );
1255
1256 cand->env.extractOpenVars( open );
1257
1258 // It is possible that a cast can throw away some values in a multiply-valued
1259 // expression, e.g. cast-to-void, one value to zero. Figure out the prefix of the
1260 // subexpression results that are cast directly. The candidate is invalid if it
1261 // has fewer results than there are types to cast to.
1262 int discardedValues = fromType->size() - toType->size();
1263 if ( discardedValues < 0 ) continue;
1264
1265 // unification run for side-effects
1266 unify( toType, fromType, cand->env, need, have, open );
1267 Cost thisCost =
1268 (castExpr->isGenerated == ast::GeneratedFlag::GeneratedCast)
1269 ? conversionCost( fromType, toType, cand->expr->get_lvalue(), symtab, cand->env )
1270 : castCost( fromType, toType, cand->expr->get_lvalue(), symtab, cand->env );
1271
1272 // Redefine enum cast
1273 auto argAsEnum = fromType.as<ast::EnumInstType>();
1274 auto toAsEnum = toType.as<ast::EnumInstType>();
1275 if ( argAsEnum && toAsEnum && argAsEnum->name != toAsEnum->name ) {
1276 CandidateFinder subFinder(context, tenv);
1277 ast::ptr<ast::Expr> offsetExpr = subFinder.makeEnumOffsetCast(argAsEnum, toAsEnum, cand->expr, thisCost);
1278 if ( offsetExpr )
1279 cand->expr = offsetExpr;
1280 }
1281
1282 PRINT(
1283 std::cerr << "working on cast with result: " << toType << std::endl;
1284 std::cerr << "and expr type: " << fromType << std::endl;
1285 std::cerr << "env: " << cand->env << std::endl;
1286 )
1287 if ( thisCost != Cost::infinity ) {
1288 PRINT(
1289 std::cerr << "has finite cost." << std::endl;
1290 )
1291 // count one safe conversion for each value that is thrown away
1292 thisCost.incSafe( discardedValues );
1293
1294 // See Aaron Moss, page 47; this reasoning does not hold since implicit conversions
1295 // can create the same resolution issue. The C intrinsic interpretations are pruned
1296 // immediately for the lowest cost option regardless of result type. Related code in
1297 // postvisit (UntypedExpr).
1298 // Cast expression costs are updated now to use the general rules.
1299 /*
1300 // select first on argument cost, then conversion cost
1301 if ( cand->cost < minExprCost || ( cand->cost == minExprCost && thisCost < minCastCost ) ) {
1302 minExprCost = cand->cost;
1303 minCastCost = thisCost;
1304 matches.clear();
1305 }
1306 // ambigious case, still output candidates to print in error message
1307 if ( cand->cost == minExprCost && thisCost == minCastCost ) {
1308 */
1309 cand->cost += thisCost;
1310 if (cand->cost < minExprCost) {
1311 minExprCost = cand->cost;
1312 matches.clear();
1313 }
1314 if (cand->cost == minExprCost) {
1315 CandidateRef newCand = std::make_shared<Candidate>(
1316 restructureCast( cand->expr, toType, castExpr->isGenerated ),
1317 copy( cand->env ), std::move( open ), std::move( need ), cand->cost);
1318 // currently assertions are always resolved immediately so this should have no effect.
1319 // if this somehow changes in the future (e.g. delayed by indeterminate return type)
1320 // we may need to revisit the logic.
1321 inferParameters( newCand, matches );
1322 }
1323 // else skip, better alternatives found
1324
1325 }
1326 }
1327 candidates = std::move(matches);
1328 //CandidateList minArgCost = findMinCost( matches );
1329 //promoteCvtCost( minArgCost );
1330 //candidates = findMinCost( minArgCost );
1331 }
1332
1333 void Finder::postvisit( const ast::VirtualCastExpr * castExpr ) {
1334 assertf( castExpr->result, "Implicit virtual cast targets not yet supported." );
1335 CandidateFinder finder( context, tenv );
1336 // don't prune here, all alternatives guaranteed to have same type
1337 finder.find( castExpr->arg, ResolveMode::withoutPrune() );
1338 for ( CandidateRef & r : finder.candidates ) {
1339 addCandidate(
1340 *r,
1341 new ast::VirtualCastExpr{ castExpr->location, r->expr, castExpr->result } );
1342 }
1343 }
1344
1345 void Finder::postvisit( const ast::KeywordCastExpr * castExpr ) {
1346 const auto & loc = castExpr->location;
1347 assertf( castExpr->result, "Cast target should have been set in Validate." );
1348 auto ref = castExpr->result.strict_as<ast::ReferenceType>();
1349 auto inst = ref->base.strict_as<ast::StructInstType>();
1350 auto target = inst->base.get();
1351
1352 CandidateFinder finder( context, tenv );
1353
1354 auto pick_alternatives = [target, this](CandidateList & found, bool expect_ref) {
1355 for (auto & cand : found) {
1356 const ast::Type * expr = cand->expr->result.get();
1357 if (expect_ref) {
1358 auto res = dynamic_cast<const ast::ReferenceType*>(expr);
1359 if (!res) { continue; }
1360 expr = res->base.get();
1361 }
1362
1363 if (auto insttype = dynamic_cast<const ast::TypeInstType*>(expr)) {
1364 auto td = cand->env.lookup(*insttype);
1365 if (!td) { continue; }
1366 expr = td->bound.get();
1367 }
1368
1369 if (auto base = dynamic_cast<const ast::StructInstType*>(expr)) {
1370 if (base->base == target) {
1371 candidates.push_back( std::move(cand) );
1372 reason.code = NoReason;
1373 }
1374 }
1375 }
1376 };
1377
1378 try {
1379 // Attempt 1 : turn (thread&)X into (thread$&)X.__thrd
1380 // Clone is purely for memory management
1381 std::unique_ptr<const ast::Expr> tech1 { new ast::UntypedMemberExpr(loc, new ast::NameExpr(loc, castExpr->concrete_target.field), castExpr->arg) };
1382
1383 // don't prune here, since it's guaranteed all alternatives will have the same type
1384 finder.find( tech1.get(), ResolveMode::withoutPrune() );
1385 pick_alternatives(finder.candidates, false);
1386
1387 return;
1388 } catch(SemanticErrorException & ) {}
1389
1390 // Fallback : turn (thread&)X into (thread$&)get_thread(X)
1391 std::unique_ptr<const ast::Expr> fallback { ast::UntypedExpr::createDeref(loc, new ast::UntypedExpr(loc, new ast::NameExpr(loc, castExpr->concrete_target.getter), { castExpr->arg })) };
1392 // don't prune here, since it's guaranteed all alternatives will have the same type
1393 finder.find( fallback.get(), ResolveMode::withoutPrune() );
1394
1395 pick_alternatives(finder.candidates, true);
1396
1397 // Whatever happens here, we have no more fallbacks
1398 }
1399
1400 void Finder::postvisit( const ast::UntypedMemberExpr * memberExpr ) {
1401 CandidateFinder aggFinder( context, tenv );
1402 aggFinder.find( memberExpr->aggregate, ResolveMode::withAdjustment() );
1403 for ( CandidateRef & agg : aggFinder.candidates ) {
1404 // it's okay for the aggregate expression to have reference type -- cast it to the
1405 // base type to treat the aggregate as the referenced value
1406 Cost addedCost = Cost::zero;
1407 agg->expr = referenceToRvalueConversion( agg->expr, addedCost );
1408
1409 // find member of the given type
1410 if ( auto structInst = agg->expr->result.as< ast::StructInstType >() ) {
1411 addAggMembers(
1412 structInst, agg->expr, *agg, addedCost, getMemberName( memberExpr ) );
1413 } else if ( auto unionInst = agg->expr->result.as< ast::UnionInstType >() ) {
1414 addAggMembers(
1415 unionInst, agg->expr, *agg, addedCost, getMemberName( memberExpr ) );
1416 } else if ( auto tupleType = agg->expr->result.as< ast::TupleType >() ) {
1417 addTupleMembers( tupleType, agg->expr, *agg, addedCost, memberExpr->member );
1418 }
1419 }
1420 }
1421
1422 void Finder::postvisit( const ast::MemberExpr * memberExpr ) {
1423 addCandidate( memberExpr, tenv );
1424 }
1425
1426 void Finder::postvisit( const ast::NameExpr * nameExpr ) {
1427 std::vector< ast::SymbolTable::IdData > declList;
1428 if (!selfFinder.otypeKeys.empty()) {
1429 auto kind = ast::SymbolTable::getSpecialFunctionKind(nameExpr->name);
1430 assertf(kind != ast::SymbolTable::SpecialFunctionKind::NUMBER_OF_KINDS, "special lookup with non-special target: %s", nameExpr->name.c_str());
1431
1432 for (auto & otypeKey: selfFinder.otypeKeys) {
1433 auto result = symtab.specialLookupId(kind, otypeKey);
1434 declList.insert(declList.end(), std::make_move_iterator(result.begin()), std::make_move_iterator(result.end()));
1435 }
1436 } else {
1437 declList = symtab.lookupIdIgnoreHidden( nameExpr->name );
1438 }
1439 PRINT( std::cerr << "nameExpr is " << nameExpr->name << std::endl; )
1440
1441 if ( declList.empty() ) return;
1442
1443 reason.code = NoMatch;
1444
1445 for ( auto & data : declList ) {
1446 Cost cost = Cost::zero;
1447 ast::Expr * newExpr = data.combine( nameExpr->location, cost );
1448
1449 CandidateRef newCand = std::make_shared<Candidate>(
1450 newExpr, copy( tenv ), ast::OpenVarSet{}, ast::AssertionSet{}, Cost::zero,
1451 cost );
1452 if (newCand->expr->env) {
1453 newCand->env.add(*newCand->expr->env);
1454 auto mutExpr = newCand->expr.get_and_mutate();
1455 mutExpr->env = nullptr;
1456 newCand->expr = mutExpr;
1457 }
1458
1459 PRINT(
1460 std::cerr << "decl is ";
1461 ast::print( std::cerr, data.id );
1462 std::cerr << std::endl;
1463 std::cerr << "newExpr is ";
1464 ast::print( std::cerr, newExpr );
1465 std::cerr << std::endl;
1466 )
1467 newCand->expr = ast::mutate_field(
1468 newCand->expr.get(), &ast::Expr::result,
1469 renameTyVars( newCand->expr->result ) );
1470 // add anonymous member interpretations whenever an aggregate value type is seen
1471 // as a name expression
1472 addAnonConversions( newCand );
1473 candidates.emplace_back( std::move( newCand ) );
1474 }
1475 }
1476
1477 void Finder::postvisit(const ast::VariableExpr *variableExpr) {
1478 // not sufficient to just pass `variableExpr` here, type might have changed
1479
1480 auto cand = new Candidate(variableExpr, tenv);
1481 candidates.emplace_back(cand);
1482 }
1483
1484 void Finder::postvisit( const ast::ConstantExpr * constantExpr ) {
1485 addCandidate( constantExpr, tenv );
1486 }
1487
1488 void Finder::postvisit( const ast::SizeofExpr * sizeofExpr ) {
1489 addCandidate(
1490 new ast::SizeofExpr{
1491 sizeofExpr->location, resolveTypeof( sizeofExpr->type, context ) },
1492 tenv );
1493 }
1494
1495 void Finder::postvisit( const ast::CountExpr * countExpr ) {
1496 const ast::UntypedExpr * untyped = nullptr;
1497 if ( countExpr->type ) {
1498 auto enumInst = countExpr->type.as<ast::EnumInstType>();
1499 if ( enumInst ) {
1500 addCandidate( ast::ConstantExpr::from_ulong(countExpr->location, enumInst->base->members.size()), tenv );
1501 return;
1502 }
1503 auto untypedFirst = ast::UntypedExpr::createCall( countExpr->location, "lowerBound", {} );
1504 auto castFirst = new ast::CastExpr( countExpr->location, untypedFirst , countExpr->type );
1505 untyped = ast::UntypedExpr::createCall(
1506 countExpr->location, "Countof", { castFirst }
1507 );
1508 }
1509 if (!untyped) untyped = ast::UntypedExpr::createCall(
1510 countExpr->location, "Countof", { countExpr->expr }
1511 );
1512 CandidateFinder finder( context, tenv );
1513 finder.find( untyped );
1514 CandidateList winners = findMinCost( finder.candidates );
1515 if ( winners.size() == 0 ) {
1516 SemanticError( countExpr->expr, "Countof is not implemented for operand: " );
1517 }
1518 if ( winners.size() != 1 ) {
1519 SemanticError( countExpr->expr, "Ambiguous expression in countof operand: " );
1520 }
1521 CandidateRef & choice = winners.front();
1522 choice->expr = referenceToRvalueConversion( choice->expr, choice->cost );
1523 addCandidate( *choice, choice->expr );
1524 }
1525
1526 void Finder::postvisit( const ast::AlignofExpr * alignofExpr ) {
1527 addCandidate(
1528 new ast::AlignofExpr{
1529 alignofExpr->location, resolveTypeof( alignofExpr->type, context ) },
1530 tenv );
1531 }
1532
1533 void Finder::postvisit( const ast::UntypedOffsetofExpr * offsetofExpr ) {
1534 const ast::BaseInstType * aggInst;
1535 if (( aggInst = offsetofExpr->type.as< ast::StructInstType >() )) ;
1536 else if (( aggInst = offsetofExpr->type.as< ast::UnionInstType >() )) ;
1537 else return;
1538
1539 for ( const ast::Decl * member : aggInst->lookup( offsetofExpr->member ) ) {
1540 auto dwt = strict_dynamic_cast< const ast::DeclWithType * >( member );
1541 addCandidate(
1542 new ast::OffsetofExpr{ offsetofExpr->location, aggInst, dwt }, tenv );
1543 }
1544 }
1545
1546 void Finder::postvisit( const ast::OffsetofExpr * offsetofExpr ) {
1547 addCandidate( offsetofExpr, tenv );
1548 }
1549
1550 void Finder::postvisit( const ast::OffsetPackExpr * offsetPackExpr ) {
1551 addCandidate( offsetPackExpr, tenv );
1552 }
1553
1554 void Finder::postvisit( const ast::LogicalExpr * logicalExpr ) {
1555 CandidateFinder finder1( context, tenv );
1556 ast::ptr<ast::Expr> arg1 = createCondExpr( logicalExpr->arg1 );
1557 finder1.find( arg1, ResolveMode::withAdjustment() );
1558 if ( finder1.candidates.empty() ) return;
1559
1560 CandidateFinder finder2( context, tenv );
1561 ast::ptr<ast::Expr> arg2 = createCondExpr( logicalExpr->arg2 );
1562 finder2.find( arg2, ResolveMode::withAdjustment() );
1563 if ( finder2.candidates.empty() ) return;
1564
1565 reason.code = NoMatch;
1566
1567 for ( const CandidateRef & r1 : finder1.candidates ) {
1568 for ( const CandidateRef & r2 : finder2.candidates ) {
1569 ast::TypeEnvironment env{ r1->env };
1570 env.simpleCombine( r2->env );
1571 ast::OpenVarSet open{ r1->open };
1572 mergeOpenVars( open, r2->open );
1573 ast::AssertionSet need;
1574 mergeAssertionSet( need, r1->need );
1575 mergeAssertionSet( need, r2->need );
1576
1577 addCandidate(
1578 new ast::LogicalExpr{
1579 logicalExpr->location, r1->expr, r2->expr, logicalExpr->isAnd },
1580 std::move( env ), std::move( open ), std::move( need ), r1->cost + r2->cost );
1581 }
1582 }
1583 }
1584
1585 void Finder::postvisit( const ast::ConditionalExpr * conditionalExpr ) {
1586 // candidates for condition
1587 ast::ptr<ast::Expr> arg1 = createCondExpr( conditionalExpr->arg1 );
1588 CandidateFinder finder1( context, tenv );
1589 finder1.find( arg1, ResolveMode::withAdjustment() );
1590 if ( finder1.candidates.empty() ) return;
1591
1592 // candidates for true result
1593 // FIX ME: resolves and runs arg1 twice when arg2 is missing.
1594 ast::Expr const * arg2 = conditionalExpr->arg2;
1595 arg2 = arg2 ? arg2 : conditionalExpr->arg1.get();
1596 CandidateFinder finder2( context, tenv );
1597 finder2.allowVoid = true;
1598 finder2.find( arg2, ResolveMode::withAdjustment() );
1599 if ( finder2.candidates.empty() ) return;
1600
1601 // candidates for false result
1602 CandidateFinder finder3( context, tenv );
1603 finder3.allowVoid = true;
1604 finder3.find( conditionalExpr->arg3, ResolveMode::withAdjustment() );
1605 if ( finder3.candidates.empty() ) return;
1606
1607 reason.code = NoMatch;
1608
1609 for ( const CandidateRef & r1 : finder1.candidates ) {
1610 for ( const CandidateRef & r2 : finder2.candidates ) {
1611 for ( const CandidateRef & r3 : finder3.candidates ) {
1612 ast::TypeEnvironment env{ r1->env };
1613 env.simpleCombine( r2->env );
1614 env.simpleCombine( r3->env );
1615 ast::OpenVarSet open{ r1->open };
1616 mergeOpenVars( open, r2->open );
1617 mergeOpenVars( open, r3->open );
1618 ast::AssertionSet need;
1619 mergeAssertionSet( need, r1->need );
1620 mergeAssertionSet( need, r2->need );
1621 mergeAssertionSet( need, r3->need );
1622 ast::AssertionSet have;
1623
1624 // unify true and false results, then infer parameters to produce new
1625 // candidates
1626 ast::ptr< ast::Type > common;
1627 if (
1628 unify(
1629 r2->expr->result, r3->expr->result, env, need, have, open,
1630 common )
1631 ) {
1632 // generate typed expression
1633 ast::ConditionalExpr * newExpr = new ast::ConditionalExpr{
1634 conditionalExpr->location, r1->expr, r2->expr, r3->expr };
1635 newExpr->result = common ? common : r2->expr->result;
1636 // convert both options to result type
1637 Cost cost = r1->cost + r2->cost + r3->cost;
1638 newExpr->arg2 = computeExpressionConversionCost(
1639 newExpr->arg2, newExpr->result, symtab, env, cost );
1640 newExpr->arg3 = computeExpressionConversionCost(
1641 newExpr->arg3, newExpr->result, symtab, env, cost );
1642 // output candidate
1643 CandidateRef newCand = std::make_shared<Candidate>(
1644 newExpr, std::move( env ), std::move( open ), std::move( need ), cost );
1645 inferParameters( newCand, candidates );
1646 }
1647 }
1648 }
1649 }
1650 }
1651
1652 void Finder::postvisit( const ast::CommaExpr * commaExpr ) {
1653 ast::TypeEnvironment env{ tenv };
1654 ast::ptr< ast::Expr > arg1 = resolveInVoidContext( commaExpr->arg1, context, env );
1655
1656 CandidateFinder finder2( context, env );
1657 finder2.find( commaExpr->arg2, ResolveMode::withAdjustment() );
1658
1659 for ( const CandidateRef & r2 : finder2.candidates ) {
1660 addCandidate( *r2, new ast::CommaExpr{ commaExpr->location, arg1, r2->expr } );
1661 }
1662 }
1663
1664 void Finder::postvisit( const ast::ImplicitCopyCtorExpr * ctorExpr ) {
1665 addCandidate( ctorExpr, tenv );
1666 }
1667
1668 void Finder::postvisit( const ast::ConstructorExpr * ctorExpr ) {
1669 CandidateFinder finder( context, tenv );
1670 finder.allowVoid = true;
1671 finder.find( ctorExpr->callExpr, ResolveMode::withoutPrune() );
1672 for ( CandidateRef & r : finder.candidates ) {
1673 addCandidate( *r, new ast::ConstructorExpr{ ctorExpr->location, r->expr } );
1674 }
1675 }
1676
1677 void Finder::postvisit( const ast::RangeExpr * rangeExpr ) {
1678 // resolve low and high, accept candidates where low and high types unify
1679 CandidateFinder finder1( context, tenv );
1680 finder1.find( rangeExpr->low, ResolveMode::withAdjustment() );
1681 if ( finder1.candidates.empty() ) return;
1682
1683 CandidateFinder finder2( context, tenv );
1684 finder2.find( rangeExpr->high, ResolveMode::withAdjustment() );
1685 if ( finder2.candidates.empty() ) return;
1686
1687 reason.code = NoMatch;
1688
1689 for ( const CandidateRef & r1 : finder1.candidates ) {
1690 for ( const CandidateRef & r2 : finder2.candidates ) {
1691 ast::TypeEnvironment env{ r1->env };
1692 env.simpleCombine( r2->env );
1693 ast::OpenVarSet open{ r1->open };
1694 mergeOpenVars( open, r2->open );
1695 ast::AssertionSet need;
1696 mergeAssertionSet( need, r1->need );
1697 mergeAssertionSet( need, r2->need );
1698 ast::AssertionSet have;
1699
1700 ast::ptr< ast::Type > common;
1701 if (
1702 unify(
1703 r1->expr->result, r2->expr->result, env, need, have, open,
1704 common )
1705 ) {
1706 // generate new expression
1707 ast::RangeExpr * newExpr =
1708 new ast::RangeExpr{ rangeExpr->location, r1->expr, r2->expr };
1709 newExpr->result = common ? common : r1->expr->result;
1710 // add candidate
1711 CandidateRef newCand = std::make_shared<Candidate>(
1712 newExpr, std::move( env ), std::move( open ), std::move( need ),
1713 r1->cost + r2->cost );
1714 inferParameters( newCand, candidates );
1715 }
1716 }
1717 }
1718 }
1719
1720 void Finder::postvisit( const ast::UntypedTupleExpr * tupleExpr ) {
1721 std::vector< CandidateFinder > subCandidates =
1722 selfFinder.findSubExprs( tupleExpr->exprs );
1723 std::vector< CandidateList > possibilities;
1724 combos( subCandidates.begin(), subCandidates.end(), back_inserter( possibilities ) );
1725
1726 for ( const CandidateList & subs : possibilities ) {
1727 std::vector< ast::ptr< ast::Expr > > exprs;
1728 exprs.reserve( subs.size() );
1729 for ( const CandidateRef & sub : subs ) { exprs.emplace_back( sub->expr ); }
1730
1731 ast::TypeEnvironment env;
1732 ast::OpenVarSet open;
1733 ast::AssertionSet need;
1734 for ( const CandidateRef & sub : subs ) {
1735 env.simpleCombine( sub->env );
1736 mergeOpenVars( open, sub->open );
1737 mergeAssertionSet( need, sub->need );
1738 }
1739
1740 addCandidate(
1741 new ast::TupleExpr{ tupleExpr->location, std::move( exprs ) },
1742 std::move( env ), std::move( open ), std::move( need ), sumCost( subs ) );
1743 }
1744 }
1745
1746 void Finder::postvisit( const ast::TupleExpr * tupleExpr ) {
1747 addCandidate( tupleExpr, tenv );
1748 }
1749
1750 void Finder::postvisit( const ast::TupleIndexExpr * tupleExpr ) {
1751 addCandidate( tupleExpr, tenv );
1752 }
1753
1754 void Finder::postvisit( const ast::TupleAssignExpr * tupleExpr ) {
1755 addCandidate( tupleExpr, tenv );
1756 }
1757
1758 void Finder::postvisit( const ast::UniqueExpr * unqExpr ) {
1759 CandidateFinder finder( context, tenv );
1760 finder.find( unqExpr->expr, ResolveMode::withAdjustment() );
1761 for ( CandidateRef & r : finder.candidates ) {
1762 // ensure that the the id is passed on so that the expressions are "linked"
1763 addCandidate( *r, new ast::UniqueExpr{ unqExpr->location, r->expr, unqExpr->id } );
1764 }
1765 }
1766
1767 void Finder::postvisit( const ast::StmtExpr * stmtExpr ) {
1768 addCandidate( resolveStmtExpr( stmtExpr, context ), tenv );
1769 }
1770
1771 void Finder::postvisit( const ast::UntypedInitExpr * initExpr ) {
1772 // handle each option like a cast
1773 CandidateList matches;
1774 PRINT(
1775 std::cerr << "untyped init expr: " << initExpr << std::endl;
1776 )
1777 // O(n^2) checks of d-types with e-types
1778 for ( const ast::InitAlternative & initAlt : initExpr->initAlts ) {
1779 // calculate target type
1780 const ast::Type * toType = resolveTypeof( initAlt.type, context );
1781 toType = adjustExprType( toType, tenv, symtab );
1782 // The call to find must occur inside this loop, otherwise polymorphic return
1783 // types are not bound to the initialization type, since return type variables are
1784 // only open for the duration of resolving the UntypedExpr.
1785 CandidateFinder finder( context, tenv, toType );
1786 finder.find( initExpr->expr, ResolveMode::withAdjustment() );
1787
1788 Cost minExprCost = Cost::infinity;
1789 Cost minCastCost = Cost::infinity;
1790 for ( CandidateRef & cand : finder.candidates ) {
1791 if (reason.code == NotFound) reason.code = NoMatch;
1792
1793 ast::TypeEnvironment env{ cand->env };
1794 ast::AssertionSet need( cand->need.begin(), cand->need.end() ), have;
1795 ast::OpenVarSet open{ cand->open };
1796
1797 PRINT(
1798 std::cerr << " @ " << toType << " " << initAlt.designation << std::endl;
1799 )
1800
1801 // It is possible that a cast can throw away some values in a multiply-valued
1802 // expression, e.g. cast-to-void, one value to zero. Figure out the prefix of
1803 // the subexpression results that are cast directly. The candidate is invalid
1804 // if it has fewer results than there are types to cast to.
1805 int discardedValues = cand->expr->result->size() - toType->size();
1806 if ( discardedValues < 0 ) continue;
1807
1808 // unification run for side-effects
1809 ast::ptr<ast::Type> common;
1810 bool canUnify = unify( toType, cand->expr->result, env, need, have, open, common );
1811 (void) canUnify;
1812 Cost thisCost = computeConversionCost( cand->expr->result, toType, cand->expr->get_lvalue(),
1813 symtab, env );
1814 PRINT(
1815 Cost legacyCost = castCost( cand->expr->result, toType, cand->expr->get_lvalue(),
1816 symtab, env );
1817 std::cerr << "Considering initialization:";
1818 std::cerr << std::endl << " FROM: " << cand->expr->result << std::endl;
1819 std::cerr << std::endl << " TO: " << toType << std::endl;
1820 std::cerr << std::endl << " Unification " << (canUnify ? "succeeded" : "failed");
1821 std::cerr << std::endl << " Legacy cost " << legacyCost;
1822 std::cerr << std::endl << " New cost " << thisCost;
1823 std::cerr << std::endl;
1824 )
1825 if ( thisCost != Cost::infinity ) {
1826 // count one safe conversion for each value that is thrown away
1827 thisCost.incSafe( discardedValues );
1828 if ( cand->cost < minExprCost || ( cand->cost == minExprCost && thisCost < minCastCost ) ) {
1829 minExprCost = cand->cost;
1830 minCastCost = thisCost;
1831 matches.clear();
1832 }
1833 CandidateRef newCand = std::make_shared<Candidate>(
1834 new ast::InitExpr{
1835 initExpr->location,
1836 restructureCast( cand->expr, toType ),
1837 initAlt.designation },
1838 std::move(env), std::move( open ), std::move( need ), cand->cost + thisCost );
1839 // currently assertions are always resolved immediately so this should have no effect.
1840 // if this somehow changes in the future (e.g. delayed by indeterminate return type)
1841 // we may need to revisit the logic.
1842 inferParameters( newCand, matches );
1843 }
1844 }
1845 }
1846
1847 // select first on argument cost, then conversion cost
1848 // CandidateList minArgCost = findMinCost( matches );
1849 // promoteCvtCost( minArgCost );
1850 // candidates = findMinCost( minArgCost );
1851 candidates = std::move(matches);
1852 }
1853
1854 void Finder::postvisit( const ast::QualifiedNameExpr * expr ) {
1855 std::vector< ast::SymbolTable::IdData > declList = symtab.lookupId( expr->name );
1856 if ( declList.empty() ) return;
1857
1858 for ( ast::SymbolTable::IdData & data: declList ) {
1859 const ast::Type * t = data.id->get_type()->stripReferences();
1860 if ( const ast::EnumInstType * enumInstType =
1861 dynamic_cast<const ast::EnumInstType *>( t ) ) {
1862 if ( (enumInstType->base->name == expr->type_name)
1863 || (expr->type_decl && enumInstType->base->name == expr->type_decl->name) ) {
1864 Cost cost = Cost::zero;
1865 ast::Expr * newExpr = data.combine( expr->location, cost );
1866 CandidateRef newCand =
1867 std::make_shared<Candidate>(
1868 newExpr, copy( tenv ), ast::OpenVarSet{},
1869 ast::AssertionSet{}, Cost::zero, cost
1870 );
1871 if (newCand->expr->env) {
1872 newCand->env.add(*newCand->expr->env);
1873 auto mutExpr = newCand->expr.get_and_mutate();
1874 mutExpr->env = nullptr;
1875 newCand->expr = mutExpr;
1876 }
1877
1878 newCand->expr = ast::mutate_field(
1879 newCand->expr.get(), &ast::Expr::result,
1880 renameTyVars( newCand->expr->result ) );
1881 addAnonConversions( newCand );
1882 candidates.emplace_back( std::move( newCand ) );
1883 }
1884 }
1885 }
1886 }
1887 // size_t Finder::traceId = Stats::Heap::new_stacktrace_id("Finder");
1888 /// Prunes a list of candidates down to those that have the minimum conversion cost for a given
1889 /// return type. Skips ambiguous candidates.
1890
1891} // anonymous namespace
1892
1893bool CandidateFinder::pruneCandidates( CandidateList & candidates, CandidateList & out, std::vector<std::string> & errors ) {
1894 struct PruneStruct {
1895 CandidateRef candidate;
1896 bool ambiguous;
1897
1898 PruneStruct() = default;
1899 PruneStruct( const CandidateRef & c ) : candidate( c ), ambiguous( false ) {}
1900 };
1901
1902 // find lowest-cost candidate for each type
1903 std::unordered_map< std::string, PruneStruct > selected;
1904 // attempt to skip satisfyAssertions on more expensive alternatives if better options have been found
1905 std::sort(candidates.begin(), candidates.end(), [](const CandidateRef & x, const CandidateRef & y){return x->cost < y->cost;});
1906 for ( CandidateRef & candidate : candidates ) {
1907 std::string mangleName;
1908 {
1909 ast::ptr< ast::Type > newType = candidate->expr->result;
1910 assertf(candidate->expr->result, "Result of expression %p for candidate is null", candidate->expr.get());
1911 candidate->env.apply( newType );
1912 mangleName = Mangle::mangle( newType );
1913 }
1914
1915 auto found = selected.find( mangleName );
1916 if (found != selected.end() && found->second.candidate->cost < candidate->cost) {
1917 PRINT(
1918 std::cerr << "cost " << candidate->cost << " loses to "
1919 << found->second.candidate->cost << std::endl;
1920 )
1921 continue;
1922 }
1923
1924 // xxx - when do satisfyAssertions produce more than 1 result?
1925 // this should only happen when initial result type contains
1926 // unbound type parameters, then it should never be pruned by
1927 // the previous step, since renameTyVars guarantees the mangled name
1928 // is unique.
1929 CandidateList satisfied;
1930 bool needRecomputeKey = false;
1931 if (candidate->need.empty()) {
1932 satisfied.emplace_back(candidate);
1933 }
1934 else {
1935 satisfyAssertions(candidate, context.symtab, satisfied, errors);
1936 needRecomputeKey = true;
1937 }
1938
1939 for (auto & newCand : satisfied) {
1940 // recomputes type key, if satisfyAssertions changed it
1941 if (needRecomputeKey)
1942 {
1943 ast::ptr< ast::Type > newType = newCand->expr->result;
1944 assertf(newCand->expr->result, "Result of expression %p for candidate is null", newCand->expr.get());
1945 newCand->env.apply( newType );
1946 mangleName = Mangle::mangle( newType );
1947 }
1948 auto found = selected.find( mangleName );
1949 if ( found != selected.end() ) {
1950 // tiebreaking by picking the lower cost on CURRENT expression
1951 // NOTE: this behavior is different from C semantics.
1952 // Specific remediations are performed for C operators at postvisit(UntypedExpr).
1953 // Further investigations may take place.
1954 if ( newCand->cost < found->second.candidate->cost
1955 || (newCand->cost == found->second.candidate->cost && newCand->cvtCost < found->second.candidate->cvtCost) ) {
1956 PRINT(
1957 std::cerr << "cost " << newCand->cost << " beats "
1958 << found->second.candidate->cost << std::endl;
1959 )
1960
1961 found->second = PruneStruct{ newCand };
1962 } else if ( newCand->cost == found->second.candidate->cost && newCand->cvtCost == found->second.candidate->cvtCost ) {
1963 // if one of the candidates contains a deleted identifier, can pick the other,
1964 // since deleted expressions should not be ambiguous if there is another option
1965 // that is at least as good
1966 if ( findDeletedExpr( newCand->expr ) ) {
1967 // do nothing
1968 PRINT( std::cerr << "candidate is deleted" << std::endl; )
1969 } else if ( findDeletedExpr( found->second.candidate->expr ) ) {
1970 PRINT( std::cerr << "current is deleted" << std::endl; )
1971 found->second = PruneStruct{ newCand };
1972 } else {
1973 PRINT( std::cerr << "marking ambiguous" << std::endl; )
1974 found->second.ambiguous = true;
1975 }
1976 } else {
1977 // xxx - can satisfyAssertions increase the cost?
1978 PRINT(
1979 std::cerr << "cost " << newCand->cost << " loses to "
1980 << found->second.candidate->cost << std::endl;
1981 )
1982 }
1983 } else {
1984 selected.emplace_hint( found, mangleName, newCand );
1985 }
1986 }
1987 }
1988
1989 // report unambiguous min-cost candidates
1990 // CandidateList out;
1991 for ( auto & target : selected ) {
1992 if ( target.second.ambiguous ) continue;
1993
1994 CandidateRef cand = target.second.candidate;
1995
1996 ast::ptr< ast::Type > newResult = cand->expr->result;
1997 cand->env.applyFree( newResult );
1998 cand->expr = ast::mutate_field(
1999 cand->expr.get(), &ast::Expr::result, std::move( newResult ) );
2000
2001 out.emplace_back( cand );
2002 }
2003 // if everything is lost in satisfyAssertions, report the error
2004 return !selected.empty();
2005}
2006
2007void CandidateFinder::find( const ast::Expr * expr, ResolveMode mode ) {
2008 // Find alternatives for expression
2009 ast::Pass<Finder> finder{ *this };
2010 expr->accept( finder );
2011
2012 if ( mode.failFast && candidates.empty() ) {
2013 switch(finder.core.reason.code) {
2014 case Finder::NotFound:
2015 { SemanticError( expr, "No alternatives for expression " ); break; }
2016 case Finder::NoMatch:
2017 { SemanticError( expr, "Invalid application of existing declaration(s) in expression " ); break; }
2018 case Finder::ArgsToFew:
2019 case Finder::ArgsToMany:
2020 case Finder::RetsToFew:
2021 case Finder::RetsToMany:
2022 case Finder::NoReason:
2023 default:
2024 { SemanticError( expr->location, "No reasonable alternatives for expression : reasons unkown" ); }
2025 }
2026 }
2027
2028 /*
2029 if ( mode.satisfyAssns || mode.prune ) {
2030 // trim candidates to just those where the assertions are satisfiable
2031 // - necessary pre-requisite to pruning
2032 CandidateList satisfied;
2033 std::vector< std::string > errors;
2034 for ( CandidateRef & candidate : candidates ) {
2035 satisfyAssertions( candidate, localSyms, satisfied, errors );
2036 }
2037
2038 // fail early if none such
2039 if ( mode.failFast && satisfied.empty() ) {
2040 std::ostringstream stream;
2041 stream << "No alternatives with satisfiable assertions for " << expr << "\n";
2042 for ( const auto& err : errors ) {
2043 stream << err;
2044 }
2045 SemanticError( expr->location, stream.str() );
2046 }
2047
2048 // reset candidates
2049 candidates = move( satisfied );
2050 }
2051 */
2052
2053 // optimization: don't prune for NameExpr since it never has cost
2054 if ( mode.prune && !dynamic_cast<const ast::NameExpr *>(expr) ) {
2055 // trim candidates to single best one
2056 PRINT(
2057 std::cerr << "alternatives before prune:" << std::endl;
2058 print( std::cerr, candidates );
2059 )
2060
2061 CandidateList pruned;
2062 std::vector<std::string> errors;
2063 bool found = pruneCandidates( candidates, pruned, errors );
2064
2065 if ( mode.failFast && pruned.empty() ) {
2066 std::ostringstream stream;
2067 if (found) {
2068 CandidateList winners = findMinCost( candidates );
2069 stream << "Cannot choose between " << winners.size() << " alternatives for "
2070 "expression\n";
2071 ast::print( stream, expr );
2072 stream << " Alternatives are:\n";
2073 print( stream, winners, 1 );
2074 SemanticError( expr->location, stream.str() );
2075 }
2076 else {
2077 stream << "No alternatives with satisfiable assertions for " << expr << "\n";
2078 for ( const auto& err : errors ) {
2079 stream << err;
2080 }
2081 SemanticError( expr->location, stream.str() );
2082 }
2083 }
2084
2085 auto oldsize = candidates.size();
2086 candidates = std::move( pruned );
2087
2088 PRINT(
2089 std::cerr << "there are " << oldsize << " alternatives before elimination" << std::endl;
2090 )
2091 PRINT(
2092 std::cerr << "there are " << candidates.size() << " alternatives after elimination"
2093 << std::endl;
2094 )
2095 }
2096
2097 // adjust types after pruning so that types substituted by pruneAlternatives are correctly
2098 // adjusted
2099 if ( mode.adjust ) {
2100 for ( CandidateRef & r : candidates ) {
2101 r->expr = ast::mutate_field(
2102 r->expr.get(), &ast::Expr::result,
2103 adjustExprType( r->expr->result, r->env, context.symtab ) );
2104 }
2105 }
2106
2107 // Central location to handle gcc extension keyword, etc. for all expressions
2108 for ( CandidateRef & r : candidates ) {
2109 if ( r->expr->extension != expr->extension ) {
2110 r->expr.get_and_mutate()->extension = expr->extension;
2111 }
2112 }
2113}
2114
2115std::vector< CandidateFinder > CandidateFinder::findSubExprs(
2116 const std::vector< ast::ptr< ast::Expr > > & xs
2117) {
2118 std::vector< CandidateFinder > out;
2119
2120 for ( const auto & x : xs ) {
2121 out.emplace_back( context, env );
2122 out.back().find( x, ResolveMode::withAdjustment() );
2123
2124 PRINT(
2125 std::cerr << "findSubExprs" << std::endl;
2126 print( std::cerr, out.back().candidates );
2127 )
2128 }
2129
2130 return out;
2131}
2132
2133const ast::Expr * referenceToRvalueConversion( const ast::Expr * expr, Cost & cost ) {
2134 if ( expr->result.as< ast::ReferenceType >() ) {
2135 // cast away reference from expr
2136 cost.incReference();
2137 return new ast::CastExpr{ expr, expr->result->stripReferences() };
2138 }
2139
2140 return expr;
2141}
2142
2143/// If the target enum is a child, get the offset from the base to the target.
2144static unsigned findChildOffset(
2145 const ast::EnumDecl * decl, const ast::EnumDecl * target ) {
2146 unsigned offset = 0;
2147 for ( auto inlined : decl->inlinedDecl ) {
2148 auto childDecl = inlined->base;
2149 if ( childDecl == target ) {
2150 return offset;
2151 }
2152 offset += childDecl->members.size();
2153 }
2154 SemanticError( decl, "Cannot find the target enum." );
2155}
2156
2157const ast::Expr * CandidateFinder::makeEnumOffsetCast( const ast::EnumInstType * src,
2158 const ast::EnumInstType * dst, const ast::Expr * expr, Cost minCost ) {
2159 auto srcDecl = src->base;
2160 auto dstDecl = dst->base;
2161
2162 if (srcDecl->name == dstDecl->name) return expr;
2163
2164 for (auto& dstChild: dstDecl->inlinedDecl) {
2165 Cost c = castCost(src, dstChild, false, context.symtab, env);
2166 ast::CastExpr * castToDst;
2167 if (c<minCost) {
2168 unsigned offset = findChildOffset( dstDecl, dstChild.get()->base );
2169 if (offset > 0) {
2170 auto untyped = ast::UntypedExpr::createCall(
2171 expr->location,
2172 "?+?",
2173 { new ast::CastExpr( expr->location,
2174 expr,
2175 new ast::BasicType(ast::BasicKind::SignedInt),
2176 ast::GeneratedFlag::ExplicitCast ),
2177 ast::ConstantExpr::from_int(expr->location, offset)} );
2178 CandidateFinder finder(context, env);
2179 finder.find( untyped );
2180 CandidateList winners = findMinCost( finder.candidates );
2181 CandidateRef & choice = winners.front();
2182 choice->expr = new ast::CastExpr(expr->location, choice->expr, dstChild, ast::GeneratedFlag::ExplicitCast);
2183 auto destExpr = makeEnumOffsetCast( src, dstChild, choice->expr, minCost );
2184 if ( !destExpr ) continue;
2185 castToDst = new ast::CastExpr( destExpr, dst );
2186 } else {
2187 castToDst = new ast::CastExpr( expr, dst );
2188 }
2189 return castToDst;
2190 }
2191 }
2192 return nullptr;
2193}
2194
2195Cost computeConversionCost(
2196 const ast::Type * argType, const ast::Type * paramType, bool argIsLvalue,
2197 const ast::SymbolTable & symtab, const ast::TypeEnvironment & env
2198) {
2199 PRINT(
2200 std::cerr << std::endl << "converting ";
2201 ast::print( std::cerr, argType, 2 );
2202 std::cerr << std::endl << " to ";
2203 ast::print( std::cerr, paramType, 2 );
2204 std::cerr << std::endl << "environment is: ";
2205 ast::print( std::cerr, env, 2 );
2206 std::cerr << std::endl;
2207 )
2208 Cost convCost = conversionCost( argType, paramType, argIsLvalue, symtab, env );
2209 PRINT(
2210 std::cerr << std::endl << "cost is " << convCost << std::endl;
2211 )
2212 if ( convCost == Cost::infinity ) return convCost;
2213 convCost.incPoly( polyCost( paramType, symtab, env ) + polyCost( argType, symtab, env ) );
2214 PRINT(
2215 std::cerr << "cost with polycost is " << convCost << std::endl;
2216 )
2217 return convCost;
2218}
2219
2220const ast::Expr * createCondExpr( const ast::Expr * expr ) {
2221 assert( expr );
2222 return new ast::CastExpr( expr->location,
2223 ast::UntypedExpr::createCall( expr->location,
2224 "?!=?",
2225 {
2226 expr,
2227 new ast::ConstantExpr( expr->location,
2228 new ast::ZeroType(), "0", std::make_optional( 0ull )
2229 ),
2230 }
2231 ),
2232 new ast::BasicType( ast::BasicKind::SignedInt )
2233 );
2234}
2235
2236} // namespace ResolvExpr
2237
2238// Local Variables: //
2239// tab-width: 4 //
2240// mode: c++ //
2241// compile-command: "make install" //
2242// End: //
Note: See TracBrowser for help on using the repository browser.