source: src/ResolvExpr/CandidateFinder.cpp@ 8a33777

Last change on this file since 8a33777 was 61e362f, checked in by Andrew Beach <ajbeach@…>, 20 months ago

Changed notZeroExpr so that expressions with conditional contexts are handled in the resolver instead of the parser. Bugs kept the same from being done with statements. (Also a bit of clean-up from the last commit and a small fix in code-gen.)

  • Property mode set to 100644
File size: 76.2 KB
Line 
1//
2// Cforall Version 1.0.0 Copyright (C) 2015 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// CandidateFinder.cpp --
8//
9// Author : Aaron B. Moss
10// Created On : Wed Jun 5 14:30:00 2019
11// Last Modified By : Andrew Beach
12// Last Modified On : Wed Mar 16 11:58:00 2022
13// Update Count : 3
14//
15
16#include "CandidateFinder.hpp"
17
18#include <deque>
19#include <iterator> // for back_inserter
20#include <sstream>
21#include <string>
22#include <unordered_map>
23#include <vector>
24
25#include "AdjustExprType.hpp"
26#include "Candidate.hpp"
27#include "CastCost.hpp" // for castCost
28#include "CompilationState.h"
29#include "ConversionCost.h" // for conversionCast
30#include "Cost.h"
31#include "ExplodedArg.hpp"
32#include "PolyCost.hpp"
33#include "RenameVars.h" // for renameTyVars
34#include "Resolver.h"
35#include "ResolveTypeof.h"
36#include "SatisfyAssertions.hpp"
37#include "SpecCost.hpp"
38#include "typeops.h" // for combos
39#include "Unify.h"
40#include "WidenMode.h"
41#include "AST/Expr.hpp"
42#include "AST/Node.hpp"
43#include "AST/Pass.hpp"
44#include "AST/Print.hpp"
45#include "AST/SymbolTable.hpp"
46#include "AST/Type.hpp"
47#include "Common/utility.h" // for move, copy
48#include "Parser/parserutility.h" // for notZeroExpr
49#include "SymTab/Mangler.h"
50#include "Tuples/Tuples.h" // for handleTupleAssignment
51#include "InitTweak/InitTweak.h" // for getPointerBase
52
53#include "Common/Stats/Counter.h"
54
55#include "AST/Inspect.hpp" // for getFunctionName
56
57#define PRINT( text ) if ( resolvep ) { text }
58
59namespace ResolvExpr {
60
61/// Unique identifier for matching expression resolutions to their requesting expression
62ast::UniqueId globalResnSlot = 0;
63
64namespace {
65 /// First index is which argument, second is which alternative, third is which exploded element
66 using ExplodedArgs = std::deque< std::vector< ExplodedArg > >;
67
68 /// Returns a list of alternatives with the minimum cost in the given list
69 CandidateList findMinCost( const CandidateList & candidates ) {
70 CandidateList out;
71 Cost minCost = Cost::infinity;
72 for ( const CandidateRef & r : candidates ) {
73 if ( r->cost < minCost ) {
74 minCost = r->cost;
75 out.clear();
76 out.emplace_back( r );
77 } else if ( r->cost == minCost ) {
78 out.emplace_back( r );
79 }
80 }
81 return out;
82 }
83
84 /// Computes conversion cost for a given expression to a given type
85 const ast::Expr * computeExpressionConversionCost(
86 const ast::Expr * arg, const ast::Type * paramType, const ast::SymbolTable & symtab, const ast::TypeEnvironment & env, Cost & outCost
87 ) {
88 Cost convCost = computeConversionCost(
89 arg->result, paramType, arg->get_lvalue(), symtab, env );
90 outCost += convCost;
91
92 // If there is a non-zero conversion cost, ignoring poly cost, then the expression requires
93 // conversion. Ignore poly cost for now, since this requires resolution of the cast to
94 // infer parameters and this does not currently work for the reason stated below
95 Cost tmpCost = convCost;
96 tmpCost.incPoly( -tmpCost.get_polyCost() );
97 if ( tmpCost != Cost::zero ) {
98 ast::ptr< ast::Type > newType = paramType;
99 env.apply( newType );
100 return new ast::CastExpr{ arg, newType };
101
102 // xxx - *should* be able to resolve this cast, but at the moment pointers are not
103 // castable to zero_t, but are implicitly convertible. This is clearly inconsistent,
104 // once this is fixed it should be possible to resolve the cast.
105 // xxx - this isn't working, it appears because type1 (parameter) is seen as widenable,
106 // but it shouldn't be because this makes the conversion from DT* to DT* since
107 // commontype(zero_t, DT*) is DT*, rather than nothing
108
109 // CandidateFinder finder{ symtab, env };
110 // finder.find( arg, ResolveMode::withAdjustment() );
111 // assertf( finder.candidates.size() > 0,
112 // "Somehow castable expression failed to find alternatives." );
113 // assertf( finder.candidates.size() == 1,
114 // "Somehow got multiple alternatives for known cast expression." );
115 // return finder.candidates.front()->expr;
116 }
117
118 return arg;
119 }
120
121 /// Computes conversion cost for a given candidate
122 Cost computeApplicationConversionCost(
123 CandidateRef cand, const ast::SymbolTable & symtab
124 ) {
125 auto appExpr = cand->expr.strict_as< ast::ApplicationExpr >();
126 auto pointer = appExpr->func->result.strict_as< ast::PointerType >();
127 auto function = pointer->base.strict_as< ast::FunctionType >();
128
129 Cost convCost = Cost::zero;
130 const auto & params = function->params;
131 auto param = params.begin();
132 auto & args = appExpr->args;
133
134 for ( unsigned i = 0; i < args.size(); ++i ) {
135 const ast::Type * argType = args[i]->result;
136 PRINT(
137 std::cerr << "arg expression:" << std::endl;
138 ast::print( std::cerr, args[i], 2 );
139 std::cerr << "--- results are" << std::endl;
140 ast::print( std::cerr, argType, 2 );
141 )
142
143 if ( param == params.end() ) {
144 if ( function->isVarArgs ) {
145 convCost.incUnsafe();
146 PRINT( std::cerr << "end of params with varargs function: inc unsafe: "
147 << convCost << std::endl; ; )
148 // convert reference-typed expressions into value-typed expressions
149 cand->expr = ast::mutate_field_index(
150 appExpr, &ast::ApplicationExpr::args, i,
151 referenceToRvalueConversion( args[i], convCost ) );
152 continue;
153 } else return Cost::infinity;
154 }
155
156 if ( auto def = args[i].as< ast::DefaultArgExpr >() ) {
157 // Default arguments should be free - don't include conversion cost.
158 // Unwrap them here because they are not relevant to the rest of the system
159 cand->expr = ast::mutate_field_index(
160 appExpr, &ast::ApplicationExpr::args, i, def->expr );
161 ++param;
162 continue;
163 }
164
165 // mark conversion cost and also specialization cost of param type
166 // const ast::Type * paramType = (*param)->get_type();
167 cand->expr = ast::mutate_field_index(
168 appExpr, &ast::ApplicationExpr::args, i,
169 computeExpressionConversionCost(
170 args[i], *param, symtab, cand->env, convCost ) );
171 convCost.decSpec( specCost( *param ) );
172 ++param; // can't be in for-loop update because of the continue
173 }
174
175 if ( param != params.end() ) return Cost::infinity;
176
177 // specialization cost of return types can't be accounted for directly, it disables
178 // otherwise-identical calls, like this example based on auto-newline in the I/O lib:
179 //
180 // forall(otype OS) {
181 // void ?|?(OS&, int); // with newline
182 // OS& ?|?(OS&, int); // no newline, always chosen due to more specialization
183 // }
184
185 // mark type variable and specialization cost of forall clause
186 convCost.incVar( function->forall.size() );
187 convCost.decSpec( function->assertions.size() );
188
189 return convCost;
190 }
191
192 void makeUnifiableVars(
193 const ast::FunctionType * type, ast::OpenVarSet & unifiableVars,
194 ast::AssertionSet & need
195 ) {
196 for ( auto & tyvar : type->forall ) {
197 unifiableVars[ *tyvar ] = ast::TypeData{ tyvar->base };
198 }
199 for ( auto & assn : type->assertions ) {
200 need[ assn ].isUsed = true;
201 }
202 }
203
204 /// Gets a default value from an initializer, nullptr if not present
205 const ast::ConstantExpr * getDefaultValue( const ast::Init * init ) {
206 if ( auto si = dynamic_cast< const ast::SingleInit * >( init ) ) {
207 if ( auto ce = si->value.as< ast::CastExpr >() ) {
208 return ce->arg.as< ast::ConstantExpr >();
209 } else {
210 return si->value.as< ast::ConstantExpr >();
211 }
212 }
213 return nullptr;
214 }
215
216 /// State to iteratively build a match of parameter expressions to arguments
217 struct ArgPack {
218 std::size_t parent; ///< Index of parent pack
219 ast::ptr< ast::Expr > expr; ///< The argument stored here
220 Cost cost; ///< The cost of this argument
221 ast::TypeEnvironment env; ///< Environment for this pack
222 ast::AssertionSet need; ///< Assertions outstanding for this pack
223 ast::AssertionSet have; ///< Assertions found for this pack
224 ast::OpenVarSet open; ///< Open variables for this pack
225 unsigned nextArg; ///< Index of next argument in arguments list
226 unsigned tupleStart; ///< Number of tuples that start at this index
227 unsigned nextExpl; ///< Index of next exploded element
228 unsigned explAlt; ///< Index of alternative for nextExpl > 0
229
230 ArgPack()
231 : parent( 0 ), expr(), cost( Cost::zero ), env(), need(), have(), open(), nextArg( 0 ),
232 tupleStart( 0 ), nextExpl( 0 ), explAlt( 0 ) {}
233
234 ArgPack(
235 const ast::TypeEnvironment & env, const ast::AssertionSet & need,
236 const ast::AssertionSet & have, const ast::OpenVarSet & open )
237 : parent( 0 ), expr(), cost( Cost::zero ), env( env ), need( need ), have( have ),
238 open( open ), nextArg( 0 ), tupleStart( 0 ), nextExpl( 0 ), explAlt( 0 ) {}
239
240 ArgPack(
241 std::size_t parent, const ast::Expr * expr, ast::TypeEnvironment && env,
242 ast::AssertionSet && need, ast::AssertionSet && have, ast::OpenVarSet && open,
243 unsigned nextArg, unsigned tupleStart = 0, Cost cost = Cost::zero,
244 unsigned nextExpl = 0, unsigned explAlt = 0 )
245 : parent(parent), expr( expr ), cost( cost ), env( std::move( env ) ), need( std::move( need ) ),
246 have( std::move( have ) ), open( std::move( open ) ), nextArg( nextArg ), tupleStart( tupleStart ),
247 nextExpl( nextExpl ), explAlt( explAlt ) {}
248
249 ArgPack(
250 const ArgPack & o, ast::TypeEnvironment && env, ast::AssertionSet && need,
251 ast::AssertionSet && have, ast::OpenVarSet && open, unsigned nextArg, Cost added )
252 : parent( o.parent ), expr( o.expr ), cost( o.cost + added ), env( std::move( env ) ),
253 need( std::move( need ) ), have( std::move( have ) ), open( std::move( open ) ), nextArg( nextArg ),
254 tupleStart( o.tupleStart ), nextExpl( 0 ), explAlt( 0 ) {}
255
256 /// true if this pack is in the middle of an exploded argument
257 bool hasExpl() const { return nextExpl > 0; }
258
259 /// Gets the list of exploded candidates for this pack
260 const ExplodedArg & getExpl( const ExplodedArgs & args ) const {
261 return args[ nextArg-1 ][ explAlt ];
262 }
263
264 /// Ends a tuple expression, consolidating the appropriate args
265 void endTuple( const std::vector< ArgPack > & packs ) {
266 // add all expressions in tuple to list, summing cost
267 std::deque< const ast::Expr * > exprs;
268 const ArgPack * pack = this;
269 if ( expr ) { exprs.emplace_front( expr ); }
270 while ( pack->tupleStart == 0 ) {
271 pack = &packs[pack->parent];
272 exprs.emplace_front( pack->expr );
273 cost += pack->cost;
274 }
275 // reset pack to appropriate tuple
276 std::vector< ast::ptr< ast::Expr > > exprv( exprs.begin(), exprs.end() );
277 expr = new ast::TupleExpr{ expr->location, std::move( exprv ) };
278 tupleStart = pack->tupleStart - 1;
279 parent = pack->parent;
280 }
281 };
282
283 /// Instantiates an argument to match a parameter, returns false if no matching results left
284 bool instantiateArgument(
285 const CodeLocation & location,
286 const ast::Type * paramType, const ast::Init * init, const ExplodedArgs & args,
287 std::vector< ArgPack > & results, std::size_t & genStart, const ast::SymbolTable & symtab,
288 unsigned nTuples = 0
289 ) {
290 if ( auto tupleType = dynamic_cast< const ast::TupleType * >( paramType ) ) {
291 // paramType is a TupleType -- group args into a TupleExpr
292 ++nTuples;
293 for ( const ast::Type * type : *tupleType ) {
294 // xxx - dropping initializer changes behaviour from previous, but seems correct
295 // ^^^ need to handle the case where a tuple has a default argument
296 if ( ! instantiateArgument( location,
297 type, nullptr, args, results, genStart, symtab, nTuples ) ) return false;
298 nTuples = 0;
299 }
300 // re-constitute tuples for final generation
301 for ( auto i = genStart; i < results.size(); ++i ) {
302 results[i].endTuple( results );
303 }
304 return true;
305 } else if ( const ast::TypeInstType * ttype = Tuples::isTtype( paramType ) ) {
306 // paramType is a ttype, consumes all remaining arguments
307
308 // completed tuples; will be spliced to end of results to finish
309 std::vector< ArgPack > finalResults{};
310
311 // iterate until all results completed
312 std::size_t genEnd;
313 ++nTuples;
314 do {
315 genEnd = results.size();
316
317 // add another argument to results
318 for ( std::size_t i = genStart; i < genEnd; ++i ) {
319 unsigned nextArg = results[i].nextArg;
320
321 // use next element of exploded tuple if present
322 if ( results[i].hasExpl() ) {
323 const ExplodedArg & expl = results[i].getExpl( args );
324
325 unsigned nextExpl = results[i].nextExpl + 1;
326 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
327
328 results.emplace_back(
329 i, expl.exprs[ results[i].nextExpl ], copy( results[i].env ),
330 copy( results[i].need ), copy( results[i].have ),
331 copy( results[i].open ), nextArg, nTuples, Cost::zero, nextExpl,
332 results[i].explAlt );
333
334 continue;
335 }
336
337 // finish result when out of arguments
338 if ( nextArg >= args.size() ) {
339 ArgPack newResult{
340 results[i].env, results[i].need, results[i].have, results[i].open };
341 newResult.nextArg = nextArg;
342 const ast::Type * argType = nullptr;
343
344 if ( nTuples > 0 || ! results[i].expr ) {
345 // first iteration or no expression to clone,
346 // push empty tuple expression
347 newResult.parent = i;
348 newResult.expr = new ast::TupleExpr( location, {} );
349 argType = newResult.expr->result;
350 } else {
351 // clone result to collect tuple
352 newResult.parent = results[i].parent;
353 newResult.cost = results[i].cost;
354 newResult.tupleStart = results[i].tupleStart;
355 newResult.expr = results[i].expr;
356 argType = newResult.expr->result;
357
358 if ( results[i].tupleStart > 0 && Tuples::isTtype( argType ) ) {
359 // the case where a ttype value is passed directly is special,
360 // e.g. for argument forwarding purposes
361 // xxx - what if passing multiple arguments, last of which is
362 // ttype?
363 // xxx - what would happen if unify was changed so that unifying
364 // tuple
365 // types flattened both before unifying lists? then pass in
366 // TupleType (ttype) below.
367 --newResult.tupleStart;
368 } else {
369 // collapse leftover arguments into tuple
370 newResult.endTuple( results );
371 argType = newResult.expr->result;
372 }
373 }
374
375 // check unification for ttype before adding to final
376 if (
377 unify(
378 ttype, argType, newResult.env, newResult.need, newResult.have,
379 newResult.open )
380 ) {
381 finalResults.emplace_back( std::move( newResult ) );
382 }
383
384 continue;
385 }
386
387 // add each possible next argument
388 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
389 const ExplodedArg & expl = args[nextArg][j];
390
391 // fresh copies of parent parameters for this iteration
392 ast::TypeEnvironment env = results[i].env;
393 ast::OpenVarSet open = results[i].open;
394
395 env.addActual( expl.env, open );
396
397 // skip empty tuple arguments by (nearly) cloning parent into next gen
398 if ( expl.exprs.empty() ) {
399 results.emplace_back(
400 results[i], std::move( env ), copy( results[i].need ),
401 copy( results[i].have ), std::move( open ), nextArg + 1, expl.cost );
402
403 continue;
404 }
405
406 // add new result
407 results.emplace_back(
408 i, expl.exprs.front(), std::move( env ), copy( results[i].need ),
409 copy( results[i].have ), std::move( open ), nextArg + 1, nTuples,
410 expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
411 }
412 }
413
414 // reset for next round
415 genStart = genEnd;
416 nTuples = 0;
417 } while ( genEnd != results.size() );
418
419 // splice final results onto results
420 for ( std::size_t i = 0; i < finalResults.size(); ++i ) {
421 results.emplace_back( std::move( finalResults[i] ) );
422 }
423 return ! finalResults.empty();
424 }
425
426 // iterate each current subresult
427 std::size_t genEnd = results.size();
428 for ( std::size_t i = genStart; i < genEnd; ++i ) {
429 unsigned nextArg = results[i].nextArg;
430
431 // use remainder of exploded tuple if present
432 if ( results[i].hasExpl() ) {
433 const ExplodedArg & expl = results[i].getExpl( args );
434 const ast::Expr * expr = expl.exprs[ results[i].nextExpl ];
435
436 ast::TypeEnvironment env = results[i].env;
437 ast::AssertionSet need = results[i].need, have = results[i].have;
438 ast::OpenVarSet open = results[i].open;
439
440 const ast::Type * argType = expr->result;
441
442 PRINT(
443 std::cerr << "param type is ";
444 ast::print( std::cerr, paramType );
445 std::cerr << std::endl << "arg type is ";
446 ast::print( std::cerr, argType );
447 std::cerr << std::endl;
448 )
449
450 if ( unify( paramType, argType, env, need, have, open ) ) {
451 unsigned nextExpl = results[i].nextExpl + 1;
452 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
453
454 results.emplace_back(
455 i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ), nextArg,
456 nTuples, Cost::zero, nextExpl, results[i].explAlt );
457 }
458
459 continue;
460 }
461
462 // use default initializers if out of arguments
463 if ( nextArg >= args.size() ) {
464 if ( const ast::ConstantExpr * cnst = getDefaultValue( init ) ) {
465 ast::TypeEnvironment env = results[i].env;
466 ast::AssertionSet need = results[i].need, have = results[i].have;
467 ast::OpenVarSet open = results[i].open;
468
469 if ( unify( paramType, cnst->result, env, need, have, open ) ) {
470 results.emplace_back(
471 i, new ast::DefaultArgExpr{ cnst->location, cnst }, std::move( env ),
472 std::move( need ), std::move( have ), std::move( open ), nextArg, nTuples );
473 }
474 }
475
476 continue;
477 }
478
479 // Check each possible next argument
480 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
481 const ExplodedArg & expl = args[nextArg][j];
482
483 // fresh copies of parent parameters for this iteration
484 ast::TypeEnvironment env = results[i].env;
485 ast::AssertionSet need = results[i].need, have = results[i].have;
486 ast::OpenVarSet open = results[i].open;
487
488 env.addActual( expl.env, open );
489
490 // skip empty tuple arguments by (nearly) cloning parent into next gen
491 if ( expl.exprs.empty() ) {
492 results.emplace_back(
493 results[i], std::move( env ), std::move( need ), std::move( have ), std::move( open ),
494 nextArg + 1, expl.cost );
495
496 continue;
497 }
498
499 // consider only first exploded arg
500 const ast::Expr * expr = expl.exprs.front();
501 const ast::Type * argType = expr->result;
502
503 PRINT(
504 std::cerr << "param type is ";
505 ast::print( std::cerr, paramType );
506 std::cerr << std::endl << "arg type is ";
507 ast::print( std::cerr, argType );
508 std::cerr << std::endl;
509 )
510
511 // attempt to unify types
512 if ( unify( paramType, argType, env, need, have, open ) ) {
513 // add new result
514 results.emplace_back(
515 i, expr, std::move( env ), std::move( need ), std::move( have ), std::move( open ),
516 nextArg + 1, nTuples, expl.cost, expl.exprs.size() == 1 ? 0 : 1, j );
517 }
518 }
519 }
520
521 // reset for next parameter
522 genStart = genEnd;
523
524 return genEnd != results.size(); // were any new results added?
525 }
526
527 /// Generate a cast expression from `arg` to `toType`
528 const ast::Expr * restructureCast(
529 ast::ptr< ast::Expr > & arg, const ast::Type * toType, ast::GeneratedFlag isGenerated = ast::GeneratedCast
530 ) {
531 if (
532 arg->result->size() > 1
533 && ! toType->isVoid()
534 && ! dynamic_cast< const ast::ReferenceType * >( toType )
535 ) {
536 // Argument is a tuple and the target type is neither void nor a reference. Cast each
537 // member of the tuple to its corresponding target type, producing the tuple of those
538 // cast expressions. If there are more components of the tuple than components in the
539 // target type, then excess components do not come out in the result expression (but
540 // UniqueExpr ensures that the side effects will still be produced)
541 if ( Tuples::maybeImpureIgnoreUnique( arg ) ) {
542 // expressions which may contain side effects require a single unique instance of
543 // the expression
544 arg = new ast::UniqueExpr{ arg->location, arg };
545 }
546 std::vector< ast::ptr< ast::Expr > > components;
547 for ( unsigned i = 0; i < toType->size(); ++i ) {
548 // cast each component
549 ast::ptr< ast::Expr > idx = new ast::TupleIndexExpr{ arg->location, arg, i };
550 components.emplace_back(
551 restructureCast( idx, toType->getComponent( i ), isGenerated ) );
552 }
553 return new ast::TupleExpr{ arg->location, std::move( components ) };
554 } else {
555 // handle normally
556 return new ast::CastExpr{ arg->location, arg, toType, isGenerated };
557 }
558 }
559
560 /// Gets the name from an untyped member expression (must be NameExpr)
561 const std::string & getMemberName( const ast::UntypedMemberExpr * memberExpr ) {
562 if ( memberExpr->member.as< ast::ConstantExpr >() ) {
563 SemanticError( memberExpr, "Indexed access to struct fields unsupported: " );
564 }
565
566 return memberExpr->member.strict_as< ast::NameExpr >()->name;
567 }
568
569 /// Actually visits expressions to find their candidate interpretations
570 class Finder final : public ast::WithShortCircuiting {
571 const ResolveContext & context;
572 const ast::SymbolTable & symtab;
573 public:
574 // static size_t traceId;
575 CandidateFinder & selfFinder;
576 CandidateList & candidates;
577 const ast::TypeEnvironment & tenv;
578 ast::ptr< ast::Type > & targetType;
579
580 enum Errors {
581 NotFound,
582 NoMatch,
583 ArgsToFew,
584 ArgsToMany,
585 RetsToFew,
586 RetsToMany,
587 NoReason
588 };
589
590 struct {
591 Errors code = NotFound;
592 } reason;
593
594 Finder( CandidateFinder & f )
595 : context( f.context ), symtab( context.symtab ), selfFinder( f ),
596 candidates( f.candidates ), tenv( f.env ), targetType( f.targetType ) {}
597
598 void previsit( const ast::Node * ) { visit_children = false; }
599
600 /// Convenience to add candidate to list
601 template<typename... Args>
602 void addCandidate( Args &&... args ) {
603 candidates.emplace_back( new Candidate{ std::forward<Args>( args )... } );
604 reason.code = NoReason;
605 }
606
607 void postvisit( const ast::ApplicationExpr * applicationExpr ) {
608 addCandidate( applicationExpr, tenv );
609 }
610
611 /// Set up candidate assertions for inference
612 void inferParameters( CandidateRef & newCand, CandidateList & out );
613
614 /// Completes a function candidate with arguments located
615 void validateFunctionCandidate(
616 const CandidateRef & func, ArgPack & result, const std::vector< ArgPack > & results,
617 CandidateList & out );
618
619 /// Builds a list of candidates for a function, storing them in out
620 void makeFunctionCandidates(
621 const CodeLocation & location,
622 const CandidateRef & func, const ast::FunctionType * funcType,
623 const ExplodedArgs & args, CandidateList & out );
624
625 /// Adds implicit struct-conversions to the alternative list
626 void addAnonConversions( const CandidateRef & cand );
627
628 /// Adds aggregate member interpretations
629 void addAggMembers(
630 const ast::BaseInstType * aggrInst, const ast::Expr * expr,
631 const Candidate & cand, const Cost & addedCost, const std::string & name
632 );
633
634 /// Adds tuple member interpretations
635 void addTupleMembers(
636 const ast::TupleType * tupleType, const ast::Expr * expr, const Candidate & cand,
637 const Cost & addedCost, const ast::Expr * member
638 );
639
640 /// true if expression is an lvalue
641 static bool isLvalue( const ast::Expr * x ) {
642 return x->result && ( x->get_lvalue() || x->result.as< ast::ReferenceType >() );
643 }
644
645 void postvisit( const ast::UntypedExpr * untypedExpr );
646 void postvisit( const ast::VariableExpr * variableExpr );
647 void postvisit( const ast::ConstantExpr * constantExpr );
648 void postvisit( const ast::SizeofExpr * sizeofExpr );
649 void postvisit( const ast::AlignofExpr * alignofExpr );
650 void postvisit( const ast::AddressExpr * addressExpr );
651 void postvisit( const ast::LabelAddressExpr * labelExpr );
652 void postvisit( const ast::CastExpr * castExpr );
653 void postvisit( const ast::VirtualCastExpr * castExpr );
654 void postvisit( const ast::KeywordCastExpr * castExpr );
655 void postvisit( const ast::UntypedMemberExpr * memberExpr );
656 void postvisit( const ast::MemberExpr * memberExpr );
657 void postvisit( const ast::NameExpr * nameExpr );
658 void postvisit( const ast::UntypedOffsetofExpr * offsetofExpr );
659 void postvisit( const ast::OffsetofExpr * offsetofExpr );
660 void postvisit( const ast::OffsetPackExpr * offsetPackExpr );
661 void postvisit( const ast::EnumPosExpr * enumPosExpr );
662 void postvisit( const ast::LogicalExpr * logicalExpr );
663 void postvisit( const ast::ConditionalExpr * conditionalExpr );
664 void postvisit( const ast::CommaExpr * commaExpr );
665 void postvisit( const ast::ImplicitCopyCtorExpr * ctorExpr );
666 void postvisit( const ast::ConstructorExpr * ctorExpr );
667 void postvisit( const ast::RangeExpr * rangeExpr );
668 void postvisit( const ast::UntypedTupleExpr * tupleExpr );
669 void postvisit( const ast::TupleExpr * tupleExpr );
670 void postvisit( const ast::TupleIndexExpr * tupleExpr );
671 void postvisit( const ast::TupleAssignExpr * tupleExpr );
672 void postvisit( const ast::UniqueExpr * unqExpr );
673 void postvisit( const ast::StmtExpr * stmtExpr );
674 void postvisit( const ast::UntypedInitExpr * initExpr );
675
676 void postvisit( const ast::InitExpr * ) {
677 assertf( false, "CandidateFinder should never see a resolved InitExpr." );
678 }
679
680 void postvisit( const ast::DeletedExpr * ) {
681 assertf( false, "CandidateFinder should never see a DeletedExpr." );
682 }
683
684 void postvisit( const ast::GenericExpr * ) {
685 assertf( false, "_Generic is not yet supported." );
686 }
687 };
688
689 /// Set up candidate assertions for inference
690 void Finder::inferParameters( CandidateRef & newCand, CandidateList & out ) {
691 // Set need bindings for any unbound assertions
692 ast::UniqueId crntResnSlot = 0; // matching ID for this expression's assertions
693 for ( auto & assn : newCand->need ) {
694 // skip already-matched assertions
695 if ( assn.second.resnSlot != 0 ) continue;
696 // assign slot for expression if needed
697 if ( crntResnSlot == 0 ) { crntResnSlot = ++globalResnSlot; }
698 // fix slot to assertion
699 assn.second.resnSlot = crntResnSlot;
700 }
701 // pair slot to expression
702 if ( crntResnSlot != 0 ) {
703 newCand->expr.get_and_mutate()->inferred.resnSlots().emplace_back( crntResnSlot );
704 }
705
706 // add to output list; assertion satisfaction will occur later
707 out.emplace_back( newCand );
708 }
709
710 /// Completes a function candidate with arguments located
711 void Finder::validateFunctionCandidate(
712 const CandidateRef & func, ArgPack & result, const std::vector< ArgPack > & results,
713 CandidateList & out
714 ) {
715 ast::ApplicationExpr * appExpr =
716 new ast::ApplicationExpr{ func->expr->location, func->expr };
717 // sum cost and accumulate arguments
718 std::deque< const ast::Expr * > args;
719 Cost cost = func->cost;
720 const ArgPack * pack = &result;
721 while ( pack->expr ) {
722 args.emplace_front( pack->expr );
723 cost += pack->cost;
724 pack = &results[pack->parent];
725 }
726 std::vector< ast::ptr< ast::Expr > > vargs( args.begin(), args.end() );
727 appExpr->args = std::move( vargs );
728 // build and validate new candidate
729 auto newCand =
730 std::make_shared<Candidate>( appExpr, result.env, result.open, result.need, cost );
731 PRINT(
732 std::cerr << "instantiate function success: " << appExpr << std::endl;
733 std::cerr << "need assertions:" << std::endl;
734 ast::print( std::cerr, result.need, 2 );
735 )
736 inferParameters( newCand, out );
737 }
738
739 /// Builds a list of candidates for a function, storing them in out
740 void Finder::makeFunctionCandidates(
741 const CodeLocation & location,
742 const CandidateRef & func, const ast::FunctionType * funcType,
743 const ExplodedArgs & args, CandidateList & out
744 ) {
745 ast::OpenVarSet funcOpen;
746 ast::AssertionSet funcNeed, funcHave;
747 ast::TypeEnvironment funcEnv{ func->env };
748 makeUnifiableVars( funcType, funcOpen, funcNeed );
749 // add all type variables as open variables now so that those not used in the
750 // parameter list are still considered open
751 funcEnv.add( funcType->forall );
752
753 if ( targetType && ! targetType->isVoid() && ! funcType->returns.empty() ) {
754 // attempt to narrow based on expected target type
755 const ast::Type * returnType = funcType->returns.front();
756 if ( selfFinder.strictMode ) {
757 if ( !unifyExact(
758 returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen, noWiden() ) // xxx - is no widening correct?
759 ) {
760 // unification failed, do not pursue this candidate
761 return;
762 }
763 } else {
764 if ( !unify(
765 returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen )
766 ) {
767 // unification failed, do not pursue this candidate
768 return;
769 }
770 }
771 }
772
773 // iteratively build matches, one parameter at a time
774 std::vector< ArgPack > results;
775 results.emplace_back( funcEnv, funcNeed, funcHave, funcOpen );
776 std::size_t genStart = 0;
777
778 // xxx - how to handle default arg after change to ftype representation?
779 if (const ast::VariableExpr * varExpr = func->expr.as<ast::VariableExpr>()) {
780 if (const ast::FunctionDecl * funcDecl = varExpr->var.as<ast::FunctionDecl>()) {
781 // function may have default args only if directly calling by name
782 // must use types on candidate however, due to RenameVars substitution
783 auto nParams = funcType->params.size();
784
785 for (size_t i=0; i<nParams; ++i) {
786 auto obj = funcDecl->params[i].strict_as<ast::ObjectDecl>();
787 if ( !instantiateArgument( location,
788 funcType->params[i], obj->init, args, results, genStart, symtab)) return;
789 }
790 goto endMatch;
791 }
792 }
793 for ( const auto & param : funcType->params ) {
794 // Try adding the arguments corresponding to the current parameter to the existing
795 // matches
796 // no default args for indirect calls
797 if ( !instantiateArgument( location,
798 param, nullptr, args, results, genStart, symtab ) ) return;
799 }
800
801 endMatch:
802 if ( funcType->isVarArgs ) {
803 // append any unused arguments to vararg pack
804 std::size_t genEnd;
805 do {
806 genEnd = results.size();
807
808 // iterate results
809 for ( std::size_t i = genStart; i < genEnd; ++i ) {
810 unsigned nextArg = results[i].nextArg;
811
812 // use remainder of exploded tuple if present
813 if ( results[i].hasExpl() ) {
814 const ExplodedArg & expl = results[i].getExpl( args );
815
816 unsigned nextExpl = results[i].nextExpl + 1;
817 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; }
818
819 results.emplace_back(
820 i, expl.exprs[ results[i].nextExpl ], copy( results[i].env ),
821 copy( results[i].need ), copy( results[i].have ),
822 copy( results[i].open ), nextArg, 0, Cost::zero, nextExpl,
823 results[i].explAlt );
824
825 continue;
826 }
827
828 // finish result when out of arguments
829 if ( nextArg >= args.size() ) {
830 validateFunctionCandidate( func, results[i], results, out );
831
832 continue;
833 }
834
835 // add each possible next argument
836 for ( std::size_t j = 0; j < args[nextArg].size(); ++j ) {
837 const ExplodedArg & expl = args[nextArg][j];
838
839 // fresh copies of parent parameters for this iteration
840 ast::TypeEnvironment env = results[i].env;
841 ast::OpenVarSet open = results[i].open;
842
843 env.addActual( expl.env, open );
844
845 // skip empty tuple arguments by (nearly) cloning parent into next gen
846 if ( expl.exprs.empty() ) {
847 results.emplace_back(
848 results[i], std::move( env ), copy( results[i].need ),
849 copy( results[i].have ), std::move( open ), nextArg + 1,
850 expl.cost );
851
852 continue;
853 }
854
855 // add new result
856 results.emplace_back(
857 i, expl.exprs.front(), std::move( env ), copy( results[i].need ),
858 copy( results[i].have ), std::move( open ), nextArg + 1, 0, expl.cost,
859 expl.exprs.size() == 1 ? 0 : 1, j );
860 }
861 }
862
863 genStart = genEnd;
864 } while( genEnd != results.size() );
865 } else {
866 // filter out the results that don't use all the arguments
867 for ( std::size_t i = genStart; i < results.size(); ++i ) {
868 ArgPack & result = results[i];
869 if ( ! result.hasExpl() && result.nextArg >= args.size() ) {
870 validateFunctionCandidate( func, result, results, out );
871 }
872 }
873 }
874 }
875
876 /// Adds implicit struct-conversions to the alternative list
877 void Finder::addAnonConversions( const CandidateRef & cand ) {
878 // adds anonymous member interpretations whenever an aggregate value type is seen.
879 // it's okay for the aggregate expression to have reference type -- cast it to the
880 // base type to treat the aggregate as the referenced value
881 ast::ptr< ast::Expr > aggrExpr( cand->expr );
882 ast::ptr< ast::Type > & aggrType = aggrExpr.get_and_mutate()->result;
883 cand->env.apply( aggrType );
884
885 if ( aggrType.as< ast::ReferenceType >() ) {
886 aggrExpr = new ast::CastExpr{ aggrExpr, aggrType->stripReferences() };
887 }
888
889 if ( auto structInst = aggrExpr->result.as< ast::StructInstType >() ) {
890 addAggMembers( structInst, aggrExpr, *cand, Cost::unsafe, "" );
891 } else if ( auto unionInst = aggrExpr->result.as< ast::UnionInstType >() ) {
892 addAggMembers( unionInst, aggrExpr, *cand, Cost::unsafe, "" );
893 }
894 }
895
896 /// Adds aggregate member interpretations
897 void Finder::addAggMembers(
898 const ast::BaseInstType * aggrInst, const ast::Expr * expr,
899 const Candidate & cand, const Cost & addedCost, const std::string & name
900 ) {
901 for ( const ast::Decl * decl : aggrInst->lookup( name ) ) {
902 auto dwt = strict_dynamic_cast< const ast::DeclWithType * >( decl );
903 CandidateRef newCand = std::make_shared<Candidate>(
904 cand, new ast::MemberExpr{ expr->location, dwt, expr }, addedCost );
905 // add anonymous member interpretations whenever an aggregate value type is seen
906 // as a member expression
907 addAnonConversions( newCand );
908 candidates.emplace_back( std::move( newCand ) );
909 }
910 }
911
912 /// Adds tuple member interpretations
913 void Finder::addTupleMembers(
914 const ast::TupleType * tupleType, const ast::Expr * expr, const Candidate & cand,
915 const Cost & addedCost, const ast::Expr * member
916 ) {
917 if ( auto constantExpr = dynamic_cast< const ast::ConstantExpr * >( member ) ) {
918 // get the value of the constant expression as an int, must be between 0 and the
919 // length of the tuple to have meaning
920 long long val = constantExpr->intValue();
921 if ( val >= 0 && (unsigned long long)val < tupleType->size() ) {
922 addCandidate(
923 cand, new ast::TupleIndexExpr{ expr->location, expr, (unsigned)val },
924 addedCost );
925 }
926 }
927 }
928
929 void Finder::postvisit( const ast::UntypedExpr * untypedExpr ) {
930 std::vector< CandidateFinder > argCandidates =
931 selfFinder.findSubExprs( untypedExpr->args );
932
933 // take care of possible tuple assignments
934 // if not tuple assignment, handled as normal function call
935 Tuples::handleTupleAssignment( selfFinder, untypedExpr, argCandidates );
936
937 CandidateFinder funcFinder( context, tenv );
938 if (auto nameExpr = untypedExpr->func.as<ast::NameExpr>()) {
939 auto kind = ast::SymbolTable::getSpecialFunctionKind(nameExpr->name);
940 if (kind != ast::SymbolTable::SpecialFunctionKind::NUMBER_OF_KINDS) {
941 assertf(!argCandidates.empty(), "special function call without argument");
942 for (auto & firstArgCand: argCandidates[0]) {
943 ast::ptr<ast::Type> argType = firstArgCand->expr->result;
944 firstArgCand->env.apply(argType);
945 // strip references
946 // xxx - is this correct?
947 while (argType.as<ast::ReferenceType>()) argType = argType.as<ast::ReferenceType>()->base;
948
949 // convert 1-tuple to plain type
950 if (auto tuple = argType.as<ast::TupleType>()) {
951 if (tuple->size() == 1) {
952 argType = tuple->types[0];
953 }
954 }
955
956 // if argType is an unbound type parameter, all special functions need to be searched.
957 if (isUnboundType(argType)) {
958 funcFinder.otypeKeys.clear();
959 break;
960 }
961
962 if (argType.as<ast::PointerType>()) funcFinder.otypeKeys.insert(Mangle::Encoding::pointer);
963 // else if (const ast::EnumInstType * enumInst = argType.as<ast::EnumInstType>()) {
964 // const ast::EnumDecl * enumDecl = enumInst->base; // Here
965 // if ( const ast::Type* enumType = enumDecl->base ) {
966 // // instance of enum (T) is a instance of type (T)
967 // funcFinder.otypeKeys.insert(Mangle::mangle(enumType, Mangle::NoGenericParams | Mangle::Type));
968 // } else {
969 // // instance of an untyped enum is techically int
970 // funcFinder.otypeKeys.insert(Mangle::mangle(enumDecl, Mangle::NoGenericParams | Mangle::Type));
971 // }
972 // }
973 else funcFinder.otypeKeys.insert(Mangle::mangle(argType, Mangle::NoGenericParams | Mangle::Type));
974 }
975 }
976 }
977 // if candidates are already produced, do not fail
978 // xxx - is it possible that handleTupleAssignment and main finder both produce candidates?
979 // this means there exists ctor/assign functions with a tuple as first parameter.
980 ResolveMode mode = {
981 true, // adjust
982 !untypedExpr->func.as<ast::NameExpr>(), // prune if not calling by name
983 selfFinder.candidates.empty() // failfast if other options are not found
984 };
985 funcFinder.find( untypedExpr->func, mode );
986 // short-circuit if no candidates
987 // if ( funcFinder.candidates.empty() ) return;
988
989 reason.code = NoMatch;
990
991 // find function operators
992 ast::ptr< ast::Expr > opExpr = new ast::NameExpr{ untypedExpr->location, "?()" }; // ??? why not ?{}
993 CandidateFinder opFinder( context, tenv );
994 // okay if there aren't any function operations
995 opFinder.find( opExpr, ResolveMode::withoutFailFast() );
996 PRINT(
997 std::cerr << "known function ops:" << std::endl;
998 print( std::cerr, opFinder.candidates, 1 );
999 )
1000
1001 // pre-explode arguments
1002 ExplodedArgs argExpansions;
1003 for ( const CandidateFinder & args : argCandidates ) {
1004 argExpansions.emplace_back();
1005 auto & argE = argExpansions.back();
1006 for ( const CandidateRef & arg : args ) { argE.emplace_back( *arg, symtab ); }
1007 }
1008
1009 // Find function matches
1010 CandidateList found;
1011 SemanticErrorException errors;
1012 for ( CandidateRef & func : funcFinder ) {
1013 try {
1014 PRINT(
1015 std::cerr << "working on alternative:" << std::endl;
1016 print( std::cerr, *func, 2 );
1017 )
1018
1019 // check if the type is a pointer to function
1020 const ast::Type * funcResult = func->expr->result->stripReferences();
1021 if ( auto pointer = dynamic_cast< const ast::PointerType * >( funcResult ) ) {
1022 if ( auto function = pointer->base.as< ast::FunctionType >() ) {
1023 // if (!selfFinder.allowVoid && function->returns.empty()) continue;
1024 CandidateRef newFunc{ new Candidate{ *func } };
1025 newFunc->expr =
1026 referenceToRvalueConversion( newFunc->expr, newFunc->cost );
1027 makeFunctionCandidates( untypedExpr->location,
1028 newFunc, function, argExpansions, found );
1029 }
1030 } else if (
1031 auto inst = dynamic_cast< const ast::TypeInstType * >( funcResult )
1032 ) {
1033 if ( const ast::EqvClass * clz = func->env.lookup( *inst ) ) {
1034 if ( auto function = clz->bound.as< ast::FunctionType >() ) {
1035 CandidateRef newFunc( new Candidate( *func ) );
1036 newFunc->expr =
1037 referenceToRvalueConversion( newFunc->expr, newFunc->cost );
1038 makeFunctionCandidates( untypedExpr->location,
1039 newFunc, function, argExpansions, found );
1040 }
1041 }
1042 }
1043 } catch ( SemanticErrorException & e ) { errors.append( e ); }
1044 }
1045
1046 // Find matches on function operators `?()`
1047 if ( ! opFinder.candidates.empty() ) {
1048 // add exploded function alternatives to front of argument list
1049 std::vector< ExplodedArg > funcE;
1050 funcE.reserve( funcFinder.candidates.size() );
1051 for ( const CandidateRef & func : funcFinder ) {
1052 funcE.emplace_back( *func, symtab );
1053 }
1054 argExpansions.emplace_front( std::move( funcE ) );
1055
1056 for ( const CandidateRef & op : opFinder ) {
1057 try {
1058 // check if type is pointer-to-function
1059 const ast::Type * opResult = op->expr->result->stripReferences();
1060 if ( auto pointer = dynamic_cast< const ast::PointerType * >( opResult ) ) {
1061 if ( auto function = pointer->base.as< ast::FunctionType >() ) {
1062 CandidateRef newOp{ new Candidate{ *op} };
1063 newOp->expr =
1064 referenceToRvalueConversion( newOp->expr, newOp->cost );
1065 makeFunctionCandidates( untypedExpr->location,
1066 newOp, function, argExpansions, found );
1067 }
1068 }
1069 } catch ( SemanticErrorException & e ) { errors.append( e ); }
1070 }
1071 }
1072
1073 // Implement SFINAE; resolution errors are only errors if there aren't any non-error
1074 // candidates
1075 if ( found.empty() && ! errors.isEmpty() ) { throw errors; }
1076
1077 // only keep the best matching intrinsic result to match C semantics (no unexpected narrowing/widening)
1078 // TODO: keep one for each set of argument candidates?
1079 Cost intrinsicCost = Cost::infinity;
1080 CandidateList intrinsicResult;
1081
1082 // Compute conversion costs
1083 for ( CandidateRef & withFunc : found ) {
1084 Cost cvtCost = computeApplicationConversionCost( withFunc, symtab );
1085
1086 PRINT(
1087 auto appExpr = withFunc->expr.strict_as< ast::ApplicationExpr >();
1088 auto pointer = appExpr->func->result.strict_as< ast::PointerType >();
1089 auto function = pointer->base.strict_as< ast::FunctionType >();
1090
1091 std::cerr << "Case +++++++++++++ " << appExpr->func << std::endl;
1092 std::cerr << "parameters are:" << std::endl;
1093 ast::printAll( std::cerr, function->params, 2 );
1094 std::cerr << "arguments are:" << std::endl;
1095 ast::printAll( std::cerr, appExpr->args, 2 );
1096 std::cerr << "bindings are:" << std::endl;
1097 ast::print( std::cerr, withFunc->env, 2 );
1098 std::cerr << "cost is: " << withFunc->cost << std::endl;
1099 std::cerr << "cost of conversion is:" << cvtCost << std::endl;
1100 )
1101
1102 if ( cvtCost != Cost::infinity ) {
1103 withFunc->cvtCost = cvtCost;
1104 withFunc->cost += cvtCost;
1105 auto func = withFunc->expr.strict_as<ast::ApplicationExpr>()->func.as<ast::VariableExpr>();
1106 if (func && func->var->linkage == ast::Linkage::Intrinsic) {
1107 if (withFunc->cost < intrinsicCost) {
1108 intrinsicResult.clear();
1109 intrinsicCost = withFunc->cost;
1110 }
1111 if (withFunc->cost == intrinsicCost) {
1112 intrinsicResult.emplace_back(std::move(withFunc));
1113 }
1114 } else {
1115 candidates.emplace_back( std::move( withFunc ) );
1116 }
1117 }
1118 }
1119 spliceBegin( candidates, intrinsicResult );
1120 found = std::move( candidates );
1121
1122 // use a new list so that candidates are not examined by addAnonConversions twice
1123 // CandidateList winners = findMinCost( found );
1124 // promoteCvtCost( winners );
1125
1126 // function may return a struct/union value, in which case we need to add candidates
1127 // for implicit conversions to each of the anonymous members, which must happen after
1128 // `findMinCost`, since anon conversions are never the cheapest
1129 for ( const CandidateRef & c : found ) {
1130 addAnonConversions( c );
1131 }
1132 // would this be too slow when we don't check cost anymore?
1133 spliceBegin( candidates, found );
1134
1135 if ( candidates.empty() && targetType && ! targetType->isVoid() && !selfFinder.strictMode ) {
1136 // If resolution is unsuccessful with a target type, try again without, since it
1137 // will sometimes succeed when it wouldn't with a target type binding.
1138 // For example:
1139 // forall( otype T ) T & ?[]( T *, ptrdiff_t );
1140 // const char * x = "hello world";
1141 // unsigned char ch = x[0];
1142 // Fails with simple return type binding (xxx -- check this!) as follows:
1143 // * T is bound to unsigned char
1144 // * (x: const char *) is unified with unsigned char *, which fails
1145 // xxx -- fix this better
1146 targetType = nullptr;
1147 postvisit( untypedExpr );
1148 }
1149 }
1150
1151 void Finder::postvisit( const ast::AddressExpr * addressExpr ) {
1152 CandidateFinder finder( context, tenv );
1153 finder.find( addressExpr->arg );
1154
1155 if ( finder.candidates.empty() ) return;
1156
1157 reason.code = NoMatch;
1158
1159 for ( CandidateRef & r : finder.candidates ) {
1160 if ( !isLvalue( r->expr ) ) continue;
1161 addCandidate( *r, new ast::AddressExpr{ addressExpr->location, r->expr } );
1162 }
1163 }
1164
1165 void Finder::postvisit( const ast::LabelAddressExpr * labelExpr ) {
1166 addCandidate( labelExpr, tenv );
1167 }
1168
1169 void Finder::postvisit( const ast::CastExpr * castExpr ) {
1170 ast::ptr< ast::Type > toType = castExpr->result;
1171 assert( toType );
1172 toType = resolveTypeof( toType, context );
1173 toType = adjustExprType( toType, tenv, symtab );
1174
1175 CandidateFinder finder( context, tenv, toType );
1176 if (toType->isVoid()) {
1177 finder.allowVoid = true;
1178 }
1179 if ( castExpr->kind == ast::CastExpr::Return ) {
1180 finder.strictMode = true;
1181 finder.find( castExpr->arg, ResolveMode::withAdjustment() );
1182
1183 // return casts are eliminated (merely selecting an overload, no actual operation)
1184 candidates = std::move(finder.candidates);
1185 }
1186 finder.find( castExpr->arg, ResolveMode::withAdjustment() );
1187
1188 if ( !finder.candidates.empty() ) reason.code = NoMatch;
1189
1190 CandidateList matches;
1191 Cost minExprCost = Cost::infinity;
1192 Cost minCastCost = Cost::infinity;
1193 for ( CandidateRef & cand : finder.candidates ) {
1194 ast::AssertionSet need( cand->need.begin(), cand->need.end() ), have;
1195 ast::OpenVarSet open( cand->open );
1196
1197 cand->env.extractOpenVars( open );
1198
1199 // It is possible that a cast can throw away some values in a multiply-valued
1200 // expression, e.g. cast-to-void, one value to zero. Figure out the prefix of the
1201 // subexpression results that are cast directly. The candidate is invalid if it
1202 // has fewer results than there are types to cast to.
1203 int discardedValues = cand->expr->result->size() - toType->size();
1204 if ( discardedValues < 0 ) continue;
1205
1206 // unification run for side-effects
1207 unify( toType, cand->expr->result, cand->env, need, have, open );
1208 Cost thisCost =
1209 (castExpr->isGenerated == ast::GeneratedFlag::GeneratedCast)
1210 ? conversionCost( cand->expr->result, toType, cand->expr->get_lvalue(), symtab, cand->env )
1211 : castCost( cand->expr->result, toType, cand->expr->get_lvalue(), symtab, cand->env );
1212
1213 PRINT(
1214 std::cerr << "working on cast with result: " << toType << std::endl;
1215 std::cerr << "and expr type: " << cand->expr->result << std::endl;
1216 std::cerr << "env: " << cand->env << std::endl;
1217 )
1218 if ( thisCost != Cost::infinity ) {
1219 PRINT(
1220 std::cerr << "has finite cost." << std::endl;
1221 )
1222 // count one safe conversion for each value that is thrown away
1223 thisCost.incSafe( discardedValues );
1224 // select first on argument cost, then conversion cost
1225 if ( cand->cost < minExprCost || ( cand->cost == minExprCost && thisCost < minCastCost ) ) {
1226 minExprCost = cand->cost;
1227 minCastCost = thisCost;
1228 matches.clear();
1229
1230
1231 }
1232 // ambiguous case, still output candidates to print in error message
1233 if ( cand->cost == minExprCost && thisCost == minCastCost ) {
1234 CandidateRef newCand = std::make_shared<Candidate>(
1235 restructureCast( cand->expr, toType, castExpr->isGenerated ),
1236 copy( cand->env ), std::move( open ), std::move( need ), cand->cost + thisCost);
1237 // currently assertions are always resolved immediately so this should have no effect.
1238 // if this somehow changes in the future (e.g. delayed by indeterminate return type)
1239 // we may need to revisit the logic.
1240 inferParameters( newCand, matches );
1241 }
1242 // else skip, better alternatives found
1243
1244 }
1245 }
1246 candidates = std::move(matches);
1247
1248 //CandidateList minArgCost = findMinCost( matches );
1249 //promoteCvtCost( minArgCost );
1250 //candidates = findMinCost( minArgCost );
1251 }
1252
1253 void Finder::postvisit( const ast::VirtualCastExpr * castExpr ) {
1254 assertf( castExpr->result, "Implicit virtual cast targets not yet supported." );
1255 CandidateFinder finder( context, tenv );
1256 // don't prune here, all alternatives guaranteed to have same type
1257 finder.find( castExpr->arg, ResolveMode::withoutPrune() );
1258 for ( CandidateRef & r : finder.candidates ) {
1259 addCandidate(
1260 *r,
1261 new ast::VirtualCastExpr{ castExpr->location, r->expr, castExpr->result } );
1262 }
1263 }
1264
1265 void Finder::postvisit( const ast::KeywordCastExpr * castExpr ) {
1266 const auto & loc = castExpr->location;
1267 assertf( castExpr->result, "Cast target should have been set in Validate." );
1268 auto ref = castExpr->result.strict_as<ast::ReferenceType>();
1269 auto inst = ref->base.strict_as<ast::StructInstType>();
1270 auto target = inst->base.get();
1271
1272 CandidateFinder finder( context, tenv );
1273
1274 auto pick_alternatives = [target, this](CandidateList & found, bool expect_ref) {
1275 for (auto & cand : found) {
1276 const ast::Type * expr = cand->expr->result.get();
1277 if (expect_ref) {
1278 auto res = dynamic_cast<const ast::ReferenceType*>(expr);
1279 if (!res) { continue; }
1280 expr = res->base.get();
1281 }
1282
1283 if (auto insttype = dynamic_cast<const ast::TypeInstType*>(expr)) {
1284 auto td = cand->env.lookup(*insttype);
1285 if (!td) { continue; }
1286 expr = td->bound.get();
1287 }
1288
1289 if (auto base = dynamic_cast<const ast::StructInstType*>(expr)) {
1290 if (base->base == target) {
1291 candidates.push_back( std::move(cand) );
1292 reason.code = NoReason;
1293 }
1294 }
1295 }
1296 };
1297
1298 try {
1299 // Attempt 1 : turn (thread&)X into (thread$&)X.__thrd
1300 // Clone is purely for memory management
1301 std::unique_ptr<const ast::Expr> tech1 { new ast::UntypedMemberExpr(loc, new ast::NameExpr(loc, castExpr->concrete_target.field), castExpr->arg) };
1302
1303 // don't prune here, since it's guaranteed all alternatives will have the same type
1304 finder.find( tech1.get(), ResolveMode::withoutPrune() );
1305 pick_alternatives(finder.candidates, false);
1306
1307 return;
1308 } catch(SemanticErrorException & ) {}
1309
1310 // Fallback : turn (thread&)X into (thread$&)get_thread(X)
1311 std::unique_ptr<const ast::Expr> fallback { ast::UntypedExpr::createDeref(loc, new ast::UntypedExpr(loc, new ast::NameExpr(loc, castExpr->concrete_target.getter), { castExpr->arg })) };
1312 // don't prune here, since it's guaranteed all alternatives will have the same type
1313 finder.find( fallback.get(), ResolveMode::withoutPrune() );
1314
1315 pick_alternatives(finder.candidates, true);
1316
1317 // Whatever happens here, we have no more fallbacks
1318 }
1319
1320 void Finder::postvisit( const ast::UntypedMemberExpr * memberExpr ) {
1321 CandidateFinder aggFinder( context, tenv );
1322 aggFinder.find( memberExpr->aggregate, ResolveMode::withAdjustment() );
1323 for ( CandidateRef & agg : aggFinder.candidates ) {
1324 // it's okay for the aggregate expression to have reference type -- cast it to the
1325 // base type to treat the aggregate as the referenced value
1326 Cost addedCost = Cost::zero;
1327 agg->expr = referenceToRvalueConversion( agg->expr, addedCost );
1328
1329 // find member of the given type
1330 if ( auto structInst = agg->expr->result.as< ast::StructInstType >() ) {
1331 addAggMembers(
1332 structInst, agg->expr, *agg, addedCost, getMemberName( memberExpr ) );
1333 } else if ( auto unionInst = agg->expr->result.as< ast::UnionInstType >() ) {
1334 addAggMembers(
1335 unionInst, agg->expr, *agg, addedCost, getMemberName( memberExpr ) );
1336 } else if ( auto tupleType = agg->expr->result.as< ast::TupleType >() ) {
1337 addTupleMembers( tupleType, agg->expr, *agg, addedCost, memberExpr->member );
1338 }
1339 }
1340 }
1341
1342 void Finder::postvisit( const ast::MemberExpr * memberExpr ) {
1343 addCandidate( memberExpr, tenv );
1344 }
1345
1346 void Finder::postvisit( const ast::NameExpr * nameExpr ) {
1347 std::vector< ast::SymbolTable::IdData > declList;
1348 if (!selfFinder.otypeKeys.empty()) {
1349 auto kind = ast::SymbolTable::getSpecialFunctionKind(nameExpr->name);
1350 assertf(kind != ast::SymbolTable::SpecialFunctionKind::NUMBER_OF_KINDS, "special lookup with non-special target: %s", nameExpr->name.c_str());
1351
1352 for (auto & otypeKey: selfFinder.otypeKeys) {
1353 auto result = symtab.specialLookupId(kind, otypeKey);
1354 declList.insert(declList.end(), std::make_move_iterator(result.begin()), std::make_move_iterator(result.end()));
1355 }
1356 } else {
1357 declList = symtab.lookupId( nameExpr->name );
1358 }
1359 PRINT( std::cerr << "nameExpr is " << nameExpr->name << std::endl; )
1360
1361 if ( declList.empty() ) return;
1362
1363 reason.code = NoMatch;
1364
1365 for ( auto & data : declList ) {
1366 Cost cost = Cost::zero;
1367 ast::Expr * newExpr = data.combine( nameExpr->location, cost );
1368
1369 CandidateRef newCand = std::make_shared<Candidate>(
1370 newExpr, copy( tenv ), ast::OpenVarSet{}, ast::AssertionSet{}, Cost::zero,
1371 cost );
1372
1373 if (newCand->expr->env) {
1374 newCand->env.add(*newCand->expr->env);
1375 auto mutExpr = newCand->expr.get_and_mutate();
1376 mutExpr->env = nullptr;
1377 newCand->expr = mutExpr;
1378 }
1379
1380 PRINT(
1381 std::cerr << "decl is ";
1382 ast::print( std::cerr, data.id );
1383 std::cerr << std::endl;
1384 std::cerr << "newExpr is ";
1385 ast::print( std::cerr, newExpr );
1386 std::cerr << std::endl;
1387 )
1388 newCand->expr = ast::mutate_field(
1389 newCand->expr.get(), &ast::Expr::result,
1390 renameTyVars( newCand->expr->result ) );
1391 // add anonymous member interpretations whenever an aggregate value type is seen
1392 // as a name expression
1393 addAnonConversions( newCand );
1394 candidates.emplace_back( std::move( newCand ) );
1395 }
1396 }
1397
1398 void Finder::postvisit( const ast::VariableExpr * variableExpr ) {
1399 // not sufficient to just pass `variableExpr` here, type might have changed since
1400 // creation
1401 addCandidate(
1402 new ast::VariableExpr{ variableExpr->location, variableExpr->var }, tenv );
1403 }
1404
1405 void Finder::postvisit( const ast::ConstantExpr * constantExpr ) {
1406 addCandidate( constantExpr, tenv );
1407 }
1408
1409 void Finder::postvisit( const ast::SizeofExpr * sizeofExpr ) {
1410 if ( sizeofExpr->type ) {
1411 addCandidate(
1412 new ast::SizeofExpr{
1413 sizeofExpr->location, resolveTypeof( sizeofExpr->type, context ) },
1414 tenv );
1415 } else {
1416 // find all candidates for the argument to sizeof
1417 CandidateFinder finder( context, tenv );
1418 finder.find( sizeofExpr->expr );
1419 // find the lowest-cost candidate, otherwise ambiguous
1420 CandidateList winners = findMinCost( finder.candidates );
1421 if ( winners.size() != 1 ) {
1422 SemanticError(
1423 sizeofExpr->expr.get(), "Ambiguous expression in sizeof operand: " );
1424 }
1425 // return the lowest-cost candidate
1426 CandidateRef & choice = winners.front();
1427 choice->expr = referenceToRvalueConversion( choice->expr, choice->cost );
1428 choice->cost = Cost::zero;
1429 addCandidate( *choice, new ast::SizeofExpr{ sizeofExpr->location, choice->expr } );
1430 }
1431 }
1432
1433 void Finder::postvisit( const ast::AlignofExpr * alignofExpr ) {
1434 if ( alignofExpr->type ) {
1435 addCandidate(
1436 new ast::AlignofExpr{
1437 alignofExpr->location, resolveTypeof( alignofExpr->type, context ) },
1438 tenv );
1439 } else {
1440 // find all candidates for the argument to alignof
1441 CandidateFinder finder( context, tenv );
1442 finder.find( alignofExpr->expr );
1443 // find the lowest-cost candidate, otherwise ambiguous
1444 CandidateList winners = findMinCost( finder.candidates );
1445 if ( winners.size() != 1 ) {
1446 SemanticError(
1447 alignofExpr->expr.get(), "Ambiguous expression in alignof operand: " );
1448 }
1449 // return the lowest-cost candidate
1450 CandidateRef & choice = winners.front();
1451 choice->expr = referenceToRvalueConversion( choice->expr, choice->cost );
1452 choice->cost = Cost::zero;
1453 addCandidate(
1454 *choice, new ast::AlignofExpr{ alignofExpr->location, choice->expr } );
1455 }
1456 }
1457
1458 void Finder::postvisit( const ast::UntypedOffsetofExpr * offsetofExpr ) {
1459 const ast::BaseInstType * aggInst;
1460 if (( aggInst = offsetofExpr->type.as< ast::StructInstType >() )) ;
1461 else if (( aggInst = offsetofExpr->type.as< ast::UnionInstType >() )) ;
1462 else return;
1463
1464 for ( const ast::Decl * member : aggInst->lookup( offsetofExpr->member ) ) {
1465 auto dwt = strict_dynamic_cast< const ast::DeclWithType * >( member );
1466 addCandidate(
1467 new ast::OffsetofExpr{ offsetofExpr->location, aggInst, dwt }, tenv );
1468 }
1469 }
1470
1471 void Finder::postvisit( const ast::OffsetofExpr * offsetofExpr ) {
1472 addCandidate( offsetofExpr, tenv );
1473 }
1474
1475 void Finder::postvisit( const ast::OffsetPackExpr * offsetPackExpr ) {
1476 addCandidate( offsetPackExpr, tenv );
1477 }
1478
1479 void Finder::postvisit( const ast::EnumPosExpr * enumPosExpr ) {
1480 CandidateFinder finder( context, tenv );
1481 finder.find( enumPosExpr->expr );
1482 CandidateList winners = findMinCost( finder.candidates );
1483 if ( winners.size() != 1 ) SemanticError( enumPosExpr->expr.get(), "Ambiguous expression in position. ");
1484 CandidateRef & choice = winners.front();
1485 auto refExpr = referenceToRvalueConversion( choice->expr, choice->cost );
1486 auto refResult = (refExpr->result).as<ast::EnumInstType>();
1487 if ( !refResult ) {
1488 SemanticError( refExpr, "Position for Non enum type is not supported" );
1489 }
1490 // determineEnumPosConstant( enumPosExpr, refResult );
1491
1492 const ast::NameExpr * const nameExpr = enumPosExpr->expr.strict_as<ast::NameExpr>();
1493 const ast::EnumDecl * base = refResult->base;
1494 if ( !base ) {
1495 SemanticError( enumPosExpr, "Cannot be reference to a defined enumeration type" );
1496 }
1497 auto it = std::find_if( std::begin( base->members ), std::end( base->members ),
1498 [nameExpr]( ast::ptr<ast::Decl> decl ) { return decl->name == nameExpr->name; } );
1499 unsigned position = it - base->members.begin();
1500 addCandidate( ast::ConstantExpr::from_int( enumPosExpr->location, position ), tenv );
1501 }
1502
1503 void Finder::postvisit( const ast::LogicalExpr * logicalExpr ) {
1504 CandidateFinder finder1( context, tenv );
1505 ast::ptr<ast::Expr> arg1 = notZeroExpr( logicalExpr->arg1 );
1506 finder1.find( arg1, ResolveMode::withAdjustment() );
1507 if ( finder1.candidates.empty() ) return;
1508
1509 CandidateFinder finder2( context, tenv );
1510 ast::ptr<ast::Expr> arg2 = notZeroExpr( logicalExpr->arg2 );
1511 finder2.find( arg2, ResolveMode::withAdjustment() );
1512 if ( finder2.candidates.empty() ) return;
1513
1514 reason.code = NoMatch;
1515
1516 for ( const CandidateRef & r1 : finder1.candidates ) {
1517 for ( const CandidateRef & r2 : finder2.candidates ) {
1518 ast::TypeEnvironment env{ r1->env };
1519 env.simpleCombine( r2->env );
1520 ast::OpenVarSet open{ r1->open };
1521 mergeOpenVars( open, r2->open );
1522 ast::AssertionSet need;
1523 mergeAssertionSet( need, r1->need );
1524 mergeAssertionSet( need, r2->need );
1525
1526 addCandidate(
1527 new ast::LogicalExpr{
1528 logicalExpr->location, r1->expr, r2->expr, logicalExpr->isAnd },
1529 std::move( env ), std::move( open ), std::move( need ), r1->cost + r2->cost );
1530 }
1531 }
1532 }
1533
1534 void Finder::postvisit( const ast::ConditionalExpr * conditionalExpr ) {
1535 // candidates for condition
1536 CandidateFinder finder1( context, tenv );
1537 ast::ptr<ast::Expr> arg1 = notZeroExpr( conditionalExpr->arg1 );
1538 finder1.find( arg1, ResolveMode::withAdjustment() );
1539 if ( finder1.candidates.empty() ) return;
1540
1541 // candidates for true result
1542 CandidateFinder finder2( context, tenv );
1543 finder2.allowVoid = true;
1544 finder2.find( conditionalExpr->arg2, ResolveMode::withAdjustment() );
1545 if ( finder2.candidates.empty() ) return;
1546
1547 // candidates for false result
1548 CandidateFinder finder3( context, tenv );
1549 finder3.allowVoid = true;
1550 finder3.find( conditionalExpr->arg3, ResolveMode::withAdjustment() );
1551 if ( finder3.candidates.empty() ) return;
1552
1553 reason.code = NoMatch;
1554
1555 for ( const CandidateRef & r1 : finder1.candidates ) {
1556 for ( const CandidateRef & r2 : finder2.candidates ) {
1557 for ( const CandidateRef & r3 : finder3.candidates ) {
1558 ast::TypeEnvironment env{ r1->env };
1559 env.simpleCombine( r2->env );
1560 env.simpleCombine( r3->env );
1561 ast::OpenVarSet open{ r1->open };
1562 mergeOpenVars( open, r2->open );
1563 mergeOpenVars( open, r3->open );
1564 ast::AssertionSet need;
1565 mergeAssertionSet( need, r1->need );
1566 mergeAssertionSet( need, r2->need );
1567 mergeAssertionSet( need, r3->need );
1568 ast::AssertionSet have;
1569
1570 // unify true and false results, then infer parameters to produce new
1571 // candidates
1572 ast::ptr< ast::Type > common;
1573 if (
1574 unify(
1575 r2->expr->result, r3->expr->result, env, need, have, open,
1576 common )
1577 ) {
1578 // generate typed expression
1579 ast::ConditionalExpr * newExpr = new ast::ConditionalExpr{
1580 conditionalExpr->location, r1->expr, r2->expr, r3->expr };
1581 newExpr->result = common ? common : r2->expr->result;
1582 // convert both options to result type
1583 Cost cost = r1->cost + r2->cost + r3->cost;
1584 newExpr->arg2 = computeExpressionConversionCost(
1585 newExpr->arg2, newExpr->result, symtab, env, cost );
1586 newExpr->arg3 = computeExpressionConversionCost(
1587 newExpr->arg3, newExpr->result, symtab, env, cost );
1588 // output candidate
1589 CandidateRef newCand = std::make_shared<Candidate>(
1590 newExpr, std::move( env ), std::move( open ), std::move( need ), cost );
1591 inferParameters( newCand, candidates );
1592 }
1593 }
1594 }
1595 }
1596 }
1597
1598 void Finder::postvisit( const ast::CommaExpr * commaExpr ) {
1599 ast::TypeEnvironment env{ tenv };
1600 ast::ptr< ast::Expr > arg1 = resolveInVoidContext( commaExpr->arg1, context, env );
1601
1602 CandidateFinder finder2( context, env );
1603 finder2.find( commaExpr->arg2, ResolveMode::withAdjustment() );
1604
1605 for ( const CandidateRef & r2 : finder2.candidates ) {
1606 addCandidate( *r2, new ast::CommaExpr{ commaExpr->location, arg1, r2->expr } );
1607 }
1608 }
1609
1610 void Finder::postvisit( const ast::ImplicitCopyCtorExpr * ctorExpr ) {
1611 addCandidate( ctorExpr, tenv );
1612 }
1613
1614 void Finder::postvisit( const ast::ConstructorExpr * ctorExpr ) {
1615 CandidateFinder finder( context, tenv );
1616 finder.allowVoid = true;
1617 finder.find( ctorExpr->callExpr, ResolveMode::withoutPrune() );
1618 for ( CandidateRef & r : finder.candidates ) {
1619 addCandidate( *r, new ast::ConstructorExpr{ ctorExpr->location, r->expr } );
1620 }
1621 }
1622
1623 void Finder::postvisit( const ast::RangeExpr * rangeExpr ) {
1624 // resolve low and high, accept candidates where low and high types unify
1625 CandidateFinder finder1( context, tenv );
1626 finder1.find( rangeExpr->low, ResolveMode::withAdjustment() );
1627 if ( finder1.candidates.empty() ) return;
1628
1629 CandidateFinder finder2( context, tenv );
1630 finder2.find( rangeExpr->high, ResolveMode::withAdjustment() );
1631 if ( finder2.candidates.empty() ) return;
1632
1633 reason.code = NoMatch;
1634
1635 for ( const CandidateRef & r1 : finder1.candidates ) {
1636 for ( const CandidateRef & r2 : finder2.candidates ) {
1637 ast::TypeEnvironment env{ r1->env };
1638 env.simpleCombine( r2->env );
1639 ast::OpenVarSet open{ r1->open };
1640 mergeOpenVars( open, r2->open );
1641 ast::AssertionSet need;
1642 mergeAssertionSet( need, r1->need );
1643 mergeAssertionSet( need, r2->need );
1644 ast::AssertionSet have;
1645
1646 ast::ptr< ast::Type > common;
1647 if (
1648 unify(
1649 r1->expr->result, r2->expr->result, env, need, have, open,
1650 common )
1651 ) {
1652 // generate new expression
1653 ast::RangeExpr * newExpr =
1654 new ast::RangeExpr{ rangeExpr->location, r1->expr, r2->expr };
1655 newExpr->result = common ? common : r1->expr->result;
1656 // add candidate
1657 CandidateRef newCand = std::make_shared<Candidate>(
1658 newExpr, std::move( env ), std::move( open ), std::move( need ),
1659 r1->cost + r2->cost );
1660 inferParameters( newCand, candidates );
1661 }
1662 }
1663 }
1664 }
1665
1666 void Finder::postvisit( const ast::UntypedTupleExpr * tupleExpr ) {
1667 std::vector< CandidateFinder > subCandidates =
1668 selfFinder.findSubExprs( tupleExpr->exprs );
1669 std::vector< CandidateList > possibilities;
1670 combos( subCandidates.begin(), subCandidates.end(), back_inserter( possibilities ) );
1671
1672 for ( const CandidateList & subs : possibilities ) {
1673 std::vector< ast::ptr< ast::Expr > > exprs;
1674 exprs.reserve( subs.size() );
1675 for ( const CandidateRef & sub : subs ) { exprs.emplace_back( sub->expr ); }
1676
1677 ast::TypeEnvironment env;
1678 ast::OpenVarSet open;
1679 ast::AssertionSet need;
1680 for ( const CandidateRef & sub : subs ) {
1681 env.simpleCombine( sub->env );
1682 mergeOpenVars( open, sub->open );
1683 mergeAssertionSet( need, sub->need );
1684 }
1685
1686 addCandidate(
1687 new ast::TupleExpr{ tupleExpr->location, std::move( exprs ) },
1688 std::move( env ), std::move( open ), std::move( need ), sumCost( subs ) );
1689 }
1690 }
1691
1692 void Finder::postvisit( const ast::TupleExpr * tupleExpr ) {
1693 addCandidate( tupleExpr, tenv );
1694 }
1695
1696 void Finder::postvisit( const ast::TupleIndexExpr * tupleExpr ) {
1697 addCandidate( tupleExpr, tenv );
1698 }
1699
1700 void Finder::postvisit( const ast::TupleAssignExpr * tupleExpr ) {
1701 addCandidate( tupleExpr, tenv );
1702 }
1703
1704 void Finder::postvisit( const ast::UniqueExpr * unqExpr ) {
1705 CandidateFinder finder( context, tenv );
1706 finder.find( unqExpr->expr, ResolveMode::withAdjustment() );
1707 for ( CandidateRef & r : finder.candidates ) {
1708 // ensure that the the id is passed on so that the expressions are "linked"
1709 addCandidate( *r, new ast::UniqueExpr{ unqExpr->location, r->expr, unqExpr->id } );
1710 }
1711 }
1712
1713 void Finder::postvisit( const ast::StmtExpr * stmtExpr ) {
1714 addCandidate( resolveStmtExpr( stmtExpr, context ), tenv );
1715 }
1716
1717 void Finder::postvisit( const ast::UntypedInitExpr * initExpr ) {
1718 // handle each option like a cast
1719 CandidateList matches;
1720 PRINT(
1721 std::cerr << "untyped init expr: " << initExpr << std::endl;
1722 )
1723 // O(n^2) checks of d-types with e-types
1724 for ( const ast::InitAlternative & initAlt : initExpr->initAlts ) {
1725 // calculate target type
1726 const ast::Type * toType = resolveTypeof( initAlt.type, context );
1727 toType = adjustExprType( toType, tenv, symtab );
1728 // The call to find must occur inside this loop, otherwise polymorphic return
1729 // types are not bound to the initialization type, since return type variables are
1730 // only open for the duration of resolving the UntypedExpr.
1731 CandidateFinder finder( context, tenv, toType );
1732 finder.find( initExpr->expr, ResolveMode::withAdjustment() );
1733
1734 Cost minExprCost = Cost::infinity;
1735 Cost minCastCost = Cost::infinity;
1736 for ( CandidateRef & cand : finder.candidates ) {
1737 if (reason.code == NotFound) reason.code = NoMatch;
1738
1739 ast::TypeEnvironment env{ cand->env };
1740 ast::AssertionSet need( cand->need.begin(), cand->need.end() ), have;
1741 ast::OpenVarSet open{ cand->open };
1742
1743 PRINT(
1744 std::cerr << " @ " << toType << " " << initAlt.designation << std::endl;
1745 )
1746
1747 // It is possible that a cast can throw away some values in a multiply-valued
1748 // expression, e.g. cast-to-void, one value to zero. Figure out the prefix of
1749 // the subexpression results that are cast directly. The candidate is invalid
1750 // if it has fewer results than there are types to cast to.
1751 int discardedValues = cand->expr->result->size() - toType->size();
1752 if ( discardedValues < 0 ) continue;
1753
1754 // unification run for side-effects
1755 bool canUnify = unify( toType, cand->expr->result, env, need, have, open );
1756 (void) canUnify;
1757 Cost thisCost = computeConversionCost( cand->expr->result, toType, cand->expr->get_lvalue(),
1758 symtab, env );
1759 PRINT(
1760 Cost legacyCost = castCost( cand->expr->result, toType, cand->expr->get_lvalue(),
1761 symtab, env );
1762 std::cerr << "Considering initialization:";
1763 std::cerr << std::endl << " FROM: " << cand->expr->result << std::endl;
1764 std::cerr << std::endl << " TO: " << toType << std::endl;
1765 std::cerr << std::endl << " Unification " << (canUnify ? "succeeded" : "failed");
1766 std::cerr << std::endl << " Legacy cost " << legacyCost;
1767 std::cerr << std::endl << " New cost " << thisCost;
1768 std::cerr << std::endl;
1769 )
1770 if ( thisCost != Cost::infinity ) {
1771 // count one safe conversion for each value that is thrown away
1772 thisCost.incSafe( discardedValues );
1773 if ( cand->cost < minExprCost || ( cand->cost == minExprCost && thisCost < minCastCost ) ) {
1774 minExprCost = cand->cost;
1775 minCastCost = thisCost;
1776 matches.clear();
1777 }
1778 // ambiguous case, still output candidates to print in error message
1779 if ( cand->cost == minExprCost && thisCost == minCastCost ) {
1780 CandidateRef newCand = std::make_shared<Candidate>(
1781 new ast::InitExpr{
1782 initExpr->location,
1783 restructureCast( cand->expr, toType ),
1784 initAlt.designation },
1785 std::move(env), std::move( open ), std::move( need ), cand->cost + thisCost );
1786 // currently assertions are always resolved immediately so this should have no effect.
1787 // if this somehow changes in the future (e.g. delayed by indeterminate return type)
1788 // we may need to revisit the logic.
1789 inferParameters( newCand, matches );
1790 }
1791 }
1792 }
1793 }
1794
1795 // select first on argument cost, then conversion cost
1796 // CandidateList minArgCost = findMinCost( matches );
1797 // promoteCvtCost( minArgCost );
1798 // candidates = findMinCost( minArgCost );
1799 candidates = std::move(matches);
1800 }
1801
1802 // size_t Finder::traceId = Stats::Heap::new_stacktrace_id("Finder");
1803 /// Prunes a list of candidates down to those that have the minimum conversion cost for a given
1804 /// return type. Skips ambiguous candidates.
1805
1806} // anonymous namespace
1807
1808bool CandidateFinder::pruneCandidates( CandidateList & candidates, CandidateList & out, std::vector<std::string> & errors ) {
1809 struct PruneStruct {
1810 CandidateRef candidate;
1811 bool ambiguous;
1812
1813 PruneStruct() = default;
1814 PruneStruct( const CandidateRef & c ) : candidate( c ), ambiguous( false ) {}
1815 };
1816
1817 // find lowest-cost candidate for each type
1818 std::unordered_map< std::string, PruneStruct > selected;
1819 // attempt to skip satisfyAssertions on more expensive alternatives if better options have been found
1820 std::sort(candidates.begin(), candidates.end(), [](const CandidateRef & x, const CandidateRef & y){return x->cost < y->cost;});
1821 for ( CandidateRef & candidate : candidates ) {
1822 std::string mangleName;
1823 {
1824 ast::ptr< ast::Type > newType = candidate->expr->result;
1825 assertf(candidate->expr->result, "Result of expression %p for candidate is null", candidate->expr.get());
1826 candidate->env.apply( newType );
1827 mangleName = Mangle::mangle( newType );
1828 }
1829
1830 auto found = selected.find( mangleName );
1831 if (found != selected.end() && found->second.candidate->cost < candidate->cost) {
1832 PRINT(
1833 std::cerr << "cost " << candidate->cost << " loses to "
1834 << found->second.candidate->cost << std::endl;
1835 )
1836 continue;
1837 }
1838
1839 // xxx - when do satisfyAssertions produce more than 1 result?
1840 // this should only happen when initial result type contains
1841 // unbound type parameters, then it should never be pruned by
1842 // the previous step, since renameTyVars guarantees the mangled name
1843 // is unique.
1844 CandidateList satisfied;
1845 bool needRecomputeKey = false;
1846 if (candidate->need.empty()) {
1847 satisfied.emplace_back(candidate);
1848 }
1849 else {
1850 satisfyAssertions(candidate, context.symtab, satisfied, errors);
1851 needRecomputeKey = true;
1852 }
1853
1854 for (auto & newCand : satisfied) {
1855 // recomputes type key, if satisfyAssertions changed it
1856 if (needRecomputeKey)
1857 {
1858 ast::ptr< ast::Type > newType = newCand->expr->result;
1859 assertf(newCand->expr->result, "Result of expression %p for candidate is null", newCand->expr.get());
1860 newCand->env.apply( newType );
1861 mangleName = Mangle::mangle( newType );
1862 }
1863 auto found = selected.find( mangleName );
1864 if ( found != selected.end() ) {
1865 // tiebreaking by picking the lower cost on CURRENT expression
1866 // NOTE: this behavior is different from C semantics.
1867 // Specific remediations are performed for C operators at postvisit(UntypedExpr).
1868 // Further investigations may take place.
1869 if ( newCand->cost < found->second.candidate->cost
1870 || (newCand->cost == found->second.candidate->cost && newCand->cvtCost < found->second.candidate->cvtCost) ) {
1871 PRINT(
1872 std::cerr << "cost " << newCand->cost << " beats "
1873 << found->second.candidate->cost << std::endl;
1874 )
1875
1876 found->second = PruneStruct{ newCand };
1877 } else if ( newCand->cost == found->second.candidate->cost && newCand->cvtCost == found->second.candidate->cvtCost ) {
1878 // if one of the candidates contains a deleted identifier, can pick the other,
1879 // since deleted expressions should not be ambiguous if there is another option
1880 // that is at least as good
1881 if ( findDeletedExpr( newCand->expr ) ) {
1882 // do nothing
1883 PRINT( std::cerr << "candidate is deleted" << std::endl; )
1884 } else if ( findDeletedExpr( found->second.candidate->expr ) ) {
1885 PRINT( std::cerr << "current is deleted" << std::endl; )
1886 found->second = PruneStruct{ newCand };
1887 } else {
1888 PRINT( std::cerr << "marking ambiguous" << std::endl; )
1889 found->second.ambiguous = true;
1890 }
1891 } else {
1892 // xxx - can satisfyAssertions increase the cost?
1893 PRINT(
1894 std::cerr << "cost " << newCand->cost << " loses to "
1895 << found->second.candidate->cost << std::endl;
1896 )
1897 }
1898 } else {
1899 selected.emplace_hint( found, mangleName, newCand );
1900 }
1901 }
1902 }
1903
1904 // report unambiguous min-cost candidates
1905 // CandidateList out;
1906 for ( auto & target : selected ) {
1907 if ( target.second.ambiguous ) continue;
1908
1909 CandidateRef cand = target.second.candidate;
1910
1911 ast::ptr< ast::Type > newResult = cand->expr->result;
1912 cand->env.applyFree( newResult );
1913 cand->expr = ast::mutate_field(
1914 cand->expr.get(), &ast::Expr::result, std::move( newResult ) );
1915
1916 out.emplace_back( cand );
1917 }
1918 // if everything is lost in satisfyAssertions, report the error
1919 return !selected.empty();
1920}
1921
1922void CandidateFinder::find( const ast::Expr * expr, ResolveMode mode ) {
1923 // Find alternatives for expression
1924 ast::Pass<Finder> finder{ *this };
1925 expr->accept( finder );
1926
1927 if ( mode.failFast && candidates.empty() ) {
1928 switch(finder.core.reason.code) {
1929 case Finder::NotFound:
1930 { SemanticError( expr, "No alternatives for expression " ); break; }
1931 case Finder::NoMatch:
1932 { SemanticError( expr, "Invalid application of existing declaration(s) in expression " ); break; }
1933 case Finder::ArgsToFew:
1934 case Finder::ArgsToMany:
1935 case Finder::RetsToFew:
1936 case Finder::RetsToMany:
1937 case Finder::NoReason:
1938 default:
1939 { SemanticError( expr->location, "No reasonable alternatives for expression : reasons unkown" ); }
1940 }
1941 }
1942
1943 /*
1944 if ( mode.satisfyAssns || mode.prune ) {
1945 // trim candidates to just those where the assertions are satisfiable
1946 // - necessary pre-requisite to pruning
1947 CandidateList satisfied;
1948 std::vector< std::string > errors;
1949 for ( CandidateRef & candidate : candidates ) {
1950 satisfyAssertions( candidate, localSyms, satisfied, errors );
1951 }
1952
1953 // fail early if none such
1954 if ( mode.failFast && satisfied.empty() ) {
1955 std::ostringstream stream;
1956 stream << "No alternatives with satisfiable assertions for " << expr << "\n";
1957 for ( const auto& err : errors ) {
1958 stream << err;
1959 }
1960 SemanticError( expr->location, stream.str() );
1961 }
1962
1963 // reset candidates
1964 candidates = move( satisfied );
1965 }
1966 */
1967
1968 // optimization: don't prune for NameExpr since it never has cost
1969 if ( mode.prune && !dynamic_cast<const ast::NameExpr *>(expr) ) {
1970 // trim candidates to single best one
1971 PRINT(
1972 std::cerr << "alternatives before prune:" << std::endl;
1973 print( std::cerr, candidates );
1974 )
1975
1976 CandidateList pruned;
1977 std::vector<std::string> errors;
1978 bool found = pruneCandidates( candidates, pruned, errors );
1979
1980 if ( mode.failFast && pruned.empty() ) {
1981 std::ostringstream stream;
1982 if (found) {
1983 CandidateList winners = findMinCost( candidates );
1984 stream << "Cannot choose between " << winners.size() << " alternatives for "
1985 "expression\n";
1986 ast::print( stream, expr );
1987 stream << " Alternatives are:\n";
1988 print( stream, winners, 1 );
1989 SemanticError( expr->location, stream.str() );
1990 }
1991 else {
1992 stream << "No alternatives with satisfiable assertions for " << expr << "\n";
1993 for ( const auto& err : errors ) {
1994 stream << err;
1995 }
1996 SemanticError( expr->location, stream.str() );
1997 }
1998 }
1999
2000 auto oldsize = candidates.size();
2001 candidates = std::move( pruned );
2002
2003 PRINT(
2004 std::cerr << "there are " << oldsize << " alternatives before elimination" << std::endl;
2005 )
2006 PRINT(
2007 std::cerr << "there are " << candidates.size() << " alternatives after elimination"
2008 << std::endl;
2009 )
2010 }
2011
2012 // adjust types after pruning so that types substituted by pruneAlternatives are correctly
2013 // adjusted
2014 if ( mode.adjust ) {
2015 for ( CandidateRef & r : candidates ) {
2016 r->expr = ast::mutate_field(
2017 r->expr.get(), &ast::Expr::result,
2018 adjustExprType( r->expr->result, r->env, context.symtab ) );
2019 }
2020 }
2021
2022 // Central location to handle gcc extension keyword, etc. for all expressions
2023 for ( CandidateRef & r : candidates ) {
2024 if ( r->expr->extension != expr->extension ) {
2025 r->expr.get_and_mutate()->extension = expr->extension;
2026 }
2027 }
2028}
2029
2030std::vector< CandidateFinder > CandidateFinder::findSubExprs(
2031 const std::vector< ast::ptr< ast::Expr > > & xs
2032) {
2033 std::vector< CandidateFinder > out;
2034
2035 for ( const auto & x : xs ) {
2036 out.emplace_back( context, env );
2037 out.back().find( x, ResolveMode::withAdjustment() );
2038
2039 PRINT(
2040 std::cerr << "findSubExprs" << std::endl;
2041 print( std::cerr, out.back().candidates );
2042 )
2043 }
2044
2045 return out;
2046}
2047
2048const ast::Expr * referenceToRvalueConversion( const ast::Expr * expr, Cost & cost ) {
2049 if ( expr->result.as< ast::ReferenceType >() ) {
2050 // cast away reference from expr
2051 cost.incReference();
2052 return new ast::CastExpr{ expr, expr->result->stripReferences() };
2053 }
2054
2055 return expr;
2056}
2057
2058Cost computeConversionCost(
2059 const ast::Type * argType, const ast::Type * paramType, bool argIsLvalue,
2060 const ast::SymbolTable & symtab, const ast::TypeEnvironment & env
2061) {
2062 PRINT(
2063 std::cerr << std::endl << "converting ";
2064 ast::print( std::cerr, argType, 2 );
2065 std::cerr << std::endl << " to ";
2066 ast::print( std::cerr, paramType, 2 );
2067 std::cerr << std::endl << "environment is: ";
2068 ast::print( std::cerr, env, 2 );
2069 std::cerr << std::endl;
2070 )
2071 Cost convCost = conversionCost( argType, paramType, argIsLvalue, symtab, env );
2072 PRINT(
2073 std::cerr << std::endl << "cost is " << convCost << std::endl;
2074 )
2075 if ( convCost == Cost::infinity ) return convCost;
2076 convCost.incPoly( polyCost( paramType, symtab, env ) + polyCost( argType, symtab, env ) );
2077 PRINT(
2078 std::cerr << "cost with polycost is " << convCost << std::endl;
2079 )
2080 return convCost;
2081}
2082
2083} // namespace ResolvExpr
2084
2085// Local Variables: //
2086// tab-width: 4 //
2087// mode: c++ //
2088// compile-command: "make install" //
2089// End: //
Note: See TracBrowser for help on using the repository browser.